User’s Guide

to
PARI / GP

(version 2.15.0)
The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université de Bordeaux, 351 Cours de la Libération
F-33405 TALENCE Cedex, FRANCE

e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Copyright (© 2000-2022 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2022 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 1: Overview of the PARI system oo, 5
1.1 Introduction e 5
1.2 Multiprecision kernels / Portability 6
1.3 The PARI types 7
1.4 The PARI philosophy e 9
1.5 Operations and functions 10

Chapter 2: The gp Calculator oo, 13
2.1 Introductiono 13
2.2 The general gp input line 15
2.3 The PARI types o e 17
2.4 GP operators e 29
2.5 Variables and symbolic expressions L L Lo 33
2.6 Variables and Scope 36
2.7 User defined functions 39
2.8 Member functions 48
2.9 Strings and Keywords 49
2.10 Errors and error TE€COVETY« v v v i e e e e e e 51
2.11 Interfacing GP with other languages. oL 57
212 Defaultso 57
2.13 Simple metacommandsl 58
2.14 The preferences file L 62
2.15 Using readline 64
2.16 GNU Emacs and PariEmacs 66

Chapter 3: Functions and Operations Available in PARTand GP 67
3.1 Programming in GP: control statements L. 69
3.2 Programming in GP: other specific functions 85
3.3 Parallel programming 117
3.4 GP defaults 121
3.5 Standard monadic or dyadic operators 131
3.6 Conversions and similar elementary functions or commands 139
3.7 Combinatoricso e 164
3.8 Arithmetic functions L 171
3.9 Polynomials and power series oo 238
3.10 Vectors, matrices, linear algebra and sets L. 265
3.11 Transcendental functions L 304
3.12 Sums, products, integrals and similar functions oL 326
3.13 General number fields 364
3.14 Associative and central simple algebras L. 478
3.15 Elliptic curves e e e e e e 506
3.16 Hypergeometric Motives L 558
317 L-functionso Lo 565
3.18 Modular formso 586
3.19 Modular symbols 622
3.20 Plotting functions 643

Index . . . 653

Chapter 1:
Overview of the PARI system

1.1 Introduction.

PARI/GP is a specialized computer algebra system, primarily aimed at number theorists, but has
been put to good use in many other different fields, from topology or numerical analysis to physics.

Although quite an amount of symbolic manipulation is possible, PARI does badly compared
to systems like Axiom, Magma, Maple, Mathematica, Maxima, or Reduce on such tasks, e.g. mul-
tivariate polynomials, formal integration, etc. On the other hand, the three main advantages of
the system are its speed, the possibility of using directly data types which are familiar to mathe-
maticians, and its extensive algebraic number theory module (from the above-mentioned systems,
only Magma provides similar features).

Non-mathematical strong points include the possibility to program either in high-level scripting
languages or with the PARI library, a mature system (development started in the mid eighties) that
was used to conduct and disseminate original mathematical research, while building a large user
community, linked by helpful mailing lists and a tradition of great user support from the developers.
And, of course, PARI/GP is Free Software, covered by the GNU General Public License, either
version 2 of the License or (at your option) any later version.

PARI is used in three different ways:

1) as a library libpari, which can be called from an upper-level language application, for
instance written in ANSI C or C++;

2) as a sophisticated programmable calculator, named gp, whose language GP contains most
of the control instructions of a standard language like C;

3) the compiler gp2c translates GP code to C, and loads it into the gp interpreter. A
typical script compiled by gp2c runs 3 to 10 times faster. The generated C code can be edited and
optimized by hand. It may also be used as a tutorial to 1ibpari programming.

The present Chapter 1 gives an overview of the PARI/GP system; gp2c is distributed separately
and comes with its own manual. Chapter 2 describes the GP programming language and the gp
calculator. Chapter 3 describes all routines available in the calculator. Programming in library
mode is explained in Chapters 4 and 5 in a separate booklet: User’s Guide to the PARI library
(libpari.dvi.

A tutorial for gp is provided in the standard distribution: A tutorial for PARI/GP (tuto-
rial.dvi) and you should read this first. You can then start over and read the more boring stuff
which lies ahead. You can have a quick idea of what is available by looking at the gp reference card
(refcard.dvi or refcard.ps). In case of need, you can refer to the complete function description
in Chapter 3.

How to get the latest version. Everything can be found on PARI’s home page:
http://pari.math.u-bordeaux.fr/.

From that point you may access all sources, some binaries, version information, the complete mailing
list archives, frequently asked questions and various tips. All threaded and fully searchable.

How to report bugs. Bugs are submitted online to our Bug Tracking System, available from
PARI’s home page, or directly from the URL

http://pari.math.u-bordeaux.fr/Bugs/.

Further instructions can be found on that page.

1.2 Multiprecision kernels / Portability.

The PARI multiprecision kernel comes in three non exclusive flavors. See Appendix A for how
to set up these on your system; various compilers are supported, but the GNU gcc compiler is the
definite favorite.

A first version is written entirely in ANSI C, with a C++-compatible syntax, and should be
portable without trouble to any 32 or 64-bit computer having no drastic memory constraints. We
do not know any example of a computer where a port was attempted and failed.

In a second version, time-critical parts of the kernel are written in inlined assembler. At present
this includes

e the whole ix86 family (Intel, AMD, Cyrix) starting at the 386, up to the Xbox gaming
console, including the Opteron 64 bit processor.

e three versions for the Sparc architecture: version 7, version 8 with SuperSparc processors,
and version 8 with MicroSparc I or II processors. UltraSparcs use the MicroSparc II version;

e the DEC Alpha 64-bit processor;

e the Intel Itanium 64-bit processor;

e the PowerPC equipping old macintoshs (G3, G4, etc.);
e the HPPA processors (both 32 and 64 bit);

A third version uses the GNU MP library to implement most of its multiprecision kernel. It
improves significantly on the native one for large operands, say 100 decimal digits of accuracy or
more. You should enable it if GMP is present on your system. Parts of the first version are still in
use within the GMP kernel, but are scheduled to disappear.

A historical version of the PARI/GP kernel, written in 1985, was specific to 680x0 based
computers, and was entirely written in MC68020 assembly language. It ran on SUN-3/xx, Sony
News, NeXT cubes and on 680x0 based Macs. It is no longer part of the PARI distribution; to run
PARI with a 68k assembler micro-kernel, use the GMP kernel!

1.3 The PARI types.

The GP language is not typed in the traditional sense; in particular, variables have no type.
In library mode, the type of all PARI objects is GEN, a generic type. On the other hand, it is
dynamically typed: each object has a specific internal type, depending on the mathematical object
it represents.

The crucial word is recursiveness: most of the PARI types are recursive. For example, the basic
internal type t_COMPLEX exists. However, the components (i.e. the real and imaginary part) of such
a “complex number” can be of any type. The only sensible ones are integers (we are then in Z[i]),
rational numbers (Q[i]), real numbers (R[i] = C), or even elements of Z/nZ (in (Z/nZ)[t]/(t>*+1)),
or p-adic numbers when p = 3mod4 (Q,[i]). This feature must not be used too rashly in library
mode: for example you are in principle allowed to create objects which are “complex numbers of
complex numbers”. (This is not possible under gp.) But do not expect PARI to make sensible use
of such objects: you will mainly get nonsense.

On the other hand, it is allowed to have components of different, but compatible, types, which
can be freely mixed in basic ring operations + or x. For example, taking again complex numbers,
the real part could be an integer, and the imaginary part a rational number. On the other hand,
if the real part is a real number, the imaginary part cannot be an integer modulo n !

Let us now describe the types. As explained above, they are built recursively from basic
types which are as follows. We use the letter T' to designate any type; the symbolic names t_xxx
correspond to the internal representations of the types.

type t_INT Z Integers (with arbitrary precision)

type t_REAL R Real numbers (with arbitrary precision)
type t_INTMOD Z/nZ Intmods (integers modulo n)

type t_FRAC Q Rational numbers (in irreducible form)
type t_FFELT F, Finite field element

type t_COMPLEX T7i] Complex numbers

type t_PADIC Q, p-adic numbers

type t_QUAD Q[w] Quadratic Numbers (where [Z[w] : Z] = 2)
type t_POLMOD TIX]/(P) Polmods (polynomials modulo P € T[X])
type t_POL T[X] Polynomials

type t_SER T((X)) Power series (finite Laurent series)

type t_RFRAC T(X) Rational functions (in irreducible form)
type t_VEC ™ Row (i.e. horizontal) vectors

type t_COL ™ Column (i.e. vertical) vectors

type t_MAT Mo (T') Matrices

type t_LIST ™ Lists

type t_STR Character strings

type t_CLOSURE Functions

type t_ERROR Error messages

type t_INFINITY —o0 and +oo

and where the types T in recursive types can be different in each component. The first nine basic
types, from t_INT to t_POLMOD, are called scalar types because they essentially occur as coefficients
of other more complicated objects. Type t_POLMOD is used to define algebraic extensions of a base
ring, and as such is a scalar type.

In addition, there exist the type t_QFB for integral binary quadratic forms, and the internal
type t_VECSMALL. The latter holds vectors of small integers, whose absolute value is bounded by 23!

7

(resp. 253) on 32-bit, resp. 64-bit, machines. They are used internally to represent permutations,
polynomials or matrices over a small finite field, etc.

Every PARI object (called GEN in the sequel) belongs to one of these basic types. Let us have
a closer look.

1.3.1 Integers and reals. They are of arbitrary and varying length (each number carrying in its
internal representation its own length or precision) with the following mild restrictions (given for
32-bit machines, the restrictions for 64-bit machines being so weak as to be considered nonexistent):
integers must be in absolute value less than 2535870815 (i e roughly 161614219 decimal digits). The
precision of real numbers is also at most 161614219 significant decimal digits, and the binary
exponent must be in absolute value less than 229, resp. 2°!, on 32-bit, resp. 64-bit machines.

Integers and real numbers are nonrecursive types.

1.3.2 Intmods, rational numbers, p-adic numbers, polmods, and rational functions.
These are recursive, but in a restricted way.

For intmods or polmods, there are two components: the modulus, which must be of type
integer (resp. polynomial), and the representative number (resp. polynomial).

For rational numbers or rational functions, there are also only two components: the numerator
and the denominator, which must both be of type integer (resp. polynomial).

Finally, p-adic numbers have three components: the prime p, the “modulus” p¥, and an ap-
proximation to the p-adic number. Here Z, is considered as the projective limit <li_lrnZ /P*Z via

its finite quotients, and Q,, as its field of fractions. Like real numbers, the codewords contain an
exponent, giving the p-adic valuation of the number, and also the information on the precision of
the number, which is redundant with p*, but is included for the sake of efficiency.

1.3.3 Finite field elements. The exact internal format depends of the finite field size, but it
includes the field characteristic p, an irreducible polynomial 7' € F,[X]| defining the finite field
F,[X]/(T) and the element expressed as a polynomial in (the class of) X.

1.3.4 Complex numbers and quadratic numbers. Quadratic numbers are numbers of the
form a + bw, where w is such that [Z[w] : Z] = 2, and more precisely w = v/d/2 when d = 0 mod 4,
and w = (1 +v/d)/2 when d = 1 mod 4, where d is the discriminant of a quadratic order. Complex
numbers correspond to the important special case w = v/—1.

Complex numbers are partially recursive: the two components a and b can be of type t_INT,
t_REAL, t_INTMOD, t_FRAC, or t_PADIC, and can be mixed, subject to the limitations mentioned
above. For example, a+bi with a and b p-adic is in Q,[¢], but this is equal to Q, when p = 1 mod 4,
hence we must exclude these p when one explicitly uses a complex p-adic type. Quadratic numbers
are more restricted: their components may be as above, except that t_REAL is not allowed.

1.3.5 Polynomials, power series, vectors, matrices. They are completely recursive, over a
commutative base ring: their components can be of any type, and types can be mixed (however
beware when doing operations). Note in particular that a polynomial in two variables is simply a
polynomial with polynomial coefficients. Polynomials or matrices over noncommutative rings are
not supported.

In the present version 2.15.0 of PARI, it is not possible to handle conveniently power series of
power series, i.e. power series in several variables. However power series of polynomials (which are
power series in several variables of a special type) are OK. This is a difficult design problem: the
mathematical problem itself contains some amount of imprecision, and it is not easy to design an
intuitive generic interface for such beasts.

1.3.6 Strings. These contain objects just as they would be printed by the gp calculator.

1.3.7 Zero. What is zero? This is a crucial question in all computer systems. The answer we
give in PARI is the following. For exact types, all zeros are equivalent and are exact, and thus
are usually represented as an integer zero. The problem becomes nontrivial for imprecise types:
there are infinitely many distinct zeros of each of these types! For p-adics and power series the
answer is as follows: every such object, including 0, has an exponent e. This p-adic or X-adic zero
is understood to be equal to O(p®) or O(X€) respectively.

Real numbers also have exponents and a real zero is in fact O(2°) where e is now usually a
negative binary exponent. This of course is printed as usual for a floating point number (0.00- - - or
0.Fzz depending on the output format) and not with a O symbol as with p-adics or power series.
With respect to the natural ordering on the reals we make the following convention: whatever its
exponent a real zero is smaller than any positive number, and any two real zeroes are equal.

1.4 The PARI philosophy.

The basic principles which govern PARI is that operations and functions should, firstly, give
as exact a result as possible, and secondly, be permitted if they make any kind of sense.

In this respect, we make an important distinction between exact and inexact objects: by
definition, types t_REAL, t_PADIC or t_SER are imprecise. A PARI object having one of these
imprecise types anywhere in its tree is inezact, and ezact otherwise. No loss of accuracy (rounding
error) is involved when dealing with exact objects. Specifically, an exact operation between exact
objects will yield an exact object. For example, dividing 1 by 3 does not give 0.333---, but the
rational number (1/3). To get the result as a floating point real number, evaluate 1./3 or 0.+1/3.

Conversely, the result of operations between imprecise objects, although inexact by nature,
will be as precise as possible. Consider for example the addition of two real numbers x and y. The
accuracy of the result is a priori unpredictable; it depends on the precisions of x and y, on their
sizes, and also on the size of z + y. From this data, PARI works out the right precision for the
result. Even if it is working in calculator mode gp, where there is a notion of default precision, its
value is only used to convert exact types to inexact ones.

In particular, if an operation involves objects of different accuracies, some digits will be dis-
regarded by PARI. It is a common source of errors to forget, for instance, that a real number is
given as r 4+ 2°¢ where r is a rational approximation, e a binary exponent and ¢ is a nondescript
real number less than 1 in absolute value. Hence, any number less than 2¢ may be treated as an
exact zero:

? 0.E-28 + 1.E-100

%1 = 0.E-28
? 0.E100 + 1
%2 = 0.E100

As an exercise, if a = 27(-100), why doa + 0. and a * 1. differ?

The second principle is that PARI operations are in general quite permissive. For instance
taking the exponential of a vector should not make sense. However, it frequently happens that one
wants to apply a given function to all elements in a vector. This is easily done using a loop, or
using the apply built-in function, but in fact PARI assumes that this is exactly what you want to
do when you apply a scalar function to a vector. Taking the exponential of a vector will do just
that, so no work is necessary. Most transcendental functions work in the same way*.

In the same spirit, when objects of different types are combined they are first automatically
mapped to a suitable ring, where the computation becomes meaningful:

? 1/3 + Mod(1,5)

%1 = Mod(3, 5)

? I+ 0059

%2 =2 + 5 + 2x572 + 573 + 3%57°4 + 4x5°5 + 2*576 + 3*%5°7 + 0(579)
? Mod(1,15) + Mod(1,10)

%3 = Mod(2, 5)

The first example is straightforward: since 3 is invertible mod 5, (1/3) is easily mapped to
Z/5Z. In the second example, I stands for the customary square root of —1; we obtain a 5-adic
number, 5-adically close to a square root of —1. The final example is more problematic, but there
are natural maps from Z/15Z and Z/10Z to Z/5Z, and the computation takes place there.

1.5 Operations and functions.

The available operations and functions in PARI are described in detail in Chapter 3. Here is
a brief summary:

1.5.1 Standard arithmetic operations.

Of course, the four standard operators +, -, *, / exist. We emphasize once more that division is, as
far as possible, an exact operation: 4 divided by 3 gives (4/3). In addition to this, operations on
integers or polynomials, like \ (Euclidean division), % (Euclidean remainder) exist; for integers, \/
computes the quotient such that the remainder has smallest possible absolute value. There is also
the exponentiation operator ~, when the exponent is of type integer; otherwise, it is considered as a
transcendental function. Finally, the logical operators ! (not prefix operator), && (and operator),
|| (or operator) exist, giving as results 1 (true) or 0 (false).

1.5.2 Conversions and similar functions.

Many conversion functions are available to convert between different types. For example floor,
ceiling, rounding, truncation, etc.... Other simple functions are included like real and imaginary
part, conjugation, norm, absolute value, changing precision or creating an intmod or a polmod.

* An ambiguity arises with square matrices. PARI always considers that you want to do com-
ponentwise function evaluation in this context, hence to get for example the standard exponential
of a square matrix you would need to implement a different function.

10

1.5.3 Transcendental functions.

They usually operate on any complex number, power series, and some also on p-adics. The list is
ever-expanding and of course contains all the elementary functions (exp/log, trigonometric func-
tions), plus many others (modular functions, Bessel functions, polylogarithms...). Recall that by
extension, PARI usually allows a transcendental function to operate componentwise on vectors or
matrices.

1.5.4 Arithmetic functions.

Apart from a few like the factorial function or the Fibonacci numbers, these are functions which
explicitly use the prime factor decomposition of integers. The standard functions are included. A
number of factoring methods are used by a rather sophisticated factoring engine (to name a few,
Shanks’s SQUFOF, Pollard’s rho, Lenstra’s ECM, the MPQS quadratic sieve). These routines
output strong pseudoprimes, which may be certified by the APRCL test.

There is also a large package to work with algebraic number fields. All the usual operations on
elements, ideals, prime ideals, etc. are available. More sophisticated functions are also implemented,
like solving Thue equations, finding integral bases and discriminants of number fields, computing
class groups and fundamental units, computing in relative number field extensions, Galois and class
field theory, and also many functions dealing with elliptic curves over Q or over local fields.

1.5.5 Other functions.

Quite a number of other functions dealing with polynomials (e.g. finding complex or p-adic roots,
factoring, etc), power series (e.g. substitution, reversion), linear algebra (e.g. determinant, charac-
teristic polynomial, linear systems), and different kinds of recursions are also included. In addi-
tion, standard numerical analysis routines like univariate integration (using the double exponential
method), real root finding (when the root is bracketed), polynomial interpolation, infinite series
evaluation, and plotting are included.

And now, you should really have a look at the tutorial before proceeding.

11

12

EMACS:

Chapter 2:
The gp Calculator

2.1 Introduction.

Originally, gp was designed as a debugging device for the PARI system library. Over the
years, it has become a powerful user-friendly stand-alone calculator. The mathematical functions
available in PARI and gp are described in the next chapter. In the present one, we describe the
specific use of the gp programmable calculator.

If you have GNU Emacs and use the PariEmacs package, you can work in a special Emacs shell,
described in Section 2.16. Specific features of this Emacs shell are indicated by an EMACS sign in
the left margin.

We briefly mention at this point GNU TeXmacs (http://www.texmacs.org/), a free wysiwyg
editing platform that allows to embed an entire gp session in a document, and provides a nice
alternative to PariEmacs.

2.1.1 Startup.
To start the calculator, the general command line syntax is:
gp [-D key=vall [files]

where items within brackets are optional. The [files| argument is a list of files written in the GP
scripting language, which will be loaded on startup. There can be any number of arguments of the
form -D key=wal, setting some internal parameters of gp, or defaults: each sets the default key to
the value val. See Section 2.12 below for a list and explanation of all defaults. These defaults can
be changed by adding parameters to the input line as above, or interactively during a gp session,
or in a preferences file also known as gprc.

If a preferences file (to be discussed in Section 2.14) is found, gp then reads it and executes the
commands it contains. This provides an easy way to customize gp. The files argument is processed
right after the gprc.

A copyright banner then appears which includes the version number, and a lot of useful tech-
nical information. After the copyright, the computer writes the top-level help information, some
initial defaults, and then waits after printing its prompt, which is ’? ’ by default . Whether ex-
tended on-line help and line editing are available or not is indicated in this gp banner, between the
version number and the copyright message. Consider investigating the matter with the person who
installed gp if they are not. Do this as well if there is no mention of the GMP kernel.

13

2.1.2 Getting help.

To get help, type a ? and hit return. A menu appears, describing the main categories of
available functions and how to get more detailed help. If you now type ?n with n = 1,2,..., you
get the list of commands corresponding to category n and simultaneously to Section 3.n of this
manual. If you type ?functionname where functionname is the name of a PARI function, you will
get a short explanation of this function.

If extended help (see Section 2.13.1) is available on your system, you can double or triple the ?
sign to get much more: respectively the complete description of the function (e.g. ??sqrt), or a list
of gp functions relevant to your query (e.g. ???"elliptic curve" or ??7"quadratic field").

If gp was properly installed (see Appendix A), a line editor is available to correct the command
line, get automatic completions, and so on. See Section 2.15 or ??readline for a short summary
of the line editor’s commands.

If you type ?\ you will get a short description of the metacommands (keyboard shortcuts).

Finally, typing 7. will return the list of available (pre-defined) member functions. These
are functions attached to specific kind of objects, used to retrieve easily some information from
complicated structures (you can define your own but they won’t be shown here). We will soon
describe these commands in more detail.

More generally, commands starting with the symbols \ or 7, are not computing commands, but
are metacommands which allow you to exchange information with gp. The available metacommands
can be divided into default setting commands (explained below) and simple commands (or keyboard
shortcuts, to be dealt with in Section 2.13).

2.1.3 Input.

Just type in an instruction, e.g. 1 + 1, or Pi. No action is undertaken until you hit the
<Return> key. Then computation starts, and a result is eventually printed. To suppress printing
of the result, end the expression with a ; sign. Note that many systems use ; to indicate end of
input. Not so in gp: a final semicolon means the result should not be printed. (Which is certainly
useful if it occupies several screens.)

2.1.4 Interrupt, Quit.

Typing quit at the prompt ends the session and exits gp. At any point you can type Ctrl-C
(that is press simultaneously the Control and C keys): the current computation is interrupted and
control given back to you at the gp prompt, together with a message like

*** at top-level: gcd(a,b)
KKk T

% gcd: user interrupt after 236 ms.

telling you how much time elapsed since the last command was typed in and in which GP function
the computation was aborted. It does not mean that that much time was spent in the function,
only that the evaluator was busy processing that specific function when you stopped it.

14

2.2 The general gp input line.

The gp calculator uses a purely interpreted language GP. The structure of this language is
reminiscent of LISP with a functional notation, f(x,y) rather than (f x y): all programming
constructs, such as if, while, etc...are functions®, and the main loop does not really execute,
but rather evaluates (sequences of) expressions. Of course, it is by no means a true LISP, and has
been strongly influenced by C and Perl since then.

2.2.1 Introduction. User interaction with a gp session proceeds as follows. First, one types a
sequence of characters at the gp prompt; see Section 2.15 for a description of the line editor. When
you hit the <Return> key, gp gets your input, evaluates it, then prints the result and assigns it to
an “history” array.

More precisely, the input is case-sensitive and, outside of character strings, blanks are com-
pletely ignored. Inputs are either metacommands or sequences of expressions. Metacommands are
shortcuts designed to alter gp’s internal state, such as the working precision or general verbosity
level; we shall describe them in Section 2.13, and ignore them for the time being.

The evaluation of a sequence of instructions proceeds in two phases: your input is first digested
(byte-compiled) to a bytecode suitable for fast evaluation, in particular loop bodies are compiled
only once but a priori evaluated many times; then the bytecode is evaluated.

An expression is formed by combining constants, variables, operator symbols, functions and
control statements. It is evaluated using the conventions about operator priorities and left to right
associativity. An expression always has a value, which can be any PARI object:

71+ 1

%l =2 \\ an ordinary integer

? x

%2 = x \\ @ polynomial of degree 1 in the unknown x

? print("Hello")

Hello \\ void return value, 'Hello’ printed as side effect

7?7 f(x) = x72
W = (x)->x"2 \\ a user function

In the third example, Hello is printed as a side effect, but is not the return value. The print
command is a procedure, which conceptually returns nothing. But in fact procedures return a
special void object, meant to be ignored (but which evaluates to 0 in a numeric context, and
stored as 0 in the history or results). The final example assigns to the variable £ the function
2+ 22, the alternative form f = x->x"2 achieving the same effect; the return value of a function
definition is, unsurprisingly, a function object (of type t_CLOSURE).

Several expressions are combined on a single line by separating them with semicolons (’;’).
Such an expression sequence will be called a seq. A seq also has a value, which is the value of the
last expression in the sequence. Under gp, the value of the seq, and only this last value, becomes
an history entry. The values of the other expressions in the seq are discarded after the execution
of the seq is complete, except of course if they were assigned into variables. In addition, the value
of the seq is printed if the line does not end with a semicolon ;.

* Not exactly, since not all their arguments need be evaluated. For instance it would be stupid
to evaluate both branches of an if statement: since only one will apply, only this one is evaluated.

15

2.2.2 The gp history of results.

This is not to be confused with the history of your commands, maintained by readline. The
gp history contains the results they produced, in sequence.

The successive elements of the history array are called %1, %2, ...As a shortcut, the latest
computed expression can also be called %, the previous one %¢, the one before that %°¢ ¢ and so on.

When you suppress the printing of the result with a semicolon, it is still stored in the history,
but its history number will not appear either. It is a better idea to assign it to a variable for later
use than to mentally recompute what its number is. Of course, on the next line, you may just use

%

The time used to compute that history entry is also stored as part of the entry and can be
recovered using the %# operator: %#1, %#2 %#¢; %# by itself returns the time needed to compute
the last result (the one returned by %). The output is a vector with two components [cpu, reall
where cpu is the CPU time and real is the wall clock time.

Remark. The history “array” is in fact better thought of as a queue: its size is limited to 5000
entries by default, after which gp starts forgetting the initial entries. So %1 becomes unavailable as
gp prints %5001. You can modify the history size using histsize.

2.2.3 Special editing characters. A GP program can of course have more than one line. Since
your commands are executed as soon as you have finished typing them, there must be a way to tell
gp to wait for the next line or lines of input before doing anything. There are three ways of doing
this.

The first one is to use the backslash character \ at the end of the line that you are typing,
just before hitting <Return>. This tells gp that what you will write on the next line is the physical
continuation of what you have just written. In other words, it makes gp forget your newline
character. You can type a \ anywhere. It is interpreted as above only if (apart from ignored
whitespace characters) it is immediately followed by a newline. For example, you can type

73+ \
4

instead of typing 3 + 4.

The second one is a variation on the first, and is mostly useful when defining a user function
(see Section 2.7): since an equal sign can never end a valid expression, gp disregards a newline
immediately following an =.

? a-=
123
%1 = 123

The third one is in general much more useful, and uses braces { and }. An opening brace {
signals that you are typing a multi-line command, and newlines are ignored until you type a closing
brace }. There are two important, but easily obeyed, restrictions: first, braces do not nest; second,
inside an open brace-close brace pair, all input lines are concatenated, suppressing any newlines.
Thus, all newlines should occur after a semicolon (;), a comma (,) or an operator (for clarity’s
sake, never split an identifier over two lines in this way). For instance, the following program

16

would silently produce garbage, since this is interpreted as a=bb=c which assigns the value of ¢ to
both bb and a. It should have been written

{

2.3 The PARI types.

We see here how to input values of the different data types known to PARI. Recall that blanks are
ignored in any expression which is not a string (see below).

A note on efficiency. The following types are provided for convenience, not for speed: t_INTMOD,
t_FRAC, t_PADIC, t_QUAD, t_POLMOD, t_RFRAC. Indeed, they always perform a reduction of some
kind after each basic operation, even though it is usually more efficient to perform a single reduction
at the end of some complex computation. For instance, in a convolution product), 4jen TiY; 0
Z/NZ — common when multiplying polynomials! —, it is quite wasteful to perform n reductions
modulo N. In short, basic individual operations on these types are fast, but recursive objects
with such components could be handled more efficiently: programming with libpari will save large
constant factors here, compared to GP.

2.3.1 Integers (t_INT). After an (optional) leading + or -, type in the decimal digits of your
integer. No decimal point!

? 1234567

%1 = 1234567

? -3

%2 = -3

? 1. \\ oops, not an integer
%3 = 1.000000000000000000000000000

Integers can be input in hexadecimal notation by prefixing them with 0x; hexadecimal digits
(a,...,f) can be input either in lowercase or in uppercase:

? OxF
%4 = 15

? Oxlabcd
%5 = 109517

Integers can also be input in binary by prefixing them with Ob:

? 0b010101
%6 = 21

17

2.3.2 Real numbers (t_REAL).

Real numbers are represented (approximately) in a floating point system, internally in base 2,
but converted to base 10 for input / output purposes. A t_REAL object has a given bit accuracy
(or bit precision) ¢ > 0; it comprises

e a sign s: +1, —1 or 0;
e a mantissa m: a multiprecision integer, 0 < m < 2;

e an exponent e: a small integer in [—258,2B[, where B = 31 on a 32-bit machine and 63
otherwise.

This data may represent any real number z such that
|z — sm2¢| < 2¢7%.

We consider that a t_REAL with sign s = 0 has accuracy ¢ = 0, so that its mantissa is useless, but
it still has an exponent e and acts like a machine epsilon for all accuracies < e.

After an (optional) leading + or -, type a number with a decimal point. Leading zeroes may
be omitted, up to the decimal point, but trailing zeroes are important: your t_REAL is assigned
an internal precision, which is the supremum of the input precision, one more than the number of
decimal digits input, and the default realprecision. For example, if the default precision is 38
digits, typing 2. yields a precision of 38 digits, but 2.0...0 with 45 zeros gives a number with
internal decimal precision at least 45, although less may be printed.

You can also use scientific notation with the letter E or e. As usual, en is interpreted as x10"
for all integers n. Since the result is converted to a t_REAL, you may often omit the decimal point
in this case: 6.02 E 23 or 1le-5 are fine, but e10 is not.

By definition, 0.E n returns a real 0 of exponent n, whereas 0. returns a real 0 “of default
precision” (of exponent —realprecision), see Section 1.3.7, behaving like the machine epsilon for
the current default accuracy: any float of smaller absolute value is indistinguishable from 0.

Note on output formats. A zero real number is printed in e format as 0. Exxz where zx is the
(usually negative) decimal exponent of the number (cf. Section 1.3.7). This allows the user to check
the accuracy of that particular zero.

When the integer part of a real number z is not known exactly because the exponent of x is
greater than the internal precision, the real number is printed in e format.

Technical note. The internal precision is actually expressed in bits and can be viewed and
manipulated globally in interactive use via realprecision (decimal digits, as explained above;
shortcut \p) or realbitprecision (bits; shortcut \ps), the latter allowing finer granularity. See
Section 3.11 for details. In programs we advise to leave this global variable alone and adapt precision
locally for a given sequence of computations using localbitprec.

Note that most decimal floating point numbers cannot be converted exactly in binary, the
(binary) number actually stored is a rounded version of the (decimal) number input. Analogously,
a decimal output is rounded from the internal binary representation.

18

2.3.3 Intmods (t_INTMOD). To create the image of the integer a in Z/bZ (for some nonzero integer
b), type Mod (a,b); not ajb. Internally, all operations are done on integer representatives belonging
to [0,b — 1].

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo b.

If x is a t_INTMOD Mod(a,b), the following member function is defined:

x.mod: return the modulus b.

2.3.4 Rational numbers (t_FRAC). All fractions are automatically reduced to lowest terms, so it
is impossible to work with reducible fractions. To enter n/m just type it as written. As explained
in Section 3.5.8, floating point division is not performed, only reduction to lowest terms.

Note that rational computation are almost never the fastest method to proceed: in the PARI
implementation, each elementary operation involves computing a ged. It is generally a little more
efficient to cancel denominators and work with integers only:

7?7 P = Pol(vector(1073,i, 1/1)); \\ big polynomial with small rational coeffs
? P2

time = 1,392 ms.

7 ¢ = content(P); c"2 * (P/c)”2; \\ same computation in integers

time = 1,116 ms.

And much more efficient (but harder to setup) to use homomorphic imaging schemes and modular
computations. As the simple example below indicates, if you only need modular information, it
is very worthwhile to work with t_INTMODs directly, rather than deal with t_FRACs all the way
through:

? p = nextprime(1077);

? sum(i=1, 1075, 1/i) % p
time = 13,288 ms.

%1 = 2759492

? sum(i=1, 10°5, Mod(1/i, p))
time = 60 ms.

%2 = Mod (2759492, 10000019)

2.3.5 Finite field elements (t_FFELT). Let T' € F,[X]| be a monic irreducible polynomial defining
your finite field over F,,, for instance obtained using ffinit. Then the ffgen function creates a
generator of the finite field as an F,-algebra, namely the class of X in F),[X]/(T'), from which you
can build all other elements. For instance, to create the field Fgs, we write

7 T = ffinit(2, 8);

7 y = ffgen(T, ’y);

7 y°0 \\ the unit element in the field
w3 =1

? y°8

% =y 6+ yb5+y4+y3+y+1

The second (optional) parameter to ffgen is only used to display the result; it is customary to
use the name of the variable we assign the generator to. If g is a t_FFELT, the following member
functions are defined:

19

g.pol: the polynomial (with reduced integer coefficients) expressing g in term of the field
generator.

g.p: the characteristic of the finite field.

g.f: the dimension of the definition field over its prime field; the cardinality of the definition
field is thus p/.

g.mod: the minimal polynomial (with reduced integer coefficients) of the field generator.

2.3.6 Complex numbers (t_COMPLEX). To enter x + iy, type x + I*xy. (That’s I, not i!) The
letter I stands for v/—1. The “real” and “imaginary” parts x and y can be of type t_INT, t_REAL,
t_INTMOD, t_FRAC, or t_PADIC.

2.3.7 p-adic numbers (t_PADIC):. Typing 0(p~k), where p is a prime and k is an integer,
yields a p-adic 0 of accuracy k, representing any p-adic number whose valuation is > k. To input a
general nonzero p-adic number, write a suitably precise rational or integer approximation and add
0(p~k) to it. For example, you can type in the 7-adic number

2x77(-1) + 3 + 4x7 + 2x772 + 0(7°3)
exactly as shown, or equivalently as 905/7 + 0(773).

Note that it is not checked whether p is indeed prime but results are undefined if this is not
the case: you can try to work on 10-adics if you want, but disasters will happen as soon as you do
something nontrivial. For instance:

?7t=2x (1/10 + 0(1075));
7 lift(t)
%2 = 2/10 \\ not reduced (invalid t_FRAC)
7 factor(x"2-t)
*** at top-level: factor(x~2-%1)
koK e et
*x** factor: impossible inverse in Fl_inv: Mod(2, 10000).

Note that 0(25) is not the same as 0(5°2); you want the latter!
If a is a t_PADIC, the following member functions are defined:
a.mod: returns the modulus p*.

a.p: returns p.

Note that this type is available for convenience, not for speed: internally, t_PADICs are stored
as p-adic units modulo some p*. Each elementary operation involves updating p* (multiplying or
dividing by powers of p) and a reduction mod p*. In particular, additions are slow.

?n = 1+0(2°20); for (i=1,10"6, n++)
time = 841 ms.
? n = Mod(1,27°20); for (i=1,10"6, n++)
time = 441 ms.
?7n=1; for (i=1,10"6, n++)
time = 328 ms.

The penalty attached to maintaining p* decreases steeply as p increases (and updates become
rare). But t_INTMODs remain at least 25% more efficient. (On the other hand, they do not allow
denominators!)

20

2.3.8 Quadratic numbers (t_QUAD). This type is used to work in the quadratic order of discrim-
inant d, where d is a nonsquare integer congruent to 0 or 1 (modulo 4). The command

w = quadgen(d,’w)

assigns to w the “canonical” generator for the integer basis of the order of discriminant d, i.e. w =
Vd/2 if d = 0mod 4, and w = (1++/d)/2 if d = 1 mod 4 and set its name to w. The name ’w is used
for printing and we advise to store it in a variable of the same name. Beware, two t_QUADs with
different discriminants can be printed in the same way and not be equal; however, gp will refuse to
add or multiply them for example, so use different names for different discriminants.

Since the order is Z + wZ, any other element can be input as a = z+y*w for some integers x
and y. In fact, you may work in its fraction field Q(\/ZZ) and use t_FRAC values for z and y.

The following member functions are defined:
a.disc retrieves the discriminant d;
a.mod: returns the minimal polynomial T" of w;

a.pol: returns the t_POL z 4+ wy. In particular [x,y] = Vecrev(a.pol) recovers x and y.
The components z and y are also obtained via real(a) and imag(z) respectively.

2.3.9 Polmods (t_POLMOD). Exactly as for intmods, to enter x mody (where x and y are poly-
nomials), type Mod(x,y), not x%y. Note that when y is an irreducible polynomial in one variable,
polmods whose modulus is y are simply algebraic numbers in the finite extension defined by the
polynomial y. This allows us to work easily in number fields, finite extensions of the p-adic field
Q,, or finite fields.

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo y. If p is a t_POLMOD, the following member functions are defined:

p-pol: return a representative of the polynomial class of minimal degree.

p.mod: return the modulus.

Important remark. Mathematically, the variables occurring in a polmod are not free variables.
But internally, a congruence class in R[t]/(y) is represented by its representative of lowest degree,
which is a t_POL in R[t], and computations occur with polynomials in the variable . PARI will not
recognize that Mod(y, y~2 + 1) is “the same” as Mod(x, x"2 + 1), since x and y are different
variables.

To avoid inconsistencies, polmods must use the same variable in internal operations (i.e. be-
tween polmods) and variables of lower priority for external operations, typically between a poly-
nomial and a polmod. See Section 2.5.3 for a definition of “priority” and a discussion of (PARI’s
idea of) multivariate polynomial arithmetic. For instance:

? Mod(x, x"2+ 1) + Mod(x, x72 + 1)

%1 = Mod(2%x, x"2 + 1) \\ 2i (or —2i), with i® = —1
? x + Mod(y, y°2 + 1)

h2 = x + Mod(y, y~2 + 1) \\ in Q(i)[x]

? y + Mod(x, x72 + 1)

%3 = Mod(x + y, x°2 + 1) \\ in Q(y)[i]

The first two are straightforward, but the last one may not be what you want: y is treated here as
a numerical parameter, not as a polynomial variable.

21

If the main variables are the same, it is allowed to mix t_POL and t_POLMODs. The result is
the expected t_POLMOD. For instance

? x + Mod(x, x”2 + 1)

%1 = Mod(2*x, x~2 + 1)
2.3.10 Polynomials (t_POL). Type the polynomial in a natural way, not forgetting to put a “«”
between a coefficient and a formal variable;

71 4+ 2%x + 3%x72
%l = 3%x"2 + 2xx + 1

This assumes that x is still a ”free variable”.

?7x=1; 1 + 2%x + 3*%x"2
%2 =6

generates an integer, not a polynomial! It is good practice to never assign values to polynomial
variables to avoid the above problem, but a foolproof construction is available using ’x instead of x:
’x is a constant evaluating to the free variable with name x, independently of the current value
of x.

?7x=1; 1+ 2%¥’x + 3%’x72
%3 = 1 + 2*%x + 3%x"2
7?7 x ="7x; 1+ 2%x + 3%x72
%4 = 1 + 2xx + 3*x72

You may also use the functions Pol or Polrev:

? Pol([1,2,3]) \\ Pol creates a polynomial in x by default
%1 = x72 + 2%x + 3

? Polrev([1,2,3])

%2 = 3*xx"2 + 2xx + 1

? Pol([1,2,31, ’y) \\ we use ’y, safer than y

%3 =y 2 + 2%y + 3

The latter two are much more efficient constructors than an explicit summation (the latter is
quadratic in the degree, the former linear):

? for (i=1, 1074, Polrev(vector(100, i,i)))
time = 124ms

? for (i=1, 1074, sum(i = 1, 100, (i+1) * ’x7i))
time = 3,98bms

Polynomials are always printed as univariate polynomials over a commutative base ring, with
monomials sorted by decreasing degree:

7 (x+y+1)°2
%1 = x"2 + (2%y + 2)*x + (y™2 + 2%y + 1)

(Univariate polynomial in x whose coefficients are polynomials in y.) See Section 2.5 for valid vari-
able names, and a discussion of multivariate polynomial rings. Polynomials over noncommutative
rings are not supported.

22

2.3.11 Power series (t_SER). Typing 0(X"k), where k is an integer, yields an X-adic 0 of accu-
racy k, representing any power series in X whose valuation is > k. Of course, X can be replaced by
any other variable name! To input a general nonzero power series, type in a polynomial or rational
function (in X, say), and add 0(X"k) to it. The discussion in the t_POL section about variables
remains valid; a constructor Ser replaces Pol and Polrev. Power series over noncommutative rings
are not supported.

Caveat. Power series with inexact coeflficients sometimes have a nonintuitive behavior: if k£ signif-
icant terms are requested, an inexact zero is counted as significant, even if it is the coefficient of
lowest degree. This means that useful higher order terms may be disregarded.

If a series with a zero leading coefficient must be inverted, then as a desperation measure that
coefficient is discarded, and a warning is issued:

?7C=0.+7+0(y°2);
7 1/C

%% _/_: Warning: normalizing a series with O leading term.
h2 =y~ -1+ 0(1)

The last output could be construed as a bug since it is a priori impossible to deduce such a result
from the input (0. represents any sufficiently small real number). But it was thought more useful
to try and go on with an approximate computation than to raise an early exception.

If the series precision is insufficient, errors may occur (mostly division by 0), which could have
been avoided by a better global understanding of the computation:

?7A=1/(y +0.); B=1. + 0(y);
? B * denominator (A)
%2 = 0.E-28 + 0(y)
? A/B
x%% _/_: Warning: normalizing a series with O leading term.
%3 = 1.000000000000000000000000000*y~-1 + 0(1)
? AxB
**%% _*_: Warning: normalizing a series with O leading term.
%4 = 1.000000000000000000000000000*y~-1 + 0(1)

2.3.12 Rational functions (t_RFRAC). As for fractions, all rational functions are automatically
reduced to lowest terms. All that was said about fractions in Section 2.3.4 remains valid here.

2.3.13 Binary quadratic forms (t_QFB). These are input using the function Qfb. For example,
both Qfb(1,2,3) and Qfb([1,2,3]) create the binary form ¢ = x? + 2zy + 3y?. It is imaginary
since its discriminant 22 — 4 x 3 = —8 is negative. Although imaginary forms could be positive or
negative definite, only positive definite forms are implemented.

The discriminant can be retrieved via q.disc. The individual components are obtained via
either of

[a,b,c] = Vec(q);

a = component(q,1);
b = component(q,2);
c = component(q,3);

See also the function qfbprimeform which creates a prime form of given discriminant.

23

2.3.14 Row and column vectors (t_VEC and t_COL). To enter a row vector, type the compo-

W

nents separated by commas “,”, and enclosed between brackets “[” and “]”, e.g. [1,2,3]. To

enter a column vector, type the vector horizontally, and add a tilde “~” to transpose. [] yields the
empty (row) vector. The function Vec can be used to transform any object into a vector (see Chap-
ter 3). The construction [i..j], where ¢ < j are two integers returns the vector [i,i+1,...,5 — 1, 7]

7 [1,2,3]

%1 = [1, 2, 3]

7 [-2..3]

%2 = [-2, -1, 0, 1, 2, 3]
Let the variable v contain a (row or column) vector:

e v[m] refers to its m-th entry; you can assign any value to v[m], i.e. write something like
vlm] = expr.

e v[i..j], where i < j, returns the vector slice containing elements v[i], ..., v[j]; you can not
assign a result to v[i..j].

e v[~i] returns the vector whose i-th entry has been removed; you can not assign a result to
v[~i].
In the last two constructions v[i..j] and v[~i], ¢ and j are allowed to be negative integers, in
which case, we start counting from the end of the vector: e.g., —1 is the index of the last element.

?v=1[1,2,3,4];
? v[2..4]

%2 = [2, 3, 4]

? v[~3]

%3 = [1, 2, 4]
? v[~-1]

%3 = [1, 2, 3]
? v[-3..-1]

% = [2, 3, 4]

Remark. vector is the standard constructor for row vectors whose ¢-th entry is given by a simple
function of i; vectorv is similar for column vectors:

? vector(10, i, i"2+1)
%1 = [2, 5, 10, 17, 26, 37, 50, 65, 82, 101]

The functions Vec and Col convert objects to row and column vectors respectively (as well as
Vecrev and Colrev, which revert the indexing):

? T = poltchebi(5) \\ 5-th Chebyshev polynomial
%1 = 16%x"5 - 20*%x~3 + b*x

? Vec(T)

%2 = [16, 0, -20, 0, 5, 0] \\ coefficients of T

? Vecrev(T)

%3 = [0, 5, 0, -20, 0, 16] \\ ... in reverse order

24

Remark. For v a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[gx) | x <= v, £(x)]
[x | x <- v, f(x)]
[g(x) | x <= v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select (f, Vec(v))
apply(g, Vec(v))

respectively, and may serve as t_VEC constructors:

? [p | p <- primes(10), isprime(p+2)]
%2 = [3, 5, 11, 17, 29]

returns the primes p (among the first 10 primes) such that (p,p + 2) is a twin pair;

? [p2 | p<- primes(10), p % 4 == 1]
%1 = [25, 169, 289, 841]

returns the squares of the primes congruent to 1 modulo 4, where p runs among the first 10 primes.

2.3.15 Matrices (t_MAT). To enter a matrix, type the components row by row, the components

[

being separated by commas “,”, the rows by semicolons “;”, and everything enclosed in brackets
“[” and “17, e.g. [x,y; z,t; u,v]. [;] yields an empty (0 x 0) matrix. The function Mat
transforms any object into a matrix, and matrix creates matrices whose (i, j)-th entry is described
by a function f(i,j):

? Mat(1)

%1 =

[1]

? matrix(2,2, i,j, 2*i+j)
%2 =

[3 4]

[5 6]
Matrix multiplication assumes that the base ring containing the matrix entries is commutative.
Let the variable M contain a matrix, and let i, j, k, [denote four integers:

e M[1i,j] refers to its (i, j)-th entry; you can assign any result to M[1i, j].

e M[i,] refers to its i-th row; you can assign a t_VEC of the right dimension to M[i,].

e M[, j] refers to its j-th column; you can assign a t_COL of the right dimension to M[, j].

But M[i] is meaningless and triggers an error. The “range” i..j and “caret” ~c notations are
available as for vectors; you can not assign to any of these:

e M[i..j, k..1],: < j, k <[, returns the submatrix built from the rows i to j and columns
k tol of M.

25

e M[i..j,] returns the submatrix built from the rows i to j of M.
e M[,i..j] returns the submatrix built from the columns i to j of M.
e M[i..j, “kl,i < j, returns the submatrix built from the rows ¢ to j and column k& removed.
e M["k,] returns the submatrix with row k removed.
e M[, k] returns the submatrix with column k£ removed.
Finally,
e M[i..j, k] returns the t_COL built from the k-th column (entries i to j).
e M["i, k] returns the t_COL built from the k-th column (entry i removed).
e M[k, i..j] returns the t_VEC built from the k-th row (entries i to 7).

e M[k, ~i] returns the t_VEC built from the k-th row (entry i removed).

?M=[1,2,3;4,5,6;7,8,9];
7 M[1..2, 2..3]

h2 =

[2 3]

[5 6]

? M[1..2,]
%3 =

[1 2 3]

[4 5 6]

? M[,2..3]
A
[2 3]

[5 6]
[8 9]
All this is recursive, so if M is a matrix of matrices of ..., an expression such as M[1,1] [,3] [4]

= 1 is perfectly valid (and actually identical to M[1,1][4,3] = 1), assuming that all matrices along
the way have compatible dimensions.

26

Technical note (design flaw). Matrices are internally represented as a vector of columns. All
matrices with 0 columns are thus represented by the same object (internally, an empty vector), and
there is no way to distinguish between them. Thus it is not possible to create or represent matrices
with zero columns and an actual nonzero number of rows. The empty matrix [;] is handled as
though it had an arbitrary number of rows, exactly as many as needed for the current computation
to make sense:

? [1,2,3; 4,5,6] * [;]
%1 = [;]

The empty matrix on the first line is understood as a 3 x 0 matrix, and the result as a 2 x 0 matrix.
On the other hand, it is possible to create matrices with a given positive number of columns, each
of which has zero rows, e.g. using Mat as above or using the matrix function.

Note that although the internal representation is essentially the same, a row vector of column
vectors is not a matrix; for example, multiplication will not work in the same way. It is easy to go
from one representation to the other using Vec / Mat, though:

7 [1,2,3;4,5,6]
hl o=
[1 2 3]

[4 5 6]

? Vec(%)

%2 = [[1, 4]1~, [2, 5]~, [3, 6]-]
? Mat (%)

%3 =

[1 2 3]

[4 5 6]
2.3.16 Lists (t_LIST). Lists can be input directly, as in List ([1,2,3,4]); but in most cases, one
creates an empty list, then appends elements using listput:

? L = List(); listput(~L,1); listput(~L,2);
? L
%2 = List([1, 2])

Note the ~L: this means that the function is called with a reference to L and changes L in place.
Elements can be accessed directly as with the vector types described above.

2.3.17 Strings (t_STR). To enter a string, enclose it between double quotes ", as in: "this is a
string". The function Str can be used to transform any object into a string.

27

2.3.18 Small vectors (t_VECSMALL). This type codes in an efficient way vectors containing only
small integers, such as permutations. Most gp functions will refuse to operate on these objects,
notable exceptions being vecsort and conversion functions such as VEC, but you can retrieve
entries and assign to them as for ordinary vectors. You can also convert back and forth between
t_VECSMALL and t_VEC objects using Vec and Vecsmall.

? v = Vecsmall([2, 4, 6])
%1 = Vecsmall([2, 4, 6])
? v[1]

%2 = 2

? v[1] = 3; v

%3 = Vecsmall([3, 2, 3])

? v[2..3]

%4 = Vecsmall([2, 3])
7 v[~2]

%5 = Vecsmall([3, 3])
? Vec(v)

%6 = [3, 2, 3]

Allowed entries for a t_VECMALL are signed integer = such that |z| < 23! on a 32-bit architecture,

resp. x| < 25 on a 64-bit architecture Assigning a larger integer to a t_VECSMALL entry triggers
an exception:

? v[1] = 2763
**%*x at top-level: v[1]=2"63
*okok e
*kok incorrect type in t_VECSMALL assignment (t_INT).

2.3.19 Functions (t_CLOSURE). We will explain this at length in Section 2.7. For the time being,
suffice it to say that functions can be assigned to variables, as any other object, and the following
equivalent basic forms are available to create new ones

f=(x,y) > x"2+y"2

f(x,y) = x72 + y°2
2.3.20 Error contexts (t_ERROR). An object of this type is created whenever an error occurs: it

contains some information about the error and the error context. Usually, an appropriate error is
printed immediately, the computation is aborted, and GP enters the “break loop”:

7 1/0; 1 + 1
***% at top-level: 1/0;1+1
*kk o

x%x _/_: division by a noninvertible object
**%*x Break loop: type ’break’ to go back to the GP prompt

Here the computation is aborted as soon as we try to evaluate 1/0, and 1 4 1 is never executed.
Exceptions can be trapped using iferr, however: we can evaluate some expression and either
recover an ordinary result (no error occurred), or an exception (an error did occur).

? i = Mod(6,12); iferr(1/i, E, print(E)); 1 + 1
error ("impossible inverse modulo: Mod(6, 12).")
%1 =2

28

One can ignore the exception, print it as above, or extract non trivial information from the error
context:

? i = Mod(6,12); iferr(1/i, E, print(component(E,1)));
Mod (6, 12)

We can also rethrow the exception: error(E).

2.3.21 Infinity (t_INFINITY).

There are only two objects of this type +oo and -oo, representing +o0o. This type only contain
only two elements oo and -oo, They are used in functions sur as intnum or polrootsreal, to
encode infinite real intervals. These objects can only be negated and compared to real numbers
(t_INT, t_REAL, t_FRAC), but not included in any computation, i.e. 1+oo0 is an error, not oo again.

2.4 GP operators.

Loosely speaking, an operator is a function, usually attached to basic arithmetic operations, whose
name contains only nonalphanumeric characters. For instance + or -, but also = or +=, or even []
(the selection operator). As all functions, operators take arguments, and return a value; assignment
operators also have side effects: besides returning a value, they change the value of some variable.

Fach operator has a fixed and unchangeable priority, which means that, in a given expression,
the operation with the highest priority is performed first. Unless mentioned otherwise, opera-
tors at the same priority level are left-associative (performed from left to right), unless they are
assignments, in which case they are right-associative. Anything enclosed between parenthesis is
considered a complete subexpression, and is resolved recursively, independently of the surrounding
context. For instance,

a+b+c --> (a+Db) +c \\ left-associative
a=b=c --> a=(b=c) \\ right-associative

Assuming that opi, opsa, ops are binary operators with increasing priorities (think of +, *, =),

X 0p Y Opgy 2 0Py X OP3 Y

is equivalent to
z opy ((y opy z) opy (z op3 y)).

GP contains many different operators, either unary (having only one argument) or binary, plus
a few special selection operators. Unary operators are defined as either prefiz or postfix, meaning
that they respectively precede (op x) and follow (x op) their single argument. Some symbols are
syntactically correct in both positions, like !, but then represent different operators: the ! symbol
represents the negation and factorial operators when in prefix and postfix position respectively.
Binary operators all use the (infix) syntax x op y.

Most operators are standard (+, %, =), some are borrowed from the C language (++, <<),
and a few are specific to GP (\, #). Beware that some GP operators differ slightly from their C
counterparts. For instance, GP’s postfix ++ returns the new value, like the prefix ++ of C, and the
binary shifts <<, >> have a priority which is different from (higher than) that of their C counterparts.
When in doubt, just surround everything by parentheses; besides, your code will be more legible.

29

Here is the list of available operators, ordered by decreasing priority, binary and left-associative
unless mentioned otherwise. An expression is an lvalue if something can be assigned to it. (The
name comes from left-value, to the left of a = operator; e.g. x, or v[1] are lvalues, but x + 1 is
not.)

e Priority 14

: as in x:small, is used to indicate to the GP2C compiler that the variable on the left-hand
side always contains objects of the type specified on the right hand-side (here, a small integer) in
order to produce more efficient or more readable C code. This is ignored by GP.

e Priority 13
() is the function call operator. If f is a closure and args is a comma-separated list of
arguments (possibly empty), f(args) evaluates f on those arguments.

e Priority 12

++ and -- (unary, postfix): if z is an 1value, z++ assigns the value z + 1 to z, then returns
the new value of z. This corresponds to the C statement ++z: there is no prefix ++ operator in GP.
x—- does the same with x — 1. These operators are not associative, i.e. x++++ is invalid, since x++
is not an lvalue.

e Priority 11
.member (unary, postfix): x.member extracts member from structure x (see Section 2.8).

[] is the selection operator. x[i] returns the i-th component of vector x; x[i,j], =[,7]
and x[i,] respectively return the entry of coordinates (i, 7), the j-th column, and the i-th row of
matrix . If the assignment operator (=) immediately follows a sequence of selections, it assigns its
right hand side to the selected component. E.g x[1] [1] = 0 is valid; but beware that (x[1]) [1]
= 0 is not (because the parentheses force the complete evaluation of x[1], and the result is not
modifiable).

e Priority 10

> (unary, postfix): derivative with respect to the main variable. If f is a function (t_CLOSURE),
f is allowed and defines a new function, which will perform numerical derivation when evaluated
at a scalar z; this is defined as (f(z +¢) — f(x — ¢))/2¢ for a suitably small epsilon depending on
current precision.

? (x72 + yxx + y~2)° \\ derive with respect to main variable x

hl = 2%x + y

? SIN = cos’

%2 = cos’

7 SIN(Pi/6) \\ numerical derivation

%3 = -0.5000000000000000000000000000

? cos’(Pi/6) \\ works directly: no need for intermediate SIN

%4 = -0.5000000000000000000000000000
~ (unary, postfix): vector/matrix transpose.
! (unary, postfix): factorial. z! = z(x —1)---1.

! (unary, prefix): logical not. 'z returns 1 if x is equal to 0 (specifically, if gequalO(z)==1),
and 0 otherwise.

e Priority 9
(unary, prefix): cardinality; #x returns length(z).

30

e Priority 8

~. powering. This operator is right associative: 2 ~374 is understood as 2 ~(374).
e Priority 7

+, — (unary, prefix): - toggles the sign of its argument, + has no effect whatsoever.

e Priority 6
*: multiplication.

/: exact division (3/2 yields 3/2, not 1.5).

\, %: Euclidean quotient and remainder, i.e. if z = qy + r, then x\y = ¢, x%y =r. If z and y
are scalars, then ¢ is an integer and r satisfies 0 < r < |y|; if and y are polynomials, then ¢ and
r are polynomials such that degr < degy and the leading terms of r and = have the same sign.

\/: rounded Euclidean quotient for integers (rounded towards +oo when the exact quotient
would be a half-integer).

<<, >>: left and right binary shift. By definition, x<<n = z%2" if n > 0, and truncate(z2~")
otherwise. Right shift is defined by x>>n = x<<(-n).
e Priority 5

+, —: addition/subtraction.
e Priority 4

<, >, <=, >=: the usual comparison operators, returning 1 for true and 0 for false. For

instance, x<=1 returns 1 if x < 1 and 0 otherwise.

<>, !=: test for (exact) inequality.

==: test for (exact) equality.

===: test whether two objects are identical component-wise. This is stricter than ==: for
instance, the integer 0, a 0 polynomial or a vector with 0 entries, are all tested equal by ==, but
they are not identical.

e Priority 3
&&: logical and.

| 1: logical (inclusive) or. Any sequence of logical or and and operations is evaluated from left
to right, and aborted as soon as the final truth value is known. Thus, for instance,

x == 0 || test(1/x)

will never produce an error since test (1/x) is not even evaluated when the first test is true (hence
the final truth value is true). Similarly

type(p) == "t_INT" && isprime(p)
does not evaluate isprime(p) if p is not an integer.

e Priority 2

= (assignment, lvalue = expr). The result of x = y is the value of the expression y, which
is also assigned to the variable x. This assignment operator is right-associative. This is not the
equality test operator; a statement like x = 1 is always true (i.e. nonzero), and sets x to 1; the
equality test would be x == 1. The right hand side of the assignment operator is evaluated before
the left hand side.

31

It is crucial that the left hand-side be an lvalue there, it avoids ambiguities in expressions like
1 + x = 1. The latter evaluates as 1 + (x = 1), not as (1 + x) = 1, even though the priority
of = is lower than the priority of +: 1 + x is not an lvalue.

If the expression cannot be parsed in a way where the left hand side is an lvalue, raise an error.

?7x+1=1

*okok syntax error, unexpected ’=’, expecting $end or ’;’: x+1=1

* k% -

Assignment to all variables is a deep copy: after x = y, modifying a component of y will not change
x. To globals it is a full copy to the heap. Space used by local objects in local variables is released
when they go out of scope or when the value changes in local scope. Assigning a value to a vector
or matrix entry allocates room for that entry only (on the heap).

op=, where op is any binary operator among +, -, *, %, /, \, \/, <<, or >> (composed assignment
lvalue op= expr). The expression x op= y assigns (x op y) to x, and returns the new value of x.
The result is not an lvalue; thus

(x +=2) = 3
is invalid. These assignment operators are right-associative:

7?7 X =7°X; X += x *= 2
%1 = 3*xx

e Priority 1
-> (function definition): (wars)->expr returns a function object, of type t_CLOSURE.

Remark. Use the op= operators as often as possible since they make complex assignments more
legible. Compare

v[i+j-1] = v[i+j-1] + 1 -—> v[i+j-1]++
M[i,i+j] = M[i,i+j] * 2 -—> M[i,i+j] =*= 2

Remark about efficiency. the operators ++ and -- are usually a little more efficient than their
expended counterpart:

? N
71

107°7;

0; for(k
time = 949 ms.
?1i=0; for(k =1, N, i++)
time = 933 ms.

1, N, i=i+1)

On the other hand, this is not the case for the op= operators which may even be a little less efficient:

?1i=0; for(k
time = 949 ms.
? i=0; for(k
time = 1,064 ms.

1, N, i=i+10)

1, N, i+=10)

32

2.5 Variables and symbolic expressions.

In this section we use wariable in the standard mathematical sense, symbols representing
algebraically independent elements used to build rings of polynomials and power series, and explain
the all-important concept of variable priority. In the next Section 2.6, we shall no longer consider
only free variables, but adopt the viewpoint of computer programming and assign values to these
symbols: (bound) variables are names attached to values in a given scope.

2.5.1 Variable names. A valid name starts with a letter, followed by any number of keyword
characters: _ or alphanumeric characters ([A-Za-z0-9]). As a rule, the built-in function names are
reserved and cannot be used; see the list with \c, including the constants Pi, Euler, Catalan,
I = +/—1 and oo = oo. Beware in particular of gamma, omega, theta, sum or 0, none of which are
free to use. (We shall see in Section 2.6 how this rule can be circumvented. It is possible to name
a lexical variable gamma.)

GP names are case sensitive. For instance, the symbol i is perfectly safe to use, and will not
be mistaken for I = 1/—1; analogously, o is not synonymous to 0.

In GP you can use up to 16383 variable names (up to 65535 on 64-bit machines). If you ever
need thousands of variables and this becomes a serious limitation, you should probably be using
vectors instead: e.g. instead of variables X1, X2, X3, ..., you might equally well store their values
in X[1], X[2], X[3], ...

2.5.2 Variables and polynomials. The quote operator ’t registers a new free variable with the
interpreter, which will be written as t, and evaluates to a monomial of degree 1 in the said variable.

Caveat. For reasons of backward compatibility, there is no such thing as an “unbound” (unini-
tialized) variable in GP. If you use a valid variable name in an expression, t say, for the first time
before assigning a value into it, it is interpreted as ’t rather than raising an exception. One should
not rely on this feature in serious programs, which would otherwise break if some unexpected as-
signment (e.g. t = 1) occurs: use ’t directly or t = ’t first, then t. A statement like t = ’t in
effect restores t as a free variable.

?7t="t; tt2 +1

%l =t"2 + 1

7t =2; t°2+1
%2 =5

7?7 %1

%3 =t"2 + 1

? eval(%1)

%4 =5

In the above, we initialize t to a monomial, then bind it to 2. Assigning a value to a polynomial
variable does not affect previous expressions involving it; to take into account the new variable’s
value, one must force a new evaluation, using the function eval (see Section 3.9.6).

33

Caveat2. The use of an explicit quote operator avoids the following kind of problems:

?7t="7t; p=1t"2+ 1; subst(p, t, 2)

%l =5

7?7t =2;

? subst(p, t, 3) \\ t is no longer free: it evaluates to 2
x¥*x at top-level: subst(p,t,3)
k% x S ——

**%* variable name expected.
? subst(p, ’t, 3) \\ 0K
%3 = 10

2.5.3 Variable priorities, multivariate objects. A multivariate polynomial in PARI is just a
polynomial (in one variable), whose coefficients are themselves polynomials, arbitrary but for the
fact that they do not involve the main variable. (PARI currently has no sparse representation for
polynomials, listing only nonzero monomials.) All computations are then done formally on the
coefficients as if the polynomial was univariate.

This is not symmetrical. So if I enter x + ’y in a clean session, what happens? This is
understood as

R (yl +0 % yo) x 10 € (Zy])[]

but how do we know that x is “more important” than y ? Why not y! + z x y°, which is the same
mathematical entity after all?

The answer is that variables are ordered implicitly by the interpreter: when a new identifier
(e.g z, or y as above) is input, the corresponding variable is registered as having a strictly lower
priority than any variable in use at this point*. To see the ordering used by gp at any given time,
type variable().

Given such an ordering, multivariate polynomials are stored so that the variable with the
highest priority is the main variable. And so on, recursively, until all variables are exhausted. A
different storage pattern (which could only be obtained via libpari programming and low-level
constructors) would produce an invalid object, and eventually a disaster.

In any case, if you are working with expressions involving several variables and want to have
them ordered in a specific manner in the internal representation just described, the simplest is just
to write down the variables one after the other under gp before starting any real computations.
You may also define variables from your gprc to have a consistent ordering of common variable
names in all your gp sessions, e.g read in a file variables.gp containing

JX; 7y;)z;)t;)a;

There is no way to change the priority of existing variables, but you may always create new ones
with well-defined priorities using varhigher or varlower.

* This is not strictly true: the variables x and y are predefined, and satisfy = > y. Variables of
higher priority than x can be created using varhigher.

34

Important note. PARI allows Euclidean division of multivariate polynomials, but assumes that
the computation takes place in the fraction field of the coefficient ring (if it is not an integral
domain, the result will a priori not make sense). This can become tricky. For instance assume z
has highest priority, then y:

7xhy

%1 =0

7y %hx

w2 =y \\ these two take place in Q(y)|[x]
7 x * Mod(1,y)

#3 = Mod(1, y*x \\in (Q(y)/yQ(y))z] ~ Qlz]
? Mod(x,y)

W =0

In the last example, the division by y takes place in Q(y)[x], hence the Mod object is a coset
in (Q(y)[z])/(yQ(y)[z]), which is the null ring since y is invertible! So be very wary of variable
ordering when your computations involve implicit divisions and many variables. This also affects
functions like numerator/denominator or content:

? denominator(x / y)

% =1

? denominator(y / x)
%2 = x

? content(x / y)

%3 = 1/y

? content(y / x)

% =y

7 content(2 / x)

%5 =2

Can you see why? Hint: x/y = (1/y) * = is in Q(y)[z] and denominator is taken with respect to
Q(y)(x); y/z = (y*2°)/x is in Q(y)(x) so y is invertible in the coefficient ring. On the other hand,
2/x involves a single variable and the coefficient ring is simply Z.

These problems arise because the variable ordering defines an implicit variable with respect
to which division takes place. This is the price to pay to allow % and / operators on polynomials
instead of requiring a more cumbersome divrem(z, y, wvar) (which also exists). Unfortunately,
in some functions like content and denominator, there is no way to set explicitly a main variable
like in divrem and remove the dependence on implicit orderings. This will hopefully be corrected
in future versions.

2.5.4 Multivariate power series. Just like multivariate polynomials, power series are funda-
mentally single-variable objects. It is awkward to handle many variables at once, since PARI’s
implementation cannot handle multivariate error terms like O(z’y?). (It can handle the polyno-
mial O(y’) x x? which is a very different thing, see below.)

The basic assumption in our model is that if variable x has higher priority than y, then y does
not depend on z: setting y to a function of x after some computations with bivariate power series
does not make sense a priori. This is because implicit constants in expressions like O(z*) depend
on y (whereas in O(y?) they can not depend on z). For instance

?70(x) xy

35

%1 = 0(x)
? 0(y) * x
%2 = 0(y)*x

Here is a more involved example:

?7A=1/x"2+1+0x); B=1/x+ 1+ 0(x"3);
? subst(z*A, z, B)

%2 = x"-3 + x"-2 + x"-1 + 1 + 0(x)

7B x A

%3 = x"-3 + x°-2 + x~-1 + 0(1)

7z *x A

%4 = zxx"-2 + z + 0(x)

The discrepancy between %2 and %3 is surprising. Why does %2 contain a spurious constant term,
which cannot be deduced from the input? Well, we ignored the rule that forbids to substitute
an expression involving high-priority variables to a low-priority variable. The result %4 is correct
according to our rules since the implicit constant in O(z) may depend on z. It is obviously wrong
if z is allowed to have negative valuation in z. Of course, the correct error term should be O(zz),
but this is not possible in PARI.

2.6 Variables and Scope.

This section is rather technical, and strives to explain potentially confusing concepts. Skip to
the last subsection for practical advice, if the next discussion does not make sense to you. After
learning about user functions, study the example in Section 2.7.3 then come back.

Definitions.

A scope is an enclosing context where names and values are attached. A user’s function body,
the body of a loop, an individual command line, all define scopes; the whole program defines the
global scope. The argument of eval is evaluated in the enclosing scope.

Variables are bound to values within a given scope. This is traditionally implemented in two
different ways:

e lexical (or static) scoping: the binding makes sense within a given block of program text.
The value is private to the block and may not be accessed from outside. Where to find the value
is determined at compile time.

e dynamic scoping: introducing a local variable, say x, pushes a new value on a stack attached
to the name x (possibly empty at this point), which is popped out when the control flow leaves the
scope. Evaluating x in any context, possibly outside of the given block, always yields the top value
on this dynamic stack.

GP implements both lexical and dynamic scoping, using the keywords™* my (lexical) and local
(dynamic):

x = 0;
£0O
g0

X

my(x = 1); £0

* The names are borrowed from the Perl scripting language.

36

h() = local(x = 1); £QO

The function g returns 0 since the global x binding is unaffected by the introduction of a private
variable of the same name in g. On the other hand, h returns 1; when it calls £ (), the binding stack
for the x identifier contains two items: the global binding to 0, and the binding to 1 introduced in
h, which is still present on the stack since the control flow has not left h yet.

The rule mentionned in the previous section about built-in function names being reserved does
not apply to lexically scoped variables. Those may temporarily shadow an existing function name:

my(gamma = 0) ;

Without the my, this would be invalid since gamma is the I" function.

2.6.1 Scoping rules.

Named parameters in a function definition, as well as all loop indices**, have lexical scope
within the function body and the loop body respectively.

p=0;
forprime (p = 2, 11, print(p)); p \\ prints 0 at the end
x = 0;

f(x) = x++;
£f(1) \\ returns 2, and leave global x unaffected (= 0)

If you exit the loop prematurely, e.g. using the break statement, you must save the loop index in
another variable since its value prior the loop will be restored upon exit. For instance

for(i = 1, n,
if (ok(i), break);
)

if (i > n, return(failure));

is incorrect, since the value of i tested by the (i > n) is quite unrelated to the loop index. One ugly
workaround is

for(i = 1, n,
if (ok(i), isave = i; break);
);

if (isave > n, return(failure));
But it is usually more natural to wrap the loop in a user function and use return instead of break:

try() =
{
for(i =1, n,
if (ok(i), return (i));
)
0 \\ failure
}

A list of variables can be lexically or dynamically scoped (to the block between the declaration
and the end of the innermost enclosing scope) using a my or local declaration:

** More generally, in all iterative constructs which use a variable name (for, prod, sum, vector,
matrix, plot, etc.) the given variable is lexically scoped to the construct’s body.

37

for (i = 1, 10,
my(x, y, z, i2 = i"2); \\ temps needed within the loop body

)

Note how the declaration can include (optional) initial values, 12 = i"2 in the above. Variables
for which no explicit default value is given in the declaration are initialized to 0. It would be more
natural to initialize them to free variables, but this would break backward compatibility. To obtain
this behavior, you may explicitly use the quoting operator:

my(x = ’x, y =y, z = °2);
A more complicated example:

for (i =1, 3,
print("main loop");

my(x = i); \\ local to the outermost loop
for (j = 1, 3,
my (y = x72); \\ local to the innermost loop

print (y + y~2);

X++;

)

When we leave the loops, the values of x, y, i, j are the same as before they were started.

Note that eval is evaluated in the given scope, and can access values of lexical variables:

7 x=1;
7 my(x = 0); eval("x")
%2 =0 \\ we see the local x scoped to this command line, not the global one

Variables dynamically scoped using local should more appropriately be called temporary val-
ues since they are in fact local to the function declaring them and any subroutine called from
within. In practice, you almost certainly want true private variables, hence should use almost
exclusively my.

We strongly recommended to explicitly scope (lexically) all variables to the smallest possible
block. Should you forget this, in expressions involving such “rogue” variables, the value used will
be the one which happens to be on top of the value stack at the time of the call; which depends on
the whole calling context in a nontrivial way. This is in general not what you want.

38

2.7 User defined functions.

User-defined functions are ordinary GP objects, bound to variables just like any other object.
Those variables are subject to scoping rules as any other: while you can define all your functions
in global scope, it is usually possible and cleaner to lexically scope your private helper functions to
the block of text where they will be needed.

Whenever gp meets a construction of the form expr (argument list) and the expression expr
evaluates to a function (an object of type t_CLOSURE), the function is called with the proper
arguments. For instance, constructions like funcs[i] (x) are perfectly valid, assuming funcs is an
array of functions.

As regards argument passing conventions, GP functions support both

e call by value: the function operates on a copy of a variable, changes made to the argument
in the function do not affect the original variable;

e and call by reference: the function receives a reference to the variable and original data is
affected.
2.7.1 Defining a function.

A user function is defined as follows:

(list of formal variables) -> seq.

The list of formal variables is a comma-separated list of distinct variable names and allowed to be
empty. It there is a single formal variable, the parentheses are optional. This list corresponds to
the list of parameters you will supply to your function when calling it. By default, GP functions
use call by value to pass arguments; a variable name may be prefixed by a tilde ~ to use instead a
call by reference.

In most cases you want to assign a function to a variable immediately, as in

R = (x,y) —> sqrt(x"2+y"2);
sq = x —> x72; \\ or equivalently (x) -> x"2

but it is quite possible to define short-lived anonymous functions. The trailing semicolon is not
part of the definition, but as usual prevents gp from printing the result of the evaluation, i.e. the
function object. The construction

f (list of formal variables) = seq
is available as an alias for
f = (list of formal variables) -> seq

Using that syntax, it is not possible to define anonymous functions (obviously), and the above two
examples become:

R(x,y) = sqrt(x"2+y~2);
sq(x) = x72;

The semicolon serves the same purpose as above: preventing the printing of the resulting function
object; compare

? sq(x) = x72; \\ no output
7 sq(x) = x"2 \\ print the result: a function object

39

%2 = (x)->x"2

Of course, the sequence seq can be arbitrarily complicated, in which case it will look better written
on consecutive lines, with properly scoped variables:

{
f(x0, x1, ...) =
my (t0, t1, ...); \\ wariables lexically scoped to the function body

¥

Note that the following variant would also work:

f(x0, x1, ...) =
{
my (t0, t1, ...); \\ wariables lexically scoped to the function body

}

(the first newline is disregarded due to the preceding = sign, and the others because of the enclosing
braces). The my statements can actually occur anywhere within the function body, scoping the
variables to more restricted blocks than the whole function body.

Formal parameters are lexically scoped to the function body. It is not allowed to use the same
variable name for different parameters of your function:

? f(x,x) =1
**x* variable declared twice: f(x,x)=1
%k k S m———

By default, arguments are passed by value, not as variables: modifying a function’s argument
in the function body is allowed, but does not modify its value in the calling scope. In fact, a copy
of the actual parameter is assigned to the formal parameter when the function is called. (This is
not litterally true: a form of copy-on-write is implemented so an object is not duplicated unless
modified in the function.) If an argument is prefixed by a tilde ~ in the function declaration and
the call, it is passed by reference. (If either the declaration or the call is missing a tilde, we revert
to a call by value.)

? x = [1];

? £(v) = v[1]++;

? F(~v) = v[1]++;

7 £(x)

W = 2

? x \\ unchanged

%5 = [1]

? F(~x)

W6 = 2

7?7 x \\ incremented

w7 = [2]

? F(x) \\ forgot the ~: call by value
w8 =3

?x \\ => contents of x did not change
%9 = [2]

40

? £(~x) \\ adding a ~ in call, missing in declaration

%10 = 3
7 x \\ => call by value
w11 = [2]

Caveat. In GP, a call by reference means that the function accesses the value and may change
the original variable content, but only if it is a container type (a vector, list or matrice), as shown
above with the vector z. It will not alter its value in other cases !

? v =1 \\ not a container
? F(~v) = v+t

? F(~v)
%3 = 2
? v \\ components of v could be altered, not v itself
%=1

Functions taking an unlimited number of arguments.

A function taking an unlimited number of arguments is called variadic. To create such a
function, use the syntax

(list of formal variables, var[..]) -> seq

The parameter var is replaced by a vector containing all the remaining arguments. The name may
not be prefixed by a tilde to (absurdly) indicate a call by reference.

? £f(c[..]) = sum(i=1,#c,c[i]);

? £(1,2,3)

%1 =6

? sep(s,v[..]) = for(i=1,#v-1,printi(v[il,s)); if (#v, print(v[#v]));
? sep(":", 1, 2, 3)

1:2:3

Finishing touch. You can add a specific help message for your function using addhelp, but the
online help system already handles it. By default ?name will print the definition of the function
name: the list of arguments, as well as their default values, the text of seq as you input it. Just as
\c prints the list of all built-in commands, \u outputs the list of all user-defined functions.

Backward compatibility (lexical scope). Lexically scoped variables were introduced in ver-
sion 2.4.2. Before that, the formal parameters were dynamically scoped. If your script depends on
this behavior, you may use the following trick: replace the initial £(x) = by

f(x_orig) = local(x = x_orig)

41

Backward compatibility (disjoint namespaces). Before version 2.4.2, variables and functions
lived in disjoint namespaces and it was not possible to have a variable and a function share the
same name. Hence the need for a kill function allowing to reuse symbols. This is no longer the
case.

There is now no distinction between variable and function names: we have PARI objects
(functions of type t_CLOSURE, or more mundane mathematical entities, like t_INT, etc.) and
variables bound to them. There is nothing wrong with the following sequence of assignments:

?7f=1 \\ assigns the integer 1 to £

wo=1;

?7f0 =1 \\ a function with a constant value
h2 = O->1

?7f=x"2 \\ £ now holds a polynomial

%3 = x"2

7 £(x) = x"2 \\ ... and now a polynomial function

%4 = (x)->x"2

7 g(fun) = fun(Pi);\\ a function taking a function as argument
? g(cos)

%6 = -1.000000000000000000000000000

Previously used names can be recycled as above: you are just redefining the variable. The previous
definition is lost of course.

Important technical note. Built-in functions are a special case since they are read-only (you
cannot overwrite their default meaning), and they use features not available to user functions,
in particular pointer arguments. In the present version 2.15.0, it is possible to assign a built-in
function to a variable, or to use a built-in function name to create an anonymous function, but
some special argument combinations may not be available:

7 issquare(9, &e)

nl =1
? e
%2 =3
? g = issquare;
? g(9)
=1

7 g(9, &e) \\ pointers are not implemented for user functions
+ unexpected &: g(9,&e)
*ok ok S

2.7.2 Function call, Default arguments.

You may now call your function, as in £(1,2), supplying values for the formal variables.
The number of parameters actually supplied may be less than the number of formal variables in
the function definition. An uninitialized formal variable is given an implicit default value of (the
integer) 0, i.e. after the definition

f(x, y) = ...

you may call £(1, 2), supplying values for the two formal parameters, or for example
£(2) equivalent to £(2,0),

42

£0O £(0,0),
£(,3) £(0,3). (“Empty argument” trick)

This implicit default value of 0, is actually deprecated and setting

default(strictargs, 1)
allows to disable it (see Section 3.4.42).

The recommended practice is to explicitly set a default value: in the function definition, you
can append =expr to a formal parameter, to give that variable a default value. The expression gets
evaluated the moment the function is called, and may involve the preceding function parameters:
a default value for z; may involve x; for j < ¢. For instance, after

fx=1,y=2, z=y+l) =

typing in f(3,4) would give you £(3,4,5). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, use the “empty argument” trick:
£(6,,1) would yield £(6,2,1). Of course, £() by itself yields £(1,2,3) as was to be expected.

In short, the argument list is filled with user supplied values, in order. A comma or closing
parenthesis, where a value should have been, signals we must use a default value. When no input
arguments are left, the defaults are used instead to fill in remaining formal parameters. A final
example:

f(x, y=2, z=3) = print(x, ":", y, ":", z);
defines a function which prints its arguments (at most three of them), separated by colons.

7 £(6,7)
6:7:3
? £(,5)
0:5:3
7 £0)
0:2:3

If strictargs is set (recommended), x is now a mandatory argument, and the above becomes:

default(strictargs,1)
£(6,7)

:7:3

£(,5)

xk at top-level: f(,5)
N e —

N O N N

*kk in function f: x,y=2,z=3
*okk B

**k*x missing mandatory argument ’x’ in user function.

43

Example. We conclude with an amusing example, intended to illustrate both user-defined func-
tions and the power of the sumalt function. Although the Riemann zeta-function is included (as
zeta) among the standard functions, let us assume that we want to check other implementations.
Since we are highly interested in the critical strip, we use the classical formula

27 =1)¢(s) =D ()™, Rs>0.

n>1

The implementation is obvious:
ZETA(s) = sumalt(n=1, (-1)"n*n~(-s)) / (2°(1-s) - 1)

Note that n is automatically lexically scoped to the sumalt “loop”, so that it is unnecessary to add
a my(n) declaration to the function body. Surprisingly, this gives very good accuracy in a larger
region than expected:

? check = z -> ZETA(z) / zeta(z);

? check(2)

%1 = 1.000000000000000000000000000

? check(200)

%2 = 1.000000000000000000000000000

? check(0)

%3 = 0.9999999999999999999999999994

? check(-5)

%4 = 1.00000000000000007549266557

? check(-11)

%5 = 0.9999752641047824902660847745

? check(1/2+14.134%I) \\ wvery close to a nontrivial zero

%6 = 1.000000000000000000003747432 + 7.62329066 E-21*I
? check(-1+10%I)

%7 = 1.000000000000000000000002511 + 2.989950968 E-24x*I

Now wait a minute; not only are we summing a series which is certainly no longer alternating (it
has complex coefficients), but we are also way outside of the region of convergence, and still get
decent results! No programming mistake this time: sumalt is a “magic” function®, providing very
good convergence acceleration; in effect, we are computing the analytic continuation of our original
function. To convince ourselves that sumalt is a nontrivial implementation, let us try a simpler
example:

? sum(n=1, 1077, (-1)"n/n, 0.) / (-log(2)) \\ approximates the well-known formula
time = 7,417 ms.

%1 = 0.9999999278652515622893405457

7 sumalt(n=1, (-1)"n/n) / (-log(2)) \\ accurate and fast

time = O ms.

%2 = 1.000000000000000000000000000

No, we are not using a powerful simplification tool here, only numerical computations. Remember,
PARI is not a computer algebra system!

* sumalt is heuristic, but its use can be rigorously justified for a given function, in particular our
¢(s) formula. Indeed, Peter Borwein (An efficient algorithm for the Riemann zeta function, CMS
Conf. Proc. 27 (2000), pp. 29-34) proved that the formula used in sumalt with n terms computes
(1 — 217*)((s) with a relative error of the order of (3 + /8)~"|T'(s)|~!.

44

2.7.3 Beware scopes. Be extra careful with the scopes of variables. What is wrong with the
following definition?

FirstPrimeDiv(x) =

{ my(p);
forprime(p=2, x, if (xVp == 0, break));
p

}

? FirstPrimeDiv(10)

%1 =0

Hint. The function body is equivalent to

{ my(newp = 0);
forprime(p=2, x, if (xVp == 0, break));
newp

¥

Detailed explanation. The index p in the forprime loop is lexically scoped to the loop and is
not visible to the outside world. Hence, it will not survive the break statement. More precisely,
at this point the loop index is restored to its preceding value. The initial my(p), although well-
meant, adds to the confusion: it indeed scopes p to the function body, with initial value 0, but the
forprime loop introduces another variable, unfortunately also called p, scoped to the loop body,
which shadows the one we wanted. So we always return 0, since the value of the p scoped to the
function body never changes and is initially O.

To sum up, the routine returns the p declared local to it, not the one which was local to
forprime and ran through consecutive prime numbers. Here is a corrected version:

? FirstPrimeDiv(x) = forprime(p=2, x, if (x¥p == 0, return(p)))

2.7.4 Recursive functions. Recursive functions can easily be written as long as one pays proper
attention to variable scope. Here is an example, used to retrieve the coefficient array of a multivari-
ate polynomial (a nontrivial task due to PARI’s unsophisticated representation for those objects):

coeffs(P, nvar) =
{ my (d = poldegree(P));
if (d <= 0,
P = simplify(P); for (i=1, nvar, P = [P]);
return (P));
vector(d + 1, i, coeffs(polcoef(P, i-1), nvar-1));

¥

If P is a polynomial in k variables, show that after the assignment v = coeffs(P,k), the coefficient
of 21" ... z}* in P is given by v[n,+1]1[...] [ny+1], provided a monomial M x,iv’“ withn < N
(lexicographically) exists with a non-zero coefficient.

When the operating system allows querying the maximum size of the process stack, we auto-
matically limit the recursion depth:

? dive(n) = dive(n+1)

45

? dive(0);
KKk [...] at: dive(n+1)
*ok ok T
x in function dive: dive(n+1)
*ok ok T
\\ (last 2 lines repeated 19 times)
***x deep recursion.

All Unix variants support this mechanism and the recursion limit may be different from one machine
to the next; other systems may crash on deep recursion. There is no way to increase the limit from
within gp. On a Unix system, you may increase it before launching gp with ulimit or limit,
depending on your shell, and raise the process available stack space (increase stacksize).

2.7.5 Function which take functions as parameters. This is done as follows:

? calc(f, x) = f(x)
? calc(sin, Pi)
%2 = -5.04870979 E-29

7 g(x) = x72;
? calc(g, 3)
W4 =9

If we do not need g elsewhere, we should use an anonymous function here, calc(x->x"2, 3). Here
is a variation:

? funs = [cos, sin, tan, x->x"3+1]; \\ an array of functions
? call(i, x) = funs[i] (x)

evaluates the appropriate function on argument x, provided 1 < ¢ < 4. Finally, a more useful
example:

APPLY(f, v) = vector(#v, i, f(v[il]))
applies the function f to every element in the vector v. (The built-in function apply is more
powerful since it also applies to lists and matrices.)
2.7.6 Defining functions within a function. Defining a single function is easy:

init(x) = (add =y -> x+y);

Basically, we are defining a global variable add whose value is the function y->x+y. The parentheses
were added for clarity and are not mandatory.

? init(5);
? add(2)
%2 =7

A more refined approach is to avoid global variables and return the function:

init(x) =y -> x+y
add = init(5)

Then add (2) still returns 7, as expected! Of course, if add is in global scope, there is no gain, but
we can lexically scope it to the place where it is useful:

my (add = init(5));

46

How about multiple functions then? We can use the last idea and return a vector of functions,
but if we insist on global variables? The first idea

init(x) = add(y) = x+y; mul(y) = xx*y;

does not work since in the construction £() = seq, the function body contains everything until
the end of the expression. Hence executing init defines the wrong function add (itself defining a
function mul). The way out is to use parentheses for grouping, so that enclosed subexpressions will
be evaluated independently:

? init(x) = (add(y) = x+y); (mul(y) = x*y);
? init(5);

7 add(2)

%3 =7

? mul(3)

W4 = 15

This defines two global functions which have access to the lexical variables private to init! The
following would work in exactly the same way:

? inits() = my(x = 5); (add(y) = x+y); (mul(y) = xxy);

2.7.7 Closures as Objects. Contrary to what you might think after the preceding examples, GP’s
closures may not be used to simulate true “objects”, with private and public parts and methods
to access and manipulate them. In fact, closures indeed incorporate an existing context (they may
access lexical variables that existed at the time of their definition), but then may not change it.
More precisely, they access a copy, which they are welcome to change, but a further function call
still accesses the original context, as it existed at the time the function was defined:

init() =

{ my(count = 0);
(inc (O =count++) ;
(dec()=count--);

}

? init();

? inc(Q)

%=1

? inc(Q)

%2 =1

7 dec()

%3 = -1

7 dec()

%4 = -1

47

2.8 Member functions.

Member functions use the ‘dot’ notation to retrieve information from complicated structures.
The built-in structures are bid, ell, galois, ff, nf, bnf, bnr and prid, which will be described at length
in Chapter 3. The syntax structure.member is taken to mean: retrieve member from structure,
e.g. E.j returns the j-invariant of the elliptic curve E, or outputs an error message if E is not a
proper ell structure. To define your own member functions, use the syntax

var.member = seq,

where the formal variable var is scoped to the function body seq. This is of course reminiscent of
a user function with a single formal variable var. For instance, the current implementation of the
ell type is a vector, the j-invariant being the thirteenth component. It could be implemented as

x.j =
{
if (type(x) != "t_VEC" || #x < 14, error("not an elliptic curve: " x));
x[13]
}
As for user functions, you can redefine your member functions simply by typing new definitions.
On the other hand, as a safety measure, you cannot redefine the built-in member functions, so

attempting to redefine x.j as above would in fact produce an error; you would have to call it
e.g. x.myj in order for gp to accept it.

Member functions use call by reference to pass arguments, your function may modify in place
the contents of a variable (of container type).

Rationale. In most cases, member functions are simple accessors of the form

x.a = x[1];
x.b = x[2];
x.c = x[3];

where x is a vector containing relevant data. There are at least three alternative approaches to the
above member functions: 1) hardcode x[1], etc. in the program text, 2) define constant global
variables AINDEX = 1, BINDEX = 2 and hardcode x[AINDEX], 3) user functions a(x) = x[1] and
SO On.

Even if 2) improves on 1), these solutions are neither elegant nor flexible, and they scale badly.
3) is a genuine possibility, but the main advantage of member functions is that their namespace is
independent from the variables (and functions) namespace, hence we can use very short identifiers
without risk. The j-invariant is a good example: it would clearly not be a good idea to define j (E)
= E[13], because clashes with loop indices are likely.

Beware that there is no guarantee that a built-in member function is a simple accessor and it
could involve a computation. Thus you should not use them on a constant object in tight loops:
store them in a variable before the loop.

Note. Typing \um will output all user-defined member functions.

Member function names. A valid name starts with a letter followed by any number of keyword
characters: _ or alphanumeric characters ([A-Za-z0-9]). The built-in member function names are
reserved and cannot be used (see the list with 7.). Finally, names starting with e or E followed
by a digit are forbidden, due to a clash with the floating point exponent notation: we understand
1.e2 as 100.000.. ., not as extracting member e2 of object 1.

48

2.9 Strings and Keywords.

2.9.1 Strings. GP variables can hold values of type character string (internal type t_STR). This
section describes how they are actually used, as well as some convenient tricks (automatic concate-
nation and expansion, keywords) valid in string context.

As explained above, the general way to input a string is to enclose characters between quotes ".
This is the only input construct where whitespace characters are significant: the string will contain
the exact number of spaces you typed in. Besides, you can “escape” characters by putting a \ just
before them; the translation is as follows

\e: <Escape>
\n: <Newline>
\t: <Tab>

For any other character z, \z is expanded to x. In particular, the only way to put a " into a
string is to escape it. Thus, for instance, "\"a\"" would produce the string whose content is “a”.
This is definitely not the same thing as typing "a", whose content is merely the one-letter string a.

You can concatenate two strings using the concat function. If either argument is a string, the
other is automatically converted to a string if necessary (it will be evaluated first).

? concat("ex", 1+1)

%1 = "ex2"

?a=2; b="ex"; concat(b, a)
%h2 = "ex2"

? concat(a, b)

%3 = "2ex"

Some functions expect strings for some of their arguments: print would be an obvious example,
Str is a less obvious but useful one (see the end of this section for a complete list). While typing
in such an argument, you will be said to be in string context. The rest of this section is devoted to
special syntactical tricks which can be used with such arguments (and only here; you will get an
error message if you try these outside of string context):

e Writing two strings alongside one another will just concatenate them, producing a longer
string. Thus it is equivalent to type in "a " "b" or "a b". A little tricky point in the first
expression: the first whitespace is enclosed between quotes, and so is part of a string; while the
second (before the "b") is completely optional and gp actually suppresses it, as it would with any
number of whitespace characters at this point (i.e. outside of any string).

e If you insert any expression when a string is expected, it gets “expanded”: it is evaluated
as a standard GP expression, and the final result (as would have been printed if you had typed
it by itself) is then converted to a string, as if you had typed it directly. For instance "a" 1+1
"b" is equivalent to "a2b": three strings get created, the middle one being the expansion of 1+1,
and these are then concatenated according to the rule described above. Another tricky point here:
assume you did not assign a value to aaa in a GP expression before. Then typing aaa by itself in
a string context will actually produce the correct output (i.e. the string whose content is aaa), but
in a fortuitous way. This aaa gets expanded to the monomial of degree one in the variable aaa,
which is of course printed as aaa, and thus will expand to the three letters you were expecting.

49

Warning. Expression involving strings are not handled in a special way; even in string context,
the largest possible expression is evaluated, hence print ("a"[1]) is incorrect since "a" is not an
object whose first component can be extracted. On the other hand print("a", [1]) is correct
(two distinct argument, each converted to a string), and so is print("a" 1) (since "a"1 is not
a valid expression, only "a" gets expanded, then 1, and the result is concatenated as explained
above).

2.9.2 Keywords. Since there are cases where expansion is not desirable, we now distinguish
between “Keywords” and “Strings”. String is what has been described so far. Keywords are
special relatives of Strings which are automatically assumed to be quoted, whether you actually
type in the quotes or not. Thus expansion is never performed on them. They get concatenated,
though. The analyzer supplies automatically the quotes you have “forgotten” and treats Keywords
just as normal strings otherwise. For instance, if you type "a"b+b in Keyword context, you will get
the string whose contents are ab+b. In String context, on the other hand, you would get a2xb.

All GP functions have prototypes (described in Chapter 3 below) which specify the types of
arguments they expect: either generic PARI objects (GEN), or strings, or keywords, or unevaluated
expression sequences. In the keyword case, only a very small set of words will actually be meaningful
(the default function is a prominent example).

Reference. The arguments of the following functions are processed in string context:
Str
addhelp (second argument)
default (second argument)
error
extern
plotstring (second argument)
plotterm (first argument)
read and readvec
system
all the printzzz functions
all the writezzx functions

The arguments of the following functions are processed as keywords:
alias
default (first argument)
install (all arguments but the last)
trap (first argument)
whatnow

2.9.3 Useful example. The function Str converts its arguments into strings and concatenate
them. Coupled with eval, it is very powerful. The following example creates generic matrices:

? genmat(u,v,s="x") = matrix(u,v,i,j, eval(Str(s,i,j)))
7 genmat(2,3) + gemnmat(2,3,"m")

%1 =

[x11 + m11 x12 + m12 x13 + mi13]

[x21 + m21 x22 + m22 x23 + m23]

50

2.10 Errors and error recovery.

2.10.1 Errors. Your input program is first compiled to a more efficient bytecode; then the latter
is evaluated, calling appropriate functions from the PARI library. Accordingly, there are two kind
of errors: syntax errors produced by the compiler, and runtime errors produced by the PARI
library either by the evaluator itself, or in a mathematical function. Both kinds are fatal to your
computation: gp will report the error and perform some cleanup (restore variables modified while
evaluating the erroneous command, close open files, reclaim unused memory, etc.).

At this point, the default is to return to the usual prompt, but if the recover option (Sec-
tion 3.4.37) is off then gp exits immediately. This can be useful for batch-mode operation to make
untrapped errors fatal.

When reporting a syntaz error, gp gives meaningful context by copying (part of) the expression
it was trying to compile, indicating where the error occurred with a caret “-, as in

? factor()
xk* too few arguments: factor()

*okok ~—
7 1+

*kk syntax error, unexpected $end: 1+

*okok ~—

possibly enlarged to a full arrow given enough trailing context

7 if (isprime(1+, do_something())
*** syntax error, unexpected ’,’: if(isprime(1+,do_something()))
KRk e

These error messages may be mysterious, because gp cannot guess what you were trying to do, and
the error may occur once gp has been sidetracked. The first error is straightforward: factor has
one mandatory argument, which is missing.

The other two are simple typos involving an ill-formed addition 1 + missing its second
operand. The error messages differ because the parsing context is slightly different: in the first case
we reach the end of input ($end) while still expecting a token, and in the second one, we received
an unexpected token (the comma).

Here is a more complicated one:

? factor(x
x%* syntax error, unexpected $end, expecting)-> or ’,’ or ’)’: factor(x

KKk -

The error is a missing parenthesis, but from gp’s point of view, you might as well have intended to
give further arguments to factor (this is possible and useful, see the description of the function).
In fact gp expected either a closing parenthesis, or a second argument separated from the first by
a comma. And this is essentially what the error message says: we reached the end of the input
($end) while expecting a >)? ora ’,’.

Actually, a third possibility is mentioned in the error message)->, which could never be valid
in the above context, but a subexpression like (x)->sin(x), defining an inline closure would be
valid, and the parser is not clever enough to rule that out, so we get the same message as in

? (x

ol

*** syntax error, unexpected $end, expecting)-> or ’,’ or ’)’: (x
KKk ~

where all three proposed continuations would be valid.

Runtime errors from the evaluator are nicer because they answer a correctly worded query,
otherwise the bytecode compiler would have protested first; here is a slightly pathological case:

7 if (siN(x) < eps, do_something())
*x*kx at top-level: if(siN(x)<eps,do_someth
kK e

*kk not a function in function call

(no arrow!) The code is syntactically correct and compiled correctly, even though the siN function,
a typo for sin, was not defined at this point. When trying to evaluate the bytecode, however, it
turned out that siN is still undefined so we cannot evaluate the function call siN(x).

Library runtime errors are even nicer because they have more mathematical content, which is
easier to grasp than a parser’s logic:

? 1/Mod(2,4)
*** at top-level: 1/Mod(2,4)
* kK N

xk _/_: impossible inverse in Fp_inv: Mod(2, 4).

telling us that a runtime error occurred while evaluating the binary / operator (the _ surrounding
the operator are placeholders), more precisely the Fp_inv library function was fed the argument
Mod(2,4) and could not invert it. More context is provided if the error occurs deep in the call
chain:

? f(x) = 1/x;
7 g(N) = for(i = -N, N, £(i + 0(5)));
7 g(10)
*** at top-level: g(10)
*okk .
*% ok in function g: for(i=-N,N,f(i))
*kk N

*kok in function f: 1/x
*ok ok ~__

xk* _/_: impossible inverse in ginv: 0(5).

In this example, the debugger reports (at least) 3 enclosed frames: last (innermost) is the body of
user function f, the body of g, and the top-level (global scope). In fact, the for loop in ¢g’s body
defines an extra frame, since there exist variables scoped to the loop body.

52

2.10.2 Error recovery.

It is annoying to wait for a program to finish and find out the hard way that there was a
mistake in it (like the division by 0 above), sending you back to the prompt. First you may lose
some valuable intermediate data. Also, correcting the error may not be obvious; you might have to
change your program, adding a number of extra statements and tests to narrow down the problem.

A different situation, still related to error recovery, is when you actually foresee that some
error may occur, are unable to prevent it, but quite capable of recovering from it, given the chance.
Examples include lazy factorization, where you knowingly use a pseudo prime N as if it were prime;
you may then encounter an “impossible” situation, but this would usually exhibit a factor of N,
enabling you to refine the factorization and go on. Or you might run an expensive computation
at low precision to guess the size of the output, hence the right precision to use. You can then
encounter errors like “precision loss in truncation”, e.g when trying to convert 1E1000, known to
28 digits of accuracy, to an integer; or “division by 0”7, e.g inverting OE1000 when all accuracy has
been lost, and no significant digit remains. It would be enough to restart part of the computation
at a slightly higher precision.

We now describe error trapping, a useful mechanism which alleviates much of the pain in the
first situation (the break loop debugger), and provides satisfactory ways out of the second one (the
iferr exception handler).

2.10.3 Break loop.

A break loop is a special debugging mode that you enter whenever a user interrupt (Control-C)
or runtime error occurs, freezing the gp state, and preventing cleanup until you get out of the loop.
By runtime error, we mean an error from the evaluator, the library or a user error (from error),
not syntax errors. When a break loop starts, a prompt is issued (break>). You can type in a gp
command, which is evaluated when you hit the <Return> key, and the result is printed as during
the main gp loop, except that no history of results is kept. Then the break loop prompt reappears
and you can type further commands as long as you do not exit the loop. If you are using readline,
the history of commands is kept, and line editing is available as usual. If you type in a command
that results in an error, you are sent back to the break loop prompt: errors do not terminate the
loop.

To get out of a break loop, you can use next, break, return, or type C-d (EOF), any of which
will let gp perform its usual cleanup, and send you back to the gp prompt. Note that C-4 is slightly
dangerous, since typing it twice will not only send you back to the gp prompt, but to your shell
prompt! (Since C-d at the gp prompt exits the gp session.)

If the break loop was started by a user interrupt Control-C, and not by an error, inputting an
empty line, i.e hitting the <Return> key at the break> prompt, resumes the temporarily interrupted
computation. A single empty line has no effect in case of a fatal error, to avoid getting get out of
the loop prematurely, thereby losing valuable debugging data. Any of next, break, return, or C-d
will abort the computation and send you back to the gp prompt as above.

Break loops are useful as a debugging tool. You may inspect the values of gp variables to
understand why an error occurred, or change gp’s state in the middle of a computation (increase
debugging level, start storing results in a log file, set variables to different values. ..): hit C-c, type
in your modifications, then let the computation go on as explained above. A break loop looks like
this:

?v=0; 1/v

53

xk at top-level: v=0;1/v

ok ok -

%% _/_: impossible inverse in gdiv: O.

*x** Break loop (type ’break’ to go back to the GP prompt)
break>

So the standard error message is printed first. The break> at the bottom is a prompt, and hitting
v then <Return>, we see:

break> v
0

explaining the problem. We could have typed any gp command, not only the name of a variable,
of course. Lexically-scoped variables are accessible to the evaluator during the break loop:

? for(v = -2, 2, print(1/v))
-1/2
-1
*%ok at top-level: for(v=-2,2,print(1/v))
*ok ok S
**%*x _/_: impossible inverse in gdiv: O.
*x** Break loop (type ’break’ to go back to the GP prompt)
break> v
0

Even though loop indices are automatically lexically scoped and no longer exist when the break
loop is run, enough debugging information is retained in the bytecode to reconstruct the evaluation
context. Of course, when the error occurs in a nested chain of user function calls, lexically scoped
variables are available only in the corresponding frame:

? f(x) 1/x;

?7 g(x) = for(i = 1, 10, f(x+i));

? for(j = -5,5, g(j))
*x**x at top-level: for(j=-5,5,g(j))
* Kk .

*% ok in function g: for(i=1,10,f(x+i))

*okok A ——

+ in function f: 1/x

*okok e

*x** _/ : impossible inverse in gdiv: O.

**x* Break loop: type ’break’ to go back to GP prompt

break> [i,j,x] \\ the x in f’s body.
(i, j, 0]
break> dbg_up \\ go up one frame
*** at top-level: for(j=-5,5,g(j))
* Kk .
*kk in function g: for(i=1,10,f(x+i))
*okk .
break> [i,j,x] \\ the x in g’s body, i in the for loop.
[5, j, -5]

The following GP commands are available during a break loop to help debugging:

54

dbg_up(n): go up n frames, as seen above.
dbg_down(n): go down n frames, cancelling previous dbg_up’s.
dbg_x(t): examine ¢, as \x but more flexible.

dbg_err(): returns the current error context t_ERROR. The error components often provide
useful additional information:

7 0(2) + 0(3)
**x* at top-level: 0(2)+0(3)
*okok ——
%%k _+_: inconsistent addition t_PADIC + t_PADIC.
**%%x Break loop: type ’break’ to go back to GP prompt
break> E = dbg_err()
error("inconsistent addition t_PADIC + t_PADIC.")
break> Vec(E)
["e_OP", "+", 0(2), 0(3)]

Note. The debugger is enabled by default, and fires up as soon as a runtime error occurs. If you
do not like this behavior, you may disable it by setting the default breakloop to 0 in for gprc. A
runtime error will send you back to the prompt. Note that the break loop is automatically disabled
when running gp in non interactive mode, i.e. when the program’s standard input is not attached
to a terminal.

Technical Note. When you enter a break loop due to a PARI stack overflow, the PARI stack is
reset so that you can run commands. Otherwise the stack would immediately overflow again! Still,
as explained above, you do not lose the value of any gp variable in the process.

2.10.4 Protecting code. The expression
iferr(statements, ERR, recovery)

evaluates and returns the value of statements, unless an error occurs during the evaluation in which
case the value of recovery is returned. As in an if/else clause, with the difference that statements
has been partially evaluated, with possible side effects. We shall give a lot more details about
the ERR argument shortly; it is the name of a variable, lexically scoped to the recovery expression
sequence, whose value is set by the exception handler to help the recovery code decide what to do
about the error.

For instance one can define a fault tolerant inversion function as follows:

? inv(x) = iferr(1/x, ERR, "oo") \\ ERR is unused...
? for (i=-1,1, print(inv(i)))

-1

00

1

Protected codes can be nested without adverse effect. Let’s now see how ERR can be used; as
written, inv is too tolerant:

? inv("blah")
%2 = "go"

95

Let’s improve it by checking that we caught a “division by 0” exception, and not an unrelated
one like the type error 1 / "blah".

? inv2(x) = {
iferr(1/x,
ERR, if (errname(ERR) != "e_INV", error(ERR)); "oo")
}
? inv2(0)
%3 = "oo" \\ as before
? inv2("blah")
*** at top-level: inv2("blah")
KoKk A
*xx in function inv2: ...f(errname(ERR)!="e_INV",error(ERR));"oo")
*okok N
**x* error: forbidden division t_INT / t_STR.

In the inv2("blah") example, the error type was not expected, so we rethrow the exception:
error (ERR) triggers the original error that we mistakenly trapped. Since the recovery code should
always check whether the error is the one expected, this construction is very common and can be
simplified to

? inv3(x) = iferr(1/x,
ERR, "oo",
errname (ERR) == "e_INV")

More generally
iferr(statements, ERR, recovery, predicate)

only catches the exception if predicate (allowed to check various things about ERR, not only its
name) is nonzero.

Rather than trapping everything, then rethrowing whatever we do not like, we advise to only
trap errors of a specific kind, as above. Of course, sometimes, one just want to trap everything
because we do not know what to expect. The following function check whether install works
correctly in your gp:

broken_install() =
{ \\ can we install?
iferr(install(addii,GG),
ERR, return ("0S"));
\\ can we use the installed function?
iferr(if (addii(1,1) '= 2, return("BROKEN")),
ERR, return("USE"));
return (0);

¥

The function returns 08 if the operating system does not support install, USE if using an installed
function triggers an error, BROKEN if the installed function did not behave as expected, and 0 if
everything works.

The ERR formal parameter contains more useful data than just the error name, which we
recovered using errname (ERR). In fact, a t_ERROR object usually has extra components, which can

56

be accessed as component (ERR, 1), component (ERR,2), and so on. Or globally by casting the error
to a t_VEC: Vec (ERR) returns the vector of all components at once. See Section 3.1.24 for the list
of all exception types, and the corresponding contents of ERR.

2.11 Interfacing GP with other languages.

The PARI library was meant to be interfaced with C programs. This specific use is dealt with
extensively in the User’s guide to the PARI library. Of course, gp itself provides a convenient
interpreter to execute rather intricate scripts (see Section 3.1).

Scripts, when properly written, tend to be shorter and clearer than C programs, and are
certainly easier to write, maintain or debug. You don’t need to deal with memory management,
garbage collection, pointers, declarations, and so on. Because of their intrinsic simplicity, they
are more robust as well. They are unfortunately somewhat slower. Thus their use will remain
complementary: it is suggested that you test and debug your algorithms using scripts, before
actually coding them in C if speed is paramount. The GP2C compiler often eases this part.

The install command (see Section 3.2.40) efficiently imports foreign functions for use under
gp, which can of course be written using other libraries than PARI. Thus you may code only critical
parts of your program in C, and still maintain most of the program as a GP script.

We are aware of three PARI-related Free Software packages to embed PARI in other lan-
guages. We neither endorse nor support any of them, but you may want to give them a try if you
are familiar with the languages they are based on. The first is the Python-based SAGE system
(http://sagemath.org/). The second is the Math::Pari Perl module (see any CPAN mirror),
written by Ilya Zakharevich. Finally, Michael Stoll and Sam Steingold have integrated PARI into
CLISP (http://clisp.cons.org/), a Common Lisp implementation.

These provide interfaces to gp functions for use in python, perl, or Lisp programs, respectively.

2.12 Defaults.

There are many internal variables in gp, defining how the system will behave in certain situations,
unless a specific override has been given. Most of them are a matter of basic customization (colors,
prompt) and will be set once and for all in your preferences file (see Section 2.14), but some of
them are useful interactively (set timer on, increase precision, etc.).

The function used to manipulate these values is called default, which is described in Sec-
tion 3.2.12. The basic syntax is

default(def, wvalue),

which sets the default def to value. In interactive use, most of these can be abbreviated using gp
metacommands (mostly, starting with \), which we shall describe in the next section.

Available defaults are described in the reference guide, Section 3.4, the most important one
being parisizemax. Just be aware that typing default by itself will list all of them, as well as
their current values (see \d).

57

Note. The suffixes k, M or G can be appended to a value which is a numeric argument, with the
effect of multiplying it by 103, 105 and 10° respectively. Case is not taken into account there, so
for instance 30k and 30K both stand for 30000. This is mostly useful to modify or set the defaults
parisize and parisizemax which typically involve a lot of trailing zeroes.

(somewhat technical) Note. As we saw in Section 2.9, the second argument to default is
subject to string context expansion, which means you can use run-time values. In other words,
something like

a = 3;
default(logfile, "file" a ".log")

logs the output in file3.log.

Some special defaults, corresponding to file names and prompts, expand further the resulting
value at the time they are set. Two kinds of expansions may be performed:

e time expansion: the string is sent through the library function strftime. This means that
%char combinations have a special meaning, usually related to the time and date. For instance, %H
= hour (24-hour clock) and %M = minute [00,59] (on a Unix system, you can try man strftime at
your shell prompt to get a complete list). This is applied to prompt and logfile. For instance,

default (prompt," (%H:%M) ? ")
will prepend the time of day, in the form (hh:mm) to gp’s usual prompt.

e environment expansion: When the string contains a sequence of the form $SOMEVAR,
e.g. $HOME, the environment is searched and if SOMEVAR is defined, the sequence is replaced by
the corresponding value. Also the ~ symbol has the same meaning as in many shells — ~ by itself
stands for your home directory, and ~user is expanded to user’s home directory. This is applied
to all file names.

2.13 Simple metacommands.

Simple metacommands are meant as shortcuts and should not be used in GP scripts (see Sec-
tion 3.1). Beware that these, as all of gp input, are case sensitive. For example, \Q is not identical
to \q. Two kinds of arguments are allowed: numbers (denoted n below) and names (denoted
filename below); braces are used to denote optional arguments, , e.g. {n} means that a numeric
argument is expected but can be omitted. Names can be optionally surrounded by double quotes
and in this case can contain whitespace, e.g. "a b" and are treated as ordinary character strings,
see Section 2.9 for details.

Whitespace (or spaces) between the metacommand and its arguments and within unquoted
arguments is optional. (This can cause problems with \w, when you insist on having a file name
whose first character is a digit, and with \r or \w, if the file name itself contains a space. In such
cases, just quote filenames or use the underlying read or write function).

58

2.13.1 ?{command}. The gp on-line help interface. If you type ?n where n is a number from 1 to
11, you will get the list of functions in Section 3.n of the manual (the list of sections being obtained

by simply typing 7).

These names are in general not informative enough. More details can be obtained by typing
? function, which gives a short explanation of the function’s calling convention and effects. A help
string is also attached to a symbolic operator, where arguments are replaced by a placeholder
character _:

? “sin

sin(x): sine of x.

7T _k_

x*y: product of x and y.
7?7

la: boolean operator "mnot".
? o7

n!: factorial of n.

o7 _T

x"y: compute x to the power y.

Of course, to have complete information, read Chapter 3 of this manual. The source code is at
your disposal as well, though a trifle less readable.

If the line before the copyright message indicates that extended help is available (this means
perl is present on your system and the PARI distribution was correctly installed), you can add
more 7 signs for extended functionality:

7?7 keyword yields the function description as it stands in this manual, usually in Chapter 2
or 3. If you’re not satisfied with the default chapter chosen, you can impose a given chapter by
ending the keyword with @ followed by the chapter number, e.g. 7?7 Hello@2 will look in Chapter 2
for section heading Hello (which doesn’t exist, by the way).

All operators (e.g. +, &&, etc.) are accepted by this extended help, as well as a few other
keywords describing key gp concepts, e.g. readline (the line editor), integer, nf (“number field”
as used in most algebraic number theory computations), ell (elliptic curves), etc.

In case of conflicts between function and default names (e.g log, simplify), the function has
higher priority. To get the default help, use

7?7 default(log)
7?7 default(simplify)

777 pattern produces a list of sections in Chapter 3 of the manual related to your query. As
before, if pattern ends by @ followed by a chapter number, that chapter is searched instead; you
also have the option to append a simple @ (without a chapter number) to browse through the whole
manual.

If your query contains dangerous characters (e.g ? or blanks) it is advisable to enclose it within
double quotes, as for GP strings (e.g 7?7 "elliptic curve").

Note that extended help is more powerful than the short help, since it knows about operators
as well: you can type 7?7 * or 77 &&, whereas a single 7 would just yield a not too helpful

59

&&: unknown identifier.

message. Also, you can ask for extended help on section number n in Chapter 3, just by typing
7?7 n (where ?n would yield merely a list of functions). Finally, a few key concepts in gp are
documented in this way: metacommands (e.g 7?7 "??7"), defaults (e.g ?? default(log)) not to be
mistaken with ?? log (the natural logarithm) and type names (e.g t_INT or integer), as well as
various miscellaneous keywords such as edit (short summary of line editor commands), operator,
member, "user defined", nf, ell, ...

Last but not least: ?? without argument will open a dvi previewer (xdvi by default, $GPXDVI
if it is defined in your environment) containing the full user’s manual. ??tutorial and ??refcard
do the same with the tutorial and reference card respectively.

Technical note. This functionality is provided by an external perl script that you are free to
use outside any gp session (and modify to your liking, if you are perl-knowledgeable). It is called
gphelp, lies in the doc subdirectory of your distribution (just make sure you run Configure first,
see Appendix A) and is really two programs in one. The one which is used from within gp is
gphelp which runs TEX on a selected part of this manual, then opens a previewer. gphelp -detex
is a text mode equivalent, which looks often nicer especially on a colour-capable terminal (see
misc/gprc.dft for examples). The default help selects which help program will be used from
within gp. You are welcome to improve this help script, or write new ones (and we would like to
know about it so that we may include them in future distributions). By the way, outside of gp you
can give more than one keyword as argument to gphelp.

2.13.2 /*...*/. A comment. Everything between the stars is ignored by gp. These comments
can span any number of lines.

2.13.3 \\. A one-line comment. The rest of the line is ignored by gp.

2.13.4 \a {n}. Prints the object number n (%n) in raw format. If the number n is omitted, print
the latest computed object (%).

2.13.5 \c. Prints the list of all available hardcoded functions under gp, not including opera-
tors written as special symbols (see Section 2.4). More information can be obtained using the ?

metacommand (see above). For user-defined functions / member functions, see \u and \um.

2.13.6 \d. Prints the defaults as described in the previous section (shortcut for default(), see
Section 3.2.12).

2.13.7 \e {n}. Switches the echo mode on (1) or off (0). If n is explicitly given, set echo to n.

2.13.8 \g {n} {feature}. Sets the debugging level debug to the nonnegative integer n. If feature is
present (such as bnf or qf111), only set the debugging level for that feature, as by using setdebug.

2.13.9 \g feature {n}. Prints the debugging level for given feature (such as bnf or qf11ll, see
setdebug). If the nonnegative integer n is present set the debugging level for that feature.

2.13.10 \gf {n}. Sets the "io" (or file usage) debugging level to the nonnegative integer n. This
is a shortcut for setdebug("io", n).

60

2.13.11 \gm {n}. Sets the memory debugging level debugmem to the nonnegative integer n.

2.13.12 \h {m-n}. Outputs some debugging info about the hashtable. If the argument is a number
n, outputs the contents of cell n. Ranges can be given in the form m-n (from cell m to cell n, $
= last cell). If a function name is given instead of a number or range, outputs info on the internal
structure of the hash cell this function occupies (a struct entree in C). If the range is reduced to
a dash (’-’), outputs statistics about hash cell usage.

2.13.13 \1 {logfile}. Switches log mode on and off. If a logfile argument is given, change the
default logfile name to logfile and switch log mode on.

2.13.14 \m. As \a, but using prettymatrix format.

2.13.15 \o {n}. Sets output mode to n (0: raw, 1: prettymatrix, 3: external prettyprint).
2.13.16 \p {n}. Sets realprecision to n decimal digits. Prints its current value if n is omitted.
2.13.17 \pb {n}. Sets realbitprecision to n bits. Prints its current value if n is omitted.

2.13.18 \ps {n}. Sets seriesprecision to n significant terms. Prints its current value if n is
omitted.

2.13.19 \g. Quits the gp session and returns to the system. Shortcut for quit() (see Sec-
tion 3.2.61).

2.13.20 \r {filename}. Reads into gp all the commands contained in the named file as if they
had been typed from the keyboard, one line after the other. Can be used in combination with the
\w command (see below). Related but not equivalent to the function read (see Section 3.2.62); in
particular, if the file contains more than one line of input, there will be one history entry for each of
them, whereas read would only record the last one. If filename is omitted, re-read the previously
used input file (fails if no file has ever been successfully read in the current session). If a gp binary
file (see Section 3.2.86) is read using this command, it is silently loaded, without cluttering the
history.

Assuming gp figures how to decompress files on your machine, this command accepts com-
pressed files in compressed (.Z) or gzipped (.gz or .z) format. They will be uncompressed on
the fly as gp reads them, without changing the files themselves.

2.13.21 \s. Prints the state of the PARI stack and heap. This is used primarily as a debugging
device for PARI.

2.13.22 \t. Prints the internal longword format of all the PARI types. The detailed bit or byte
format of the initial codeword(s) is explained in Chapter 4, but its knowledge is not necessary for
a gp user.

2.13.23 \u. Prints the definitions of all user-defined functions.

2.13.24 \um. Prints the definitions of all user-defined member functions.

61

2.13.25 \v. Prints the version number and implementation architecture (680x0, Sparc, Alpha,
other) of the gp executable you are using.

2.13.26 \w {n} {filename}. Writes the object number n (%n) into the named file, in raw format.
If the number n is omitted, writes the latest computed object (%). If filename is omitted, appends
to logfile (the GP function write is a trifle more powerful, as you can have arbitrary file names).

2.13.27 \x {n}. Prints the complete tree with addresses and contents (in hexadecimal) of the
internal representation of the object number n (%n). If the number n is omitted, uses the latest
computed object in gp. As for \s, this is used primarily as a debugging device for PARI, and the
format should be self-explanatory. The underlying GP function dbg_x is more versatile, since it
can be applied to other objects than history entries.

2.13.28 \y {n}. Switches simplify on (1) or off (0). If n is explicitly given, set simplify to n.
2.13.29 #. Switches the timer on or off.

2.13.30 ##. Prints the time taken by the latest computation. Useful when you forgot to turn on
the timer.

2.14 The preferences file.

This file, called gprc in the sequel, is used to modify or extend gp default behavior, in all gp
sessions: e.g customize default values or load common user functions and aliases. gp opens the
gprec file and processes the commands in there, before doing anything else, e.g. creating the PARI
stack. If the file does not exist or cannot be read, gp will proceed to the initialization phase at
once, eventually emitting a prompt. If any explicit command line switches are given, they override
the values read from the preferences file.

2.14.1 Syntax. The syntax in the gprc file (and valid in this file only) is simple-minded, but
should be sufficient for most purposes. The file is read line by line; as usual, white space is ignored
unless surrounded by quotes and the standard multiline constructions using braces, \, or = are
available (multiline comments between /* ... */ are also recognized).

2.14.1.1 Preprocessor:. Two types of lines are first dealt with by a preprocessor:

e comments are removed. This applies to all text surrounded by /* ... */ as well as to
everything following \\ on a given line.

e lines starting with #if boolean are treated as comments if boolean evaluates to false, and
read normally otherwise. The condition can be negated using either #if not, #ifnot or #if !. If
the rest of the current line is empty, the test applies to the next line (same behavior as = under
gp). The following tests can be performed:

EMACS: true if gp is running in an Emacs or TeXmacs shell (see Section 2.16).
READL: true if gp is compiled with readline support (see Section 2.15).

VERSION op number: where op is in the set {>, <,<=,>=}, and number is a PARI version
number of the form Major. Minor.patch, where the last two components can be omitted (i.e. 1 is
understood as version 1.0.0). This is true if gp’s version number satisfies the required inequality.

BITS_IN_LONG == number: number is 32 (resp. 64). This is true if gp was built for a 32-bit
(resp. 64-bit) architecture.

62

2.14.1.2 Commands:. After preprocessing, the remaining lines are executed as sequence of ex-
pressions (as usual, separated by ; if necessary). Only following kinds of expressions are recognized:

o dft = value, where dft is one of the available defaults (see Section 2.12), which will be set to
value on actual startup. Don’t forget the quotes around strings (e.g. for prompt or help).

e default (dft, wvalue) as above.
e setdebug(dom, value) set debug level for domain dom to value.

e read "some_GP_file" where some_GP_file is a regular GP script this time, which will be
read just before gp prompts you for commands, but after initializing the defaults. In particular,
file input is delayed until the gprc has been fully loaded. This is the right place to input files
containing alias commands, or your favorite macros.

For instance you could set your prompt in the following portable way:

\\ self modifying prompt looking like (18:03) gp >
prompt = "(%H:%M) \e[imgp\e[m > "

\\ readline wants nonprinting characters to be braced between ~“A/"B pairs
#if READL prompt = "(%H:%M) ~“A\e[im"Bgp~A\e[m"B > "

\\ escape sequences not supported under emacs
#if EMACS prompt = "(%H:%M) gp > "

Note that any of the last two lines could be broken in the following way

#if EMACS
prompt = "(%H:%M) gp > "

since the preprocessor directive applies to the next line if the current one is empty.

A sample gprec file called misc/gprc.dft is provided in the standard distribution. It is a good
idea to have a look at it and customize it to your needs. Since this file does not use multiline
constructs, here is one (note the terminating ; to separate the expressions):

#if VERSION > 2.2.3

{
read "my_scripts"; \\ syntax errors in older versions
new_galois_format = 1; \\ default introduced in 2.2.4
+
#if ! EMACS
{
colors = "9, 5, no, no, 4, 1, 2";
help = "gphelp -detex -ch 4 -cb 0 -cu 2";
3

63

2.14.2 The gprc location. When gp is started, it looks for a customization file, or gprc in the
following places (in this order, only the first one found will be loaded):

e gp checks whether the environment variable GPRC is set. On Unix, this can be done with something
like:

GPRC=/my/dir/anyname; export GPRC in sh syntax (for instance in your .profile),
setenv GPRC /my/dir/anyname in csh syntax (in your .login or .cshrc file).
env GPRC=/my/dir/anyname gp on the command line launching gp.

If so, the file named by $GPRC is the gprc.

e If GPRC is not set, and if the environment variable HOME is defined, gp then tries
$HOME/ . gprc on a Unix system
$HOME\gprc.txt on a DOS, OS/2, or Windows system.

e If no gprc was found among the user files mentioned above we look for /etc/gprc for a system-
wide gpre file (you will need root privileges to set up such a file yourself).

e Finally, we look in pari’s datadir for a file named
.gprc on a Unix system

gprc.txt on a DOS, OS/2, or Windows system. If you are using our Windows installer, this
is where the default preferences file is written.

)

Note that on Unix systems, the gprc’s default name starts with a ’.
1s commands; you need to type 1ls -a to list it.

and thus is hidden to regular

2.15 Using readline.

This very useful library provides line editing and contextual completion to gp. You are en-
couraged to read the readline user manual, but we describe basic usage here.

A (too) short introduction to readline. In the following, C- stands for “the Control key
combined with another” and the same for M- with the Meta key; generally C- combinations act
on characters, while the M- ones operate on words. The Meta key might be called A1t on some
keyboards, will display a black diamond on most others, and can safely be replaced by Esc in any
case.

Typing any ordinary key inserts text where the cursor stands, the arrow keys enabling you
to move in the line. There are many more movement commands, which will be familiar to the
Emacs user, for instance C-a/C-e will take you to the start/end of the line, M-b/M-f move the
cursor backward/forward by a word, etc. Just press the <Return> key at any point to send your
command to gp.

All the commands you type at the gp prompt are stored in a history, a multiline command
being saved as a single concatenated line. The Up and Down arrows (or C-p/C-n) will move you
through the history, M-</M-> sending you to the start/end of the history. C-r/C-s will start an
incremental backward/forward search. You can kill text (C-k kills till the end of line, M-d to the
end of current word) which you can then yank back using the C-y key (M-y will rotate the kill-ring).
C-_ will undo your last changes incrementally (M-r undoes all changes made to the current line).
C-t and M-t will transpose the character (word) preceding the cursor and the one under the cursor.

64

Keeping the M- key down while you enter an integer (a minus sign meaning reverse behavior)
gives an argument to your next readline command (for instance M-- C-k will kill text back to the
start of line). If you prefer Vi-style editing, M-C-j will toggle you to Vi mode.

Of course you can change all these default bindings. For that you need to create a file named
.inputrc in your home directory. For instance (notice the embedding conditional in case you would
want specific bindings for gp):

$if Pari-GP
set show-all-if-ambiguous
"\C-h": backward-delete-char
"\e\C-h": backward-kill-word
"\C-xd": dump-functions

(: "\C-vO\C-b" # can be annoying when copy-pasting!
[: "\C-v[]\C-b"
$endif

C-x C-r will re-read this init file, incorporating any changes made to it during the current session.

Note. By default, (and [are bound to the function pari-matched-insert which, if “electric
parentheses” are enabled (default: off) will automatically insert the matching closure (respectively
) and 1). This behavior can be toggled on and off by giving the numeric argument —2 to ((M--2(),
which is useful if you want, e.g to copy-paste some text into the calculator. If you do not want a
toggle, you can use M--0 / M--1 to specifically switch it on or off).

Note. In some versions of readline (2.1 for instance), the A1t or Meta key can give funny re-
sults (output 8-bit accented characters for instance). If you do not want to fall back to the Esc
combination, put the following two lines in your .inputrc:

set convert-meta on
set output-meta off

Command completion and online help. Hitting <TAB> will complete words for you. This
mechanism is context-dependent: gp will strive to only give you meaningful completions in a given
context (it will fail sometimes, but only under rare and restricted conditions).

For instance, shortly after a ~, we expect a user name, then a path to some file. Directly after
default(has been typed, we would expect one of the default keywords. After a ’.”, we expect a
member keyword. And generally of course, we expect any GP symbol which may be found in the
hashing lists: functions (both yours and GP’s), and variables.

If, at any time, only one completion is meaningful, gp will provide it together with
e an ending comma if we are completing a default,

e a pair of parentheses if we are completing a function name. In that case hitting <TAB> again
will provide the argument list as given by the online help. (Recall that you can always undo the
effect of the preceding keys by hitting C-_; this applies here.)

Otherwise, hitting <TAB> once more will give you the list of possible completions. Just ex-
periment with this mechanism as often as possible, you will probably find it very convenient. For
instance, you can obtain default(seriesprecision,10), just by hitting def<TAB>se<TAB>10,
which saves 18 keystrokes (out of 27).

65

Hitting M-h will give you the usual short online help concerning the word directly beneath the
cursor, M-H will yield the extended help corresponding to the help default program (usually opens
a dvi previewer, or runs a primitive tex-to-ASCII program). None of these disturb the line you
were editing.

2.16 GNU Emacs and PariEmacs.

If you install the PariEmacs package (see Appendix A), you may use gp as a subprocess in
Emacs. You then need to include in your .emacs file the following lines:

(autoload ’gp-mode "pari" nil t)
(autoload ’gp-script-mode "pari" nil t)
(autoload ’gp "pari" nil t)

(autoload ’gpman "pari" nil t)

(setq auto-mode-alist
(cons ’("\\.gp$" . gp-script-mode) auto-mode-alist))

which autoloads functions from the PariEmacs package and ensures that file with the .gp suffix
are edited in gp-script mode.

Once this is done, under GNU Emacs if you type M-x gp (where as usual M is the Meta key), a
special shell will be started launching gp with the default stack size and prime limit. You can then
work as usual under gp, but with all the facilities of an advanced text editor. See the PariEmacs
documentation for customizations, menus, etc.

66

Chapter 3:
Functions and Operations Available in PARI and GP

The functions and operators available in PARI and in the GP/PARI calculator are numerous and
ever-expanding. Here is a description of the ones available in version 2.15.0. It should be noted that
many of these functions accept quite different types as arguments, but others are more restricted.
The list of acceptable types will be given for each function or class of functions. Except when stated
otherwise, it is understood that a function or operation which should make natural sense is legal.

On the other hand, many routines list explicit preconditions for some of their argument, e.g.
p is a prime number, or ¢ is a positive definite quadratic form. For reasons of efficiency, all trust
the user input and only perform minimal sanity checks. When a precondition is not satisfied, any
of the following may occur: a regular exception is raised, the PARI stack overflows, a SIGSEGV or
SIGBUS signal is generated, or we enter an infinite loop. The function can also quietly return a
mathematically meaningless result: junk in, junk out.

In this chapter, we will describe the functions according to a rough classification. The general
entry looks something like:

foo(x, {flag = 0}): short description.
The library syntax is GEN foo(GEN x, long f1 = 0).

This means that the GP function foo has one mandatory argument x, and an optional one, flag,
whose default value is 0. (The {} should not be typed, it is just a convenient notation we will use
throughout to denote optional arguments.) That is, you can type foo(x,2), or foo(x), which is
then understood to mean foo(x,0). As well, a comma or closing parenthesis, where an optional
argument should have been, signals to GP it should use the default. Thus, the syntax foo(x,) is
also accepted as a synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order. When none are left, the
defaults are used instead. Thus, assuming that foo’s prototype had been

fOO({QZ = 1}7 {y = 2}7 {Z = 3})7

typing in foo(6,4) would give you foo(6,4,3). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, you can use the “empty arg”
trick alluded to above: foo(6,,1) would yield foo(6,2,1). By the way, foo() by itself yields
foo(1,2,3) as was to be expected.

In this rather special case of a function having no mandatory argument, you can even omit
the (): a standalone foo would be enough (though we do not recommend it for your scripts, for
the sake of clarity). In defining GP syntax, we strove to put optional arguments at the end of the
argument list (of course, since they would not make sense otherwise), and in order of decreasing
usefulness so that, most of the time, you will be able to ignore them.

Finally, an optional argument (between braces) followed by a star, like {z}*, means that any
number of such arguments (possibly none) can be given. This is in particular used by the various
print routines.

67

Flags. A flag is an argument which, rather than conveying actual information to the routine,
instructs it to change its default behavior, e.g. return more or less information. All such flags are
optional, and will be called flag in the function descriptions to follow. There are two different kind
of flags

e generic: all valid values for the flag are individually described (“If flag is equal to 1, then...”).

e binary: use customary binary notation as a compact way to represent many toggles with
just one integer. Let (po,...,pn) be a list of switches (i.e. of properties which take either the value
0 or 1), the number 23 + 2% = 40 means that ps and ps are set (that is, set to 1), and none of the
others are (that is, they are set to 0). This is announced as “The binary digits of flag mean 1: py,
2: p1, 4: p2”, and so on, using the available consecutive powers of 2.

Mnemonics for binary flags. Numeric flags as mentioned above are obscure, error-prone, and
quite rigid: should the authors want to adopt a new flag numbering scheme, it would break backward
compatibility. The only advantage of explicit numeric values is that they are fast to type, so their
use is only advised when using the calculator gp.

As an alternative, one can replace a binary flag by a character string containing symbolic
identifiers (mnemonics). In the function description, mnemonics corresponding to the various
toggles are given after each of them. They can be negated by prepending no_ to the mnemonic, or by
removing such a prefix. These toggles are grouped together using any punctuation character (such
as ', or ’;’). For instance (taken from description of ploth(X = a,b, expr, {flag = 0},{n = 0}))

Binary digits of flags mean: 1 = Parametric, 2 = Recursive, ...

so that, instead of 1, one could use the mnemonic "Parametric; no_Recursive", or simply "Para-
metric" since Recursive is unset by default (default value of flag is 0, i.e. everything unset).
People used to the bit-or notation in languages like C may also use the form "Parametric |
no_Recursive".

Pointers. If a parameter in the function prototype is prefixed with a & sign, as in
foo(zx, &e)

it means that, besides the normal return value, the function may assign a value to e as a side effect.
When passing the argument, the & sign has to be typed in explicitly. As of version 2.15.0, this
pointer argument is optional for all documented functions, hence the & will always appear between
brackets as in Z_issquare(x, {&e}).

About library programming. The library function foo, as defined at the beginning of this
section, is seen to have two mandatory arguments, z and flag: no function seen in the present
chapter has been implemented so as to accept a variable number of arguments, so all arguments
are mandatory when programming with the library (usually, variants are provided corresponding
to the various flag values). We include an = default value token in the prototype to signal how
a missing argument should be encoded. Most of the time, it will be a NULL pointer, or -1 for a
variable number. Refer to the User’s Guide to the PARI library for general background and details.

68

3.1 Programming in GP: control statements.

A number of control statements are available in GP. They are simpler and have a syntax
slightly different from their C counterparts, but are quite powerful enough to write any kind of
program. Some of them are specific to GP, since they are made for number theorists. As usual,
X will denote any simple variable name, and seq will always denote a sequence of expressions,
including the empty sequence.

Caveat. In constructs like
for (X = a,b, seq)
the variable X is lexically scoped to the loop, leading to possibly unexpected behavior:

n = 5;
for (n = 1, 10,
if (something nice(), break);
);
\\ at this pointn is 5!

If the sequence seq modifies the loop index, then the loop is modified accordingly:

? for (n =1, 10, n += 2; print(n))
3
6
9
12

3.1.1 break({n = 1}). Interrupts execution of current seq, and immediately exits from the n
innermost enclosing loops, within the current function call (or the top level loop); the integer n
must be positive. If n is greater than the number of enclosing loops, all enclosing loops are exited.

3.1.2 breakpoint(). Interrupt the program and enter the breakloop. The program continues when
the breakloop is exited.

7 £(N,x)=my(z=x"2+1) ;breakpoint () ;gcd(N,z"2+1-2) ;

? £(221,3)
xx* at top-level: £(221,3)
k% x Sm———————

*** in function f: my(z=x"2+1);breakpoint();gcd(N,z
*okok R
**%x Break loop: type <Return> to continue; ’break’ to go back to GP
break> z
10
break>
%2 = 13

69

3.1.3 dbg_down({n = 1}). (In the break loop) go down n frames. This allows to cancel a previous
call to dbg_up.

7?7 x=0;

7 g(x) = x-3;

7 £(x) =1/ g(x+1);

? for (x =1, 5, f(x+1))

*ok ok at top-level: for(x=1,5,f(x+1))
ok ok N
**%x in function f: 1/g(x+1)
*ok ok S
**%%x _/_: impossible inverse in gdiv: O.
**%*x Break loop: type ’break’ to go back to GP prompt
break> dbg_up(3) \\ go up 3 frames
*okk at top-level: for(x=1,5,f(x+1))
*ok ok TR
break> x
0
break> dbg_down()
*kk at top-level: for(x=1,5,f(x+1))
*ok ok N
break> x
1
break> dbg_down()
*** at top-level: for(x=1,5,f(x+1))
ok ok A
break> x
1
break> dbg_down ()
*x** at top-level: for(x=1,5,f(x+1))
*ok ok Ao
xxx in function f: 1/g(x+1)
ok ok T
break> x
2

The above example shows that the notion of GP frame is finer than the usual stack of function
calls (as given for instance by the GDB backtrace command): GP frames are attached to variable
scopes and there are frames attached to control flow instructions such as a for loop above.

3.1.4 dbg_err(). In the break loop, return the error data of the current error, if any. See iferr
for details about error data. Compare:

? iferr(1/(Mod(2,12019)~(6!)-1),E,Vec(E))
%1 = ["e_INV", "Fp_inv", Mod(119, 12019)]
7 1/(Mod(2,12019) " (6!)-1)
*** at top-level: 1/(Mod(2,12019)"(6!)-
*okok R
*x** _/ : impossible inverse in Fp_inv: Mod(119, 12019).
**x* Break loop: type ’break’ to go back to GP prompt

70

break> Vec(dbg_err())
["e_INV", "Fp_inv", Mod (119, 12019)]

3.1.5 dbg_up({n = 1}). (In the break loop) go up n frames, which allows to inspect data of the
parent function. To cancel a dbg_up call, use dbg_down.

7?7 x = 0;

7 g(x) = x-3;

7 £(x) =1/ g(x+1);

7?7 for (x =1, 5, £(x+1))
*** at top-level: for(x=1,5,f(x+1))
*okk e
k in function f: 1/g(x+1)
*okok e
*** _/ : impossible inverse in gdiv: O.
%x Break loop: type ’break’ to go back to GP prompt

break> x

2

break> dbg_up()
*** at top-level: for(x=1,5,f(x+1))
* oKk ~
break> x
1
break> dbg_up()
*%k at top-level: for(x=1,5,f(x+1))
*okok A
break> x
1
break> dbg_up()
*okk at top-level: for(x=1,5,f(x+1))
*okok N
break> x
0
break> dbg_down() \\ back up once
*okk at top-level: for(x=1,5,f(x+1))
*okok e
break> x
1

The above example shows that the notion of GP frame is finer than the usual stack of function
calls (as given for instance by the GDB backtrace command): GP frames are attached to variable
scopes and there are frames attached to control flow instructions such as a for loop above.

3.1.6 dbg_x(A, {n}). Print the inner structure of A, complete if n is omitted, up to level n otherwise.
This is useful for debugging. This is similar to \x but does not require A to be an history entry. In
particular, it can be used in the break loop.

3.1.7 for(X = a, b, seq). Evaluates seq, where the formal variable X goes from a to b. Nothing is

done if a > b. a and b must be in R. If b is set to +oo, the loop will not stop; it is expected that
the caller will break out of the loop itself at some point, using break or return.

71

3.1.8 forcomposite(n = a, {b}, seq). Evaluates seq, where the formal variable n ranges over the
composite numbers between the nonnegative real numbers a to b, including a and b if they are
composite. Nothing is done if a > b.

7 forcomposite(n = 0, 10, print(n))
4
6
8
9
10

Omitting b means we will run through all composites > a, starting an infinite loop; it is expected
that the user will break out of the loop himself at some point, using break or return.

Note that the value of n cannot be modified within seq:

? forcomposite(n = 2, 10, n = [])
*x** at top-level: forcomposite(n=2,10,n=[])

KKk _—

*** index read-only: was changed to [].

3.1.9 fordiv(n, X, seq). Evaluates seq, where the formal variable X ranges through the divisors of
n (see divisors, which is used as a subroutine). It is assumed that factor can handle n, without
negative exponents. Instead of n, it is possible to input a factorization matrix, i.e. the output of
factor(n).

This routine uses divisors as a subroutine, then loops over the divisors. In particular, if n is
an integer, divisors are sorted by increasing size.

To avoid storing all divisors, possibly using a lot of memory, the following (slower) routine
loops over the divisors using essentially constant space:

FORDIV(N)=
{ my(F = factor(N), P = F[,1], E = F[,2]);

forvec(v = vector(#E, i, [0,E[i]]), X = factorback(P, v));
}
? for(i=1, 1076, FORDIV(i))
time = 11,180 ms.
? for(i=1, 1076, fordiv(i, d,))
time = 2,667 ms.

Of course, the divisors are no longer sorted by inreasing size.

72

3.1.10 fordivfactored(n, X, seq). Evaluates seq, where the formal variable X ranges through
[d, factor(d)], where d is a divisors of n (see divisors, which is used as a subroutine). Note that
such a pair is accepted as argument to all multiplicative functions.

It is assumed that factor can handle n, without negative exponents. Instead of n, it is possible
to input a factorization matrix, i.e. the output of factor(n). This routine uses divisors(, 1) as
a subroutine, then loops over the divisors. In particular, if n is an integer, divisors are sorted by
increasing size.

This function is particularly useful when n is hard to factor and one must evaluate multiplica-
tive function on its divisors: we avoid refactoring each divisor in turn. It also provides a small
speedup when n is easy to factor; compare

? A =10"8; B=A + 1075;

7 for (n = A, B, fordiv(n, d, eulerphi(d)));

time = 2,091 ms.

? for (n = A, B, fordivfactored(n, d, eulerphi(d)));

time = 1,298 ms. \\ avoid refactoring the divisors

? forfactored (n = A, B, fordivfactored(n, d, eulerphi(d)));
time = 1,270 ms. \\ also avoid factoring the consecutive n’s !

3.1.11 foreach(V, X, seq). Evaluates seq, where the formal variable X ranges through the com-
ponents of V' (t_VEC, t_COL, t_LIST or t_MAT). A matrix argument is interpreted as a vector
containing column vectors, as in Vec(V).

3.1.12 forell(E, a, b, seq, {flag = 0}). Evaluates seq, where the formal variable E = [name, M, G|
ranges through all elliptic curves of conductors from a to b. In this notation name is the curve
name in Cremona’s elliptic curve database, M is the minimal model, G is a Z-basis of the free part
of the Mordell-Weil group E(Q). If flag is nonzero, select only the first curve in each isogeny class.

? forell(E, 1, 500, my([name,M,G] = E); \
if (#G > 1, print(name)))

389a1

433al

446d1

? ¢ = 0; forell(E, 1, 500, c++); c \\ number of curves

%2 = 2214

7?7 ¢ = 0; forell(E, 1, 500, c++, 1); c \\ number of isogeny classes
%3 = 971

The elldata database must be installed and contain data for the specified conductors.

The library syntax is forell(void *data, long (*f)(void*,GEN), long a, long b, long
flag).

73

3.1.13 forfactored(N = a,b, seq). Evaluates seq, where the formal variable N is [n,factor(n)]
and n goes from a to b; a and b must be integers. Nothing is done if a > b.

This function is only implemented for |al, |b| < 2%* (232 on a 32-bit machine). It uses a sieve
and runs in time O(vb 4 b — a). It should be at least 3 times faster than regular factorization as
long as the interval length b — a is much larger than v/b and get relatively faster as the bounds
increase. The function slows down dramatically if primelimit < v/b.

? B = 1079;
? for (N = B, B+10°6, factor(N))
time = 4,538 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)
time = 1,031 ms.

? B = 10°11;

? for (N = B, B+10°6, factor(N))

time = 15,575 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)
time = 2,375 ms.

? B =10"14;

? for (N = B, B+10°6, factor(N))

time = 1min, 4,948 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)

time = 58,601 ms.

The last timing is with the default primelimit (500000) which is much less than v/ B + 106; it
goes down to 26,750ms if primelimit gets bigger than that bound. In any case v/ B + 109 is much
larger than the interval length 10° so forfactored gets relatively slower for that reason as well.

Note that all PARI multiplicative functions accept the [n,fan] argument natively:

? s = 0; forfactored(N = 1, 1077, s += moebius(N)*eulerphi(N)); s
time = 6,001 ms.

%1 = 6393738650

7?7 8 =0; for(N =1, 1077, s += moebius(N)*eulerphi(N)); s

time = 28,398 ms. \\ slower, we must factor N. Twice.

%2 = 6393738650

The following loops over the fundamental dicriminants less than X:

? X = 1078;

? forfactored(d=1,X, if (isfundamental(d),));
time = 34,030 ms.

? for(d=1,X, if (isfundamental(d),))

time = 1min, 24,225 ms.

74

3.1.14 forpart(X = k, seq, {a = k}, {n = k}). Evaluate seq over the partitions X = [x1,...2,] of
the integer k, i.e. increasing sequences x1 < x3 ... < x, of sum z1 +...+x, = k. By convention, 0
admits only the empty partition and negative numbers have no partitions. A partition is given by a
t_VECSMALL, where parts are sorted in nondecreasing order. The partitions are listed by increasing
size and in lexicographic order when sizes are equal:

? forpart(X=4, print(X))
Vecsmall([4])
Vecsmall([1, 3])
Vecsmall([2, 21)
Vecsmall([1, 1, 2])
Vecsmall([1, 1, 1, 11)

Optional parameters n and a are as follows:

e n = nmax (resp. n = [nmin, nmaz]) restricts partitions to length less than nmaxz (resp.
length between nmin and nmax), where the length is the number of nonzero entries.

e a = amaz (resp. a = [amin, amaz)) restricts the parts to integers less than amaz (resp.
between amin and amaz).

By default, parts are positive and we remove zero entries unless amin < 0, in which case we
fix the size #X = nmaz:

\\ at most 3 nonzero parts, all <= 4
? forpart(v=5,print(Vec(v)), 4, 3)

[1, 4]
[2, 3]
[1, 1, 3]
[1, 2, 2]

\\ between 2 and 4 parts less than 5, fill with zeros
? forpart(v=5,print(Vec(v)), [0,5],[2,4])

[0, 0, 1, 4]
[0, 0, 2, 3]
[0, 1, 1, 3]
o, 1, 2, 2]
1, 1, 1, 2]

\\ no partitions of 1 with 2 to 4 nonzero parts
? forpart(v=1,print(v), [0,5],[2,4])
7

The behavior is unspecified if X is modified inside the loop.

The library syntax is forpart(void *data, long (*call) (voidx,GEN), long k, GEN a,
GEN n).

75

3.1.15 forperm(a,p, seq). Evaluates seq, where the formal variable p goes through some per-
mutations given by a t_VECSMALL. If a is a positive integer then P goes through the permu-
tations of {1,2,...,a} in lexicographic order and if a is a small vector then p goes through the
(multi)permutations lexicographically larger than or equal to a.

? forperm(3, p, print(p))
Vecsmall([1, 2, 3])
Vecsmall([1, 3, 2])
Vecsmall([2, 1, 3])
Vecsmall([2, 3, 1])
Vecsmall([3, 1, 2])

2,

Vecsmall([3, 11)

When a is itself a t_VECSMALL or a t_VEC then p iterates through multipermutations

? forperm([2,1,1,3], p, print(p))
Vecsmall([2, 1, 1, 3])

Vecsmall([2, 1, 3, 1])
Vecsmall([2, 3, 1, 11)
Vecsmall([3, 1, 1, 2])
Vecsmall([3, 1, 2, 11)
Vecsmall([3, 2, 1, 11)

3.1.16 forprime(p = a, {b}, seq). Evaluates seq, where the formal variable p ranges over the prime
numbers between the real numbers a to b, including a and b if they are prime. More precisely, the
value of p is incremented to nextprime(p + 1), the smallest prime strictly larger than p, at the
end of each iteration. Nothing is done if a > b.

7 forprime(p = 4, 10, print(p))
5
7

Setting b to +oo means we will run through all primes > a, starting an infinite loop; it is expected
that the caller will break out of the loop itself at some point, using break or return.

Note that the value of p cannot be modified within seq:

? forprime(p = 2, 10, p = [1)
**%* at top-level: forprime(p=2,10,p=[])
KKk T

*** prime index read-only: was changed to [].

76

3.1.17 forprimestep(p = a,b, q, seq). Evaluates seq, where the formal variable p ranges over the
prime numbers in an arithmetic progression in [a, b]: ¢ is either an integer (p =a (mod ¢)) or an
intmod Mod(c,N) and we restrict to that congruence class. Nothing is done if a > b.

? forprimestep(p = 4, 30, 5, print(p))
19
29
? forprimestep(p
11

4, 30, Mod(1,5), print(p))

Setting b to +oo means we will run through all primes > a, starting an infinite loop; it is expected
that the caller will break out of the loop itself at some point, using break or return.

The current implementation restricts the modulus of the arithmetic progression to an unsigned
long (64 or 32 bits).

7 forprimestep(p=2,00,2764,print(p))
*x*x at top-level: forprimestep(p=2,00,2764,print(p))
Kok ok T e

% forprimestep: overflow in t_INT-->ulong assignment.
Note that the value of p cannot be modified within seq:

? forprimestep(p = 2, 10, 3, p = [
*** at top-level: forprimestep(p=2,10,3,p=[1)
*kk B

*** prime index read-only: was changed to [].

3.1.18 forsquarefree(N = a, b, seq). Evaluates seq, where the formal variable N is [n,factor(n)]

and n goes through squarefree integers from a to b; @ and b must be integers. Nothing is done if
a >b.

7 forsquarefree(N=-3,9,print(N))
(-3, [-1, 1; 3, 1]1]

(-2, [-1, 1; 2, 111

(-1, Mat([-1, 1])]

[1, matrix(0,2)]

[2, Mat([2, 1])]

[3, Mat([3, 11)]

[5, Mat([5, 11)]

(6, [2, 1; 3, 111

(7, Mat([7, 11)]

This function is only implemented for |al, |[b| < 2%* (232 on a 32-bit machine). It uses a sieve
and runs in time O(v/b+b—a). Tt should be at least 5 times faster than regular factorization as long
as the interval length b — a is much larger than v/b and get relatively faster as the bounds increase.
The function slows down dramatically if primelimit < Vb. Tt is comparable to forfactored, but
about ((2) = 7%/6 times faster due to the relative density of squarefree integers.

? B =1079;

? for (N = B, B+10°6, factor(N))

time = 2,463 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)

77

time = 567 ms.
? forsquarefree (N
time = 343 ms.

? B = 10"11;

? for (N = B, B+10°6, factor(N))

time = 8,012 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)
time = 1,293 ms.

B, B+107°6, [n,fan]

N)

? forsquarefree (N = B, B+1076, [n,fan] = N)
time = 713 ms.

? B = 10"14;

? for (N = B, B+10°6, factor(N))

time = 41,283 ms.

? forsquarefree (N = B, B+1076, [n,fan] = N)

time = 33,399 ms.

The last timing is with the default primelimit (500000) which is much less than v/ B + 109; it
goes down to 29,253ms if primelimit gets bigger than that bound. In any case v/ B + 109 is much
larger than the interval length 10° so forsquarefree gets relatively slower for that reason as well.

Note that all PARI multiplicative functions accept the [n,fan] argument natively:

? s = 0; forsquarefree(N = 1, 1077, s += moebius(N)*eulerphi(N)); s
time = 2,003 ms.

%1 = 6393738650

? s =0; for(W =1, 10°7, s += moebius(N)*eulerphi(N)); s

time = 18,024 ms. \\ slower, we must factor N. Twice.

%2 = 6393738650

The following loops over the fundamental dicriminants less than X:

7?7 X =1078;

? for(d=1,X, if (isfundamental(d),))

time = 53,387 ms.

? forfactored(d=1,X, if (isfundamental(d),));

time = 13,861 ms.

? forsquarefree(d=1,X, D = quaddisc(d); if (D <= X,));
time = 14,341 ms.

Note that in the last loop, the fundamental discriminants D are not evaluated in order (since
quaddisc(d) for squarefree d is either d or 4d) but the set of numbers we run through is the
same. Not worth the complication since it’s slower than testing isfundamental. A faster, more

complicated approach uses two loops. For simplicity, assume X is divisible by 4:

? forsquarefree(d=1,X/4, D = quaddisc(d));

time = 3,642 ms.

? forsquarefree(d=X/4+1,X, if (d[1] % 4 == 1,));
time = 7,772 ms.

This is the price we pay for a faster evaluation,
We can run through negative fundamental discriminants in the same way:

? forfactored(d=-X,-1, if (isfundamental(d),));

78

3.1.19 forstep(X = a,b, s, seq). Evaluates seq, where the formal variable X goes from a to b in
increments of s. Nothing is done if s > 0 and a > b or if s < 0 and a < b. The s can be

e a positive real number, preferably an integer: X = a,a + s,a + 2s...

e an intmod Mod(c,N) (restrict to the corresponding arithmetic progression starting at the
smallest integer A > a and congruent to ¢ modulo N): X = A, A+ N, ...

e a vector of steps [s1,. .., S,] (the successive steps in R* are used in the order they appear in
s): X =a,a+ s1,a+ 81+ Sa,...

? forstep(x=5, 10, 2, print(x))

5

7

9

? forstep(x=5, 10, Mod(1,3), print(x))
7

10

? forstep(x=5, 10, [1,2], print(x))

5

6
8
9

Setting b to +oo will start an infinite loop; it is expected that the caller will break out of the loop
itself at some point, using break or return.

3.1.20 forsubgroup(H = G, {bound}, seq). Evaluates seq for each subgroup H of the abelian
group G (given in SNF form or as a vector of elementary divisors).

If bound is present, and is a positive integer, restrict the output to subgroups of index less than
bound. If bound is a vector containing a single positive integer B, then only subgroups of index
exactly equal to B are computed

The subgroups are not ordered in any obvious way, unless G is a p-group in which case
Birkhoff’s algorithm produces them by decreasing index. A subgroup is given as a matrix whose
columns give its generators on the implicit generators of G. For example, the following prints all
subgroups of index less than 2 in G = Z/2Zgy x Z/2Zg>:

7 G = [2,2]; forsubgroup(H=G, 2, print(H))

[1; 1]
[1; 2]
[2; 1]
[1, 0; 1, 1]

The last one, for instance is generated by (g1,91 + g2). This routine is intended to treat huge
groups, when subgrouplist is not an option due to the sheer size of the output.

For maximal speed the subgroups have been left as produced by the algorithm. To print them
in canonical form (as left divisors of G in HNF form), one can for instance use

7 G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf (concat(G,H))))
(2, 1; 0, 1]
(1, 0; 0, 2]

79

[2, 0; 0, 1]
[1, 0; 0, 1]

Note that in this last representation, the index [G : H]| is given by the determinant. See galois-
subcyclo and galoisfixedfield for applications to Galois theory.

The library syntax is forsubgroup(void *data, long (*call)(void*,GEN), GEN G, GEN
bound).

3.1.21 forsubset(nk,s, seq). If nk is a nonnegative integer n, evaluates seq, where the formal
variable s goes through all subsets of {1,2,...,n}; if nk is a pair [n, k] of integers, s goes through
subsets of size k of {1,2,...,n}. In both cases s goes through subsets in lexicographic order among
subsets of the same size and smaller subsets come first.

? forsubset([5,3], s, print(s))
Vecsmall([1, 2, 3])

Vecsmall([1, 2, 4])

Vecsmall([1, 2, 5])
Vecsmall([1, 3, 41)
Vecsmall([1, 3, 5])
Vecsmall([1, 4, 5])
Vecsmall([2, 3, 4])
Vecsmall([2, 3, 5])
Vecsmall([2, 4, 5])
Vecsmall([3, 4, 5])

? forsubset(3, s, print(s))
Vecsmall([])

Vecsmall([1])

Vecsmall([2])

Vecsmall([3])

Vecsmall([1, 2])
Vecsmall([1, 3])
Vecsmall([2, 31)
Vecsmall([1, 2, 31)

The running time is proportional to the number of subsets enumerated, respectively 2" and
binomial(n, k):

? ¢ = 0; forsubset([40,35],s,c++); c
time = 128 ms.

%4 = 658008

? binomial (40,35)

%5 = 658008

80

3.1.22 forvec(X = v, seq,{flag = 0}). Let v be an n-component vector (where n is arbitrary)
of two-component vectors [a;, b;] for 1 < i < n, where all entries a;, b; are real numbers. This
routine lets X vary over the n-dimensional box given by v with unit steps: X is an n-dimensional
vector whose i-th entry X[i] runs through a;,a; +1,a; +2, ... stopping with the first value greater
than b; (note that neither a; nor b; — a; are required to be integers). The values of X are ordered
lexicographically, like embedded for loops, and the expression seq is evaluated with the successive
values of X. The type of X is the same as the type of v: t_VEC or t_COL.

If flag = 1, generate only nondecreasing vectors X, and if flag = 2, generate only strictly
increasing vectors X.

? forvec (X=[[0,1],[-1,1]], print(X));

[0, -1]
[0, 0]
[0, 1]
[1, -1]
[1, 0]
[1, 1]
? forvec (X=[[0,11,[-1,11]1, print(X), 1);
[0, o]
[0, 1]
[1, 1]
? forvec (X=[[0,1],[-1,1]1], print(X), 2)
[0, 1]

3.1.23 if(a, {seql }, {seq2}). Evaluates the expression sequence seq! if a is nonzero, otherwise the
expression seq2. Of course, seql or seq2 may be empty:

if (a,seq) evaluates seq if a is not equal to zero (you don’t have to write the second comma),
and does nothing otherwise,

if (a,,seq) evaluates seq if a is equal to zero, and does nothing otherwise. You could get the
same result using the ! (not) operator: if (!a,seq).

The value of an if statement is the value of the branch that gets evaluated: for instance
x =if(n % 4 ==1, vy, z);
sets x to y if n is 1 modulo 4, and to z otherwise.
Successive ’else’ blocks can be abbreviated in a single compound if as follows:
if (testl, seql,
test2, seq2,
testn, seqn,
seqdefault);
is equivalent to

if (testl, seql
, if (test2, seq2

b

if (testn, seqn, seqdefault)...));

81

For instance, this allows to write traditional switch / case constructions:

if (x == 0, do0(),
x == 1, do1(),
x == 2, do2(),
dodefault());

Remark. The boolean operators && and || are evaluated according to operator precedence as
explained in Section 2.4, but, contrary to other operators, the evaluation of the arguments is
stopped as soon as the final truth value has been determined. For instance

if (x '= 0 && £(1/x), ...)

is a perfectly safe statement.

Remark. Functions such as break and next operate on loops, such as forxzz, while, until.
The if statement is not a loop. (Obviously!)

3.1.24 iferr(seql, F, seq2, {pred}). Evaluates the expression sequence seql. If an error occurs,
set the formal parameter E set to the error data. If pred is not present or evaluates to true,
catch the error and evaluate seq2. Both pred and seq?2 can reference E. The error type is given
by errname(E), and other data can be accessed using the component function. The code seq2
should check whether the error is the one expected. In the negative the error can be rethrown
using error (E) (and possibly caught by an higher iferr instance). The following uses iferr to
implement Lenstra’s ECM factoring method

? ecm(N, B = 1000!, nb = 100)=
{
for(a = 1, nb,
iferr(ellmul(ellinit([a,1]*Mod(1,N)), [0,1]*Mod(1,N), B),
E, return(gcd(lift(component(E,2)),N)),
errname (E)=="e_INV" && type(component(E,2)) == "t_INTMOD"))
}
? ecm(27101-1)
%2 = 7432339208719

The return value of iferr itself is the value of seg2 if an error occurs, and the value of seq1
otherwise. We now describe the list of valid error types, and the attached error data E; in each
case, we list in order the components of F, accessed via component (E, 1), component (E,2), etc.

Internal errors, “system” errors.

e "e_ARCH". A requested feature s is not available on this architecture or operating system. F
has one component (t_STR): the missing feature name s.

e "e BUG". A bug in the PARI library, in function s. E has one component (t_STR): the
function name s.

e "e FILE". Error while trying to open a file. E has two components, 1 (t_STR): the file type
(input, output, etc.), 2 (t_STR): the file name.

e "e_IMPL". A requested feature s is not implemented. E has one component, 1 (t_STR): the
feature name s.

e "e PACKAGE". Missing optional package s. E has one component, 1 (t_STR): the package
name S.

82

Syntax errors, type errors.

e "e DIM". The dimensions of arguments x and y submitted to function s does not match up.
E.g., multiplying matrices of inconsistent dimension, adding vectors of different lengths,... E has
three component, 1 (t_STR): the function name s, 2: the argument z, 3: the argument y.

e "e FLAG". A flag argument is out of bounds in function s. F has one component, 1 (t_STR):
the function name s.

e "e NOTFUNC". Generated by the PARI evaluator; tried to use a GEN z which is not a
t_CLOSURE in a function call syntax (asin £ = 1; £(2);). F has one component, 1: the offending
GEN z.

e "e OP". Impossible operation between two objects than cannot be typecast to a sensible
common domain for deeper reasons than a type mismatch, usually for arithmetic reasons. As in
0(2) + 0(3): it is valid to add two t_PADICs, provided the underlying prime is the same; so the
addition is not forbidden a priori for type reasons, it only becomes so when inspecting the objects
and trying to perform the operation. E has three components, 1 (t_STR): the operator name op,
2: first argument, 3: second argument.

e "e TYPE". An argument x of function s had an unexpected type. (As in factor("blah").)
E has two components, 1 (t_STR): the function name s, 2: the offending argument .

e "e TYPE2". Forbidden operation between two objects than cannot be typecast to a sensible
common domain, because their types do not match up. (As in Mod(1,2) + Pi.) E has three
components, 1 (t_STR): the operator name op, 2: first argument, 3: second argument.

e "e PRIORITY". Object o in function s contains variables whose priority is incompatible
with the expected operation. E.g. Po1([x,1], ’y): this raises an error because it’s not possible to
create a polynomial whose coefficients involve variables with higher priority than the main variable.
E has four components: 1 (t_STR): the function name s, 2: the offending argument o, 3 (t_STR):
an operator op describing the priority error, 4 (t_POL): the variable v describing the priority error.
The argument satisfies variable(x) opvariable(v).

e "e VAR". The variables of arguments z and y submitted to function s does not match up.
E.g., considering the algebraic number Mod (t,t~2+1) in nfinit(x"2+1). E has three component,
1 (t_STR): the function name s, 2 (t_POL): the argument z, 3 (t_POL): the argument y.

Overflows.

e "e COMPONENT". Trying to access an inexistent component in a vector/matrix/list in a
function: the index is less than 1 or greater than the allowed length. F has four components, 1
(t_STR): the function name 2 (t_STR): an operator op (< or >), 2 (t_GEN): a numerical limit !
bounding the allowed range, 3 (GEN): the index x. It satisfies = op [.

e "e DOMAIN". An argument is not in the function’s domain. E has five components, 1 (t_STR):
the function name, 2 (t_STR): the mathematical name of the out-of-domain argument 3 (t_STR):
an operator op describing the domain error, 4 (t_GEN): the numerical limit [describing the domain
error, 5 (GEN): the out-of-domain argument x. The argument satisfies op [, which prevents it
from belonging to the function’s domain.

e "e MAXPRIME". A function using the precomputed list of prime numbers ran out of primes.
E has one component, 1 (t_INT): the requested prime bound, which overflowed primelimit or 0
(bound is unknown).

83

e "e MEM". A call to pari_malloc or pari_realloc failed. £ has no component.

e "e OVERFLOW". An object in function s becomes too large to be represented within PARI’s
hardcoded limits. (As in 27272710 or exp(1e100), which overflow in 1g and expo.) E has one
component, 1 (t_STR): the function name s.

e "e PREC". Function s fails because input accuracy is too low. (As in floor(1e100) at
default accuracy.) E has one component, 1 (t_STR): the function name s.

e "e STACK". The PARI stack overflows. £ has no component.

Errors triggered intentionally.

e "e ALARM". A timeout, generated by the alarm function. F has one component (t_STR): the
error message to print.

e "e USER". A user error, as triggered by error(g,...,g,). F has one component, 1 (t_VEC):
the vector of n arguments given to error.

Mathematical errors.

e "e CONSTPOL". An argument of function s is a constant polynomial, which does not make
sense. (As in galoisinit(Pol(1)).) E has one component, 1 (t_STR): the function name s.

e "e COPRIME". Function s expected coprime arguments, and did receive z, y, which were not.
E has three component, 1 (t_STR): the function name s, 2: the argument z, 3: the argument y.

e "e_INV". Tried to invert a noninvertible object z in function s. E has two components, 1
(t_STR): the function name s, 2: the noninvertible z. If x = Mod(a,b) is a t_INTMOD and a is not 0
mod b, this allows to factor the modulus, as gcd(a, b) is a nontrivial divisor of b.

e "e_TRREDPOL". Function s expected an irreducible polynomial, and did receive T', which was
not. (As in nfinit(x"2-1).) E has two component, 1 (t_STR): the function name s, 2 (t_POL):
the polynomial x.

e "e MISC". Generic uncategorized error. E has one component (t_STR): the error message to
print.

e "e MODULUS". moduli z and y submitted to function s are inconsistent. As in

nfalgtobasis(nfinit(t~3-2), Mod(t,t"2+1)

E has three component, 1 (t_STR): the function s, 2: the argument x, 3: the argument x.

e "e PRIME". Function s expected a prime number, and did receive p, which was not. (As in
idealprimedec(nf, 4).) F has two component, 1 (t_STR): the function name s, 2: the argument

p.

e "e ROOTSO". An argument of function s is a zero polynomial, and we need to consider its
roots. (As in polroots(0).) E has one component, 1 (t_STR): the function name s.

e "e_SQRTN". Trying to compute an n-th root of z, which does not exist, in function s. (As in
sqrt (Mod(-1,3)).) E has two components, 1 (t_STR): the function name s, 2: the argument x.

84

3.1.25 next({n = 1}). Interrupts execution of current seq, resume the next iteration of the
innermost enclosing loop, within the current function call (or top level loop). If n is specified,
resume at the n-th enclosing loop. If n is bigger than the number of enclosing loops, all enclosing
loops are exited.

3.1.26 return({z = 0}). Returns from current subroutine, with result z. If z is omitted, return
the (void) value (return no result, like print).

3.1.27 setdebug({D}, {n}). Set debug level for domain D to n (0 < n < 20). The domain D is a
character string describing a Pari feature or code module, such as "bnf", "qf111" or "polgalois".
This allows to selectively increase or decrease the diagnostics attached to a particular feature. If
n is omitted, return the current level for domain D. If D is omitted, return a two-column matrix
which lists the available domains with their levels. The debug default allows to reset all debug
levels to a given value.

7 setdebug() [,1] \\ list of all domains

["alg", "arith", "bern", "bnf", "bnr", "bnrclassfield", ..., "zetamult"]
7 \g 1 \\ set all debug levels to 1
debug = 1

7 setdebug("bnf", 0); \\ kill messages related to bnfinit and bnfisrincipal

3.1.28 until(a, seq). Evaluates seq until a is not equal to 0 (i.e. until a is true). If a is initially
not equal to 0, seq is evaluated once (more generally, the condition on a is tested after execution
of the seq, not before as in while).

3.1.29 while(a, seq). While a is nonzero, evaluates the expression sequence seq. The test is made
before evaluating the seq, hence in particular if a is initially equal to zero the seq will not be
evaluated at all.

3.2 Programming in GP: other specific functions.

In addition to the general PARI functions, it is necessary to have some functions which will
be of use specifically for gp, though a few of these can be accessed under library mode. Before we
start describing these, we recall the difference between strings and keywords (see Section 2.9): the
latter don’t get expanded at all, and you can type them without any enclosing quotes. The former
are dynamic objects, where everything outside quotes gets immediately expanded.

3.2.1 Strchr(z). Deprecated alias for strchr.

The library syntax is GEN pari_strchr (GEN x).

3.2.2 Strexpand({z}x*). Deprecated alias for strexpand

The library syntax is GEN strexpand(const char *xx*).

3.2.3 Strprintf(fmt, {x}x). Deprecated alias for strprintf.

The library syntax is GEN strprintf(const char *fmt, const char *xx*).

85

3.2.4 Strtex({z}x). Deprecated alias for strtex.

The library syntax is GEN strtex(const char *xx*).

3.2.5 addhelp(sym, str). Changes the help message for the symbol sym. The string str is expanded
on the spot and stored as the online help for sym. It is recommended to document global variables
and user functions in this way, although gp will not protest if you don’t.

You can attach a help text to an alias, but it will never be shown: aliases are expanded by
the ? help operator and we get the help of the symbol the alias points to. Nothing prevents you
from modifying the help of built-in PARI functions. But if you do, we would like to hear why you
needed it!

Without addhelp, the standard help for user functions consists of its name and definition.

gp> f(x) = x°2;
gp> 7f
f =

(x)->x"2

Once addhelp is applied to f, the function code is no longer included. It can still be consulted by
typing the function name:

gp> addhelp(f, "Square")
gp> 7f
Square

gp> £
%2 = (x)->x"2

The library syntax is void addhelp(const char *sym, const char *str).
3.2.6 alarm({s = 0}, {code}). If code is omitted, trigger an e ALARM exception after s seconds
(wall-clock time), cancelling any previously set alarm; stop a pending alarm if s = 0 or is omitted.

Otherwise, if s is positive, the function evaluates code, aborting after s seconds. The return
value is the value of code if it ran to completion before the alarm timeout, and a t_ERROR object
otherwise.

7 p = nextprime(10°25); q = nextprime(10°26); N = pxq;
? E = alarm(1, factor(N));

? type(E)

%3 = "t_ERROR"

? print(E)

%4 = error("alarm interrupt after 964 ms.")

? alarm(10, factor(N)); \\ enough time

W5 =

[10000000000000000000000013 1]
[100000000000000000000000067 1]

Here is a more involved example: the function timefact (N,sec) below tries to factor N and gives
up after sec seconds, returning a partial factorization.

\\ Time-bounded partial factorization

86

default(factor_add_primes,1);
timefact (N,sec)=
{
F = alarm(sec, factor(N));
if (type(F) == "t_ERROR", factor(N, 2724), F);
}

We either return the factorization directly, or replace the t_ERROR result by a simple bounded
factorization factor (N, 2°24). Note the factor_add_primes trick: any prime larger than 22
discovered while attempting the initial factorization is stored and remembered. When the alarm
rings, the subsequent bounded factorization finds it right away.

Caveat. It is not possible to set a new alarm within another alarm code: the new timer erases the
parent one.

Caveat2. In a parallel-enabled gp, if the code involves parallel subtasks, then alarm may not
return right away: il will prevent new tasks from being launched but will not interrupt previously
launched secondary threads. This avoids leaving the system in an inconsistent state.

The library syntax is GEN gp_alarm(long s, GEN code = NULL).

3.2.7 alias(newsym, sym). Defines the symbol newsym as an alias for the symbol sym:

? alias("det", "matdet");
? det([1,2;3,4])
%1 = -2

You are not restricted to ordinary functions, as in the above example: to alias (from/to) member
functions, prefix them with ‘_.’; to alias operators, use their internal name, obtained by writing _
in lieu of the operators argument: for instance, ! and !_ are the internal names of the factorial
and the logical negation, respectively.

alias("mod", "_.mod");
alias("add", "_+_");
alias("_.sin", "sin");
mod (Mod (x,x~4+1))

%2 =x"4 + 1

? add(4,6)

%3 = 10

? Pi.sin

%4 = 0.E-37

N N N

N

Alias expansion is performed directly by the internal GP compiler. Note that since alias is
performed at compilation-time, it does not require any run-time processing, however it only affects
GP code compiled after the alias command is evaluated. A slower but more flexible alternative is
to use variables. Compare

? fun = sin;

7 g(a,b) = intnum(t=a,b,fun(t));

? g(0, Pi)

%3 = 2.0000000000000000000000000000000000000
? fun = cos;

? g(0, Pi)

87

%5 = 1.8830410776607851098 E-39
with

? alias(fun, sin);

? g(a,b) = intnum(t=a,b,fun(t));

? g(0,Pi)

%2 = 2.0000000000000000000000000000000000000

? alias(fun, cos); \\ Oops. Does not affect *previous* definition!

? g(0,Pi)

%3 = 2.0000000000000000000000000000000000000

7 g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
? g(0,Pi)

%5 = 1.8830410776607851098 E-39

A sample alias file misc/gpalias is provided with the standard distribution.

The library syntax is void aliasO(const char *newsym, const char *sym).

3.2.8 allocatemem({s = 0}). This special operation changes the stack size after initialization.
The argument s must be a nonnegative integer. If s > 0, a new stack of at least s bytes is allocated.
We may allocate more than s bytes if s is way too small, or for alignment reasons: the current
formula is max(16 * [s/16] ,500032) bytes.

If s = 0, the size of the new stack is twice the size of the old one.

This command is much more useful if parisizemax is nonzero, and we describe this case first.
With parisizemax enabled, there are three sizes of interest:

e a virtual stack size, parisizemax, which is an absolute upper limit for the stack size; this is
set by default(parisizemax, ...).

e the desired typical stack size, parisize, that will grow as needed, up to parisizemax; this
is set by default(parisize, ...).

e the current stack size, which is less that parisizemax, typically equal to parisize but
possibly larger and increasing dynamically as needed; allocatemem allows to change that one
explicitly.

The allocatemem command forces stack usage to increase temporarily (up to parisizemax of
course); for instance if you notice using \gm2 that we seem to collect garbage a lot, e.g.

7 \gm2
debugmem = 2
? default(parisize,"32M")
*x** Warning: new stack size = 32000000 (30.518 Mbytes).
7 bnfinit(’x"2+10730-1)
*kx bnfinit: collecting garbage in hnffinal, i = 1.
% bnfinit: collecting garbage in hnffinal, i = 2.
**x* bnfinit: collecting garbage in hnffinal, i = 3.

and so on for hundred of lines. Then, provided the breakloop default is set, you can interrupt the
computation, type allocatemem(100%1076) at the break loop prompt, then let the computation
go on by typing <Enter>. Back at the gp prompt, the desired stack size of parisize is restored.

88

Note that changing either parisize or parisizemax at the break loop prompt would interrupt the
computation, contrary to the above.

In most cases, parisize will increase automatically (up to parisizemax) and there is no need
to perform the above maneuvers. But that the garbage collector is sufficiently efficient that a given
computation can still run without increasing the stack size, albeit very slowly due to the frequent
garbage collections.

Deprecated: when parisizemax is unset. This is currently still the default behavior in order not
to break backward compatibility. The rest of this section documents the behavior of allocatemem
in that (deprecated) situation: it becomes a synonym for default(parisize,...). In that case,
there is no notion of a virtual stack, and the stack size is always equal to parisize. If more memory
is needed, the PARI stack overflows, aborting the computation.

Thus, increasing parisize via allocatemem or default(parisize,...) before a big compu-
tation is important. Unfortunately, either must be typed at the gp prompt in interactive usage, or
left by itself at the start of batch files. They cannot be used meaningfully in loop-like constructs,
or as part of a larger expression sequence, e.g

allocatemem(); x = 1; \\ This will not set x!

In fact, all loops are immediately exited, user functions terminated, and the rest of the sequence
following allocatemem() is silently discarded, as well as all pending sequences of instructions. We
just go on reading the next instruction sequence from the file we are in (or from the user). In
particular, we have the following possibly unexpected behavior: in

read("file.gp"); x =1

were file.gp contains an allocatemem statement, the x = 1 is never executed, since all pending
instructions in the current sequence are discarded.

The reason for these unfortunate side-effects is that, with parisizemax disabled, increasing the
stack size physically moves the stack, so temporary objects created during the current expression
evaluation are not correct anymore. (In particular byte-compiled expressions, which are allocated
on the stack.) To avoid accessing obsolete pointers to the old stack, this routine ends by a longjmp.

The library syntax is void gp_allocatemem(GEN s = NULL).

3.2.9 apply(f, A). Apply the t_CLOSURE f to the entries of A.
e If A is a scalar, return £ (A).

e If A is a polynomial or power series Y a;x (+O(z)), apply £ on all coefficients and return

> flagx (+0(=™)).

e If A is a vector or list [ay, ..., ay], return the vector or list [f(aq),. .., f(an,)]. If A is a matrix,
return the matrix whose entries are the f(A[i, j]).

? apply(x->x~2, [1,2,3,4])
% = [1, 4, 9, 16]

? apply (x->x"2, [1,2;3,4])
%2 =

[1 4]

[9 16]
7 apply (x->x"2, 4*x"2 + 3*x+ 2)

89

%3 = 16%x72 + 9xx + 4
7 apply(sign, 2 - 3* x + 4%x"2 + 0(x"3))
% =1-x+ x"2 + 0(x"3)

Note that many functions already act componentwise on vectors or matrices, but they almost never
act on lists; in this case, apply is a good solution:

? L = List([Mod(1,3), Mod(2,4)1);

7 1lift (L)
*** at top-level: 1lift(L)
*k ok S

*kx 1ift: incorrect type in 1lift.
7 apply(lift, L);
%2 = List([1, 21)

Remark. For v a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[gx) | x <= v, £(x)]
[x | x <- v, £(x)]
[gx) | x <= v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select (f, Vec(v))
apply(g, Vec(v))

respectively:

? L = List([Mod(1,3), Mod(2,4)]1);
? [1lift(x) | x<-L]
%2 = [1, 2]

The library syntax is genapply(void *E, GEN (*fun) (void*,GEN), GEN a).

3.2.10 arity(C). Return the arity of the closure C, i.e., the number of its arguments.

7 £f1(x,y=0)=x+y;

7 arity(£f1)

Wl =2

? £2(t,s[..])=print(t,":",s);
7 arity(£2)

w2 =2

Note that a variadic argument, such as s in £2 above, is counted as a single argument.

The library syntax is GEN arityO(GEN C).

90

3.2.11 call(f, A). A =[a,...,ay] being a vector and f being a function, returns the evaluation
of f(ay,...,an). f can also be the name of a built-in GP function. If #A4 = 1, call(f, A)
= apply(f, A)[1]. If f is variadic, the variadic arguments must grouped in a vector in the last
component of A.

This function is useful

e when writing a variadic function, to call another one:
fprintf(file,format,args[..]) = write(file,call(strprintf, [format,args]))
e when dealing with function arguments with unspecified arity

The function below implements a global memoization interface:

memo=Map () ;
memoize(f,A[..])=
{
my(res);
if (!mapisdefined(memo, [f,A], &res),
res = call(f,A);
mapput (memo, [f,A] ,res));
res;

}

for example:

? memoize(factor,27128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
7 ##

*kk last result computed in 76 ms.
? memoize(factor,2°128+1)
%4 = [69649589127497217,1;5704689200685129054721,1]
7 ##

*kk last result computed in O ms.
? memoize(ffinit,3,3)
%5 = Mod(1,3)*x"3+Mod(1,3)*x"2+Mod (1,3) *x+Mod (2, 3)
? fibo(n)=if (n==0,0,n==1,1,memoize(fibo,n-2)+memoize (fibo,n-1));
? £ibo(100)
%7 = 354224848179261915075

e to call operators through their internal names without using alias

matnbelts(M) = call("_*_",matsize(M))

The library syntax is GEN callO(GEN £, GEN A).
3.2.12 default({key}, {val}). Returns the default corresponding to keyword key. If val is present,
sets the default to val first (which is subject to string expansion first). Typing default() (or \d)
yields the complete default list as well as their current values. See Section 2.12 for an introduction
to GP defaults, Section 3.4 for a list of available defaults, and Section 2.13 for some shortcut alter-

natives. Note that the shortcuts are meant for interactive use and usually display more information
than default.

The library syntax is GEN defaultO(const char *key = NULL, const char *val = NULL)

91

3.2.13 errname(FE). Returns the type of the error message E as a string.

? iferr(1 / 0, E, print(errname(E)))

e_INV

? 7?7 e_INV

[...]

* "e_INV". Tried to invert a noninvertible object x in function s.

[...]
The library syntax is GEN errname (GEN E).

3.2.14 error({str}x). Outputs its argument list (each of them interpreted as a string), then
interrupts the running gp program, returning to the input prompt. For instance

error("n = ", n, " is not squarefree!")

3.2.15 export(z{= ...},....z{= ...}). Export the variables z,...,z to the parallel world. Such
variables are visible inside parallel sections in place of global variables, but cannot be modified
inside a parallel section. export(a) set the variable a in the parallel world to current value of a.
export (a=z) set the variable a in the parallel world to z, without affecting the current value of a.

? fun(x)=x"2+1;
? parvector(10,i,fun(i))
¥ mt: please use export(fun).
? export (fun)
? parvector(10,i,fun(i))
%4 = [2,5,10,17,26,37,50,65,82,101]

3.2.16 exportall(). Declare all current dynamic variables as exported variables. Such variables
are visible inside parallel sections in place of global variables.

? fun(x)=x"2+1;
? parvector(10,i,fun(i))
*** mt: please use export(fun).
? exportall()
? parvector(10,i,fun(i))
%4 = [2,5,10,17,26,37,50,65,82,101]

The library syntax is void exportall().
3.2.17 extern(str). The string str is the name of an external command (i.e. one you would type

from your UNIX shell prompt). This command is immediately run and its output fed into gp, just
as if read from a file.

The library syntax is GEN gpextern(const char *str).
3.2.18 externstr(str). The string str is the name of an external command (i.e. one you would

type from your UNIX shell prompt). This command is immediately run and its output is returned
as a vector of GP strings, one component per output line.

The library syntax is GEN externstr(const char *str).

92

3.2.19 fileclose(n). Close the file descriptor n, created via fileopen or fileextern. Finitely
many files can be opened at a given time, closing them recycles file descriptors and avoids running
out of them:

? n = 0; while(n++, fileopen("/tmp/test", "w"))
*x** at top-level: n=0;while(n++,fileopen("/tmp/test","w"))
*okok Bt e
x** fileopen: error opening requested file: ‘/tmp/test’.
% Break loop: type ’break’ to go back to GP prompt

break> n

65533

This is a limitation of the operating system and does not depend on PARI: if you open too many
files in gp without closing them, the operating system will also prevent unrelated applications from
opening files. Independently, your operating system (e.g. Windows) may prevent other applications
from accessing or deleting your file while it is opened by gp. Quitting gp implicitly calls this function
on all opened file descriptors.

On files opened for writing, this function also forces a write of all buffered data to the file
system and completes all pending write operations. This function is implicitly called for all open
file descriptors when exiting gp but it is cleaner and safer to call it explicitly, for instance in case
of a gp crash or general system failure, which could cause data loss.

7?7 n = fileopen("./here");
? while(l = fileread(n), print(1));
fileclose(n);

-~

? n = fileopen("./there", "w");
for (i = 1, 100, filewrite(n, i~2+1))
fileclose(n)

N N

Until a fileclose, there is no guarantee that the file on disk contains all the expected data
from previous filewrites. (And even then the operating system may delay the actual write to
hardware.)

Closing a file twice raises an exception:

7?7 n = fileopen("/tmp/test");
7 fileclose(n)
? fileclose(n)

x¥* at top-level: fileclose(n)
*kk T

**x* fileclose: invalid file descriptor 0

The library syntax is void gp_fileclose(long n).

93

3.2.20 fileextern(str). The string str is the name of an external command, i.e. one you would
type from your UNIX shell prompt. This command is immediately run and the function returns a
file descriptor attached to the command output as if it were read from a file.

? n = fileextern("ls -1");
? while(l = filereadstr(n), print(1))
? fileclose(n)

If the secure default is set, this function will raise en exception.

The library syntax is long gp_fileextern(const char *str).
3.2.21 fileflush({n}). Flushes the file descriptor n, created via fileopen or fileextern. On files
opened for writing, this function forces a write of all buffered data to the file system and completes
all pending write operations. This function is implicitly called by fileclose but you may want to
call it explicitly at synchronization points, for instance after writing a large result to file and before

printing diagnostics on screen. (In order to be sure that the file contains the expected content on
inspection.)

If n is omitted, flush all descriptors to output streams.

7?7 n = fileopen("./here", "w");

? for (1 =1, 1075, \
filewrite(n, i~2+1); \
if (i % 10000 == 0, fileflush(n)))

Until a fileflush or fileclose, there is no guarantee that the file contains all the expected
data from previous filewrites.

The library syntax is void gp_fileflushO(GEN n = NULL). But the direct and more specific
variant void gp_fileflush(long n) is also available.
3.2.22 fileopen(path, mode). Open the file pointed to by 'path’ and return a file descriptor which
can be used with other file functions.

The mode can be

e "r" (default): open for reading; allow fileread and filereadstr.

e "w": open for writing, discarding existing content; allow filewrite, filewritel.

e "a": open for writing, appending to existing content; same operations allowed as "w".

Eventually, the file should be closed and the descriptor recycled using fileclose.

? n = fileopen("./here"); \\ "r" by default
? while (1 = filereadstr(n), print(1)) \\ print successive lines
7 fileclose(n) \\ done

In read mode, raise an exception if the file does not exist or the user does not have read permission.
In write mode, raise an exception if the file cannot be written to. Trying to read or write to a file
that was not opend with the right mode raises an exception.

7?7 n = fileopen("./read", "r");

? filewrite(n, "test") \\ not open for writing
x** at top-level: filewrite(n,"test")
* kK et e

%x% filewrite: invalid file descriptor 0O

The library syntax is long gp_fileopen(const char #*path, const char *mode).

3.2.23 fileread(n). Read a logical line from the file attached to the descriptor n, opened for
reading with fileopen. Return 0 at end of file.

A logical line is a full command as it is prepared by gp’s preprocessor (skipping blanks and
comments or assembling multiline commands between braces) before being fed to the interpreter.
The function filereadstr would read a raw line exactly as input, up to the next carriage return

\n.
Compare raw lines

7?7 n = fileopen("examples/bench.gp");
7 while(1l = filereadstr(n), print(1l));

{
u=v=p=q=1;
for (k=1, 2000,
[u,v] = [v,utv];
p *= v; q = lem(q,v);
if (k%50 == 0,
print(k, " ", log(p)/log(q))
)
)
}

and logical lines

? n = fileopen("examples/bench.gp");
7 while(1l = fileread(n), print(1));
u=v=p=q=1;for(k=1,2000, [u,v]=[v,u+v] ;p*=v;q=lcm(q,v); [...]

The library syntax is GEN gp_fileread(long n).
3.2.24 filereadstr(n). Read a raw line from the file attached to the descriptor n, opened for
reading with fileopen, discarding the terminating newline. In other words the line is read exactly

as input, up to the next carriage return \n. By comparison, fileread would read a logical line, as
assembled by gp’s preprocessor (skipping blanks and comments for instance).

The library syntax is GEN gp_filereadstr(long n).
3.2.25 filewrite(n, s). Write the string s to the file attached to descriptor n, ending with a newline.

The file must have been opened with fileopen in "w" or "a" mode. There is no guarantee that s
is completely written to disk until fileclose(n) is executed, which is automatic when quitting gp.

If the newline is not desired, use filewritel.

95

Variant. The high-level function write is expensive when many consecutive writes are expected
because it cannot use buffering. The low-level interface fileopen / filewrite / fileclose is
more efficient:

7?7 f = "/tmp/bigfile";
? for (i = 1, 1075, write(f, i"2+1))
time = 240 ms.

? v = vector(1075, i, i"2+1);

time = 10 ms. \\ computing the values is fast

7 write("/tmp/bigfile2",v)

time = 12 ms. \\ writing them in one operation is fast

? n = fileopen("/tmp/bigfile", "w");

? for (i = 1, 1075, filewrite(n, i~2+1))

time = 24 ms. \\ low-level write is ten times faster
? fileclose(n);

In the final example, the file needs not be in a consistent state until the ending fileclose is
evaluated, e.g. some lines might be half-written or not present at all even though the corresponding
filewrite was executed already. Both a single high-level write and a succession of low-level
filewrites achieve the same efficiency, but the latter is often more natural. In fact, concatenating
naively the entries to be written is quadratic in the number of entries, hence much more expensive
than the original write operations:

?v=1[]; for (i =1, 10°5, v = concat(v,i))
time = 1min, 41,456 ms.

The library syntax is void gp_filewrite(long n, const char *s).
3.2.26 filewritel(n,s). Write the string s to the file attached to descriptor n. The file must have
been opened with fileopen in "w" or "a" mode.
If you want to append a newline at the end of s, you can use Str(s,"\n") or filewrite.
The library syntax is void gp_filewritel(long n, const char *s).
3.2.27 fold(f, A). Apply the t_CLOSURE f of arity 2 to the entries of A, in order to return
£ £(EC(ATLT,A2]) ,A3]). .. ,A[#A]).

? fold((x,y)->x*y, [1,2,3,4])

% = 24

? fold((x,y)->[x,yl, [1,2,3,4])

%2 = [[[1, 21, 31, 4]

? fold((x,f)->f(x), [2,sqr,sqr,sqr])

%3 = 256

7 fold((x,y)—>(x+y)/(1-x*y),[1..5])
%4 = -9/19

7 bestappr(tan(sum(i=1,5,atan(i))))
%5 = -9/19

The library syntax is GEN foldO(GEN f, GEN A). Also available is GEN genfold(void *E,
GEN (*fun) (void*, GEN, GEN), GEN A).

96

3.2.28 getabstime(). Returns the CPU time (in milliseconds) elapsed since gp startup. This
provides a reentrant version of gettime:

my (t = getabstime());

print("Time: ", strtime(getabstime() - t));

For a version giving wall-clock time, see getwalltime.

The library syntax is long getabstime().
3.2.29 getenv(s). Return the value of the environment variable s if it is defined, otherwise return
0.

The library syntax is GEN gp_getenv(const char *s).
3.2.30 getheap(). Returns a two-component row vector giving the number of objects on the heap
and the amount of memory they occupy in long words. Useful mainly for debugging purposes.

The library syntax is GEN getheap().
3.2.31 getlocalbitprec(). Returns the current dynamic bit precision.
3.2.32 getlocalprec(). Returns the current dynamic precision, in decimal digits.

3.2.33 getrand(). Returns the current value of the seed used by the pseudo-random number gener-
ator random. Useful mainly for debugging purposes, to reproduce a specific chain of computations.
The returned value is technical (reproduces an internal state array), and can only be used as an
argument to setrand.

The library syntax is GEN getrand().
3.2.34 getstack(). Returns the current value of top — avma, i.e. the number of bytes used up to
now on the stack. Useful mainly for debugging purposes.
The library syntax is long getstack().
3.2.35 gettime(). Returns the CPU time (in milliseconds) used since either the last call to
gettime, or to the beginning of the containing GP instruction (if inside gp), whichever came last.
For a reentrant version, see getabstime.
For a version giving wall-clock time, see getwalltime.
The library syntax is long gettime().
3.2.36 getwalltime(). Returns the time (in milliseconds) elapsed since 00:00:00 UTC Thursday
1, January 1970 (the Unix epoch).

my (t = getwalltime());

print("Time: ", strtime(getwalltime() - t));

The library syntax is GEN getwalltime().

97

3.2.37 global(listof variables). Obsolete. Scheduled for deletion.

3.2.38 inline(z, ...,z). Declare z,...,z as inline variables. Such variables behave like lexically
scoped variable (see my()) but with unlimited scope. It is however possible to exit the scope by
using uninline (). When used in a GP script, it is recommended to call uninline () before the
script’s end to avoid inline variables leaking outside the script. DEPRECATED, use export.

3.2.39 input(). Reads a string, interpreted as a GP expression, from the input file, usually
standard input (i.e. the keyboard). If a sequence of expressions is given, the result is the result
of the last expression of the sequence. When using this instruction, it is useful to prompt for the
string by using the print1 function. Note that in the present version 2.19 of pari.el, when using
gp under GNU Emacs (see Section 2.16) one must prompt for the string, with a string which ends
with the same prompt as any of the previous ones (a "? " will do for instance).

The library syntax is GEN gp_input ().

3.2.40 install(name, code, { gpname},{lib}). Loads from dynamic library lib the function name.
Assigns to it the name gpname in this gp session, with prototype code (see below). If gpname is
omitted, uses name. If lib is omitted, all symbols known to gp are available: this includes the whole
of 1ibpari.so and possibly others (such as libc.so).

Most importantly, install gives you access to all nonstatic functions defined in the PARI
library. For instance, the function

GEN addii(GEN x, GEN y)

adds two PARI integers, and is not directly accessible under gp (it is eventually called by the +
operator of course):

7 install("addii", "GG")
7 addii(1, 2)
%1 =3

It also allows to add external functions to the gp interpreter. For instance, it makes the function
system obsolete:

? install(system, vs, sys,/*omitted*/)
? Sy'S("lS gp*u)
gp.-c gp-h gp_rl.c

This works because system is part of 1ibc.so, which is linked to gp. It is also possible to compile
a shared library yourself and provide it to gp in this way: use gp2c, or do it manually (see the
modules_build variable in pari.cfg for hints).

Re-installing a function will print a warning and update the prototype code if needed. However,
it will not reload a symbol from the library, even if the latter has been recompiled.

98

Prototype. We only give a simplified description here, covering most functions, but there are
many more possibilities. The full documentation is available in libpari.dvi, see

?7?prototype
e First character i, 1, u, v : return type int / long / ulong / void. (Default: GEN)

e One letter for each mandatory argument, in the same order as they appear in the argument
list: G (GEN), & (GEN*), L (long), U (ulong), s (char *), n (variable).

e p to supply realprecision (usually long prec in the argument list), b to supply realbit-
precision (usually long bitprec), P to supply seriesprecision (usually long precdl).

We also have special constructs for optional arguments and default values:
e DG (optional GEN, NULL if omitted),
e D& (optional GEN*, NULL if omitted),
e Dn (optional variable, —1 if omitted),
For instance the prototype corresponding to
long issquareall(GEN x, GEN #n = NULL)

is 1GD&.

Caution. This function may not work on all systems, especially when gp has been compiled
statically. In that case, the first use of an installed function will provoke a Segmentation Fault (this
should never happen with a dynamically linked executable). If you intend to use this function,
please check first on some harmless example such as the one above that it works properly on your
machine.

The library syntax is void gpinstall(const char *name, const char *code, const char

xgpname, const char *1lib).

3.2.41 kill(sym). Restores the symbol sym to its “undefined” status, and deletes any help messages
attached to sym using addhelp. Variable names remain known to the interpreter and keep their
former priority: you cannot make a variable “less important” by Kkilling it!

rz=y=1;y

%1 =1

? kill(y)

7y \\ restored to ‘‘undefined’’ status
%2 =y

? variable()
%3 = [x, y, z]1 \\ but the variable name y is still known, with y > z !

For the same reason, killing a user function (which is an ordinary variable holding a t_CLOSURE)
does not remove its name from the list of variable names.

If the symbol is attached to a variable — user functions being an important special case —,
one may use the quote operator a = ’a to reset variables to their starting values. However, this
will not delete a help message attached to a, and is also slightly slower than kill(a).

? x = 1; addhelp(x, "foo"); x
%1 =1

99

7 x="'x; x \\ same as ’kill’, except we don’t delete help.
%2 = x
? 7x

foo

On the other hand, kill is the only way to remove aliases and installed functions.

-~

alias(fun, sin);
kill(fun);

install(addii, GG);
kill(addii);

-~

N N

The library syntax is void killO(const char *sym).

3.2.42 listcreate({n}). This function is obsolete, use List.

Creates an empty list. This routine used to have a mandatory argument, which is now ignored
(for backward compatibility).

3.2.43 listinsert(L, z,n). Inserts the object = at position n in L (which must be of type t_LIST).
This has complexity O(#L —n+1): all the remaining elements of list (from position n+ 1 onwards)
are shifted to the right. If n is greater than the list length, appends .

? L = List([1,2,3]);

? listput(~L, 4); L \\ listput inserts at end

%4 = List([1, 2, 3, 41)

? listinsert(~L, 5, 1); L \\insert at position 1

%5 = List([5, 1, 2, 3, 4])

? listinsert(-~L, 6, 1000); L \\ trying to insert beyond position #L
%6 = List([5, 1, 2, 3, 4, 6]) \\ ... inserts at the end

Note the ~L: this means that the function is called with a reference to L and changes L in place.

The library syntax is GEN listinsert(GEN "L, GEN x, long n).

3.2.44 listkill(L). Obsolete, retained for backward compatibility. Just use L = List() instead
of 1istkill(L). In most cases, you won’t even need that, e.g. local variables are automatically
cleared when a user function returns.

The library syntax is void 1listkill(GEN ~L).

3.2.45 listpop(list, {n}). Removes the n-th element of the list list (which must be of type t_LIST).
If n is omitted, or greater than the list current length, removes the last element. If the list is already
empty, do nothing. This runs in time O(#L —n + 1).

? L = List([1,2,3,4]);

7 listpop(~L); L \\ remove last entry

h2 = List([1, 2, 3])

7 listpop(~L, 1); L \\ remove first entry
%3 = List([2, 31)

Note the ~L: this means that the function is called with a reference to L and changes L in place.

The library syntax is void 1istpopO(GEN ~list, long n).

100

3.2.46 listput(list,z,{n}). Sets the n-th element of the list list (which must be of type t_LIST)
equal to z. If n is omitted, or greater than the list length, appends x. The function returns the
inserted element.

? L = List();

? listput(~L, 1)
w2 =1

? listput(~L, 2)
W3 =2

? L

%4 = List([1, 2])
Note the ~L: this means that the function is called with a reference to L and changes L in place.

You may put an element into an occupied cell (not changing the list length), but it is easier
to use the standard list[n] = x construct.

7 listput(~L, 3, 1) \\ insert at position 1
%5 =3
? L
%6 = List([3, 21)
7 L[2] = 4 \\ simpler
7 = List([3, 4])
7 L[10] =1 \\ can’t insert beyond the end of the list
*x** at top-level: L[10]=1
*ok ok o
*** nonexistent component: index > 2
? listput(L, 1, 10) \\ but listput can
w8 =1
? L
%9 = List([3, 2, 11)

This function runs in time O(#L) in the worst case (when the list must be reallocated), but in
time O(1) on average: any number of successive listputs run in time O(#L), where #L denotes
the list final length.

The library syntax is GEN 1istputO(GEN ~list, GEN x, long n).

3.2.47 listsort(L,{flag = 0}). Sorts the t_LIST list in place, with respect to the (somewhat
arbitrary) universal comparison function cmp. In particular, the ordering is the same as for sets
and setsearch can be used on a sorted list. No value is returned. If flag is nonzero, suppresses all
repeated coeflicients.

? L = List([1,2,4,1,3,-1]); listsort(~L); L
%1 = List([-1, 1, 1, 2, 3, 4])
? setsearch(L, 4)

%2 =6
? setsearch(L, -2)
%3 =0

? listsort(~L, 1); L \\ remove duplicates
%4 = List([-1, 1, 2, 3, 4])

101

Note the ~L: this means that the function is called with a reference to L and changes L in place:
this is faster than the vecsort command since the list is sorted in place and we avoid unnecessary
copies.

? v = vector(100,i,random); L = List(v);
? for(i=1,10"4, vecsort(v))

time = 162 ms.

? for(i=1,10"4, vecsort(L))

time = 162 ms.

? for(i=1,10"4, listsort(~L))

time = 63 ms.

The library syntax is void listsort(GEN "L, long flag).

3.2.48 localbitprec(p). Set the real precision to p bits in the dynamic scope. All computations
are performed as if realbitprecision was p: transcendental constants (e.g. Pi) and conversions
from exact to floating point inexact data use p bits, as well as iterative routines implicitly using a
floating point accuracy as a termination criterion (e.g. solve or intnum). But realbitprecision
itself is unaffected and is “unmasked” when we exit the dynamic (not lexical) scope. In effect, this
is similar to

my (bit = default(realbitprecision));
default(realbitprecision,p);

default(realbitprecision, bit);

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never
changes and is only temporarily masked) and more robust: if the above computation is interrupted
or an exception occurs, realbitprecision will not be restored as intended.

Such localbitprec statements can be nested, the innermost one taking precedence as ex-
pected. Beware that localbitprec follows the semantic of local, not my: a subroutine called
from localbitprec scope uses the local accuracy:

? £f()=bitprecision(1.0);
7?7 £0O

%2 = 128

? localbitprec(1000); £Q)
%3 = 1024

Note that the bit precision of data (1.0 in the above example) increases by steps of 64 (32 on a
32-bit machine) so we get 1024 instead of the expected 1000; localbitprec bounds the relative
error exactly as specified in functions that support that granularity (e.g. 1fun), and rounded to the
next multiple of 64 (resp. 32) everywhere else.

102

Warning. Changing realbitprecision or realprecision in programs is deprecated in favor of
localbitprec and localprec. Think about the realprecision and realbitprecision defaults
as interactive commands for the gp interpreter, best left out of GP programs. Indeed, the above
rules imply that mixing both constructs yields surprising results:

? \p38
7 localprec(19); default(realprecision,1000); Pi
%1 = 3.141592653589793239
? \p
realprecision = 1001 significant digits (1000 digits displayed)

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low
accuracy. And when we leave the localprec scope, realprecision only regains precedence, it is
not “restored” to the original value.

3.2.49 localprec(p). Set the real precision to p in the dynamic scope and return p. All computa-
tions are performed as if realprecision was p: transcendental constants (e.g. Pi) and conversions
from exact to floating point inexact data use p decimal digits, as well as iterative routines implicitly
using a floating point accuracy as a termination criterion (e.g. solve or intnum). But realpre-
cision itself is unaffected and is “unmasked” when we exit the dynamic (not lexical) scope. In
effect, this is similar to

my (prec = default(realprecision));
default (realprecision,p);

default(realprecision, prec);

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never
changes and is only temporarily masked) and more robust: if the above computation is interrupted
or an exception occurs, realprecision will not be restored as intended.

Such localprec statements can be nested, the innermost one taking precedence as expected.
Beware that localprec follows the semantic of local, not my: a subroutine called from localprec
scope uses the local accuracy:

? f()=precision(1.);
7 £0

%2 = 38

? localprec(19); £O
%3 = 19

103

Warning. Changing realprecision itself in programs is now deprecated in favor of localprec.
Think about the realprecision default as an interactive command for the gp interpreter, best left
out of GP programs. Indeed, the above rules imply that mixing both constructs yields surprising
results:

? \p38
7 localprec(19); default(realprecision,100); Pi
%1 = 3.141592653589793239
? \p
realprecision = 115 significant digits (100 digits displayed)

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low
accuracy. And when we leave localprec scope, realprecision only regains precedence, it is not
“restored” to the original value.

3.2.50 mapdelete(M, z). Removes z from the domain of the map M.

?M = Map(["a",l; "p",3; "C",7]);
7 mapdelete(M,"b");

? Mat (M)
[nau 1]
["C" 7]

The library syntax is void mapdelete(GEN “M, GEN x).

3.2.51 mapget(M,z). Returns the image of z by the map M.

? M=Map(["a",23;"b",43]);
? mapget (M, "a")

h2 = 23
7 mapget (M,"b")
%3 = 43

Raises an exception when the key x is not present in M.

7 mapget(M,"c")
*x** at top-level: mapget(M,"c")
KKK -

*** mapget: nonexistent component in mapget: index not in map

The library syntax is GEN mapget (GEN M, GEN x).

104

3.2.52 mapisdefined(M, z, {&=z}). Returns true (1) if x has an image by the map M, false (0)
otherwise. If z is present, set z to the image of x, if it exists.

7 M1 = Map([1, 10; 2, 20]1);
? mapisdefined(M1,3)

%1 =0

7 mapisdefined(M1, 1, &=z)
%2 =1

7z

%3 = 10

7?7 M2 = Map(); N = 19;
? for (a=0, N-1, mapput(M2, a”3%N, a));
? {for (a=0, N-1,
if (mapisdefined(M2, a, &b),
printf("%d is the cube of %d mod %d\n",a,b,N)));}
is the cube of 0 mod 19
is the cube of 11 mod 19
is the cube of 9 mod 19
8 is the cube of 14 mod 19
11 is the cube of 17 mod 19
12 is the cube of 15 mod 19
18 is the cube of 18 mod 19

N = O

The library syntax is GEN mapisdefined(GEN M, GEN x, GEN *z = NULL).

3.2.53 mapput(M,z,y). Associates x to y in the map M. The value y can be retrieved with
mapget.

? M = Map();

? mapput(~M, "foo", 23);

? mapput(~M, 7718, "bill");
7 mapget(M, "foo")

%4 = 23

? mapget (M, 7718)

%5 = "bill"

7 Vec(M) \\ keys
%6 = [7718, "foo"]
? Mat(M)

%7 =

[7718 "bill"]

["foo" 23]

The library syntax is void mapput(GEN “M, GEN x, GEN y).

105

3.2.54 print({str}«). Outputs its arguments in raw format ending with a newline. The arguments
are converted to strings following the rules in Section 2.9.

? m = matid(2);
? print(m) \\ raw format

(1, 0; 0, 1]

7 printp(m) \\ prettymatrix format
[1 0]

[0 1]

3.2.55 print1({str}x*). Outputs its arguments in raw format, without ending with a newline. Note
that you can still embed newlines within your strings, using the \n notation ! The arguments are
converted to strings following the rules in Section 2.9.

3.2.56 printf(fmt, {x}x). This function is based on the C library command of the same name. It
prints its arguments according to the format fmt, which specifies how subsequent arguments are
converted for output. The format is a character string composed of zero or more directives:

e ordinary characters (not %), printed unchanged,

e conversions specifications (% followed by some characters) which fetch one argument from
the list and prints it according to the specification.

More precisely, a conversion specification consists in a %, one or more optional flags (among #,
0, -, +, *’), an optional decimal digit string specifying a minimal field width, an optional precision
in the form of a period (‘.”) followed by a decimal digit string, and the conversion specifier (among
d?i7 07 u’ X7X7 p? e’E? f’ g’G7 S)'

The flag characters. The character % is followed by zero or more of the following flags:

e #: the value is converted to an “alternate form”. For o conversion (octal), a 0 is prefixed
to the string. For x and X conversions (hexa), respectively 0x and 0X are prepended. For other
conversions, the flag is ignored.

e 0: the value should be zero padded. For 4, i, o, u, x, X e, E, f, F, g, and G conversions, the
value is padded on the left with zeros rather than blanks. (If the 0 and - flags both appear, the 0
flag is ignored.)

e —: the value is left adjusted on the field boundary. (The default is right justification.) The
value is padded on the right with blanks, rather than on the left with blanks or zeros. A - overrides
a 0 if both are given.

e ¢ 7 (aspace): a blank is left before a positive number produced by a signed conversion.

e +: a sign (+ or -) is placed before a number produced by a signed conversion. A + overrides
a space if both are used.

The field width. An optional decimal digit string (whose first digit is nonzero) specifying a
minimum field width. If the value has fewer characters than the field width, it is padded with
spaces on the left (or right, if the left-adjustment flag has been given). In no case does a small field
width cause truncation of a field; if the value is wider than the field width, the field is expanded
to contain the conversion result. Instead of a decimal digit string, one may write * to specify that
the field width is given in the next argument.

106

[

The precision. An optional precision in the form of a period (‘.”) followed by a decimal digit
string. This gives the number of digits to appear after the radix character for e, E, £, and F
conversions, the maximum number of significant digits for g and G conversions, and the maximum
number of characters to be printed from an s conversion. Instead of a decimal digit string, one
may write * to specify that the field width is given in the next argument.

The length modifier. This is ignored under gp, but necessary for libpari programming. De-
scription given here for completeness:

e 1: argument is a long integer.

e P: argument is a GEN.

The conversion specifier. A character that specifies the type of conversion to be applied.
e d, i: a signed integer.

e 0, u, %, X: an unsigned integer, converted to unsigned octal (o), decimal (u) or hexadecimal
(x or X) notation. The letters abcdef are used for x conversions; the letters ABCDEF are used for X
conversions.

e ¢, E: the (real) argument is converted in the style [-]d.ddd e[-1dd, where there is one
digit before the decimal point, and the number of digits after it is equal to the precision; if the
precision is missing, use the current realprecision for the total number of printed digits. If the
precision is explicitly 0, no decimal-point character appears. An E conversion uses the letter E
rather than e to introduce the exponent.

e £, F: the (real) argument is converted in the style [-]1ddd.ddd, where the number of digits
after the decimal point is equal to the precision; if the precision is missing, use the current real-
precision for the total number of printed digits. If the precision is explicitly 0, no decimal-point
character appears. If a decimal point appears, at least one digit appears before it.

e g, G: the (real) argument is converted in style e or £ (or E or F for G conversions) [-]ddd.ddd,
where the total number of digits printed is equal to the precision; if the precision is missing, use
the current realprecision. If the precision is explicitly 0, it is treated as 1. Style e is used when
the decimal exponent is < —4, to print 0., or when the integer part cannot be decided given the
known significant digits, and the £ format otherwise.

e c: the integer argument is converted to an unsigned char, and the resulting character is
written.

e s: convert to a character string. If a precision is given, no more than the specified number
of characters are written.

e p: print the address of the argument in hexadecimal (as if by %#x).
e 7: a % is written. No argument is converted. The complete conversion specification is %%.
Examples:

? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
floor: 3, field width 3: 1, with sign: +2

? printf("%.5g %.5g %.5g\n",123,123/456,123456789) ;
123.00 0.26974 1.2346 &8

? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");

107

P :PARI:PARIG

\\ min field width and precision given by arguments
7 x = 23; y=-1/x; printf("x=%+06.2f y=J+0*.*xf\n", x, 6, 2, y);
x=+23.00 y=-00.04

\\ minimum fields width 5, pad left with zeroes

? for (i = 2, 5, printf("%05d\n", 107i))

00100

01000

10000

100000 \\ don’t truncate fields whose length is larger than the minimum width
? printf("%.2f [%06.2f|", Pi,Pi)

3.14 | 3.14|

All numerical conversions apply recursively to the entries of vectors and matrices:

? printf ("%44", [1,2,3]);

[1, 2, 3]

? printf("%5.2f", mathilbert(3));
[1.00 0.50 0.33]

[0.50 0.33 0.25]
[0.33 0.25 0.20]

Technical note. Our implementation of printf deviates from the C89 and C99 standards in a
few places:

e whenever a precision is missing, the current realprecision is used to determine the number
of printed digits (C89: use 6 decimals after the radix character).

e in conversion style e, we do not impose that the exponent has at least two digits; we never
write a + sign in the exponent; 0 is printed in a special way, always as 0.Eezp.

e in conversion style £, we switch to style e if the exponent is greater or equal to the precision.
e in conversion g and G, we do not remove trailing zeros from the fractional part of the result;
nor a trailing decimal point; 0 is printed in a special way, always as 0.Eexp.
3.2.57 printp({str}x). Outputs its arguments in prettymatrix format, ending with a newline. The
arguments are converted to strings following the rules in Section 2.9.

? m = matid(2);
7 print(m) \\ raw format

(1, 0; 0, 1]

? printp(m) \\ prettymatrix format
[1 0]

[0 1]

3.2.58 printsep(sep, {str}x*). Outputs its arguments in raw format, ending with a newline. The
arguments are converted to strings following the rules in Section 2.9. Successive entries are separated
by sep:

? printsep(":", 1,2,3,4)

1:2:3:4

108

3.2.59 printsepl(sep, {str}*). Outputs its arguments in raw format, without ending with a
newline. The arguments are converted to strings following the rules in Section 2.9. Successive
entries are separated by sep:

7 printsepl(":", 1,2,3,4);print("[|")
1:2:3:4]

3.2.60 printtex({str}x). Outputs its arguments in TEX format. This output can then be used in
a TEX manuscript, see strtex for details. The arguments are converted to strings following the
rules in Section 2.9. The printing is done on the standard output. If you want to print it to a file
you should use writetex (see there).

Another possibility is to enable the log default (see Section 2.12). You could for instance do:

default(logfile, "new.tex");
default(log, 1);
printtex(result);

3.2.61 quit({status = 0}). Exits gp and return to the system with exit status status, a small
integer. A nonzero exit status normally indicates abnormal termination. (Note: the system actually
sees only status mod 256, see your man pages for exit (3) or wait(2)).

3.2.62 read({filename}). Reads in the file filename (subject to string expansion). If filename
is omitted, re-reads the last file that was fed into gp. The return value is the result of the last
expression evaluated.

If a GP binary file is read using this command (see Section 3.2.86), the file is loaded and
the last object in the file is returned.

In case the file you read in contains an allocatemen statement (to be generally avoided), you
should leave read instructions by themselves, and not part of larger instruction sequences.

Variants. readvec allows to read a whole file at once; fileopen followed by either fileread
(evaluated lines) or filereadstr (lines as nonevaluated strings) allows to read a file one line at a
time.

The library syntax is GEN gp_read_file(const char *filename).
3.2.63 readstr({filename}). Reads in the file filename and return a vector of GP strings, each

component containing one line from the file. If filename is omitted, re-reads the last file that was
fed into gp.

The library syntax is GEN readstr(const char *filename).

109

3.2.64 readvec({filename}). Reads in the file filename (subject to string expansion). If filename
is omitted, re-reads the last file that was fed into gp. The return value is a vector whose components
are the evaluation of all sequences of instructions contained in the file. For instance, if file contains

1

3

then we will get:

?\r a
%1 =1
%2 = 2
%3 =3
? read(a)
%4 = 3

? readvec(a)
% = [1, 2, 3]

In general a sequence is just a single line, but as usual braces and \ may be used to enter
multiline sequences.

The library syntax is GEN gp_readvec_file(const char *filename). The underlying li-
brary function GEN gp_readvec_stream(FILE *f) is usually more flexible.

3.2.65 select(f, A, {flag = 0}). We first describe the default behavior, when flag is 0 or omitted.
Given a vector or list A and a t_CLOSURE £, select returns the elements x of A such that f(x) is
nonzero. In other words, f is seen as a selection function returning a boolean value.

? select(x->isprime(x), vector(50,i,i"2+1))

%1 =1[2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
7 select(x->(x<100), %)

%2 = [2, 5, 17, 37]

returns the primes of the form i2 + 1 for some i < 50, then the elements less than 100 in the
preceding result. The select function also applies to a matrix A, seen as a vector of columns, i.e.
it selects columns instead of entries, and returns the matrix whose columns are the selected ones.

Remark. For v a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[gx) | x <- v, £(x)]
x | x <= v, £(x)]
[gx) | x <= v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively:

7 [x| x <- vector(50,i,i"2+1), isprime(x)]
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

110

If flag = 1, this function returns instead the indices of the selected elements, and not the elements
themselves (indirect selection):

? V = vector(50,i,i"2+1);

7 select(x->isprime(x), V, 1)

%2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
? vecextract(V, %)

%3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

The following function lists the elements in (Z/NZ)*:

7 invertibles(N) = select(x->gcd(x,N) == 1, [1..N])
Finally

? select(x->x, M)

selects the nonzero entries in M. If the latter is a t_MAT, we extract the matrix of nonzero columns.
Note that remowving entries instead of selecting them just involves replacing the selection function
f with its negation:

? select(x->!isprime(x), vector(50,i,i"2+1))

The library syntax is genselect(void *E, long (*fun) (void*,GEN), GEN a). Also avail-
able is GEN genindexselect(void *E, long (*fun) (void*, GEN), GEN a), corresponding to

flag = 1.

3.2.66 self(). Return the calling function or closure as a t_CLOSURE object. This is useful for
defining anonymous recursive functions.

? (n -> if(n==0,1,n*self() (n-1))) (5)
%1 = 120 \\ 5!

? (n > if(n<=1, n, self() (n-1)+self() (n-2))) (20)
%2 = 6765 \\ Fibonacci(20)

The library syntax is GEN pari_self ().
3.2.67 setrand(n). Reseeds the random number generator using the seed n. No value is returned.
The seed is a small positive integer 0 < n < 254 used to generate deterministically a suitable state
array. All gp session start by an implicit setrand (1), so resetting the seed to this value allows to

replay all computations since the session start. Alternatively, running a randomized computation
starting by setrand(n) twice with the same n will generate the exact same output.

In the other direction, including a call to setrand(getwalltime()) from your gprc will cause
GP to produce different streams of random numbers in each session. (Unix users may want to use
/dev/urandom instead of getwalltime.)

For debugging purposes, one can also record a particular random state using getrand (the
value is encoded as a huge integer) and feed it to setrand:

? state = getrand(); \\ record seed

7 setrand(state); \\ we can now replay the exact same computations

The library syntax is void setrand(GEN n).

111

3.2.68 strchr(z). Converts integer or vector of integers x to a string, translating each integer (in
the range [1,255]) into a character using ASCII encoding.

? strchr(97)

%1 = "a"

? Vecsmall("hello world")

%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? strchr(%)

%3 = "hello world"

The library syntax is GEN pari_strchr (GEN x).

3.2.69 strexpand({z}x*). Converts its argument list into a single character string (type t_STR,
the empty string if x is omitted). Then perform environment expansion, see Section 2.12. This
feature can be used to read environment variable values.

? strexpand("$HOME/doc")
%1 = "/home/pari/doc"

? module = "aprcl"; n = 10;
? strexpand("$HOME/doc/", module, n, ".tex")
%3 = "/home/pari/doc/aprcli0.tex"

The individual arguments are read in string context, see Section 2.9.

3.2.70 strjoin(v,{p = "”}). Joins the strings in vector v, separating them with delimiter p. The
reverse operation is strsplit.

7?7 v = ["abc", "def", "ghi"]
? strjoin(v, "/")

2 = "abc/def/ghi"

7 strjoin(v)

%3 = "abcdefghi”

The library syntax is GEN strjoin(GEN v, GEN p = NULL).
3.2.71 strprintf(fmt, {x}*). Returns a string built from the remaining arguments according to the

format fmt. The format consists of ordinary characters (not %), printed unchanged, and conversions
specifications. See printf.

? dir = "/home/pari"; file = "aprcl"; n = 10;
? strprintf("Ys/%s%ld.tex", dir, file, n)
%2 = "/home/pari/aprcl10.tex"

112

3.2.72 strsplit(s, {p =""}). Splits the string s into a vector of strings, with p acting as a delimiter.
If p is empty or omitted, split the string into characters.

? strsplit("abc::def::ghi", "::")

%1 = ["abc", "def", "ghi"]

? strsplit("abc", "")

%2 = ["a", "b", "c"]

7 strsplit("aba", "a"
If s starts (resp. ends) with the pattern p, then the first (resp. last) entry in the vector is the empty
string:

7 strsplit("aba", "a")
%3 = [llll, "b“, nn]

The library syntax is GEN strsplit(GEN s, GEN p = NULL).

3.2.73 strtex({x}x). Translates its arguments to TeX format, and concatenates the results into a
single character string (type t_STR, the empty string if x is omitted).

The individual arguments are read in string context, see Section 2.9.

?7v=1[1, 2, 3]

%1 [1, 2, 3]

? strtex(v)

%2 = "\\pmatrix{ 1&2&3\\cr}\n"

TgX-nical notes. The TeX output engine was originally written for plain TeX and designed
for maximal portability. Unfortunately later LaTeX packages have obsoleted valid TEX primitives,
leading us to replace TeX’s \over by LaTeX’s \frac in PARI’'s TeX output. We have decided
not to update further our TeX markup and let the users of various LaTeX engines customize their
preambles. The following documents the precise changes you may need to include in your style files
to incorporate PARI TeX output verbatim:

e if you enabled bit 4 in TeXstyle default, you must define \PARIbreak; see 7?TeXstyle;
e if you use plain TeX only: you must define \frac as follows
\def\frac#1#2{{#1\over#2}}

e if you use LaTeX and amsmath, \pmatrix is obsoleted in favor of the pmatrix environment;
see examples/parigp.sty for how to re-enable the deprecated construct.

3.2.74 strtime(?). Return a string describing the time t in milliseconds in the format used by the
GP timer.

? print(strtime(12345678))
3h, 25min, 45,678 ms
it
my (t=getabstime()) ;
F=factor(27256+1) ;t=getabstime()-t;
print ("factor(27°256+1) took ",strtime(t));
}
factor(2°256+1) took 1,320 ms

The library syntax is GEN strtime(long t).

113

3.2.75 system(str). str is a string representing a system command. This command is executed,
its output written to the standard output (this won’t get into your logfile), and control returns to
the PARI system. This simply calls the C system command. Return the shell return value (which
is system-dependent). Beware that UNIX shell convention for boolean is opposite to GP, true is 0
and false is non-0.

? system("test -d /") \\ test if ’/’ is a directory (true)

%1 =0
7 system("test -f /") \\ test if ’/’ is a file (false)
%2 =1

The library syntax is long gpsystem(const char *str).

3.2.76 trap({e}, {rec}, seq). This function is obsolete, use iferr, which has a nicer and much
more powerful interface. For compatibility’s sake we now describe the obsolete function trap.

This function tries to evaluate seq, trapping runtime error e, that is effectively preventing it
from aborting computations in the usual way; the recovery sequence rec is executed if the error
occurs and the evaluation of rec becomes the result of the command. If e is omitted, all exceptions
are trapped. See Section 2.10.2 for an introduction to error recovery under gp.

7 \\ trap division by 0

? inv(x) = trap (e_INV, INFINITY, 1/x)
? inv(2)

hl o= 1/2

? inv(0)

%2 = INFINITY

Note that seq is effectively evaluated up to the point that produced the error, and the recovery
sequence is evaluated starting from that same context, it does not "undo” whatever happened in
the other branch (restore the evaluation context):

7?7 x =1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)
%1 =0

Note. The interface is currently not adequate for trapping individual exceptions. In the current
version 2.15.0, the following keywords are recognized, but the name list will be expanded and
changed in the future (all library mode errors can be trapped: it’s a matter of defining the keywords

to gp):
e_ALARM: alarm time-out
e_ARCH: not available on this architecture or operating system
e_STACK: the PARI stack overflows
e_INV: impossible inverse
e_IMPL: not yet implemented

e_OVERFLOW: all forms of arithmetic overflow, including length or exponent overflow (when a
larger value is supplied than the implementation can handle).

e_SYNTAX: syntax error

e_MISC: miscellaneous error

114

e_TYPE: wrong type
e_USER: user error (from the error function)

The library syntax is GEN trapO(const char *e = NULL, GEN rec = NULL, GEN seq =
NULL).

3.2.77 type(z). This is useful only under gp. Returns the internal type name of the PARI object
x as a string. Check out existing type names with the metacommand \t. For example type (1)
will return ”t_INT”.

The library syntax is GEN typeO(GEN x). The macro typ is usually simpler to use since it
returns a long that can easily be matched with the symbols t_*. The name type was avoided since
it is a reserved identifier for some compilers.

3.2.78 unexport(z, ..., z). Remove z, ..., z from the list of variables exported to the parallel world.
See export.

3.2.79 unexportall(). Empty the list of variables exported to the parallel world.

The library syntax is void unexportall().

3.2.80 uninline(). Exit the scope of all current inline variables. DEPRECATED, use export /
unexport.

3.2.81 version(). Returns the current version number as a t_VEC with three integer compo-
nents (major version number, minor version number and patchlevel); if your sources were obtained
through our version control system, this will be followed by further more precise arguments, in-
cluding e.g. a git commit hash.

This function is present in all versions of PARI following releases 2.3.4 (stable) and 2.4.3
(testing).

Unless you are working with multiple development versions, you probably only care about the
3 first numeric components. In any case, the lex function offers a clever way to check against
a particular version number, since it will compare each successive vector entry, numerically or as
strings, and will not mind if the vectors it compares have different lengths:

if (lex(version(), [2,3,5]) >= 0,
\\ code to be executed if we are running 2.3.5 or more recent.

b

\\ compatibility code

);
On a number of different machines, version() could return either of
%1 = [2, 3, 4] \\ released version, stable branch
%1 = [2, 4, 3] \\ released version, testing branch

%1 = [2, 6, 1, 15174, ""505ab9b"] \\ development

In particular, if you are only working with released versions, the first line of the gp introductory
message can be emulated by

[M,m,p] = version();
printf ("GP/PARI CALCULATOR Version %s.%s.%s", M,m,p);

115

If you are working with many development versions of PARI/GP, the 4th and/or 5th components
can be profitably included in the name of your logfiles, for instance.

Technical note. For development versions obtained via git, the 4th and 5th components are
liable to change eventually, but we document their current meaning for completeness. The 4th
component counts the number of reachable commits in the branch (analogous to svn’s revision
number), and the 5th is the git commit hash. In particular, lex comparison still orders correctly
development versions with respect to each others or to released versions (provided we stay within
a given branch, e.g. master)!

The library syntax is GEN pari_version().

3.2.82 warning({str}x). Outputs the message “user warning” and the argument list (each of them
interpreted as a string). If colors are enabled, this warning will be in a different color, making it
easy to distinguish.

warning(n, " is very large, this might take a while.")

3.2.83 whatnow(key). If keyword key is the name of a function that was present in GP version
1.39.15, outputs the new function name and syntax, if it changed at all. Functions that where
introduced since then, then modified are also recognized.

7 whatnow("mu")
New syntax: mu(n) ===> moebius(n)

moebius(x): Moebius function of x.

7 whatnow("sin")
This function did not change

When a function was removed and the underlying functionality is not available under a com-
patible interface, no equivalent is mentioned:

7 whatnow("buchfu")
This function no longer exists

(The closest equivalent would be to set K = bnfinit(T) then access K.fu.)

3.2.84 write(filename, {str}x). Writes (appends) to filename the remaining arguments, and ap-
pends a newline (same output as print).

Variant. The high-level function write is expensive when many consecutive writes are expected

because it cannot use buffering. The low-level interface fileopen / filewrite / fileclose is
more efficient. It also allows to truncate existing files and replace their contents.

3.2.85 writel(filename, {str}*). Writes (appends) to filename the remaining arguments without
a trailing newline (same output as print1).

116

3.2.86 writebin(filename, {x}). Writes (appends) to filename the object x in binary format. This
format is not human readable, but contains the exact internal structure of x, and is much faster to
save/load than a string expression, as would be produced by write. The binary file format includes
a magic number, so that such a file can be recognized and correctly input by the regular read or
\r function. If saved objects refer to polynomial variables that are not defined in the new session,
they will be displayed as tn for some integer n (the attached variable number). Installed functions
and history objects can not be saved via this function.

If = is omitted, saves all user variables from the session, together with their names. Reading
such a “named object” back in a gp session will set the corresponding user variable to the saved
value. E.g after

x = 1; writebin("log")

reading log into a clean session will set x to 1. The relative variables priorities (see Section 2.5.3)
of new variables set in this way remain the same (preset variables retain their former priority, but
are set to the new value). In particular, reading such a session log into a clean session will restore
all variables exactly as they were in the original one.

Just as a regular input file, a binary file can be compressed using gzip, provided the file name
has the standard .gz extension.

In the present implementation, the binary files are architecture dependent and compatibility
with future versions of gp is not guaranteed. Hence binary files should not be used for long term
storage (also, they are larger and harder to compress than text files).

The library syntax is void gpwritebin(const char *filename, GEN x = NULL).

3.2.87 writetex(filename, {str}x*). Aswrite, in TEX format. See strtex for details: this function
is essentially equivalent to calling strtex on remaining arguments and writing them to file.

3.3 Parallel programming.

These function are only available if PARI was configured using Configure --mt=.... Two
multithread interfaces are supported:

e POSIX threads
e Message passing interface (MPI)

As arule, POSIX threads are well-suited for single systems, while MPI is used by most clusters.
However the parallel GP interface does not depend on the chosen multithread interface: a properly
written GP program will work identically with both.

117

3.3.1 parapply(f,x). Parallel evaluation of £ on the elements of x. The function f must not
access global variables or variables declared with local(), and must be free of side effects.

parapply(factor, [27256 + 1, 27193 - 1])
factors 22%6 + 1 and 2'93 — 1 in parallel.

{
my(E = ellinit([1,3]), V = vector(12,i,randomprime(2°200)));
parapply(p->ellcard(E,p), V)

}

computes the order of F(F)) for 12 random primes of 200 bits.

The library syntax is GEN parapply(GEN f, GEN x).

3.3.2 pareval(x). Parallel evaluation of the elements of x, where x is a vector of closures. The
closures must be of arity 0, must not access global variables or variables declared with local and
must be free of side effects.

Here is an artificial example explaining the MOV attack on the elliptic discrete log problem
(by reducing it to a standard discrete log over a finite field):

{
my(q = 2730 + 3, m =40 * q; p=1+m"2); \\ p, q are primes
my(E = ellinit([0,0,0,1,0] * Mod(1,p)));
my ([P, Q] = ellgenerators(E));
\\ E(F_p) ~ Z/m P + Z/m Q and the order of the
\\ Weil pairing <P,Q> in (Z/p)"* is m
my(F = [m,factor(m)], e = random(m), R, wR, wQ);
R = ellpow(E, Q, e);
wR = ellweilpairing(E,P,R,m);

wQ = ellweilpairing(E,P,Q,m); \\ wR = wQ e
pareval ([()->znlog(wR,wQ,F), ()->elllog(E,R,Q), ()->el)
}

Note the use of my to pass ”arguments” to the functions we need to evaluate while satisfying the
listed requirements: closures of arity 0 and no global variables (another possibility would be to
use export). As a result, the final three statements satisfy all the listed requirements and are run
in parallel. (Which is silly for this computation but illustrates the use of pareval.) The function
parfor is more powerful but harder to use.

The library syntax is GEN pareval (GEN x).

118

3.3.3 parfor(i = a,{b}, exprl,{r},{expr2}). Evaluates in parallel the expression expril in the
formal argument ¢ running from a to b. If b is set to +oo, the loop runs indefinitely. If r and
expr2 are present, the expression expr2 in the formal variables r and i is evaluated with r running
through all the different results obtained for exprl and ¢ takes the corresponding argument.

The computations of exprl are started in increasing order of ¢; otherwise said, the computation
for ¢ = c is started after those for i = 1,...,c—1 have been started, but before the computation for
i = c+ 1 is started. Notice that the order of completion, that is, the order in which the different r
become available, may be different; expr2 is evaluated sequentially on each r as it appears.

The following example computes the sum of the squares of the integers from 1 to 10 by
computing the squares in parallel and is equivalent to parsum (i=1, 10, i~2):

? s=0;

? parfor (i=1, 10, i"2, r, s=s+r)
? s

%3 = 385

More precisely, apart from a potentially different order of evaluation due to the parallelism,
the line containing parfor is equivalent to

? my (r); for (i=1, 10, r=i"2; s=s+r)

The sequentiality of the evaluation of expr2 ensures that the variable s is not modified con-
currently by two different additions, although the order in which the terms are added is nondeter-
ministic.

It is allowed for expr2 to exit the loop using break/next/return. If that happens for i = ¢,
then the evaluation of exprl and expr2 is continued for all values ¢ < ¢, and the return value is
the one obtained for the smallest i causing an interruption in expr2 (it may be undefined if this
is a break/next). In that case, using side-effects in expr2 may lead to undefined behavior, as the
exact number of values of ¢ for which it is executed is nondeterministic. The following example
computes nextprime (1000) in parallel:

? parfor (i=1000, , isprime (i), r, if (r, return (i)))
%1 = 1009

3.3.4 parforeach(V,z, exprl,{r},{exzpr2}). Evaluates in parallel the expression exprl in the
formal argument x, where x runs through all components of V. If r and expr2 are present,
evaluate sequentially the expression expr2, in which the formal variables x and r are replaced
by the successive arguments and corresponding values. The sequential evaluation ordering is not
specified:

? parforeach([50..100], x,isprime(x), r, if(r,print(x)))
53
67
71
79
83
89
o7
73
59
61

119

3.3.5 parforprime(p = a,{b}, expri,{r}, {exzpr2}). Behaves exactly as parfor, but loops only
over prime values p. Precisely, the functions evaluates in parallel the expression expr1 in the formal
argument p running through the primes from a to b. If b is set to +oo, the loop runs indefinitely.
If » and expr2 are present, the expression expr2 in the formal variables r and p is evaluated
with r running through all the different results obtained for exprl and p takes the corresponding
argument.

It is allowed fo expr2 to exit the loop using break/mnext/return; see the remarks in the
documentation of parfor for details.

3.3.6 parforprimestep(p = a, {b},q, exprl,{r},{expr2}). Behaves exactly as parfor, but loops
only over prime values p in an arithmetic progression Precisely, the functions evaluates in parallel
the expression exprl in the formal argument p running through the primes from a to b in an
arithmetic progression of the form a + kq. (p = a (mod ¢)) or an intmod Mod(c,N). If b is set
to +oo, the loop runs indefinitely. If r and expr2 are present, the expression expr2 in the formal
variables r and p is evaluated with r running through all the different results obtained for expri
and p takes the corresponding argument.

It is allowed fo expr2 to exit the loop using break/next/return; see the remarks in the
documentation of parfor for details.

3.3.7 parforvec(X = v, exprl,{j},{expr2},{flag}). Evaluates the sequence expr2 (dependent on
X and j) for X as generated by forvec, in random order, computed in parallel. Substitute for j
the value of exprl (dependent on X).

It is allowed fo expr2 to exit the loop using break/next/return, however in that case, expr2
will still be evaluated for all remaining value of p less than the current one, unless a subsequent
break/next/return happens.

3.3.8 parselect(f, A, {flag = 0}). Selects elements of A according to the selection function f, done
in parallel. If flagis 1, return the indices of those elements (indirect selection) The function £ must
not access global variables or variables declared with local(), and must be free of side effects.

The library syntax is GEN parselect(GEN f, GEN A, long flag).
3.3.9 parsum(i = a,b, expr). Sum of expression erpr, the formal parameter going from a to b,

evaluated in parallel in random order. The expression expr must not access global variables or
variables declared with local (), and must be free of side effects.

? parsum(i=1,1000,ispseudoprime (2 prime(i)-1))
cpu time = 1min, 26,776 ms, real time = 5,854 ms.
=20

returns the number of prime numbers among the first 1000 Mersenne numbers.
3.3.10 parvector(N,i, expr). As vector(N,i,expr) but the evaluations of expr are done in

parallel. The expression expr must not access global variables or variables declared with local(),
and must be free of side effects.

parvector(10,i,quadclassunit (27 (100+i)+1) .no)

computes the class numbers in parallel.

120

EMACS:

3.4 GP defaults.

This section documents the GP defaults, that can be set either by the GP function default
or in your GPRC. Be sure to check out parisize and parisizemax !

3.4.1 TeXstyle. The bits of this default allow gp to use less rigid TeX formatting commands in
the logfile. This default is only taken into account when log = 3. The bits of TeXstyle have the
following meaning

2: insert \right / \left pairs where appropriate.

4: insert discretionary breaks in polynomials, to enhance the probability of a good line break.
You must then define \PARIbreak as follows:

\def\PARIbreak{\hskip Opt plus \hsize\relax\discretionary{}{}{}}
The default value is 0.

3.4.2 breakloop. If true, enables the “break loop” debugging mode, see Section 2.10.3.

The default value is 1 if we are running an interactive gp session, and 0 otherwise.

3.4.3 colors. This default is only usable if gp is running within certain color-capable terminals.
For instance rxvt, color_xterm and modern versions of xterm under X Windows, or standard
Linux/DOS text consoles. It causes gp to use a small palette of colors for its output. With xterms,
the colormap used corresponds to the resources Xterm*colorn where n ranges from 0 to 15 (see
the file misc/color.dft for an example). Accepted values for this default are strings "aq,... ,ax"
where £ < 7 and each a; is either

e the keyword no (use the default color, usually black on transparent background)
e an integer between 0 and 15 corresponding to the aforementioned colormap

e a triple [cg,c1, o] where ¢y stands for foreground color, ¢; for background color, and ¢ for
attributes (0 is default, 1 is bold, 4 is underline).

The output objects thus affected are respectively error messages, history numbers, prompt,
input line, output, help messages, timer (that’s seven of them). If k& < 7, the remaining a; are
assumed to be no. For instance

default(colors, "9, 5, no, no, 4")

typesets error messages in color 9, history numbers in color 5, output in color 4, and does not affect
the rest.

A set of default colors for dark (reverse video or PC console) and light backgrounds respectively
is activated when colors is set to darkbg, resp. lightbg (or any proper prefix: d is recognized as
an abbreviation for darkbg). A bold variant of darkbg, called boldfg, is provided if you find the
former too pale.

In the present version, this default is incompatible with PariEmacs. Changing it will just fail silently
(the alternative would be to display escape sequences as is, since Emacs will refuse to interpret
them). You must customize color highlighting from the PariEmacs side, see its documentation.

The default value is "" (no colors).

121

3.4.4 compatible. Obsolete. This default is now a no-op.

3.4.5 datadir. The name of directory containing the optional data files. For now, this includes
the elldata, galdata, galpol, seadata packages.

The default value is /usr/local/share/pari, or the override specified via Configure --
datadir=.

Windows-specific note. On Windows operating systems, the special value @ stands for “the
directory where the gp binary is installed”. This is the default value.

3.4.6 debug. Debugging level. If it is nonzero, some extra messages may be printed, according to
what is going on (see \g). To turn on and off diagnostics attached to a specific feature (such as the
LLL algorithm), use setdebug.

The default value is 0 (no debugging messages).

3.4.7 debugfiles. This is a deprecated alias for setdebug("io",). If nonzero, gp will print
information on file descriptors in use and I/O operations (see \gf).

The default value is 0 (no debugging messages).

3.4.8 debugmem. Memory debugging level (see \gm). If this is nonzero, gp will print increasingly
precise notifications about memory use:

e debugmem > 0, notify when parisize changes (within the boundaries set by parisizemax);

e debugmem > 1, indicate any important garbage collection and the function it is taking place
in;

e debugmem > 2, indicate the creation/destruction of “blocks” (or clones); expect lots of
messages.

Important Note: if you are running a version compiled for debugging (see Appendix A) and
debugmem > 1, gp will further regularly print information on memory usage, notifying whenever
stack usage goes up or down by 1 MByte. This functionality is disabled on non-debugging builds
as it noticeably slows down the performance.

The default value is 1.

3.4.9 echo. This default can be 0 (off), 1 (on) or 2 (on, raw). When echo mode is on, each
command is reprinted before being executed. This can be useful when reading a file with the \r
or read commands. For example, it is turned on at the beginning of the test files used to check
whether gp has been built correctly (see \e). When echo is set to 1 the input is cleaned up,
removing white space and comments and uniting multi-line input. When set to 2 (raw), the input
is written as-is, without any pre-processing.

The default value is 0 (no echo).

122

3.4.10 factor_add_primes. This toggle is either 1 (on) or 0 (off). If on, the integer factorization
machinery calls addprimes on prime factors that were difficult to find (larger than 224), so they
are automatically tried first in other factorizations. If a routine is performing (or has performed)
a factorization and is interrupted by an error or via Control-C, this lets you recover the prime
factors already found. The downside is that a huge addprimes table unrelated to the current
computations will slow down arithmetic functions relying on integer factorization; one should then
empty the table using removeprimes.

The default value is 0.

3.4.11 factor_proven. This toggle is either 1 (on) or 0 (off). By default, the factors output by
the integer factorization machinery are only pseudo-primes, not proven primes. If this toggle is set,
a primality proof is done for each factor and all results depending on integer factorization are fully
proven. This flag does not affect partial factorization when it is explicitly requested. It also does
not affect the private table managed by addprimes: its entries are included as is in factorizations,
without being tested for primality.

The default value is 0.

3.4.12 format. Of the form x.n, where x (conversion style) is a letter in {e, £, g}, and n (precision)
is an integer; this affects the way real numbers are printed:

e If the conversion style is e, real numbers are printed in scientific format, always with an
explicit exponent, e.g. 3.3 E-5.

e In style £, real numbers are generally printed in fixed floating point format without exponent,
e.g. 0.000033. A large real number, whose integer part is not well defined (not enough significant
digits), is printed in style e. For instance 10.~100 known to ten significant digits is always printed
in style e.

e In style g, nonzero real numbers are printed in £ format, except when their decimal exponent
is < —4, in which case they are printed in e format. Real zeroes (of arbitrary exponent) are printed
in e format.

The precision n is the number of significant digits printed for real numbers, except if n < 0
where all the significant digits will be printed (initial default 28, or 38 for 64-bit machines). For
more powerful formatting possibilities, see printf and strprintf.

The default value is "g.28" and "g.38" on 32-bit and 64-bit machines, respectively.

3.4.13 graphcolormap. A vector of colors, to be used by hi-res graphing routines. Its length
is arbitrary, but it must contain at least 3 entries: the first 3 colors are used for background,
frame/ticks and axes respectively. All colors in the colormap may be freely used in plotcolor
calls.

A color is either given as in the default by character strings or by an RGB code. For valid color
names, see the standard rgb.txt file in X11 distributions, where we restrict to lowercase letters and
remove all whitespace from color names. An RGB code is a vector with 3 integer entries between
0 and 255 or a # followed by 6 hexadecimal digits. For instance [250, 235, 215], "#faebd7" and
"antiquewhite" all represent the same color.

The default value is ["white", "black", "blue", "violetred", "red", "green", "grey",
"gainsboro"].

123

3.4.14 graphcolors. Entries in the graphcolormap that will be used to plot multi-curves. The
successive curves are drawn in colors

graphcolormap [graphcolors[1]], graphcolormap [graphcolors([2]], ...
cycling when the graphcolors list is exhausted.

The default value is [4,5].

3.4.15 help. Name of the external help program to use from within gp when extended help is
invoked, usually through a ?? or ??? request (see Section 2.13.1), or M-H under readline (see
Section 2.15).

Windows-specific note. On Windows operating systems, if the first character of help is @, it is
replaced by “the directory where the gp binary is installed”.

The default value is the path to the gphelp script we install.

3.4.16 histfile. Name of a file where gp will keep a history of all input commands (results are
omitted). If this file exists when the value of histfile changes, it is read in and becomes part
of the session history. Thus, setting this default in your gprc saves your readline history between
sessions. Setting this default to the empty string "" changes it to <undefined>. Note that, by
default, the number of history entries saved is not limited: set history-size in readline’s . inputrc
to limit the file size.

The default value is <undefined> (no history file).

3.4.17 histsize. gp keeps a history of the last histsize results computed so far, which you can
recover using the % notation (see Section 2.13.4). When this number is exceeded, the oldest values
are erased. Tampering with this default is the only way to get rid of the ones you do not need
anymore.

The default value is 5000.

3.4.18 lines. If set to a positive value, gp prints at most that many lines from each result,
terminating the last line shown with [+++] if further material has been suppressed. The various
print commands (see Section 3.2) are unaffected, so you can always type print (%) or \a to view
the full result. If the actual screen width cannot be determined, a “line” is assumed to be 80
characters long.

The default value is 0.

3.4.19 linewrap. If set to a positive value, gp wraps every single line after printing that many
characters.

The default value is 0 (unset).

124

3.4.20 log. This can be either 0 (off) or 1, 2, 3 (on, see below for the various modes). When
logging mode is turned on, gp opens a log file, whose exact name is determined by the logfile
default. Subsequently, all the commands and results will be written to that file (see \1). In case a
file with this precise name already existed, it will not be erased: your data will be appended at the
end.

The specific positive values of 1log have the following meaning

1: plain logfile

2: emit color codes to the logfile (if colors is set).

3: write LaTeX output to the logfile (can be further customized using TeXstyle).

The default value is 0.

Note. Logging starts as soon as log is set to a nonzero value. In particular, when log is set in gprc,
warnings and errors triggered from the rest of the file will be written in the logfile. For instance, on
clean startup, the logfile will start by Done. (from the Reading GPRC:...Done. diagnostic printed
when starting gp), then the gp header and prompt.

3.4.21 logfile. Name of the log file to be used when the log toggle is on. Environment and time
expansion are performed.

The default value is "pari.log".
3.4.22 nbthreads. This default is specific to the parallel version of PARI and gp (built via
Configure --mt=prthread or mpi) and is ignored otherwise. In parallel mode, it governs the

number of threads to use for parallel computing. The exact meaning and default value depend on
the mt engine used:

e single: not used (always a single thread).
e pthread: number of threads (unlimited, default: number of cores)

e mpi: number of MPI processes to use (limited to the number allocated by mpirun, default:
use all allocated processes).

See also threadsize and threadsizemax.
3.4.23 new_galois_format. This toggle is either 1 (on) or 0 (off). If on, the polgalois command

will use a different, more consistent, naming scheme for Galois groups. This default is provided to
ensure that scripts can control this behavior and do not break unexpectedly.

The default value is 0. This value will change to 1 (set) in the next major version.

125

3.4.24 output. There are three possible values: 0 (= raw), 1 (= prettymatriz), or 3 (= external
prettyprint). This means that, independently of the default format for reals which we explained
above, you can print results in three ways:

e raw format, i.e. a format which is equivalent to what you input, including explicit multiplica-
tion signs, and everything typed on a line instead of two dimensional boxes. This can have several
advantages, for instance it allows you to pick the result with a mouse or an editor, and to paste it
somewhere else.

e prettymatrixz format: this is identical to raw format, except that matrices are printed as
boxes instead of horizontally. This is prettier, but takes more space and cannot be used for input.
Column vectors are still printed horizontally.

e cxternal prettyprint: pipes all gp output in TeX format to an external prettyprinter, according
to the value of prettyprinter. The default script (tex2mail) converts its input to readable two-
dimensional text.

Independently of the setting of this default, an object can be printed in any of the three formats
at any time using the commands \a and \m and \B respectively.

The default value is 1 (prettymatriz).

3.4.25 parisize. gp, and in fact any program using the PARI library, needs a stack in which to do
its computations; parisize is the stack size, in bytes. It is recommended to increase this default
using a gprc, to the value you believe PARI should be happy with, given your typical computation.
We strongly recommend to also set parisizemax to a much larger value in your gprc, about what
you believe your machine can stand: PARI will then try to fit its computations within about
parisize bytes, but will increase the stack size if needed (up to parisizemax). Once the memory
intensive computation is over, PARI will restore the stack size to the originally requested parisize.

If parisizemax is unset, this command has a very unintuitive behaviour since it must abort
pending operations, see ?77allocatemem.

The default value is 4M, resp. 8M on a 32-bit, resp. 64-bit machine.

3.4.26 parisizemax. gp, and in fact any program using the PARI library, needs a stack in which
to do its computations. If nonzero, parisizemax is the maximum size the stack can grow to, in
bytes. If zero, the stack will not automatically grow, and will be limited to the value of parisize.

When parisizemax is set, PARI tries to fit its computations within about parisize bytes, but
will increase the stack size if needed, roughly doubling it each time (up to parisizemax of course!)
and printing a message such as Warning: increasing stack size to some value. Once the
memory intensive computation is over, PARI will restore the stack size to the originally requested
parisize without printing further messages.

We strongly recommend to set parisizemax permanently to a large nonzero value in your gprc,
about what you believe your machine can stand. It is possible to increase or decrease parisizemax
inside a running gp session, just use default as usual.

The default value is 0, for backward compatibility reasons.

126

9.9

3.4.27 path. This is a list of directories, separated by colons "’ (semicolons ’;” in the DOS world,
since colons are preempted for drive names). When asked to read a file whose name is not given
by an absolute path (does not start with /, ./ or ../), gp will look for it in these directories, in

the order they were written in path. Here, as usual, . means the current directory, and .. its
immediate parent. Environment expansion is performed.

The default value is ".:~:~/gp" on UNIX systems, ".;C:\;C:\GP" on DOS, OS/2 and Win-
dows, and "." otherwise.

3.4.28 plothsizes. If the graphic driver allows it, the array contains the size of the terminal, the
size of the font, the size of the ticks.

3.4.29 prettyprinter. The name of an external prettyprinter to use when output is 3 (alternate
prettyprinter). Note that the default tex2mail looks much nicer than the built-in “beautified
format” (output = 2).

The default value is "tex2mail -TeX -noindent -ragged -by_par".

3.4.30 primelimit. gp precomputes a list of all primes less than primelimit at initialization time,
and can build fast sieves on demand to quickly iterate over primes up to the square of primelimit.
These are used by many arithmetic functions, usually for trial division purposes. The maximal
value is 232 — 2049 (resp 2% — 2049) on a 32-bit (resp. 64-bit) machine, but values beyond 102,
allowing to iterate over primes up to 10'¢, do not seem useful.

Since almost all arithmetic functions eventually require some table of prime numbers, PARI
guarantees that the first 6547 primes, up to and including 65557, are precomputed, even if prime-
limit is 1.

This default is only used on startup: changing it will not recompute a new table.

Deprecated feature. primelimit was used in some situations by algebraic number theory func-
tions using the nf _PARTIALFACT flag (nfbasis, nfdisc, nfinit, ...): this assumes that all primes
p > primelimit have a certain property (the equation order is p-maximal). This is never done by
default, and must be explicitly set by the user of such functions. Nevertheless, these functions now
provide a more flexible interface, and their use of the global default primelimit is deprecated.

Deprecated feature. factor(N, 0) was used to partially factor integers by removing all prime
factors < primelimit. Don’t use this, supply an explicit bound: factor(N, bound), which avoids
relying on an unpredictable global variable.

The default value is 500k.

3.4.31 prompt. A string that will be printed as prompt. Note that most usual escape sequences
are available there: \e for Esc, \n for Newline, ..., \\ for \. Time expansion is performed.

This string is sent through the library function strftime (on a Unix system, you can try man
strftime at your shell prompt). This means that % constructs have a special meaning, usually
related to the time and date. For instance, %H = hour (24-hour clock) and %M = minute [00,59] (use
%h to get a real %).

If you use readline, escape sequences in your prompt will result in display bugs. If you have
a relatively recent readline (see the comment at the end of Section 3.4.3), you can brace them
with special sequences (\[and \]), and you will be safe. If these just result in extra spaces in

127

EMACS:

your prompt, then you’ll have to get a more recent readline. See the file misc/gprc.dft for an
example.

Caution: PariEmacs needs to know about the prompt pattern to separate your input from previous
gp results, without ambiguity. It is not a trivial problem to adapt automatically this regular
expression to an arbitrary prompt (which can be self-modifying!). See PariEmacs’s documentation.

The default value is "7 ",

3.4.32 prompt_cont. A string that will be printed to prompt for continuation lines (e.g. in
between braces, or after a line-terminating backslash). Everything that applies to prompt applies
to prompt_cont as well.

The default value is "".

3.4.33 psfile. This default is obsolete, use one of plotexport, plothexport or plothrawexport
functions and write the result to file.

3.4.34 readline. Switches readline line-editing facilities on and off. This may be useful if you
are running gp in a Sun cmdtool, which interacts badly with readline. Of course, until readline is
switched on again, advanced editing features like automatic completion and editing history are not
available.

The default value is 1.

3.4.35 realbitprecision. The number of significant bits used to convert exact inputs given to
transcendental functions (see Section 3.11), or to create absolute floating point constants (input
as 1.0 or Pi for instance). Unless you tamper with the format default, this is also the number of
significant bits used to print a t_REAL number; format will override this latter behavior, and allow
you to have a large internal precision while outputting few digits for instance.

Note that most PARI’s functions currently handle precision on a word basis (by increments
of 32 or 64 bits), hence bit precision may be a little larger than the number of bits you expected.
For instance to get 10 bits of precision, you need one word of precision which, on a 64-bit machine,
correspond to 64 bits. To make things even more confusing, this internal bit accuracy is converted
to decimal digits when printing floating point numbers: now 64 bits correspond to 19 printed
decimal digits (19 < log;(2°%) < 20).

The value returned when typing default(realbitprecision) is the internal number of sig-
nificant bits, not the number of printed decimal digits:

7 default(realbitprecision, 10)
7 \pb
realbitprecision = 64 significant bits
? default(realbitprecision)
W = 64
7 \p
realprecision = 3 significant digits
? default(realprecision)
h2 = 19

Note that realprecision and \p allow to view and manipulate the internal precision in decimal
digits.
The default value is 128, resp. 96, on a 64-bit, resp .32-bit, machine.

128

3.4.36 realprecision. The number of significant digits used to convert exact inputs given to
transcendental functions (see Section 3.11), or to create absolute floating point constants (input
as 1.0 or Pi for instance). Unless you tamper with the format default, this is also the number
of significant digits used to print a t_REAL number; format will override this latter behavior, and
allow you to have a large internal precision while outputting few digits for instance.

Note that PARI’s internal precision works on a word basis (by increments of 32 or 64 bits),
hence may be a little larger than the number of decimal digits you expected. For instance to get
2 decimal digits you need one word of precision which, on a 64-bit machine, actually gives you 19
digits (19 < log;(25%) < 20). The value returned when typing default(realprecision) is the
internal number of significant digits, not the number of printed digits:

? default(realprecision, 2)

realprecision = 19 significant digits (2 digits displayed)
? default(realprecision)
%1 =19

The default value is 38, resp. 28, on a 64-bit, resp. 32-bit, machine.

3.4.37 recover. This toggle is either 1 (on) or 0 (off). If you change this to 0, any error becomes
fatal and causes the gp interpreter to exit immediately. Can be useful in batch job scripts.

The default value is 1.

3.4.38 secure. This toggle is either 1 (on) or 0 (off). If on, the system and extern command are
disabled. These two commands are potentially dangerous when you execute foreign scripts since
they let gp execute arbitrary UNIX commands. gp will ask for confirmation before letting you (or
a script) unset this toggle.

The default value is 0.

3.4.39 seriesprecision. Number of significant terms when converting a polynomial or rational
function to a power series (see \ps).

The default value is 16.

3.4.40 simplify. This toggle is either 1 (on) or 0 (off). When the PARI library computes some-
thing, the type of the result is not always the simplest possible. The only type conversions which the
PARI library does automatically are rational numbers to integers (when they are of type t_FRAC
and equal to integers), and similarly rational functions to polynomials (when they are of type
t_RFRAC and equal to polynomials). This feature is useful in many cases, and saves time, but can
be annoying at times. Hence you can disable this and, whenever you feel like it, use the func-
tion simplify (see Chapter 3) which allows you to simplify objects to the simplest possible types
recursively (see \y).

The default value is 1.

129

3.4.41 sopath. This is a list of directories, separated by colons ’:” (semicolons ;" in the DOS
world, since colons are preempted for drive names). When asked to install an external symbol
from a shared library whose name is not given by an absolute path (does not start with /, ./ or
../), gp will look for it in these directories, in the order they were written in sopath. Here, as

usual, . means the current directory, and .. its immediate parent. Environment expansion is
performed.
The default value is "", corresponding to an empty list of directories: install will use the

library name as input (and look in the current directory if the name is not an absolute path).

3.4.42 strictargs. This toggle is either 1 (on) or 0 (off). If on, all arguments to new user functions
are mandatory unless the function supplies an explicit default value. Otherwise arguments have
the default value 0.

In this example,
fun(a,b=2)=a+b
a is mandatory, while b is optional. If strictargs is on:

? fun()
***x at top-level: fun()
*okok T

* %k in function fun: a,b=2
*kk .t

% missing mandatory argument ’a’ in user function.

This applies to functions defined while strictargs is on. Changing strictargs does not
affect the behavior of previously defined functions.

The default value is 0.
3.4.43 strictmatch. Obsolete. This toggle is now a no-op.

3.4.44 threadsize. This default is specific to the parallel version of PARI and gp (built via Con-
figure --mt=prthread or mpi) and is ignored otherwise. In parallel mode, each thread allocates its
own private stack for its computations, see parisize. This value determines the size in bytes of the
stacks of each thread, so the total memory allocated will be parisize 4+ nbthreads X threadsize.

If set to 0, the value used is the same as parisize. It is not easy to estimate reliably a sufficient
value for this parameter because PARI itself will parallelize computations and we recommend to
not set this value explicitly unless it solves a specific problem for you. For instance if you see
frequent messages of the form

**x*x Warning: not enough memory, new thread stack 10000002048

(Meaning that threadsize had to be temporarily increased.) On the other hand we strongly
recommend to set parisizemax and threadsizemax to a nonzero value.

The default value is 0.

130

3.4.45 threadsizemax. This default is specific to the parallel version of PARI and gp (built
via Configure --mt=pthread or mpi) and is ignored otherwise. In parallel mode, each threads
allocates its own private stack for its computations, see parisize and parisizemax. The values
of threadsize and threadsizemax determine the usual and maximal size in bytes of the stacks of
each thread, so the total memory allocated will be between parisize + nbthreads X threadsize.
and parisizemax + nbthreads X threadsizemax.

If set to 0, the value used is the same as threadsize. We strongy recommend to set both
parisizemax and threadsizemax to a nonzero value.

The default value is 0.

3.4.46 timer. This toggle is either 1 (on) or 0 (off). Every instruction sequence in the gp calculator
(anything ended by a newline in your input) is timed, to some accuracy depending on the hardware
and operating system. When timer is on, each such timing is printed immediately before the
output as follows:

? factor(2°2°7+1)

time = 108 ms. \\ this line omitted if ’timer’ is O
%=
[59649589127497217 1]

[56704689200685129054721 1]
(See also # and ##.)

The time measured is the user CPU time, not including the time for printing the results. If
the time is negligible (< 1 ms.), nothing is printed: in particular, no timing should be printed when
defining a user function or an alias, or installing a symbol from the library.

The default value is 0 (off).

3.5 Standard monadic or dyadic operators.

3.5.1 Boolean operators.

Any nonzero value is interpreted as true and any zero as false (this includes empty vectors
or matrices). The standard boolean operators || (inclusive or), && (and) and ! in prefix notation
(not) are available. Their value is 1 (true) or 0 (false):

? a&& b \\ 1 iff a and b are nonzero
?a |l b \\ 1iff a or b is nonzero
? la \\ 1 iff a is zero

3.5.2 Comparison. The standard real comparison operators <=, <, >=, > are available in GP.
The result is 1 if the comparison is true, 0 if it is false. These operators allow to compare integers
(t_INT), rational (t_FRAC) or real (t_REAL) numbers, real quadratic numbers (t_QUAD of positive
discriminant) and infinity (oo, t_INFINITY).

By extension, two character strings (t_STR) are compared using the standard lexicographic
order. Comparing a string to an object of a different type raises an exception. See also the cmp
universal comparison function.

131

3.5.3 Equality. Two operators allow to test for equality: == (equality up to type coercion) and
=== (identity). The result is 1 if equality is decided, else 0.

The operator === is strict: objects of different type or length are never identical, polynomials
in different variables are never identical, even if constant. On the contrary, == is very liberal:
a == b decides whether there is a natural map sending a to the domain of b or sending b to the

domain of a, such that the comparison makes sense and equality holds. For instance

? 4 == Mod(1,3) \\ equal

=1

? 4 === Mod(1,3) \\ but not identical

%2 =0

7 ’x ==’y \\ not equal (nonconstant and different variables)

%3 =0

? Pol(0,’x) == Pol(0,’y) \\ equal (constant: ignore variable)

W o=1

? Pol(0,’x) == Pol(0,’y) \\ not identical

%% =0

7 0 == Pol(0) \\ equal

%6 =1

7 [0] == 0 \\ equal

=1

? [0, 0] == 0 \\ equal

% =1

? [0] == [0,0] \\ not equal

%9 =1
In particular == is not transitive in general; it is transitive when used to compare objects known to
have the same type. The operator === is transitive. The == operator allows two equivalent negated
forms: !'= or <>; there is no negated form for ===.

Do not mistake = for ==: it is the assignment statement.

3.5.4 +/-. The expressions +x and -z refer to monadic operators: the first does nothing, the
second negates x.

The library syntax is GEN gneg(GEN x) for -z.

3.5.5 +. The expression x + y is the sum of x and y. Addition between a scalar type x and a t_COL
or t_MAT y returns respectively [y[l] + z,y[2],...] and y + zId. Other additions between a scalar
type and a vector or a matrix, or between vector/matrices of incompatible sizes are forbidden.

The library syntax is GEN gadd(GEN x, GEN y).

3.5.6 -. The expression = - y is the difference of x and y. Subtraction between a scalar type z
and a t_COL or t_MAT y returns respectively [y[1] — x,y[2],...] and y — zId. Other subtractions
between a scalar type and a vector or a matrix, or between vector/matrices of incompatible sizes
are forbidden.

The library syntax is GEN gsub(GEN x, GEN y) for z - y.

132

3.5.7 *. The expression x * y is the product of z and y. Among the prominent impossibilities are
multiplication between vector/matrices of incompatible sizes, between a t_INTMOD or t_PADIC Re-
stricted to scalars, * is commutative; because of vector and matrix operations, it is not commutative
in general.

Multiplication between two t_VECs or two t_COLs is not allowed; to take the scalar product of
two vectors of the same length, transpose one of the vectors (using the operator ~ or the function
mattranspose, see Section 3.10) and multiply a line vector by a column vector:

7 a= [1,2,3];

7 ax*x a

*okok at top-level: axa

*okok ~—

%% _*_: forbidden multiplication t_VEC * t_VEC.
7 a *x a~
%2 = 14

If 2,y are binary quadratic forms, compose them; see also qfbnucomp and gfbnupow. If z,y
are t_VECSMALL of the same length, understand them as permutations and compose them.

The library syntax is GEN gmul (GEN x, GEN y) for * y. Also available is GEN gsqr (GEN x)
for = * z.

3.5.8 /. The expression = / y is the quotient of x and y. In addition to the impossibilities for
multiplication, note that if the divisor is a matrix, it must be an invertible square matrix, and in
that case the result is z*y~!. Furthermore note that the result is as exact as possible: in particular,
division of two integers always gives a rational number (which may be an integer if the quotient
is exact) and not the Euclidean quotient (see 2 \ y for that), and similarly the quotient of two
polynomials is a rational function in general. To obtain the approximate real value of the quotient
of two integers, add 0. to the result; to obtain the approximate p-adic value of the quotient of two
integers, add 0(p~k) to the result; finally, to obtain the Taylor series expansion of the quotient of
two polynomials, add 0(X"k) to the result or use the taylor function (see Section 3.9.61).

The library syntax is GEN gdiv(GEN x, GEN y) for = / y.

3.5.9 \. The expression = \ y is the Euclidean quotient of x and y. If y is a real scalar, this is
defined as floor(x/y) if y > 0, and ceil(x/y) if y < 0 and the division is not exact. Hence the
remainder x - (z\y)*y is in [0, |y|[.

Note that when y is an integer and x a polynomial, y is first promoted to a polynomial of
degree 0. When x is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gdivent (GEN x, GEN y) for x \ y.
3.5.10 \/. The expression x \/ y evaluates to the rounded Euclidean quotient of z and y. This is
the same as x \ y except for scalar division: the quotient is such that the corresponding remainder

is smallest in absolute value and in case of a tie the quotient closest to +oc is chosen (hence the
remainder would belong to [—|y|/2, |y|/2]).

When z is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gdivround(GEN x, GEN y) for x \/ y.

133

3.5.11 %. The expression % y evaluates to the modular Euclidean remainder of x and y, which we
now define. When x or y is a nonintegral real number, x%y is defined as z - (z\y)*y. Otherwise,
if y is an integer, this is the smallest nonnegative integer congruent to modulo y. (This actually
coincides with the previous definition if and only if x is an integer.) If y is a polynomial, this is the
polynomial of smallest degree congruent to x modulo y. For instance:

7 (1/2) % 3

hl =2

70.5%3

%2 = 0.5000000000000000000000000000
? (1/2) % 3.0

w3 = 1/2

Note that when y is an integer and x a polynomial, y is first promoted to a polynomial of
degree 0. When zx is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gmod(GEN x, GEN y) for = % y.

3.5.12 op=. When op is a binary arithmetic operator among +, -, %, /, \ or \/, the construct
xop =y is a shortcut for x = xopy.

7 v[1] += 10 \\ increment v[1] by 10
7 a /= 2 \\ divide a by 2

]
8
+
-

3.5.13 ++. z++ is a shortcut for x

]
8

|
-

3.5.14 ——. x—— is a shortcut for =

3.5.15 ~. The expression z"n is powering.

e If the exponent n is an integer, then exact operations are performed using binary (left-shift)
powering techniques. By definition, 2° is (an empty product interpreted as) an exact 1 in the
underlying prime ring:

?700°0

=1

7 (1 +0(2°3) "0
%2 =1

7 (1 +0&) "0
w3 =1

? Mod(2,4)70

%4 = Mod(1,4)

? Mod(x,x"2)°0
%5 = Mod(1, x°2)

If z is a p-adic number, its precision will increase if v,(n) > 0 and n # 0. Powering a binary
quadratic form (type t_QFB) returns a representative of the class, which is reduced if the input
was. (In particular, x ~1 returns x itself, whether it is reduced or not.)

PARI rewrites the multiplication x * = of two identical objects as 2. Here, identical means

the operands are reference the same chunk of memory; no equality test is performed. This is no
longer true when more than two arguments are involved.

?7a=1+0(2); b= a;

134

? a * a \\ = a"2, precision increases
%2 =1+ 0(2°3)

? a * b \\ not rewritten as a"2

%3 =1+ 0(2)

? axa*a \\ not rewritten as a”3

%4 =1 + 0(2)

e If the exponent is a rational number p/q the behaviour depends on z. If x is a complex
number, return exp(nlogz) (principal branch), in an exact form if possible:

? 4°(1/2) \\ 4 being a square, this is exact
%l =2

? 27(1/2) \\ now inexact

%2 = 1.4142135623730950488016887242096980786
? (-1/4)7(1/2) \\ exact again

%3 = 1/2*1

7 (-1)°(1/3)

%4 = 0.500...+ 0.866...%I

Note that even though —1 is an exact cube root of —1, it is not exp(log(—1)/3); the latter is
returned.

Otherwise return a solution y of y? = zP if it exists; beware that this is defined up to ¢-th
roots of 1 in the base field. Intmods modulo composite numbers are not supported.

? Mod(7,19)"(1/2)

%1 = Mod(11, 19) \\ is any square root

? sqrt(Mod(7,19))

%2 = Mod(8, 19) \\ is the smallest square root
? Mod(1,4)"(1/2)

xxx at top-level: Mod(1,4)"(1/2)

kX temo

**x*x _"_: not a prime number in gpow: 4.

e If the exponent is a negative integer or rational number, an inverse must be computed. For
noninvertible t_INTMOD x, this will fail and (for n an integer) implicitly exhibit a factor of the
modulus:

? Mod(4,6)"(-1)
*** at top-level: Mod(4,6)"(-1)
L
**%* _~_: impossible inverse modulo: Mod(2, 6).

Here, a factor 2 is obtained directly. In general, take the gcd of the representative and the modulus.
This is most useful when performing complicated operations modulo an integer N whose factoriza-
tion is unknown. Either the computation succeeds and all is well, or a factor d is discovered and
the computation may be restarted modulo d or N/d.

For noninvertible t_POLMOD x, the behavior is the same:

? Mod(x"2, x°3-x)"(-1)
*** at top-level: Mod(x"2,x"3-x)"(-1)
kkk T
%% _~_: impossible inverse in RgXQ_inv: Mod(x"2, x"3 - x).

135

Note that the underlying algorihm (subresultant) assumes that the base ring is a domain:

7 a = Mod(3*y~3+1, 4); b = y 6+y~5+y 4+y~3+y~2+y+1; c = Mod(a,b);
? ¢~ (-1)

xxx at top-level: Mod(a,b)”(-1)

ok ok T

xx* _~_: impossible inverse modulo: Mod(2, 4).

In fact ¢ is invertible, but Z/4Z is not a domain and the algorithm fails. It is possible for the
algorithm to succeed in such situations and any returned result will be correct, but chances are
that an error will occur first. In this specific case, one should work with 2-adics. In general, one
can also try the following approach

? inversemod(a, b) =
{ my(m, v = variable(b));
m = polsylvestermatrix(polrecip(a), polrecip(b));
m = matinverseimage(m, matid(#m)[,1]);
Polrev(m[1l..poldegree(b)], v);
}
? inversemod(a,b)
%2 = Mod(2,4)*y"5 + Mod(3,4)*y"3 + Mod(1,4)*y"2 + Mod(3,4)*y + Mod(2,4)

This is not guaranteed to work either since matinverseimage must also invert pivots. See Sec-
tion 3.10.

For a t_MAT x, the matrix is expected to be square and invertible, except in the special case
x~(-1) which returns a left inverse if one exists (rectangular = with full column rank).

? x = Mat([1;2])
%1 =

[1]

[2]

? x~(-1)

%2 =

[1 0]

e Finally, if the exponent n is not an rational number, powering is treated as the transcendental
function exp(nlogz), although it will be more precise than the latter when n and x are exact:

?7s=1/2 + 10714 % I

? localprec(200); z = 2°s \\ for reference
7 exponent(2°s - z)

%»3 = -127 \\ perfect

7 exponent(exp(s * log(2)) - z)

%4 = -84 \\ not so good

The second computation is less precise because log(2) is first computed to 38 decimal digits, then
multiplied by s, which has a huge imaginary part amplifying the error.

In this case, x — z" is treated as a transcendental function and and in particular acts com-
ponentwise on vector or matrices, even square matrices ! (See Section 3.11.) If z is 0 and n is an
inexact 0, this will raise an exception:

74" 1.0

136

%1 = 4.0000000000000000000000000000000000000

? 0" 0.0

% at top-level: 070.0

Kok ok e

x%*x _~_: domain error in gpow(O,n): n <= 0

The library syntax is GEN gpow(GEN x, GEN n, long prec) for x"n.

3.5.16 cmp(x,y). Gives the result of a comparison between arbitrary objects x and y (as —1, 0
or 1). The underlying order relation is transitive, the function returns 0 if and only if z === y. It
has no mathematical meaning but satisfies the following properties when comparing entries of the
same type:

e two t_INTs compare as usual (i.e. cmp(z,y) < 0 if and only if z < y);
e two t_VECSMALLs of the same length compare lexicographically;
e two t_STRs compare lexicographically.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

7 cmp(l, 2)

%1 = -1

? cmp(2, 1)

%2 =1

7 cmp(1, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1

? cmp(x + Pi, [1)

%4 = -1

This function is mostly useful to handle sorted lists or vectors of arbitrary objects. For instance, if
v is a vector, the construction vecsort (v, cmp) is equivalent to Set(v).

The library syntax is GEN cmp_universal(GEN x, GEN y).
3.5.17 divrem(z,y,{v}). Creates a column vector with two components, the first being the
Euclidean quotient (z \ y), the second the Euclidean remainder (z - (x\y)*y), of the division of

x by y. This avoids the need to do two divisions if one needs both the quotient and the remainder.
If v is present, and z, y are multivariate polynomials, divide with respect to the variable v.

Beware that divrem(x,y) [2] is in general not the same as x % y; no GP operator corresponds
to it:

? divrem(1/2, 3)[2]

%= 1/2
? (1/2) % 3
w2 =2

? divrem(Mod(2,9), 3)[2]
ok ok at top-level: divrem(Mod(2,9),3)[2
*okok N
%k k forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6

137

%3 = Mod(2,3)

The library syntax is GEN divrem(GEN x, GEN y, long v = -1) where v is a variable number.
Also available is GEN gdiventres(GEN x, GEN y) when v is not needed.

3.5.18 lex(x,y). Gives the result of a lexicographic comparison between x and y (as —1, 0 or 1).
This is to be interpreted in quite a wide sense: it is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well as vectors/matrices of
different lengths; finally, when comparing two scalars, a complex number a + I x b is interpreted as
a vector [a,b] and a real number a as [a,0]. The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

? lex([1,3], [1,2,5])

%1 =1

? lex([1,3], [1,3,-11)
%2 = -1

7 lex([1], [[11D)
%3 = -1

7 lex([1], [11~)
%4 =0

? lex(2 - I, 1)
%5 =1

? lex(2 - I, 2)
%6 = 2

The library syntax is GEN lexcmp(GEN x, GEN y).

3.5.19 max(z,y). Creates the maximum of x and y when they can be compared.

The library syntax is GEN gmax(GEN x, GEN y).

3.5.20 min(z,y). Creates the minimum of x and y when they can be compared.

The library syntax is GEN gmin(GEN x, GEN y).
3.5.21 shift(x,n). Shifts z componentwise left by n bits if n > 0 and right by |n| bits if n < 0.
May be abbreviated as z << n or >> (—n). A left shift by n corresponds to multiplication by 2.

A right shift of an integer z by |n| corresponds to a Euclidean division of = by 2" with a remainder
of the same sign as z, hence is not the same (in general) as x\2".

The library syntax is GEN gshift(GEN x, long n).
3.5.22 shiftmul(z, n). Multiplies x by 2. The difference with shift is that when n < 0, ordinary

division takes place, hence for example if x is an integer the result may be a fraction, while for
shifts Euclidean division takes place when n < 0 hence if z is an integer the result is still an integer.

The library syntax is GEN gmul2n(GEN x, long n).

138

3.5.23 sign(x). sign (0, 1 or —1) of , which must be of type integer, real or fraction; t_QUAD with
positive discriminants and t_INFINITY are also supported.

The library syntax is GEN gsigne (GEN x).
3.5.24 vecmax(z, {&v}). If x is a vector or a matrix, returns the largest entry of z, otherwise
returns a copy of x. Error if z is empty.

If v is given, set it to the index of a largest entry (indirect maximum), when x is a vector. If
x is a matrix, set v to coordinates [i, j] such that x[i, j| is a largest entry. This flag is ignored if z
is not a vector or matrix.

? vecmax([10, 20, -30, 40])

%1 = 40

? vecmax([10, 20, -30, 40], &v); v
%2 = 4

? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]

The library syntax is GEN vecmaxO(GEN x, GEN *v = NULL). When v is not needed, the
function GEN vecmax(GEN x) is also available.

3.5.25 vecmin(z, {&v}). If x is a vector or a matrix, returns the smallest entry of x, otherwise
returns a copy of x. Error if z is empty.

If v is given, set it to the index of a smallest entry (indirect minimum), when x is a vector. If
x is a matrix, set v to coordinates [i, j] such that x[i, j] is a smallest entry. This is ignored if x is
not a vector or matrix.

? vecmin([10, 20, -30, 40])

%1 = -30

? vecmin([10, 20, -30, 40], &v); v
%2 =3

? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]

The library syntax is GEN vecminO(GEN x, GEN *v = NULL). When v is not needed, the
function GEN vecmin(GEN x) is also available.

3.6 Conversions and similar elementary functions or commands.

Many of the conversion functions are rounding or truncating operations. In this case, if the argu-
ment is a rational function, the result is the Euclidean quotient of the numerator by the denomi-
nator, and if the argument is a vector or a matrix, the operation is done componentwise. This will
not be restated for every function.

139

3.6.1 Col(x,{n}). Transforms the object = into a column vector. The dimension of the resulting
vector can be optionally specified via the extra parameter n.

If n is omitted or 0, the dimension depends on the type of x; the vector has a single component,
except when z is

e a vector or a quadratic form (in which case the resulting vector is simply the initial object
considered as a row vector),

e a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start
with the leading coefficient of the polynomial, while for power series only the significant coefficients
are taken into account, but this time by increasing order of degree. In this last case, Vec is the
reciprocal function of Pol and Ser respectively,

e a matrix (the column of row vector comprising the matrix is returned),
e a character string (a vector of individual characters is returned).

In the last two cases (matrix and character string), n is meaningless and must be omitted or
an error is raised. Otherwise, if n is given, 0 entries are appended at the end of the vector if n > 0,
and prepended at the beginning if n < 0. The dimension of the resulting vector is |n|.

See ??Vec for examples.

The library syntax is GEN gtocolO(GEN x, long n). GEN gtocol(GEN x) is also available.

3.6.2 Colrev(z,{n}). AsCol(z, —n), then reverse the result. In particular, Colrev is the reciprocal
function of Polrev: the coefficients of the vector start with the constant coefficient of the polynomial
and the others follow by increasing degree.

The library syntax is GEN gtocolrevO(GEN x, 1long n). GEN gtocolrev(GEN x) is also
available.

3.6.3 List({z = []}). Transforms a (row or column) vector x into a list, whose components are
the entries of x. Similarly for a list, but rather useless in this case. For other types, creates a list
with the single element x.

The library syntax is GEN gtolist(GEN x = NULL). The variant GEN mklist(void) creates
an empty list.

3.6.4 Map({z}). A “Map” is an associative array, or dictionary: a data type composed of a
collection of (key, value) pairs, such that each key appears just once in the collection. This function
converts the matrix [ay, by; az,ba;. .. ;an, by] to the map a; — b;.

? M = Map(factor(13!));

? mapget (M, 3)

%2 =5

? P = Map(matreduce(primes([1,20])))

%3 = Map([2,1;3,1;5,1;7,1;11,1;13,1;17,1;19,1]1)
? select(i->mapisdefined(P,i), [1..20])

%4 = [2, 3, 5, 7, 11, 13, 17, 19]

If the argument x is omitted, creates an empty map, which may be filled later via mapput.

The library syntax is GEN gtomap(GEN x = NULL).

140

3.6.5 Mat({z = []|}). Transforms the object into a matrix. If z is already a matrix, a copy of
x is created. If x is a row (resp. column) vector, this creates a 1-row (resp. l-column) matrix,
unless all elements are column (resp. row) vectors of the same length, in which case the vectors are
concatenated sideways and the attached big matrix is returned. If x is a binary quadratic form,
creates the attached 2 x 2 matrix. Otherwise, this creates a 1 x 1 matrix containing .

? Mat(x + 1)

%1 =

[x + 1]

? Vec(matid(3))

%2 = [[1, 0, O]~, [0, 1, O]~, [O, O, 1]~]
? Mat (%)

%3 =

[1 0 0]

[0 1 0]

[0 0 1]

? Col([1,2; 3,4])

%4 = [[1, 21, [3, 411~
? Mat (%)

%5 =

[1 2]

[3 4]
? Mat(Qfb(1,2,3))
e =
[1 1]

[1 3]
The library syntax is GEN gtomat (GEN x = NULL).

3.6.6 Mod(a,b). In its basic form, create an intmod or a polmod (a mod b); b must be an integer
or a polynomial. We then obtain a t_INTMOD and a t_POLMOD respectively:

? t = Mod(2,17); t°8

%1 = Mod(1, 17)

? t = Mod(x,x"2+1); t~2
%2 = Mod(-1, x"2+1)

If a%b makes sense and yields a result of the appropriate type (t_INT or scalar/t_POL), the operation
succeeds as well:

? Mod(1/2, 5)

%3 = Mod(3, 5)

? Mod(7 + 0(376), 3)

%4 = Mod(1, 3)

? Mod(Mod(1,12), 9)

%5 = Mod(1, 3)

? Mod(1/x, x"2+1)

%6 = Mod(-x, x"2+1)

? Mod(exp(x), x74)

%7 = Mod(1/6*x"3 + 1/2*x"2 + x + 1, x74)

141

If a is a complex object, “base change” it to Z/bZ or K|[z]/(b), which is equivalent to, but
faster than, multiplying it by Mod(1,b):

? Mod([1,2;3,4], 2)
%8 =
[Mod(1, 2) Mod(0, 2)]

[Mod (1, 2) Mod(0, 2)]

? Mod(3*x+5, 2)

%9 = Mod(1, 2)*x + Mod(1, 2)

7 Mod(x"2 + y*x + y~3, y~2+1)

%10 = Mod(1, y~2 + 1)*x"2 + Mod(y, y~2 + 1)*x + Mod(-y, y~2 + 1)

This function is not the same as x % y, the result of which has no knowledge of the intended
modulus y. Compare

?7x=49%5; x+1
%11 =5

? x = Mod(4,5); x + 1
%12 = Mod(0,5)

Note that such “modular” objects can be lifted via 1ift or centerlift. The modulus of a
t_INTMOD or t_POLMOD z can be recovered via z.mod.

The library syntax is GEN gmodulo(GEN a, GEN b).

3.6.7 Pol(t,{v =" x}). Transforms the object ¢ into a polynomial with main variable v. If ¢ is
a scalar, this gives a constant polynomial. If ¢ is a power series with nonnegative valuation or
a rational function, the effect is similar to truncate, i.e. we chop off the O(X*) or compute the
Euclidean quotient of the numerator by the denominator, then change the main variable of the
result to v.

The main use of this function is when ¢ is a vector: it creates the polynomial whose coefficients
are given by ¢, with ¢[1] being the leading coefficient (which can be zero). It is much faster to
evaluate Pol on a vector of coefficients in this way, than the corresponding formal expression
an X™+ ...+ ag, which is evaluated naively exactly as written (linear versus quadratic time in n).
Polrev can be used if one wants x[1] to be the constant coefficient:

? Pol([1,2,3D)

%1 = x"2 + 2%xx + 3

? Polrev([1,2,3])

%2 = 3%x"2 + 2%x + 1

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

? Vec(Pol([1,2,3]))

%1 = [1, 2, 3]

? Vecrev(Polrev([1,2,3]))
%2 = [1, 2, 3]

142

Warning. This is not a substitution function. It will not transform an object containing variables
of higher priority than v.

7?7 Pol(x +y, y)
xk at top-level: Pol(x+y,y)
*okok e
**%*x Pol: variable must have higher priority in gtopoly.

The library syntax is GEN gtopoly(GEN t, long v = -1) where v is a variable number.

3.6.8 Polrev(t,{v =" z}). Transform the object ¢ into a polynomial with main variable v. If ¢ is a
scalar, this gives a constant polynomial. If ¢ is a power series, the effect is identical to truncate,
i.e. it chops off the O(X¥).

The main use of this function is when ¢ is a vector: it creates the polynomial whose coeflicients
are given by ¢, with ¢[1] being the constant term. Pol can be used if one wants ¢[1] to be the leading
coefficient:

? Polrev([1,2,3])

%1 = 3%x"2 + 2%xx + 1
? Pol([1,2,3])

%2 = x"2 + 2*x + 3

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

The library syntax is GEN gtopolyrev(GEN t, long v = -1) where v is a variable number.

3.6.9 Qfb(a, {b},{c}). Creates the binary quadratic form az?+ bry + cy®. Negative definite forms
are not implemented, use their positive definite counterpart instead. The syntax Qfb([a,b,c]) is also
accepted.

The library syntax is GEN QfbO(GEN a, GEN b = NULL, GEN c = NULL).

3.6.10 Ser(s,{v =" x},{d = seriesprecision}). Transforms the object s into a power series with
main variable v (z by default) and precision (number of significant terms) equal to d > 0 (d =
seriesprecision by default). If s is a scalar, this gives a constant power series in v with precision
d. If s is a polynomial, the polynomial is truncated to d terms if needed

7 \ps
seriesprecision = 16 significant terms
7 Ser(1) \\ 16 terms by default
1 =1+ 0(x"16)
? Ser(1, ’y, 5)
%2 =1+ 0(y"5)
? Ser(x"2,, 5)
%3 = x"2 + 0(x"7)
? T = polcyclo(100)
%4 = x740 - x730 + x720 - x710 + 1
? Ser(T, ’x, 11)
%5 =1 - x710 + 0(x"11)

The function is more or less equivalent with multiplication by 14 O(v?) in theses cases, only faster.

143

For the remaining types, vectors and power series, we first explain what occurs if d is omitted.
In this case, the function uses exactly the amount of information given in the input:

e If s is already a power series in v, we return it verbatim;

e If s is a vector, the coefficients of the vector are understood to be the coefficients of the
power series starting from the constant term (as in Polrev(z)); in other words we convert t_VEC /
t_COL to the power series whose significant terms are exactly given by the vector entries.

On the other hand, if d is explicitly given, we abide by its value and return a series, truncated
or extended with zeros as needed, with d significant terms.

?v=1[1,2,3];

? Ser(v, t) \\ 3 terms: seriesprecision is ignored!
BT = 1 + 2%t + 3xt"2 + 0(£°3)

? Ser(v, t, 7) \\ 7 terms as explicitly requested
%8 =1+ 2%t + 3%t72 + 0(t77)

? s = 1+x+0(x"2);

? Ser(s)

%10 =1 + x + 0(x"2) \\ 2 terms: seriesprecision is ignored
? Ser(s, x, 7) \\ extend to 7 terms

%11 =1+ x + 0(x"7)

? Ser(s, x, 1) \\ truncate to 1 term

%12 =1 + 0(x)

The warning given for Pol also applies here: this is not a substitution function.

The library syntax is GEN SerO(GEN s, long v = -1, GEN d = NULL, long precdl) where
v is a variable number.

3.6.11 Set({z = []}). Converts z into a set, i.e. into a row vector, with strictly increasing entries
with respect to the (somewhat arbitrary) universal comparison function cmp. Standard container
types t_VEC, t_COL, t_LIST and t_VECSMALL are converted to the set with corresponding elements.
All others are converted to a set with one element.

? Set([1,2,4,2,1,3])

%= [1, 2, 3, 4]

? Set(x)

%2 = [x]

? Set(Vecsmall([1,3,2,1,3]))
%3 = [1, 2, 3]

The library syntax is GEN gtoset(GEN x = NULL).
3.6.12 Str({z}x*). Converts its argument list into a single character string (type t_STR, the empty

string if = is omitted). To recover an ordinary GEN from a string, apply eval to it. The arguments
of Str are evaluated in string context, see Section 2.9.

?x2=0; i=2; Str(x, i)

Y1 = "xon
? eval(%)
%2 =0

This function is mostly useless in library mode. Use the pair strtoGEN/GENtostr to convert
between GEN and char*. The latter returns a malloced string, which should be freed after usage.

144

3.6.13 Vec(z,{n}). Transforms the object z into a row vector. The dimension of the resulting
vector can be optionally specified via the extra parameter n. If n is omitted or 0, the dimension
depends on the type of x; the vector has a single component, except when x is

e a vector or a quadratic form: returns the initial object considered as a row vector,

e a polynomial or a power series: returns a vector consisting of the coefficients. In the case of a
polynomial, the coefficients of the vector start with the leading coefficient of the polynomial, while
for power series only the significant coefficients are taken into account, but this time by increasing
order of degree. In particular the valuation is ignored (which makes the function useful for series
of negative valuation):

? Vec(3*x"2 + x)

%1 = [3, 1, 0]

? Vec(x"2 + 3*x~3 + 0(x°5))
%2 = [1, 3, 0]

? Vec(x™-2 + 3*x"-1 + 0(x))
%3 = [1, 3, 0]

Vec is the reciprocal function of Pol for a polynomial and of Ser for power series of valuation 0.
e a matrix: returns the vector of columns comprising the matrix,

?m= [1,2,3;4,5,6]
%4
[1 2 3]

[4 5 6]
? Vec(m)
%5 = [[1, 4]1~, [2, 5]~, [3, 6]~]

e a character string: returns the vector of individual characters,

? Vec("PARI")
%6 = [IIP"’ ||All’ "Rll, llI"]

e a map: returns the vector of the domain of the map,
e an error context (t_ERROR): returns the error components, see iferr.

In the last four cases (matrix, character string, map, error), n is meaningless and must be
omitted or an error is raised. Otherwise, if n is given, 0 entries are appended at the end of the
vector if n > 0, and prepended at the beginning if n < 0. The dimension of the resulting vector is
|n|. This allows to write a conversion function for series that takes positive valuations into account:

? serVec(s) = Vec(s, -serprec(s,variable(s)));
? Vec(x"2 + 3%x~3 + 0(x"5))
%2 = [0, 0, 1, 3, 0]

(That function is not intended for series of negative valuation.)

The library syntax is GEN gtovecO(GEN x, long n). GEN gtovec(GEN x) is also available.

145

3.6.14 Vecrev(z,{n}). As Vec(z,—n), then reverse the result. In particular, Vecrev is the
reciprocal function of Polrev: the coefficients of the vector start with the constant coefficient of
the polynomial and the others follow by increasing degree.

The library syntax is GEN gtovecrevO(GEN x, long n). GEN gtovecrev(GEN x) is also
available.

3.6.15 Vecsmall(z, {n}). Transforms the object z into a row vector of type t_VECSMALL. The
dimension of the resulting vector can be optionally specified via the extra parameter n.

This acts as Vec(x,n), but only on a limited set of objects: the result must be representable
as a vector of small integers. If = is a character string, a vector of individual characters in ASCII
encoding is returned (strchr yields back the character string).

The library syntax is GEN gtovecsmallO(GEN x, long n). GEN gtovecsmall(GEN x) is also
available.

3.6.16 binary(z). Outputs the vector of the binary digits of |z|. Here x can be an integer, a
real number (in which case the result has two components, one for the integer part, one for the
fractional part) or a vector/matrix.

? binary(10)
w1 =1[1, 0, 1, 0]

7 binary(3.14)
%2 = [[1, 11, [0, O, 1, O, O, O, [...]]

? binary([1,2])
»3 = [[1], [1, 0]]

For integer = > 1, the number of bits is logint(z,2) + 1. By convention, 0 has no digits:

7 binary(0)
W = [1

The library syntax is GEN binaire(GEN x).

3.6.17 bitand(x,y). Bitwise and of two integers x and y, that is the integer

Z(fm and y;)2°

%

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand(x,, y,), where
x, and y, are nonnegative integers tending to z and y respectively. (The result is an ordinary
integer, possibly negative.)

? bitand(5, 3)

%1 =1
? bitand (-5, 3)
%2 =3
? bitand(-5, -3)
%3 = -7

The library syntax is GEN gbitand(GEN x, GEN y). Also available is GEN ibitand(GEN x,
GEN y), which returns the bitwise and of |z| and |y|, two integers.

146

3.6.18 bitneg(z, {n = —1}). bitwise negation of an integer z, truncated to n bits, n > 0, that is
the integer

The special case n = —1 means no truncation: an infinite sequence of leading 1 is then represented
as a negative number.

See Section 3.6.17 for the behavior for negative arguments.
The library syntax is GEN gbitneg(GEN x, long n).

3.6.19 bitnegimply(z,y). Bitwise negated imply of two integers = and y (or not (x = y)), that
is the integer

Z(xl andnot (y;))2"

See Section 3.6.17 for the behavior for negative arguments.
The library syntax is GEN gbitnegimply(GEN x, GEN y). Also available is GEN ibitnegim-
ply(GEN x, GEN y), which returns the bitwise negated imply of |z| and |y|, two integers.

3.6.20 bitor(z,y). bitwise (inclusive) or of two integers = and y, that is the integer
Z(azi or y;)2'

See Section 3.6.17 for the behavior for negative arguments.
The library syntax is GEN gbitor (GEN x, GEN y). Also available is GEN ibitor(GEN x, GEN

y), which returns the bitwise or of |z| and |y|, two integers.

3.6.21 bitprecision(x,{n}). The function behaves differently according to whether n is present
or not. If n is missing, the function returns the (floating point) precision in bits of the PARI object
x.

If x is an exact object, the function returns +oo.

7 bitprecision(exp(1e-100))

%1 = 512 \\ 512 bits

? bitprecision([exp(le-100), 0.5])

%2 = 128 \\ minimal accuracy among components
? bitprecision(2 + x)

%3 = +oo0 \\ exact object

Use getlocalbitprec() to retrieve the working bit precision (as modified by possible localbit-
prec statements).

If n is present and positive, the function creates a new object equal to x with the new bit-
precision roughly n. In fact, the smallest multiple of 64 (resp. 32 on a 32-bit machine) larger than
or equal to n.

For x a vector or a matrix, the operation is done componentwise; for series and polynomials,
the operation is done coefficientwise. For real x, n is the number of desired significant bits. If n

147

is smaller than the precision of x, = is truncated, otherwise x is extended with zeros. For exact or
non-floating-point types, no change.

7 bitprecision(Pi, 10) \\ actually 64 bits ~ 19 decimal digits
%1 = 3.141592653589793239

7 bitprecision(1l, 10)

%2 =1

7 bitprecision(l + 0(x), 10)

%3 =1+ 0(x)

? bitprecision(2 + 0(375), 10)

%4 = 2 + 0(3°5)

The library syntax is GEN bitprecisionOO0(GEN x, GEN n = NULL).

3.6.22 bittest(z,n). Outputs the n'® bit of x starting from the right (i.e. the coefficient of 2" in
the binary expansion of x). The result is 0 or 1. For x > 1, the highest 1-bit is at n = logint(z)
(and bigger n gives 0).

? bittest(7, 0)
%1 =1 \\ the bit 0 is 1
? bittest(7, 2)
%2 =1 \\ the bit 2 is 1
? bittest(7, 3)
%3 = 0 \\ the bit 3 is O

See Section 3.6.17 for the behavior at negative arguments.

The library syntax is GEN gbittest(GEN x, long n). For a t_INT z, the variant long
bittest(GEN x, long n) is generally easier to use, and if furthermore n > 0 the low-level function
ulong int_bit(GEN x, long n) returns bittest(abs(x),n).

3.6.23 bitxor(z,y). Bitwise (exclusive) or of two integers x and y, that is the integer
S0 xor 312

See Section 3.6.17 for the behavior for negative arguments.
The library syntax is GEN gbitxor (GEN x, GEN y). Also available is GEN ibitxor(GEN x,

GEN y), which returns the bitwise zor of |z| and |y|, two integers.

3.6.24 ceil(z). Ceiling of x. When z is in R, the result is the smallest integer greater than or equal
to z. Applied to a rational function, ceil(x) returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is GEN gceil(GEN x).

148

3.6.25 centerlift(x, {v}). Same as 1ift, except that t_INTMOD and t_PADIC components are lifted
using centered residues:

o for a t_INTMOD x € Z/nZ, the lift y is such that —n/2 <y < n/2.

e a t_PADIC z is lifted in the same way as above (modulo pPadicPrec(®)) if its valuation v is
nonnegative; if not, returns the fraction p” centerlift(zp~"); in particular, rational reconstruction
is not attempted. Use bestappr for this.

For backward compatibility, centerlift(x,’v) is allowed as an alias for 1ift(x,’v).

The library syntax is centerlift(GEN x).

3.6.26 characteristic(z). Returns the characteristic of the base ring over which z is defined (as
defined by t_INTMOD and t_FFELT components). The function raises an exception if incompatible
primes arise from t_FFELT and t_PADIC components.

? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%l =6

The library syntax is GEN characteristic(GEN x).

3.6.27 component(z,n). Extracts the n''-component of . This is to be understood as follows:
every PARI type has one or two initial code words. The components are counted, starting at 1,
after these code words. In particular if = is a vector, this is indeed the n*-component of z, if
is a matrix, the n'" column, if x is a polynomial, the n'" coefficient (i.e. of degree n — 1), and for
power series, the n'" significant coefficient.

For polynomials and power series, one should rather use polcoef, and for vectors and matrices,
the [] operator. Namely, if x is a vector, then x[n] represents the n'" component of z. If z is a
matrix, x[m,n] represents the coefficient of row m and column n of the matrix, x[m,] represents
the m*™ row of x, and x[,n] represents the n'* column of z.

Using of this function requires detailed knowledge of the structure of the different PARI types,
and thus it should almost never be used directly. Some useful exceptions:

7 x =3+ 0(375);

? component (x, 2)

%2 = 81 \\ p~(p-adic accuracy)
? component(x, 1)

%3 =3 \\ p

7 q = Qfb(1,2,3);

? component(q, 1)

W =1

The library syntax is GEN compo(GEN x, long n).

3.6.28 conj(x). Conjugate of x. The meaning of this is clear, except that for real quadratic
numbers, it means conjugation in the real quadratic field. This function has no effect on integers,
reals, intmods, fractions or p-adics. The only forbidden type is polmod (see conjvec for this).

The library syntax is GEN gconj (GEN x).

149

3.6.29 conjvec(z). Conjugate vector representation of z. If z is a polmod, equal to Mod(a,T'), this
gives a vector of length degree(T") containing:

e the complex embeddings of z if 7T has rational coefficients, i.e. the a(r[i]) where r =
polroots(T);

e the conjugates of z if T has some intmod coefficients;

if z is a finite field element, the result is the vector of conjugates [z, 27, zp2, e zpnfl] where n =
degree(T).

If z is an integer or a rational number, the result is z. If z is a (row or column) vector, the result
is a matrix whose columns are the conjugate vectors of the individual elements of z.

The library syntax is GEN conjvec(GEN z, long prec).
3.6.30 denominator(f, {D}). Denominator of f. The meaning of this is clear when f is a rational

number or function. If f is an integer or a polynomial, it is treated as a rational number or function,
respectively, and the result is equal to 1. For polynomials, you probably want to use

denominator(content(f))

instead. As for modular objects, t _INTMOD and t_PADIC have denominator 1, and the denominator
of a t_POLMOD is the denominator of its lift.

If f is a recursive structure, for instance a vector or matrix, the lem of the denominators of its
components (a common denominator) is computed. This also applies for t _COMPLEXs and t_QUADs.

Warning. Multivariate objects are created according to variable priorities, with possibly surprising
side effects (x/y is a polynomial, but y/x is a rational function). See Section 2.5.3.
The optional argument D allows to control over which ring we compute the denominator and

get a more predictable behaviour:

e 1: we only consider the underlying Q-structure and the denominator is a (positive) rational
integer

e a simple variable, say ’x: all entries as rational functions in K (z) and the denominator is a
polynomial in .

?7f=x+1/y + 1/2;
? denominator(f) \\ a t_POL in x

%2 =1

? denominator(f, 1) \\ Q-denominator

%3 = 2

? denominator(f, x) \\ as a t_POL in x, seen above
W =1

? denominator(f, y) \\ as a rational function in y
W5 = 2%y

The library syntax is GEN denominator(GEN f, GEN D = NULL). Also available are GEN
denom(GEN x) which implements the not very useful default behaviour (D is NULL) and GEN
Q_denom(GEN x) (D =1).

150

3.6.31 digits(z, {b}). Outputs the vector of the digits of |z| in base b, where = and b are integers
(b = 10 by default), from most significant down to least significant. For > 1, the number of digits
is logint(z,b) + 1. See fromdigits for the reverse operation.

We also allow = an integral p-adic in which case b should be omitted or equal to p. Digits are
still ordered from most significant to least significant in the p-adic sense (meaning we start from x
mod p); trailing zeros are truncated.

? digits(1230)

»o=1[1, 2, 3, 0]

7 digits(10, 2) \\ base 2
h2 = [1, 0, 1, 0]

By convention, 0 has no digits:

? digits(0)

%3 = [1]

? 1105 + 0(5°5)

%4 =5 + 4%5°2 + 3*%5°3 + 0(575)
? digits (%)

%5 = [0, 1, 4, 3]

The library syntax is GEN digits(GEN x, GEN b = NULL).
3.6.32 exponent(z). When z is a t_REAL, the result is the binary exponent e of x. For a nonzero
x, this is the unique integer e such that 2¢ < |z| < 2°*1. For a real 0, this returns the PARI

exponent e attached to x (which may represent any floating-point number less than 2¢ in absolute
value).

7 exponent (Pi)

=1

7 exponent (4.0)

w2 = 2

7 exponent (0.0)

%3 = -128

? default(realbitprecision)
%4 = 128

This definition extends naturally to nonzero integers, and the exponent of an exact 0 is —oo by
convention.

For convenience, we define the exponent of a t_FRAC a/b as the difference of exponent(a) and
exponent(b); note that, if ¢’ denotes the exponent of a/b * 1.0, then the exponent e we return is
either €’ or ¢’ + 1, thus 2°*! is an upper bound for |a/b|.

? [exponent(9), exponent(10), exponent(9/10), exponent(9/10%1.)]
%5 = [3a 3’ O, _1]

For a PARI object of type t_COMPLEX, t_POL, t_SER, t_VEC, t_COL, t_MAT this returns the
largest exponent found among the components of . Hence 2¢*! is a quick upper bound for the
sup norm of real matrices or polynomials; and 2¢1(3/2) for complex ones.

7 exponent (3*xx~2 + 15%x - 100)
%5 =6

151

? exponent (0)
%6 = -oo

The library syntax is GEN gpexponent (GEN x).

3.6.33 floor(x). Floor of x. When z is in R, the result is the largest integer smaller than or equal
to z. Applied to a rational function, floor(z) returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is GEN gfloor (GEN x).

3.6.34 frac(z). Fractional part of z. Identical to z — floor(z). If x is real, the result is in [0, 1[.

The library syntax is GEN gfrac(GEN x).

3.6.35 fromdigits(z, {b = 10}). Gives the integer formed by the elements of x seen as the digits
of a number in base b (b = 10 by default). This is the reverse of digits:

? digits(1234,5)

%1 = [1,4,4,1,4]

? fromdigits([1,4,4,1,4],5)
%2 = 1234

By convention, 0 has no digits:

? fromdigits([])
%3 =0

The library syntax is GEN fromdigits(GEN x, GEN b = NULL).

3.6.36 imag(x). Imaginary part of x. When z is a quadratic number, this is the coefficient of w
in the “canonical” integral basis (1,w).

? imag(3 + I)

%=1

7?7 x = 3 + quadgen(-23);

? imag(x) \\ as a quadratic number

%3 =1

7 imag(x * 1.) \\ as a complex number

%4 = 2.3979157616563597707987190320813469600

The library syntax is GEN gimag(GEN x).

152

3.6.37 length(x). Length of x; #x is a shortcut for length(x). This is mostly useful for
e vectors: dimension (0 for empty vectors),
e lists: number of entries (0 for empty lists),
e maps: number of entries (0 for empty maps),
e matrices: number of columns,

e character strings: number of actual characters (without trailing \0, should you expect it
from C' charx).

7?7 #"a string"

%1 =8

? #[3,2,1]

%2 =3

? #[]

%3 =0

? #matrix(2,5)

%4 =5

? L = List([1,2,3,4]); #L
%5 = 4

? M = Map([a,b; c,d; e,f]); #M
%6 = 3

The routine is in fact defined for arbitrary GP types, but is awkward and useless in other
cases: it returns the number of non-code words in z, e.g. the effective length minus 2 for integers
since the t_INT type has two code words.

The library syntax is long glength(GEN x).

3.6.38 lift(z,{v}). If v is omitted, lifts intmods from Z/nZ in Z, p-adics from Q, to Q (as
truncate), and polmods to polynomials. Otherwise, lifts only polmods whose modulus has main
variable v. t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors
first, or use apply(1ift,L). More generally, components for which such lifts are meaningless (e.g.
character strings) are copied verbatim.

7 1lift(Mod(5,3))

%1 =2

7 1ift(3 + 0(379))
%2 = 3

? 1ift (Mod(x,x"2+1))
%3 = x

? 1ift (Mod(x,x"2+1))
% = x

Lifts are performed recursively on an object components, but only by one level: once a
t_POLMOD is lifted, the components of the result are not lifted further.

? 1lift(x * Mod(1,3) + Mod(2,3))

% = x + 2

? lift(x * Mod(y,y”2+1) + Mod(2,3))

%5 = y*x + Mod(2, 3) \\ do you understand this one?

153

? 1lift(x * Mod(y,y~2+1) + Mod(2,3), ’x)

%6 = Mod(y, y™2 + 1)*x + Mod(Mod(2, 3), y~2 + 1)
? 1iftCh, v

%7 = y*x + Mod(2, 3)

To recursively lift all components not only by one level, but as long as possible, use 1liftall. To
lift only t_INTMODs and t_PADICs components, use liftint. To lift only t_POLMODs components,
use liftpol. Finally, centerlift allows to lift t_INTMODs and t_PADICs using centered residues
(lift of smallest absolute value).

The library syntax is GEN 1ift0(GEN x, long v = -1) where v is a variable number. Also
available is GEN 1ift(GEN x) corresponding to 1ift0(x,-1).

3.6.39 liftall(z). Recursively lift all components of x from Z/nZ to Z, from Q,, to Q (as truncate),
and polmods to polynomials. t_FFELT are not lifted, nor are List elements: you may convert the
latter to vectors first, or use apply(liftall,L). More generally, components for which such lifts
are meaningless (e.g. character strings) are copied verbatim.

? liftall(x * (1 + 0(3)) + Mod(2,3))

%1 =x+ 2

7 liftall(x * Mod(y,y~2+1) + Mod(2,3)*Mod(z,z"~2))
%2 = y*x + 2%z

The library syntax is GEN 1iftall(GEN x).

3.6.40 liftint(z). Recursively lift all components of z from Z/nZ to Z and from Q, to Q (as
truncate). t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors
first, or use apply(liftint,L). More generally, components for which such lifts are meaningless
(e.g. character strings) are copied verbatim.

7 liftint(x * (1 + 0(3)) + Mod(2,3))

%1 =x + 2

7 liftint(x * Mod(y,y"2+1) + Mod(2,3)*Mod(z,z"2))
%2 = Mod(y, y°2 + 1)*x + Mod(Mod(2*z, z"2), y~2 + 1)

The library syntax is GEN 1liftint (GEN x).

3.6.41 liftpol(x). Recursively lift all components of x which are polmods to polynomials. t_FFELT
are not lifted, nor are List elements: you may convert the latter to vectors first, or use ap-
ply(liftpol,L). More generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.

7 liftpol(x * (1 + 0(3)) + Mod(2,3))

%l = (1 + 0(3))*x + Mod(2, 3)

? liftpol(x * Mod(y,y 2+1) + Mod(2,3)*Mod(z,z"2))
%2 = y*x + Mod(2, 3)*z

The library syntax is GEN 1iftpol (GEN x).

154

3.6.42 norm(z). Algebraic norm of z, i.e. the product of x with its conjugate (no square roots
are taken), or conjugates for polmods. For vectors and matrices, the norm is taken componentwise
and hence is not the L?-norm (see norm12). Note that the norm of an element of R is its square,
so as to be compatible with the complex norm.

The library syntax is GEN gnorm(GEN x).

3.6.43 numerator(f,{D}). Numerator of f. This is defined as £ * denominator(f,D), see
denominator for details. The optional argument D allows to control over which ring we compute
the denominator:

e 1: we only consider the underlying Q-structure and the denominator is a (positive) rational
integer

e a simple variable, say ’x: all entries as rational functions in K (z) and the denominator is a
polynomial in x.

?7f=x+1/y + 1/2;

? numerator(f) \\ a t_POL in x

%2 = x + ((y + 2)/(2%xy))

? numerator(f, 1) \\ Q-denominator is 2

%3 =x+ ((y + 2)/y)

7 numerator(f, y) \\ as a rational function in y
%5 = 2xy*xx + (y + 2)

The library syntax is GEN numerator(GEN f, GEN D = NULL). Also available are GEN nu-
mer (GEN x) which implements the not very useful default behaviour (D is NULL) and GEN
Q_remove_denom(GEN x, GEN *ptd) (D = 1) and also returns the denominator (coding 1 as
NULL).

3.6.44 oo. Returns an object meaning +oo, for use in functions such as intnum. It can be negated
(-oo represents —oo), and compared to real numbers (t_INT, t_FRAC, t_REAL), with the expected
meaning: 400 is greater than any real number and —oo is smaller.

The library syntax is GEN mkoo ().
3.6.45 padicprec(zx, p). Returns the absolute p-adic precision of the object x; this is the minimum
precision of the components of z. The result is +oo if = is an exact object (as a p-adic):

? padicprec((1 + 0(2°5)) * x + (2 + 0(274)), 2)

%l =4

? padicprec(x + 2, 2)

%2 = +00

? padicprec(2 + x + 0(x"2), 2)
%3 = +oo

The function raises an exception if it encounters an object incompatible with p-adic computations:

? padicprec(0(3), 2)
xxx at top-level: padicprec(0(3),2)
*ok ok e

% padicprec: inconsistent moduli in padicprec: 3 != 2

? padicprec(1.0, 2)

155

*** at top-level: padicprec(1.0,2)
* oKk e

*x** padicprec: incorrect type in padicprec (t_REAL).

The library syntax is GEN gppadicprec(GEN x, GEN p). Also available is the function long
padicprec(GEN x, GEN p), which returns LONG_MAX if z = 0 and the p-adic precision as a long
integer.

3.6.46 precision(z,{n}). The function behaves differently according to whether n is present or
not. If n is missing, the function returns the floating point precision in decimal digits of the PARI
object x. If x has no floating point component, the function returns +oo.

? precision(exp(1e-100))

%1 = 154 \\ 154 significant decimal digits

? precision(2 + x)

%2 = +oo \\ exact object

? precision(0.5 + 0(x))

%3 = 38 \\ floating point accuracy, NOT series precision
? precision([exp(1e-100), 0.5])

%4 = 38 \\ minimal accuracy among components

Using getlocalprec() allows to retrieve the working precision (as modified by possible localprec
statements).

If n is present, the function creates a new object equal to x with a new floating point precision
n: n is the number of desired significant decimal digits. If n is smaller than the precision of a
t_REAL component of x, it is truncated, otherwise it is extended with zeros. For non-floating-point
types, no change.

The library syntax is GEN precisionOO(GEN x, GEN n = NULL). Also available are GEN
gprec(GEN x, 1long n) and long precision(GEN x). In both, the accuracy is expressed in
words (32-bit or 64-bit depending on the architecture).

3.6.47 random({N = 231}). Returns a random element in various natural sets depending on the
argument N.

e t_INT: let n = |N| — 1; if N > 0 returns an integer uniformly distributed in [0,n]; if
N < 0 returns an integer uniformly distributed in [—n,n]. Omitting the argument is equivalent to
random(2°31).

e t_REAL: returns a real number in [0, 1] with the same accuracy as N (whose mantissa has
the same number of significant words).

e t_INTMOD: returns a random intmod for the same modulus.
e t_FFELT: returns a random element in the same finite field.
e t_VEC of length 2, N = [a, b]: returns an integer uniformly distributed between a and b.

e t_VEC generated by ellinit over a finite field k (coefficients are t_INTMODs modulo a prime
or t_FFELTs): returns a “random” k-rational affine point on the curve. More precisely if the curve
has a single point (at infinity!) we return it; otherwise we return an affine point by drawing an
abscissa uniformly at random until ellordinate succeeds. Note that this is definitely not a uniform
distribution over E(k), but it should be good enough for applications.

156

e t_POL return a random polynomial of degree at most the degree of N. The coeflicients are
drawn by applying random to the leading coefficient of V.

? random(10)

%1 =9

? random(Mod(0,7))

%2 = Mod(1, 7)

7 a = ffgen(£ffinit(3,7), ’a); random(a)

%3 = a6 + 2xa”5 + a”4 + a”3 + a"2 + 2*a

? E = ellinit([3,7]*Mod(1,109)); random(E)

%4 = [Mod(103, 109), Mod(10, 109)]

? E = ellinit([1,7]*a"0); random(E)

%5 = [a"6 + a”b + 2%a”4 + 2%a”2, 2*a"6 + 2*%a"4 + 2*¥a”3 + a"2 + 2x*a]
? random(Mod(1,7)*x"~4)

%6 = Mod(5, 7)*x"4 + Mod(6, 7)*x"3 + Mod(2, 7)*x"2 + Mod(2, 7)*x + Mod(5, 7)

These variants all depend on a single internal generator, and are independent from your oper-
ating system’s random number generators. A random seed may be obtained via getrand, and reset
using setrand: from a given seed, and given sequence of randoms, the exact same values will be
generated. The same seed is used at each startup, reseed the generator yourself if this is a problem.
Note that internal functions also call the random number generator; adding such a function call in
the middle of your code will change the numbers produced.

Technical note. Up to version 2.4 included, the internal generator produced pseudo-random
numbers by means of linear congruences, which were not well distributed in arithmetic pro-
gressions. We now use Brent’s XORGEN algorithm, based on Feedback Shift Registers, see
http://wwwmaths.anu.edu.au/ brent/random.html. The generator has period 24996 — 1, passes
the Crush battery of statistical tests of L’Ecuyer and Simard, but is not suitable for cryptographic
purposes: one can reconstruct the state vector from a small sample of consecutive values, thus
predicting the entire sequence.

The library syntax is GEN genrand(GEN N = NULL).
Also available: GEN ellrandom(GEN E) and GEN ffrandom(GEN a).

3.6.48 real(z). Real part of x. When z is a quadratic number, this is the coefficient of 1 in the
“canonical” integral basis (1,w).

? real(3 + I)

%l =3

? x = 3 + quadgen(-23);

? real(x) \\ as a quadratic number

%3 =3

? real(x * 1.) \\ as a complex number

%4 = 3.5000000000000000000000000000000000000

The library syntax is GEN greal (GEN x).
3.6.49 round(zx,{&e}). If z is in R, rounds = to the nearest integer (rounding to +oco in case
of ties), then and sets e to the number of error bits, that is the binary exponent of the difference

between the original and the rounded value (the “fractional part”). If the exponent of x is too large
compared to its precision (i.e. e > 0), the result is undefined and an error occurs if e was not given.

157

Important remark. Contrary to the other truncation functions, this function operates on every
coefficient at every level of a PARI object. For example

2.4% X% - 1.7

t t
runcate < X

>:2.4*X,

whereas

d 24%x X2 -1.7 2% X229
roun =)
ou % %

An important use of round is to get exact results after an approximate computation, when theory
tells you that the coefficients must be integers.

The library syntax is GEN roundO(GEN x, GEN *e = NULL). Also available are GEN grnd-
toi(GEN x, long *e) and GEN ground(GEN x).

3.6.50 serchop(s,{n = 0}). Remove all terms of degree strictly less than n in series s. When the
series contains no terms of degree < n, return O(z").

?7s=1/x + x + 2%x"2 + 0(x"3);
? serchop(s)

%h2 = x + 2%x°3 + 0(x"3)

? serchop(s, 2)

%3 = 2*%x"2 + 0(x"3)

7 serchop(s, 100)

%4 = 0(x"100)

The library syntax is GEN serchop(GEN s, long n).

3.6.51 serprec(z,v). Returns the absolute precision of x with respect to power series in the
variable v; this is the minimum precision of the components of x. The result is +oo if x is an exact
object (as a series in v):

? serprec(x + 0(y~2), y)

%1 =2

? serprec(x + 2, x)

%2 = +oo

? serprec(2 + x + 0(x"2), y)
%3 = +oo0

The library syntax is GEN gpserprec(GEN x, long v) where v is a variable number. Also
available is long serprec(GEN x, GEN p), which returns LONG_MAX if z = 0, otherwise the series
precision as a long integer.

158

3.6.52 simplify(x). This function simplifies as much as it can. Specifically, a complex or
quadratic number whose imaginary part is the integer 0 (i.e. not Mod(0,2) or 0.E-28) is converted
to its real part, and a polynomial of degree 0 is converted to its constant term. Simplifications
occur recursively.

This function is especially useful before using arithmetic functions, which expect integer argu-
ments:

?Tx=2+y -y
=2
? isprime(x)
*** at top-level: isprime(x)
*k%x T
**k* isprime: not an integer argument in an arithmetic function
7 type(x)
%2 = "t_POL"
7 type(simplify(x))
%3 = "t_INT"

Note that GP results are simplified as above before they are stored in the history. (Unless you
disable automatic simplification with \y, that is.) In particular

? type(%1)
%4 = "t _INT"

The library syntax is GEN simplify(GEN x).
3.6.53 sizebyte(z). Outputs the total number of bytes occupied by the tree representing the PARI
object x.

The library syntax is long gsizebyte(GEN x). Also available is long gsizeword(GEN x)
returning a number of words.
3.6.54 sizedigit(x). This function is DEPRECATED, essentially meaningless, and provided for
backwards compatibility only. Don’t use it!

outputs a quick upper bound for the number of decimal digits of (the components of) x, off
by at most 1. More precisely, for a positive integer x, it computes (approximately) the ceiling of

floor(l + log, x) logy, 2,

To count the number of decimal digits of a positive integer x, use #digits(x). To estimate
(recursively) the size of z, use normlp(x).

The library syntax is long sizedigit(GEN x).

159

3.6.55 truncate(z, {&e}). Truncates x and sets e to the number of error bits. When z is in R,
this means that the part after the decimal point is chopped away, e is the binary exponent of the
difference between the original and the truncated value (the “fractional part”). If the exponent of
x is too large compared to its precision (i.e. e > 0), the result is undefined and an error occurs if
e was not given. The function applies componentwise on vector / matrices; e is then the maximal
number of error bits. If x is a rational function, the result is the “integer part” (Euclidean quotient
of numerator by denominator) and e is not set.

Note a very special use of truncate: when applied to a power series, it transforms it into a
polynomial or a rational function with denominator a power of X, by chopping away the O(X*).
Similarly, when applied to a p-adic number, it transforms it into an integer or a rational number
by chopping away the O(p*).

The library syntax is GEN truncO(GEN x, GEN *e = NULL). The following functions are also
available: GEN gtrunc(GEN x) and GEN gcvtoi(GEN x, long *e).

3.6.56 valuation(z, {p}). Computes the highest exponent of p dividing x. If p is of type integer,
x must be an integer, an intmod whose modulus is divisible by p, a fraction, a g-adic number with
q = p, or a polynomial or power series in which case the valuation is the minimum of the valuation
of the coefficients.

If p is of type polynomial, z must be of type polynomial or rational function, and also a power
series if = is a monomial. Finally, the valuation of a vector, complex or quadratic number is the
minimum of the component valuations.

If x = 0, the result is +oo if x is an exact object. If x is a p-adic numbers or power series, the
result is the exponent of the zero. Any other type combinations gives an error.

Finally, p can be omitted if x is a t_PADIC (taken to be the underlying prime), a t_SER or a
t_POL (taken to be the main variable).

The library syntax is GEN gpvaluation(GEN x, GEN p = NULL). Also available is long gval-
uation(GEN x, GEN p), which returns LONG_MAX if x = 0 and the valuation as a long integer.

3.6.57 varhigher(name, {v}). Return a variable name whose priority is higher than the priority
of v (of all existing variables if v is omitted). This is a counterpart to varlower.

? Pol([x,x], t)
*%k at top-level: Pol([x,x],t)
*okok e
**%*x Pol: incorrect priority in gtopoly: variable x <=t
? t = varhigher("t", x);
? Pol([x,x], t)
h3 = x¥t + x

This routine is useful since new GP variables directly created by the interpreter always have lower
priority than existing GP variables. When some basic objects already exist in a variable that is
incompatible with some function requirement, you can now create a new variable with a suitable
priority instead of changing variables in existing objects:

? K = nfinit(x"2+1);
? rnfequation(K,y"2-2)
*kok at top-level: rnfequation(K,y~2-2)

160

kKK T
**x* rnfequation: incorrect priority in rnfequation: variable y >= x
? y = varhigher("y", x);

? rnfequation(K, y~2-2)

h3 =y 4 - 2xy"2 + 9

Caution 1. The name is an arbitrary character string, only used for display purposes and need
not be related to the GP variable holding the result, nor to be a valid variable name. In particular
the name can not be used to retrieve the variable, it is not even present in the parser’s hash tables.

7 x = varhigher ("#");
7?7 x72
h2 = #°2

Caution 2. There are a limited number of variables and if no existing variable with the given
display name has the requested priority, the call to varhigher uses up one such slot. Do not create
new variables in this way unless it’s absolutely necessary, reuse existing names instead and choose
sensible priority requirements: if you only need a variable with higher priority than z, state so
rather than creating a new variable with highest priority.

\\ quickly use up all variables

? n = 0; while(1l,varhigher("tmp"); n++)
**¥x at top-level: n=0;while(l,varhigher("tmp") ;n++)
* kK B
%x varhigher: no more variables available.
**x* Break loop: type ’break’ to go back to GP prompt

break> n

65510

\\ infinite loop: here we reuse the same ’tmp’

7?7 n = 0; while(1l,varhigher("tmp", x); n++)

The library syntax is GEN varhigher (const char *name, long v = -1) where v is a variable
number.
3.6.58 variable({z}). Gives the main variable of the object x (the variable with the highest

priority used in), and p if x is a p-adic number. Return 0 if has no variable attached to it.

7 variable(x"2 + y)

% = x

7 variable(1 + 0(5°2))
%2 =5

7 variable([x,y,z,t])
%3 = x

? variable(1)

%4 =0

The construction
if (!variable(x),...)

can be used to test whether a variable is attached to x.

161

If x is omitted, returns the list of user variables known to the interpreter, by order of decreasing
priority. (Highest priority is initially , which come first until varhigher is used.) If varhigher or
varlower are used, it is quite possible to end up with different variables (with different priorities)
printed in the same way: they will then appear multiple times in the output:

? varhigher("y");
7 varlower("y");
? variable()

% = Ly, x, yl

Using v = variable() then v[1], v[2], etc. allows to recover and use existing variables.

The library syntax is GEN gpolvar(GEN x = NULL). However, in library mode, this function
should not be used for x non-NULL, since gvar is more appropriate. Instead, for z a p-adic (type
t_PADIC), p is gel(x,2); otherwise, use long gvar (GEN x) which returns the variable number of
if it exists, NO_VARIABLE otherwise, which satisfies the property varncmp(NO_VARIABLE,v) > 0 for
all valid variable number v, i.e. it has lower priority than any variable.

3.6.59 variables({z}). Returns the list of all variables occurring in object x (all user variables
known to the interpreter if z is omitted), sorted by decreasing priority.

7 variables([x"2 + y*z + 0(t), atx])
=[x, vy, z, t, al

The construction
if (!'variables(x),...)
can be used to test whether a variable is attached to x.

If varhigher or varlower are used, it is quite possible to end up with different variables (with
different priorities) printed in the same way: they will then appear multiple times in the output:

7 y1 = varhigher("y");
7 y2 = varlower("y");
7 variables(y*yl*y2)
W= ly, vy, vl

The library syntax is GEN variables_vec(GEN x = NULL).

Also available is GEN variables_vecsmall(GEN x) which returns the (sorted) variable num-
bers instead of the attached monomials of degree 1.

3.6.60 varlower(name, {v}). Return a variable name whose priority is lower than the priority of
v (of all existing variables if v is omitted). This is a counterpart to varhigher.

New GP variables directly created by the interpreter always have lower priority than existing
GP wvariables, but it is not easy to check whether an identifier is currently unused, so that the
corresponding variable has the expected priority when it’s created! Thus, depending on the session
history, the same command may fail or succeed:

?7t; z; \\nowt>z

7 rnfequation(t~2+1,z72-t)

*kok at top-level: rnfequation(t~2+1,z"

*okok N

**%x rnfequation: incorrect priority in rnfequation: variable t >=t

162

Restart and retry:

?7z; t; \\ nowz>t
? rnfequation(t”2+1,z"2-t)
%2 =z"4 + 1

It is quite annoying for package authors, when trying to define a base ring, to notice that the
package may fail for some users depending on their session history. The safe way to do this is as
follows:

? z; t; \\ In new session: now z > t

? t = varlower("t", ’z);

7 rnfequation(t~2+1,z72-2)
%h2 = z"4 - 2xz"2 + 9

7 variable()

%3 =[x, y, z, t]

? t; z; \\ In new session: now t > z

7 t = varlower("t", ’z); \\ create a new variable, still printed "t"
? rnfequation(t~2+1,z"2-2)

%2 = z"4 - 2%z"2 + 9

? variable()

%3 =[x, y, t, z, t]

Now both constructions succeed. Note that in the first case, varlower is essentially a no-op,
the existing variable ¢ has correct priority. While in the second case, two different variables are
displayed as t, one with higher priority than z (created in the first line) and another one with lower
priority (created by varlower).

Caution 1. The name is an arbitrary character string, only used for display purposes and need
not be related to the GP variable holding the result, nor to be a valid variable name. In particular
the name can not be used to retrieve the variable, it is not even present in the parser’s hash tables.

? x = varlower ("#");

? x"2
%2 = #°2

163

Caution 2. There are a limited number of variables and if no existing variable with the given
display name has the requested priority, the call to varlower uses up one such slot. Do not create
new variables in this way unless it’s absolutely necessary, reuse existing names instead and choose
sensible priority requirements: if you only need a variable with higher priority than z, state so
rather than creating a new variable with highest priority.

\\ quickly use up all variables
? n = 0; while(l,varlower("x"); n++)
*x** at top-level: n=0;while(1l,varlower ("x") ;n++)
KoKk R
**%* varlower: no more variables available.
**x* Break loop: type ’break’ to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same ’tmp’
7?7 n = 0; while(1,varlower ("tmp", x); n++)

The library syntax is GEN varlower(const char *name, long v = -1) where v is a variable
number.

3.7 Combinatorics.

Permutations are represented in gp as t_VECSMALLs and can be input directly as Vecs-
mall([1,3,2,4]) or obtained from the iterator forperm:

? forperm(3, p, print(p)) \\ iterate through S_3
Vecsmall([1, 2, 3])
Vecsmall([1, 3, 2])
Vecsmall([2, 1, 3])
Vecsmall([2, 3, 11)
Vecsmall([3, 1, 2])
Vecsmall([3, 2, 1])

Permutations can be multiplied via *, raised to some power using ~, inverted using ~(-1), con-
jugated as p * q * p~(-1). Their order and signature is available via permorder and permsign.

3.7.1 bernfrac(n). Bernoulli number B,,, where By = 1, B; = —1/2, B, = 1/6,. .., expressed as
a rational number. The argument n should be a nonnegative integer. The function bervec creates
a cache of successive Bernoulli numbers which greatly speeds up later calls to bernfrac:

? bernfrac(20000);

time = 107 ms.

? bernvec(10000); \\ cache B_0, B_2, ..., B_20000
time = 35,957 ms.

7 bernfrac(20000); \\ now instantaneous
e

The library syntax is GEN bernfrac(long n).

164

3.7.2 bernpol(n, {v =" z}). Bernoulli polynomial B,, in variable v.

? bernpol(1)
% =x - 1/2
? bernpol(3)
h2 = x°3 - 3/2*x"2 + 1/2*x

The library syntax is GEN bernpol(long n, long v = -1) where v is a variable number.

3.7.3 bernreal(n). Bernoulli number B,,, as bernfrac, but B,, is returned as a real number (with
the current precision). The argument n should be a nonnegative integer. The function slows down
as the precision increases:

? \p1000

? bernreal (200000) ;
time = 5 ms.

? \p10000

? bernreal (200000) ;
time = 18 ms.

? \p100000

? bernreal (200000) ;
time = 84 ms.

The library syntax is GEN bernreal(long n, long prec).

3.7.4 bernvec(n). Returns a vector containing, as rational numbers, the Bernoulli numbers By,
BQ,. RPN Bgnl

? bernvec(5) \\ B_O, B_2..., B_10

%1 =1[1, 1/6, -1/30, 1/42, -1/30, 5/66]
? bernfrac(10)

%2 = 5/66

This routine uses a lot of memory but is much faster than repeated calls to bernfrac:

? forstep(n = 2, 10000, 2, bernfrac(n))
time = 18,245 ms.
? bernvec(5000) ;
time = 1,338 ms.

The computed Bernoulli numbers are stored in an incremental cache which makes later calls to
bernfrac and bernreal instantaneous in the cache range: re-running the same previous bernfracs
after the bernvec call gives:

? forstep(n = 2, 10000, 2, bernfrac(n))
time = 1 ms.

The time and space complexity of this function are O(n?); in the feasible range n < 10° (requires
about two hours), the practical time complexity is closer to O(n!°#26).

The library syntax is GEN bernvec(long n).

165

3.7.5 binomial(z, {k}). binomial coefficient (i) Here k& must be an integer, but x can be any
PARI object.

? binomial (4,2)

%1 =6

? n = 4; vector(n+l, k, binomial(n,k-1))
%2 = [1, 4, 6, 4, 1]

The argument & may be omitted if z = n is a nonnegative integer; in this case, return the vector
with n + 1 components whose k + 1-th entry is binomial(n, k)

? binomial(4)
%3 =11, 4, 6, 4, 1]

The library syntax is GEN binomialO(GEN x, GEN k = NULL).

3.7.6 eulerfrac(n). Euler number E,,, where Ey = 1, £; =0, E5 = —1, ..., are integers such that

1 E,
= — "
cosht Z n!

n>0

The argument n should be a nonnegative integer.

? vector(10,i,eulerfrac(i))

%1 = [0, -1, 0, 5, 0, -61, O, 1385, 0, -50521]
? eulerfrac(20000);

? sizedigit (%))

%3 = 73416

The library syntax is GEN eulerfrac(long n).

3.7.7 eulerianpol(n, {v =’ z}). Eulerian polynomial A,, in variable v.

7 eulerianpol(2)

% =x+ 1

7 eulerianpol(5, ’t)

h2 = t74 + 26%t73 + 66%t72 + 26%t + 1

The library syntax is GEN eulerianpol(long n, long v = -1) where v is a variable number.

3.7.8 eulerpol(n, {v =" z}). Euler polynomial E,, in variable v.

7 eulerpol(1l)
% =x - 1/2
? eulerpol(3)
%2 = x"3 - 3/2*%x"2 + 1/4

The library syntax is GEN eulerpol(long n, long v = -1) where v is a variable number.

166

3.7.9 eulerreal(n). Euler number E,,, where Ey =1, E; =0, E5 = —1, ..., are integers such that

1 E,
=3
cosht Z n!

n>0

The argument n should be a nonnegative integer. Return E,, as a real number (with the current
precision).

? sizedigit(eulerfrac(20000))

%1 = 73416

? eulerreal (20000);

%2 = 9.2736664576330851823546169139003297830 E73414

The library syntax is GEN eulerreal(long n, long prec).

3.7.10 eulervec(n). Returns a vector containing the nonzero Euler numbers Ey, Es,..., Ea,:

? eulervec(5) \\ E_0, E_2..., E_10
%1 = [1, -1, 5, -61, 1385, -50521]
? eulerfrac(10)
%2 = -50521
This routine uses more memory but is faster than repeated calls to eulerfrac:

? forstep(n = 2, 8000, 2, eulerfrac(n))
time = 27,3801ms.
? eulervec(4000);
time = 8,430 ms.

The computed Euler numbers are stored in an incremental cache which makes later calls
to eulerfrac and eulerreal instantaneous in the cache range: re-running the same previous
eulerfracs after the eulervec call gives:

? forstep(n = 2, 10000, 2, eulerfrac(n))
time = 0 ms.

The library syntax is GEN eulervec(long n).

3.7.11 fibonacci(z). 2** Fibonacci number.
The library syntax is GEN fibo(long x).
3.7.12 hammingweight(x). If = is a t_INT, return the binary Hamming weight of |z|. Otherwise

x must be of type t_POL, t_VEC, t_COL, t _VECSMALL, or t_MAT and the function returns the number
of nonzero coefficients of x.

? hammingweight (15)

hl = 4

? hammingweight (x"100 + 2*x + 1)

w2 =3

? hammingweight ([Mod(1,2), 2, Mod(0,3)]1)
w3 =2

? hammingweight (matid (100))

%4 = 100

The library syntax is long hammingweight (GEN x).

167

3.7.13 harmonic(n,{r = 1}). Generalized harmonic number of index n > 0 in power r, as a
rational number. If » = 1 (or omitted), this is the harmonic number

"1
H":Z;Z

In general, this is
n

1
HTL,T - : 17
=1

The function runs in time O(rn), essentially linear in the size of the output.

? harmonic(0)

%1 =0
? harmonic(1)
%2 =1

7 harmonic(10)

%3 = 7381/2520

? harmonic(10, 2)

%4 = 1968329/1270080
? harmonic(10, -2)
%5 = 385

Note that the numerator and denominator are of order exp((r + o(1))n) and this will overflow for
large n. To obtain H,, as a floating point number, use H,, = psi(n + 1) 4+ Euler.

The library syntax is GEN harmonicO(ulong n, GEN r = NULL). Also available is GEN har-
monic(ulong n) for r =1.

3.7.14 numbpart(n). Gives the number of unrestricted partitions of n, usually called p(n) in the
literature; in other words the number of nonnegative integer solutions to a + 2b + 3¢+ -+ = n.
n must be of type integer and n < 10'° (with trivial values p(n) = 0 for n < 0 and p(0) = 1).
The algorithm uses the Hardy-Ramanujan-Rademacher formula. To explicitly enumerate them, see
partitions.

The library syntax is GEN numbpart (GEN n).
3.7.15 numtoperm(n, k). Generates the k-th permutation (as a row vector of length n) of the

numbers 1 to n. The number £ is taken modulo n!, i.e. inverse function of permtonum. The
numbering used is the standard lexicographic ordering, starting at 0.

The library syntax is GEN numtoperm(long n, GEN k).

168

3.7.16 partitions(k, {a = k}, {n = k}). Returns the vector of partitions of the integer k as a sum
of positive integers (parts); for k < 0, it returns the empty set [1, and for k£ = 0 the trivial partition
(no parts). A partition is given by a t_VECSMALL, where parts are sorted in nondecreasing order:

7 partitions(3)
%1 = [Vecsmall([3]), Vecsmall([1, 2]), Vecsmall([1, 1, 11)]

correspond to 3, 1 +2 and 1+ 1+ 1. The number of (unrestricted) partitions of k is given by
numbpart:

? #partitions(50)
%1 = 204226

? numbpart (50)

%2 = 204226

Optional parameters n and a are as follows:

e n = nmax (resp. n = [nmin, nmax]) restricts partitions to length less than nmaz (resp.
length between nmin and nmax), where the length is the number of nonzero entries.

e a = amaz (resp. a = [amin, amaz)) restricts the parts to integers less than amaz (resp.
between amin and amaz).

? partitions(4, 2) \\ parts bounded by 2

%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 11)]
? partitions(4,, 2) \\ at most 2 parts

%2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]

? partitions(4,[0,3], 2) \\ at most 2 parts

%3 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]

By default, parts are positive and we remove zero entries unless amin < 0, in which case nmin is
ignored and we fix #X = nmax:

7 partitions(4, [0,3]) \\ parts between O and 3
%1 = [Vecsmall([O, O, 1, 3]1), Vecsmall([O, O, 2, 2]1),\
Vecsmall([0, 1, 1, 2]), Vecsmall([1, 1, 1, 1]1)]
? partitions(1l, [0,3], [2,4]) \\ no partition with 2 to 4 nonzero parts
%2 = []

The library syntax is GEN partitions(long k, GEN a = NULL, GEN n = NULL).

3.7.17 permcycles(z). Given a permutation = on n elements, return the orbits of {1,...,n} under
the action of x as cycles.

7 permcycles(Vecsmall([1,2,3]))

%1 = [Vecsmall([1]),Vecsmall([2]),Vecsmall([3])]
7 permcycles(Vecsmall([2,3,1]))

%2 = [Vecsmall([1,2,3])]

7 permcycles(Vecsmall([2,1,3]))

%3 = [Vecsmall([1,2]),Vecsmall([3])]

The library syntax is GEN permcycles(GEN x).

169

3.7.18 permorder(z). Given a permutation x on n elements, return its order.

? p = Vecsmall([3,1,4,2,5]);
?pT2

%2 = Vecsmall([4,3,2,1,5])
?p4

%3 = Vecsmall([1,2,3,4,5])

7 permorder (p)

%4 =4

The library syntax is GEN permorder (GEN x).

3.7.19 permsign(z). Given a permutation x on n elements, return its signature.

7?7 p = Vecsmall([3,1,4,2,5]);
7 permsign(p)

%2 = -1
7 permsign(p~2)
%3 =1

The library syntax is long permsign(GEN x).

3.7.20 permtonum(z). Given a permutation xz on n elements, gives the number k such that
x = numtoperm(n, k), i.e. inverse function of numtoperm. The numbering used is the standard
lexicographic ordering, starting at 0.

The library syntax is GEN permtonum(GEN x).

3.7.21 stirling(n, k, {flag = 1}). Stirling number of the first kind s(n, k) (flag = 1, default) or of
the second kind S(n, k) (flag=2), where n, k are nonnegative integers. The former is (—1)"~* times
the number of permutations of n symbols with exactly k cycles; the latter is the number of ways
of partitioning a set of n elements into k£ nonempty subsets. Note that if all s(n, k) are needed, it
is much faster to compute

Zs(n,k)xk:x(m—l)...(aﬁ—n—i—l).

k

Similarly, if a large number of S(n, k) are needed for the same k, one should use

Tk

;S(”’k)xn: 1—2)...(1—ka)

(Should be implemented using a divide and conquer product.) Here are simple variants for n fixed:
/* list of s(n,k), k =1..n */
vecstirling(n) = Vec(factorback(vector(n-1,i,1-i*x’x)))

/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{ my(@Q = x"(n-1), t);
vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(+[2]));
+

/* Bell numbers, B_n = B[n+1] = sum(k = 0, n, S(n,k)), n = 0..N %/

170

vecbell(N)=
{ my (B = vector(N+1));
B[1] = B[2] = 1;
for (n = 2, N,
my (C = binomial(n-1));
B[n+1] = sum(k = 1, n, C[k]*B[k]);
); B;
}

The library syntax is GEN stirling(long n, long k, long flag). Also available are GEN
stirlingl(ulong n, ulong k) (flag = 1) and GEN stirling2(ulong n, ulong k) (flag = 2).

3.8 Arithmetic functions.

These functions are by definition functions whose natural domain of definition is either Z (or
Z.(). The way these functions are used is completely different from transcendental functions in
that there are no automatic type conversions: in general only integers are accepted as arguments.
An integer argument N can be given in the following alternate formats:

e t_MAT: its factorization fa = factor(V),
e t_VEC: a pair [N, fal giving both the integer and its factorization.

This allows to compute different arithmetic functions at a given N while factoring the latter
only once.

? N = 10!; faN = factor(N);
? eulerphi(N)

%2 = 829440

? eulerphi(faN)

%3 = 829440

? eulerphi(S = [N, faN])

%4 = 829440

7 sigma(S)

%5 = 15334088

3.8.1 Arithmetic functions and the factoring engine. All arithmetic functions in the narrow
sense of the word — Euler’s totient function, the Moebius function, the sums over divisors or
powers of divisors etc.— call, after trial division by small primes, the same versatile factoring
machinery described under factorint. It includes Shanks SQUFOF, Pollard Rho, ECM and
MPQS stages, and has an early exit option for the functions moebius and (the integer function
underlying) issquarefree. This machinery relies on a fairly strong probabilistic primality test, see
ispseudoprime, but you may also set

default(factor_proven, 1)

to ensure that all tentative factorizations are fully proven. This should not slow down PARI too
much, unless prime numbers with hundreds of decimal digits occur frequently in your application.

171

3.8.2 Orders in finite groups and Discrete Logarithm functions.

The following functions compute the order of an element in a finite group: ellorder (the
rational points on an elliptic curve defined over a finite field), fforder (the multiplicative group of
a finite field), znorder (the invertible elements in Z/nZ). The following functions compute discrete
logarithms in the same groups (whenever this is meaningful) elllog, fflog, znlog.

All such functions allow an optional argument specifying an integer N, representing the order
of the group. (The order functions also allows any nonzero multiple of the order, with a minor loss
of efficiency.) That optional argument follows the same format as given above:

e t_INT: the integer IV,
e t_MAT: the factorization fa = factor (IV),

e t_VEC: this is the preferred format and provides both the integer N and its factorization in
a two-component vector [N, fa].

When the group is fixed and many orders or discrete logarithms will be computed, it is much
more efficient to initialize this data once and for all and pass it to the relevant functions, as in

7 p = nextprime(10°30);

7 v = [p-1, factor(p-1)]; \\ data for discrete log & order computations
? znorder (Mod(2,p), V)

%3 = 500000000000000000000000000028

? g = znprimroot(p);

? znlog(2, g, v)

%5 = 543038070904014908801878611374

3.8.3 Dirichlet characters.

The finite abelian group G = (Z/NZ)* can be written G = @®;<,(Z/d;,Z)g;, with d,, | ... | da |
d1 (SNF condition), all d; > 0, and [], d; = ¢(N).

The SNF condition makes the d; unique, but the generators g;, of respective order d;, are
definitely not unique. The @ notation means that all elements of G can be written uniquely as
[1, 9;"" where n; € Z/d;Z. The g; are the so-called SNF' generators of G.

e a character on the abelian group &(Z/d;Z)g; is given by a row vector x = [a1,...,ay] of
integers 0 < a; < d; such that x(g;) = e(a;/d;) for all j, with the standard notation e(z) :=
exp(2imz). In other words, x([] g?j) =e(d a;n;/d;).

This will be generalized to more general abelian groups in later sections (Hecke characters),
but in the present case of (Z/NZ)*, there is a useful alternate convention : namely, it is not
necessary to impose the SNF condition and we can use Chinese remainders instead. If N =[] p®»
is the factorization of N into primes, the so-called Conrey generators of G are the generators of
the (Z/prZ)* lifted to (Z/NZ)* by requesting that they be congruent to 1 modulo N/p° (for p
odd we take the smallest positive primitive root mod p?, and for p = 2 we take —1 if e; > 1 and
additionally 5 if eo > 2). We can again write G = ®;<,(Z/D;Z)G;, where again [[, D; = ¢(N).
These generators don’t satisfy the SNF condition in general since their orders are now (p — 1)p% ~1
for p odd; for p = 2, the generator —1 has order 2 and 5 has order 2°272 (e > 2). Nevertheless, any
m € (Z/NZ)* can be uniquely decomposed as [[G;"* for some m; modulo D; and we can define a
character by x(G;) = e(m;/D;) for all j.

172

e The column vector of the m;, 0 < m; < D; is called the Conrey logarithm of m (discrete

logarithm in terms of the Conrey generators). Note that discrete logarithms in PARI/GP are
always expressed as t_COLs.

e The attached character is called the Conrey character attached to m.

To sum up a Dirichlet character can be defined by a t_INT (the Conrey label m), a t_COL
(the Conrey logarithm of m, in terms of the Conrey generators) or a t_VEC (in terms of the SNF
generators). The t_COL format, i.e. Conrey logarithms, is the preferred (fastest) representation.

Concretely, this works as follows:

G = znstar (N, 1) initializes (Z/NZ)*, which must be given as first arguments to all functions
handling Dirichlet characters.

znconreychar transforms t_INT and t_COL to a SNF character.
znconreylog transforms t_INT and t_VEC to a Conrey logarithm.
znconreyexp transforms t_VEC and t_COL to a Conrey label.

Also available are charconj, chardiv, charmul, charker, chareval, charorder, zncharin-
duce, znconreyconductor (also computes the primitive character attached to the input character).
The prefix char indicates that the function applies to all characters, the prefix znchar that it is
specific to Dirichlet characters (on (Z/NZ)*) and the prefix znconrey that it is specific to Conrey
representation.

3.8.4 addprimes({z = []}). Adds the integers contained in the vector = (or the single integer) to
a special table of “user-defined primes”, and returns that table. Whenever factor is subsequently
called, it will trial divide by the elements in this table. If z is empty or omitted, just returns the
current list of extra primes.

7 addprimes(37975227936943673922808872755445627854565536638199)

7 factor(15226050279225333605356183781326374297180681149613806\
88657908494580122963258952897654000350692006139)

h2 =

[37975227936943673922808872755445627854565536638199 1]

[40094690950920881030683735292761468389214899724061 1]
? ##

*okok last result computed in O ms.

The entries in z must be primes: there is no internal check, even if the factor_proven default
is set. To remove primes from the list use removeprimes.

The library syntax is GEN addprimes(GEN x = NULL).

173

3.8.5 bestappr(z,{B}). Using variants of the extended Euclidean algorithm, returns a rational
approximation a/b to x, whose denominator is limited by B, if present. If B is omitted, returns the
best approximation affordable given the input accuracy; if you are looking for true rational numbers,
presumably approximated to sufficient accuracy, you should first try that option. Otherwise, B
must be a positive real scalar (impose 0 < b < B).

e If x is a t_REAL or a t_FRAC, this function uses continued fractions.

7 bestappr(Pi, 100)

w1 = 22/7
7 bestappr(0.1428571428571428571428571429)
%2 = 1/7

? bestappr([Pi, sqrt(2) + ’x], 1073)
%3 = [355/113, x + 1393/985]

By definition, a/b is the best rational approximation to z if |bx — a| < |vx — u| for all integers
(u,v) with 0 < v < B. (Which implies that n/d is a convergent of the continued fraction of x.)

o If x is a t_INTMOD modulo N or a t_PADIC of precision N = p¥, this function performs
rational modular reconstruction modulo N. The routine then returns the unique rational number
a/b in coprime integers |a|] < N/2B and b < B which is congruent to z modulo N. Omitting B
amounts to choosing it of the order of /N/2. If rational reconstruction is not possible (no suitable
a/b exists), returns [].

? bestappr (Mod (18526731858, 11°10))

o= 1/7

7 bestappr(Mod (18526731858, 117°20))

w2 =[]

? bestappr(3 + 5 + 3x572 + 573 + 3x%574 + 5°5 + 3%576 + 0(577))
%2 = -1/3

In most concrete uses, B is a prime power and we performed Hensel lifting to obtain z.

The function applies recursively to components of complex objects (polynomials, vectors, ...).
If rational reconstruction fails for even a single entry, returns [J.

The library syntax is GEN bestappr(GEN x, GEN B = NULL).

3.8.6 bestapprPade(z, {B}). Using variants of the extended Euclidean algorithm (Padé approx-
imants), returns a rational function approximation a/b to z, whose denominator is limited by B, if
present. If B is omitted, return the best approximation affordable given the input accuracy; if you
are looking for true rational functions, presumably approximated to sufficient accuracy, you should
first try that option. Otherwise, B must be a nonnegative real (impose 0 < degree(b) < B).

e If x is a t_POLMOD modulo N this function performs rational modular reconstruction mod-
ulo N. The routine then returns the unique rational function a/b in coprime polynomials, with
degree(b) < B and degree(a) minimal, which is congruent to modulo N. Omitting B amounts to
choosing it equal to the floor of degree(IV)/2. If rational reconstruction is not possible (no suitable
a/b exists), returns [|.

? T =Mod(x"3 + x"2 +x + 3, x4 - 2);

? bestapprPade(T)

%2 = (2%x - 1)/(x - 1)

? U =Mod(1 + x + x72 + x"3 + x°5, x79);

174

? bestapprPade(U) \\ internally chooses B = 4

w3 =[]

? bestapprPade(U, 5) \\ with B = 5, a solution exists
W= (2*%x"4 + x°3 - x - 1)/(-x"5 + x"3 + x72 - 1)

o If x is a t_SER, we implicitly convert the input to a t_POLMOD modulo N = t* where k is the
series absolute precision.

?T=1+t+t"2+t°3+t4+t°5+t76+0"7); \\ mod t°7
? bestapprPade(T)
%1 = 1/(-t + 1)

o If x is a t_RFRAC, we implicitly convert the input to a t_POLMOD modulo N = t¥ where
k=2B + 1. If B was omitted, we return x:

? T = (4%t°2 + 2%t + 3)/(t+1)"10;

? bestapprPade(T,1)

%2 = [1 \\ impossible

? bestapprPade(T,2)

%3 = 27/(337*t"2 + 84*xt + 9)

? bestapprPade(T,3)

%4 = (4253xt - 3345)/(-39007*t"3 - 28519%t~2 - 8989*t - 1115)

The function applies recursively to components of complex objects (polynomials, vectors, ...). If
rational reconstruction fails for even a single entry, return J.

The library syntax is GEN bestapprPade(GEN x, long B).

3.8.7 bezout(z,y). Deprecated alias for gcdext

The library syntax is GEN gcdextO(GEN x, GEN y).

3.8.8 bigomega(x). Number of prime divisors of the integer |z| counted with multiplicity:

? factor(392)
%1 =
[2 3]

[7 2]

7 bigomega(392)

h2 = 5; \\ = 3+2

7 omega(392)

%3 = 2; \\ without multiplicity

The library syntax is long bigomega(GEN x).

175

3.8.9 charconj(cyc, chi). Let cyc represent a finite abelian group by its elementary divisors,
ie. (d;) represents » ., Z/d;Z with dj, | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
X = [a1,...,a,] such that x(]] g;j) = exp(2mi) ajn;/d;), where g; denotes the generator (of
order d;) of the j-th cyclic component.

This function returns the conjugate character.

? cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)

%2 = [14, 4]

? bnf = bnfinit(x"2+23);

? bnf.cyc

%4 = [3]

? charconj(bnf, [1])

%5 = [2]

For Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are avail-
able, see Section 3.8.3 or ??character:

? G = znstar(16, 1); \\ (Z/16Z) %

? charconj(G, 3) \\ Conrey label

w2 = [1, 1]~

? znconreyexp(G, %)

%3 = 11 \\ attached Conrey label; indeed 11 = 3°(-1) mod 16
7 chi = znconreylog(G, 3);

? charconj(G, chi) \\ Conrey logarithm

w5 = [1, 11~

The library syntax is GEN charconjO(GEN cyc, GEN chi). Also available is GEN char-
conj(GEN cyc, GEN chi), when cyc is known to be a vector of elementary divisors and chi a
compatible character (no checks).

3.8.10 chardiv(cyc,a,b). Let cyc represent a finite abelian group by its elementary divisors,
ie. (d;) represents » ., Z/d;Z with dj, | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
a = lai,...,ay] such that x (][g;”) = exp(2mi) ajn;/d;), where g; denotes the generator (of order
d;) of the j-th cyclic component.

Given two characters a and b, return the character a/b = ab.

? cyc = [15,5]; a = [1,1]; b = [2,4];
? chardiv(cyc, a,b)

%2 = [14, 2]

? bnf = bnfinit(x"2+23);

? bnf.cyc

%4 = [3]

? chardiv(bnf, [1], [2])

%5 = [2]

For Dirichlet characters on (Z/NZ)*, additional representations are available (Conrey labels, Con-
rey logarithm), see Section 3.8.3 or ??character. If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.

176

? G = znstar(100, 1);

? G.cyc

%2 = [20, 2]

? a = [10, 11; \\ usual representation for characters
? b =7; \\ Conrey label;

7 ¢ = znconreylog(G, 11); \\ Conrey log
? chardiv(G, b,b)

%6 =1 \\ Conrey label

? chardiv(G, a,b)

%7 = [0, 5]~ \\ Conrey log

? chardiv(G, a,c)

%7 = [0, 141~ \\ Conrey log

The library syntax is GEN chardivO(GEN cyc, GEN a, GEN b). Also available is GEN
chardiv(GEN cyc, GEN a, GEN b), when cyc is known to be a vector of elementary divisors
and a,b are compatible characters (no checks).

3.8.11 chareval(G, chi,z,{z}). Let G be an abelian group structure affording a discrete logarithm
method, e.g G = znstar (N, 1) for (Z/NZ)* or a bnr structure, let x be an element of G and let
chi be a character of G (see the note below for details). This function returns the value of chi at x.

Note on characters. Let K be some field. If G is an abelian group, let x : G — K™ be a character
of finite order and let o be a multiple of the character order such that y(n) = ¢4 for some fixed
¢ € K* of multiplicative order o and a unique morphism ¢ : G — (Z/0Z,+). Our usual convention
is to write
G=(Z2/012)g: & - & (Z/0aZ)ga

for some generators (g;) of respective order d;, where the group has exponent o := lem;o0;. Since
¢° = 1, the vector (¢;) in [[(Z/0;Z) defines a character x on G via x(g;) = ¢¢(/%) for all i.
Classical Dirichlet characters have values in K = C and we can take (= exp(2im/o).

Note on Dirichlet characters. In the special case where bid is attached to G = (Z/qZ)* (as
per G = znstar(q,1)), the Dirichlet character chi can be written in one of the usual 3 formats:
a t_VEC in terms of bid.gen as above, a t_COL in terms of the Conrey generators, or a t_INT
(Conrey label); see Section 3.8.3 or ?7character.

The character value is encoded as follows, depending on the optional argument z:

e If z is omitted: return the rational number ¢(z)/o for = coprime to ¢, where we normalize
0 < ¢(x) < o. If can not be mapped to the group (e.g. x is not coprime to the conductor of a
Dirichlet or Hecke character) we return the sentinel value —1.

o If z is an integer o, then we assume that o is a multiple of the character order and we return
the integer ¢(z) when z belongs to the group, and the sentinel value —1 otherwise.

e z can be of the form [zeta, o], where zeta is an o-th root of 1 and o is a multiple of the character
order. We return ¢°(®) if z belongs to the group, and the sentinel value 0 otherwise. (Note that this
coincides with the usual extension of Dirichlet characters to Z, or of Hecke characters to general
ideals.)

e Finally, z can be of the form [vzeta, o], where vzeta is a vector of powers (°,...,(°! of some
o-th root of 1 and o is a multiple of the character order. As above, we return (¢(*) after a table
lookup. Or the sentinel value 0.

The library syntax is GEN chareval (GEN G, GEN chi, GEN x, GEN z = NULL).

177

3.8.12 chargalois(cyc, {ORD}). Let cyc represent a finite abelian group by its elementary divisors
(any object which has a .cyc method is also allowed, i.e. the output of znstar or bnrinit). Return
a list of representatives for the Galois orbits of complex characters of GG. If ORD is present, select
characters depending on their orders:

e if ORD is a t_INT, restrict to orders less than this bound;
e if ORD is a t_VEC or t_VECSMALL, restrict to orders in the list.

? G = znstar(96);
? #chargalois(G) \\ 16 orbits of characters mod 96

%2 = 16
? #chargalois(G,4) \\ order less than 4
w3 = 12

? chargalois(G,[1,4]) \\ order 1 or 4; 5 orbits
» = [[0, O, O], [2, 0, O], [2, 1, O], [2, O, 1], [2, 1, 1]]

Given a character x, of order n (charorder(G,chi)), the elements in its orbit are the ¢(n) char-
acters x*, (i,n) = 1.

The library syntax is GEN chargalois(GEN cyc, GEN ORD = NULL).

3.8.13 charker(cyc, chi). Let cyc represent a finite abelian group by its elementary divisors,
i.e. (d;) represents >, Z/d;Z with dy | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
X = la1,...,ay] such that x([] g;”) = exp(2mi)_ajn;/d;), where g; denotes the generator (of
order d;) of the j-th cyclic component.

This function returns the kernel of x, as a matrix K in HNF which is a left-divisor of matdiag-
onal(d). Its columns express in terms of the g; the generators of the subgroup. The determinant
of K is the kernel index.

? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)

h2 =

[15 12]

[0 1]

? bnf = bnfinit(x"2+23);
? bnf.cyc

w4 = [3]

? charker(bnf, [1])

5 =

(3]

Note that for Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation
are available, see Section 3.8.3 or ?7character.

? G = znstar(8, 1); \\ (Z/8Z) %

? charker(G, 1) \\ Conrey label for trivial character
h2 =

[1 0]

[0 1]

178

The library syntax is GEN charkerO(GEN cyc, GEN chi). Also available is GEN charker (GEN
cyc, GEN chi), when cyc is known to be a vector of elementary divisors and chi a compatible
character (no checks).

3.8.14 charmul(cyc,a,b). Let cyc represent a finite abelian group by its elementary divisors,
ie. (d;) represents » ., Z/d;Z with dj, | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
a=[ay,...,ay,] such that x(]] g;Lj) = exp(2mi) ajn;/d;), where g; denotes the generator (of order
d;) of the j-th cyclic component.

Given two characters a and b, return the product character ab.

? cyc = [15,5]; a = [1,1]; b = [2,4];
7 charmul(cyc, a,b)

%2 = [3, 0]

? bnf = bnfinit(x"2+23);

? bnf.cyc

%4 = [3]

? charmul (bnf, [1], [2])

%5 = [0]

For Dirichlet characters on (Z/NZ)*, additional representations are available (Conrey labels, Con-
rey logarithm), see Section 3.8.3 or ??character. If the two characters are in the same format,
their product is given in the same format, otherwise a Conrey logarithm is used.

? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]

7?7 a = [10, 1]; \\ usual representation for characters
7?7 b =7; \\ Conrey label;
7 ¢ = znconreylog(G, 11); \\ Conrey log

? charmul (G, b,Db)

%6 = 49 \\ Conrey label

? charmul (G, a,b)

%7 = [0, 15]~ \\ Conrey log
? charmul (G, a,c)

%7 = [0, 6]~ \\ Conrey log

The library syntax is GEN charmulO(GEN cyc, GEN a, GEN b). Also available is GEN char-
mul (GEN cyc, GEN a, GEN b), when cyc is known to be a vector of elementary divisors and a,b
are compatible characters (no checks).

3.8.15 charorder(cyc, chi). Let cyc represent a finite abelian group by its elementary divisors,
ie. (dj) represents » ., Z/d;Z with dj, | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
X = la1,...,a,] such that x([] g;”) = exp(2mi)_a;n;/d;), where g; denotes the generator (of
order d;) of the j-th cyclic component.

This function returns the order of the character chi.
? cyc = [15,5]; chi = [1,1];

? charorder(cyc, chi)

179

%2 = 15

? bnf = bnfinit(x~2+23);
? bnf.cyc

%4 = [3]

? charorder(bnf, [1])

%5 =3

For Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are
available, see Section 3.8.3 or ??character:

7 G = znstar(100, 1); \\ (Z/100Z) " *
? charorder(G, 7) \\ Conrey label
%2 =4

The library syntax is GEN charorderO(GEN cyc, GEN chi). Also available is GEN
charorder (GEN cyc, GEN chi), when cyc is known to be a vector of elementary divisors and
chi a compatible character (no checks).

3.8.16 charpow(cyc,a,n). Let cyc represent a finite abelian group by its elementary divisors,
ie. (dj) represents . Z/d;Z with dy | ... | di; any object which has a .cyc method is also
allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector
a::[alw..,an]suchthatx([lg?j)::eXp(QwiE:ajng/djL'Whenagjdenotesthegenemﬂor(oforder
d;) of the j-th cyclic component.

Given n € Z and a character a, return the character a™.

? cyc = [15,5]; a = [1,1];
? charpow(cyc, a, 3)

%2 = [3, 3]

? charpow(cyc, a, 5)

w2 =[5, 0]

? bnf = bnfinit(x"2+23);

? bnf.cyc

W4 = [3]

? charpow(bnf, [1], 3)

%5 = [0]

For Dirichlet characters on (Z/NZ)*, additional representations are available (Conrey labels, Con-
rey logarithm), see Section 3.8.3 or ?7character and the output uses the same format as the
input.

? G = znstar (100, 1);

? G.cyc

w2 = [20, 2]

? a = [10, 1]; \\ standard representation for characters
7?7 b =7; \\ Conrey label;

? ¢ = znconreylog(G, 11); \\ Conrey log

? charpow(G, a,3)

%6 = [10, 1] \\ standard representation
? charpow(G, b,3)

%7 = 43 \\ Conrey label

? charpow(G, c,3)

180

%8 = [1, 8]~ \\ Conrey log

The library syntax is GEN charpowO(GEN cyc, GEN a, GEN n). Also available is GEN char-
pow(GEN cyc, GEN a, GEN n), when cyc is known to be a vector of elementary divisors (no
check).

3.8.17 chinese(x,{y}). If z and y are both intmods or both polmods, creates (with the same
type) a z in the same residue class as = and in the same residue class as y, if it is possible.

? chinese(Mod(1,2), Mod(2,3))

%1 = Mod(5, 6)

? chinese(Mod(x,x"2-1), Mod(x+1,x"2+1))
%2 = Mod(-1/2*x"2 + x + 1/2, x°4 - 1)

This function also allows vector and matrix arguments, in which case the operation is recursively
applied to each component of the vector or matrix.

? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)]1)
%3 = [Mod(1, 10), Mod(16, 21)]

For polynomial arguments in the same variable, the function is applied to each coefficient; if the
polynomials have different degrees, the high degree terms are copied verbatim in the result, as if
the missing high degree terms in the polynomial of lowest degree had been Mod(0,1). Since the
latter behavior is usually not the desired one, we propose to convert the polynomials to vectors of
the same length first:

7?7 P =x+1; Q = x"2+2%x+1;

? chinese(P*Mod(1,2), Q*Mod(1,3))

%4 = Mod(1, 3)*x~2 + Mod(5, 6)*x + Mod(3, 6)

? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]

? Pol(%)

%6 = Mod(1, 6)*x~2 + Mod(5, 6)*x + Mod(4, 6)

If y is omitted, and = is a vector, chinese is applied recursively to the components of x,
yielding a residue belonging to the same class as all components of z.

Finally chinese(z,z) = x regardless of the type of x; this allows vector arguments to contain
other data, so long as they are identical in both vectors.

The library syntax is GEN chinese(GEN x, GEN y = NULL). GEN chinesel(GEN x) is also
available.

3.8.18 content(z,{D}). Computes the ged of all the coefficients of x, when this gcd makes
sense. This is the natural definition if z is a polynomial (and by extension a power series) or a
vector /matrix. This is in general a weaker notion than the ideal generated by the coefficients:

7 content (2*x+y)
%1 =1 \\ = gcd(2,y) over QLy]

If z is a scalar, this simply returns the absolute value of x if x is rational (t_INT or t_FRAC),
and either 1 (inexact input) or x (exact input) otherwise; the result should be identical to ged(x,
0).

181

The content of a rational function is the ratio of the contents of the numerator and the de-
nominator. In recursive structures, if a matrix or vector coefficient x appears, the ged is taken not
with z, but with its content:

? content ([[2], 4*matid(3) 1)
%1 = 2

The content of a t_VECSMALL is computed assuming the entries are signed integers.

The optional argument D allows to control over which ring we compute and get a more pre-
dictable behaviour:

e 1: we only consider the underlying Q-structure and the denominator is a (positive) rational
number

e a simple variable, say ’x: all entries are considered as rational functions in K(z) for some
field K and the content is an element of K.

?7f=x+1/y + 1/2;

? content(f) \\ as a t_POL in x
%2 = 1/(2xy)

? content(f, 1) \\ Q-content

w3 = 1/2
? content(f, y) \\ as a rational function in y
W = 1/2

? g = x72xy + yT2%x;
? content(g, x)

% =y
? content(g, y)
= x

The library syntax is GEN contentO(GEN x, GEN D = NULL).

3.8.19 contfrac(z, {b}, {nmaz}). Returns the row vector whose components are the partial quo-
tients of the continued fraction expansion of z. In other words, a result [ag,...,a,] means that
r~ap+1/(a;+...+1/a,). The output is normalized so that a,, # 1 (unless we also have n = 0).

The number of partial quotients n + 1 is limited by nmax. If nmax is omitted, the expansion
stops at the last significant partial quotient.

? \p19

realprecision = 19 significant digits
7 contfrac(Pi)
%1 =1[3, 7, 16, 1, 292, 1
? contfrac(Pi,, 3) \\ n
%2 = [3, 7, 15]

1, 1, 2,1, 3,1, 14, 2, 1, 1, 2, 2]
2

o~

x can also be a rational function or a power series.

If a vector b is supplied, the numerators are equal to the coeflicients of b, instead of all equal to
1 as above; more precisely, x ~ (1/bg)(ag+b1/(a1+...+by/ay,)); for a numerical continued fraction
(z real), the a; are integers, as large as possible; if x is a rational function, they are polynomials
with dega; = degb; + 1. The length of the result is then equal to the length of b, unless the next
partial quotient cannot be reliably computed, in which case the expansion stops. This happens

182

when a partial remainder is equal to zero (or too small compared to the available significant digits
for a t_REAL).

A direct implementation of the numerical continued fraction contfrac(x,b) described above
would be

\\ "greedy" generalized continued fraction
cf(x, b) =
{ my(a= vector(#b), t);

x *= b[1];

for (i = 1, #b,
alil floor(x);
t =x - alil; if ('t || i == #b, break);
x = bli+1] / t;

); a;

}

There is some degree of freedom when choosing the a;; the program above can easily be modified to
derive variants of the standard algorithm. In the same vein, although no builtin function implements
the related Engel expansion (a special kind of Egyptian fraction decomposition: =z = 1/a; +
1/(a1az2) + ...), it can be obtained as follows:

\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{my(u=x, a=vector(n));
for (k = 1, n,
alk] = ceil(1/w);
u = u*xalk] - 1;
if ('u, break);
); a

}

Obsolete hack. (don’t use this): if b is an integer, nmaz is ignored and the command is understood
as contfrac(z,,b).

The library syntax is GEN contfracO(GEN x, GEN b = NULL, long nmax). Also available
are GEN gboundcf (GEN x, long nmax), GEN gcf(GEN x) and GEN gcf2(GEN b, GEN x).

3.8.20 contfracpngn(z,{n = —1}). When z is a vector or a one-row matrix, x is considered as
the list of partial quotients [ag, a1, ..., a,] of a rational number, and the result is the 2 by 2 matrix
[Prs Pn—1; @ns gn—1] in the standard notation of continued fractions, so p, /¢, = ao + 1/(a1 + ... +
1/ay). If x is a matrix with two rows [bg, b1, ...,b,] and [ag, a1, ..., ay], this is then considered as
a generalized continued fraction and we have similarly p,, /¢, = (1/bg)(ap +b1/(a1 + ...+ bn/ay)).
Note that in this case one usually has by = 1.

If n > 0 is present, returns all convergents from pg/qo up to p,,/qn. (All convergents if x is too
small to compute the n + 1 requested convergents.)

? a = contfrac(Pi,10)

=13, 7,15, 1, 292, 1, 1, 1, 3]

? allpngn(x) = contfracpngn(x,#x) \\ all convergents
? allpngn(a)

183

h3 =
[3 22 333 355 103993 104348 208341 312689 1146408]

[1 7 106 113 33102 33215 66317 99532 364913]
? contfracpngn(a) \\ last two convergents

W4 =

(1146408 312689]

[364913 99532]

7 contfracpngn(a,3) \\ first three convergents
5 =
[3 22 333 355]

[1 7 106 113]

The library syntax is GEN contfracpnqn(GEN x, long n). also available is GEN pngn(GEN x)
for n = —1.

3.8.21 core(n, {flag = 0}). If n is an integer written as n = df? with d squarefree, returns d. If
flag is nonzero, returns the two-element row vector [d, f]. By convention, we write 0 = 0 x 12, so
core(0, 1) returns [0, 1].

The library syntax is GEN coreO(GEN n, long flag). Also available are GEN core(GEN n)
(flag = 0) and GEN core2(GEN n) (flag =1)

3.8.22 coredisc(n, {flag = 0}). A fundamental discriminant is an integer of the form ¢ = 1 mod 4
or 4t = 8,12mod 16, with ¢ squarefree (i.e. 1 or the discriminant of a quadratic number field).
Given a nonzero integer n, this routine returns the (unique) fundamental discriminant d such that
n = df?, f a positive rational number. If flag is nonzero, returns the two-element row vector [d, f].
If n is congruent to 0 or 1 modulo 4, f is an integer, and a half-integer otherwise.

By convention, coredisc(0, 1)) returns [0, 1].

Note that quaddisc(n) returns the same value as coredisc(n), and also works with rational
inputs n € Q*.

The library syntax is GEN corediscO(GEN n, long flag). Also available are GEN core-
disc(GEN n) (flag =0) and GEN coredisc2(GEN n) (flag = 1)
3.8.23 dirdiv(z,y). = and y being vectors of perhaps different lengths but with y[1] # 0 considered

as Dirichlet series, computes the quotient of x by y, again as a vector.

The library syntax is GEN dirdiv(GEN x, GEN y).

184

3.8.24 direuler(p = a, b, expr, {c}). Computes the Dirichlet series attached to the Euler product
of expression erpr as p ranges through the primes from a to b. expr must be a polynomial or
rational function in another variable than p (say X) and ezpr(X) is understood as the local factor
expr(p~°).

The series is output as a vector of coefficients. If ¢ is omitted, output the first b coefficients of
the series; otherwise, output the first ¢ coefficients. The following command computes the sigma
function, attached to ((s)((s —1):

? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
% = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]

7 direuler(p=2, 10, 1/((1-X)*(1-p*X)), 5) \\ fewer terms
%2 = [1, 3, 4, 7, 6]

Setting ¢ < b is useless (the same effect would be achieved by setting b = ¢). If ¢ > b, the computed
coefficients are “missing” Euler factors:

7 direuler(p=2, 10, 1/((1-X)*(1-p*X)), 15) \\ more terms, no longer = sigma !
%3 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 0, 28, 0, 24, 24]

The library syntax is direuler(void *E, GEN (*eval) (void#,GEN), GEN a, GEN b)

3.8.25 dirmul(z, y). = and y being vectors of perhaps different lengths representing the Dirichlet
series > x,n~° and) y,n~*®, computes the product of z by y, again as a vector.

? dirmul (vector(10,n,1), vector(10,n,moebius(n)))
0/01 = [1’ O’ O, O’ O’ O, O’ O, O, O]

The product length is the minimum of #z*v(y) and #y*v(z), where v(x) is the index of the first
nonzero coefficient.

? dirmul([0,1], [0,11);
%2 = [0, 0, 0, 1]

The library syntax is GEN dirmul (GEN x, GEN y).

3.8.26 dirpowerssum(N,z,{f}). For positive integer N and complex number z, return the sum
FH1" 4+ f(2)2* + ...+ f(N)N?*, where f is a completely multiplicative function. If f is omitted,
return 1¥ 4+ ...+ N*. When N < 0, the function returns 0.

Unlike variants using dirpowers(N,x), this function uses O(v/N) memory instead of O(N).
And it is faster for large N. The return value is usually a floating point number, but it will be
exact if the result is an integer. On the other hand, rational numbers, are converted to floating
point approximations, since they are likely to blow up for large V.

? dirpowers(5, 2)
%1 =1[1, 4, 9, 16, 25]
7 vecsum(%)

%2 = 55
? dirpowerssum(5, 2)
%3 = 55

7 dirpowerssum(5, -2)
%4 = 1.4636111111111111111111111111111111111
? \p200

185

?7s=1/2+ 1 % sqrt(3); N = 10°7;

? dirpowerssum(N, s);

time = 11,425 ms.

? vecsum(dirpowers(N, s))

time = 19,365 ms.

? dirpowerssum(N, s, n->kronecker(-23,n))
time = 10,981 ms.

The dirpowerssum commands work with default stack size, the dirpowers one requires a stacksize
of at least 5GB.

The library syntax is dirpowerssumfun(ulong N, GEN x, void *E, GEN (*f) (voidx,
ulong, long), long prec). When f = NULL, one may use GEN dirpowerssum(ulong N, GEN x,
long prec).

3.8.27 divisors(z, {flag = 0}). Creates a row vector whose components are the divisors of z. The
factorization of z (as output by factor) can be used instead. If flag = 1, return pairs [d, factor(d)].

By definition, these divisors are the products of the irreducible factors of n, as produced by
factor(n), raised to appropriate powers (no negative exponent may occur in the factorization). If
n is an integer, they are the positive divisors, in increasing order.

? divisors(12)

% = [1, 2, 3, 4, 6, 12]

? divisors(12, 1) \\ include their factorization

%2 = [[1, matrix(0,2)], [2, Mat([2, 11)], [3, Mat([3, 11)1],
(4, Mat([2, 21)1, [6, [2, 1; 3, 111, [12, [2, 2; 3, 1]]]

7 divisors(x”4 + 2xx"3 + x"2) \\ also works for polynomials
%3 =11, x, x72, x + 1, x2 + x, x"3 + x72, x°2 + 2%x + 1,
X"3 + 2%x72 + x, x74 + 2%x"3 + x"2]

This function requires a lot of memory if x has many divisors. The following idiom runs
through all divisors using very little memory, in no particular order this time:

F = factor(x); P = F[,1]; E = F[,2];
forvec(e = vectorv(#E,i, [0,E[i]]), d = factorback(P,e); ...)

If the factorization of d is also desired, then [P, e] almost provides it but not quite: e may
contain 0 exponents, which are not allowed in factorizations. These must be sieved out as in:

? tofact(P,E) = matreduce(Mat([P,E]));
? tofact([2,3,5,7]~, [4,0,2,0]~)

%4 =

[2 4]

[5 2]
We can then run the above loop with tofact(P,e) instead of, or together with, factorback.

The library syntax is GEN divisorsO(GEN x, long flag). The functions GEN divisors(GEN
N) (flag = 0) and GEN divisors_factored(GEN N) (flag = 1) are also available.

186

3.8.28 divisorslenstra(N,r,s). Given three integers N > s > r > 0 such that (r,s) = 1 and
53 > N, find all divisors d of N such that d = » (mod s). There are at most 11 such divisors
(Lenstra).

? N = 245784; r = 19; s = 65 ;

? divisorslenstra(N, r, s)

%2 = [19, 84, 539, 1254, 3724, 245784]
? [d| d<- divisors(N), d % s == r]
%3 = [19, 84, 539, 1254, 3724, 245784]

When the preconditions are not met, the result is undefined:

? N = 4484075232; r = 7; s = 1303; s°"3 > N

%4 =0

? divisorslenstra(N, r, s)

? [d| d<- divisors(N), d % s ==]

%6 = [7, 2613, 9128, 19552, 264516, 3407352, 344928864]

(Divisors were missing but s3> < N.)

The library syntax is GEN divisorslenstra(GEN N, GEN r, GEN s).

3.8.29 eulerphi(z). Euler’s ¢ (totient) function of the integer |x|, in other words |(Z/xZ)*|.

? eulerphi (40)
o= 16

According to this definition we let ¢(0) := 2, since Z* = {—1, 1}; this is consistent with znstar (0):
we have znstar(n).no = eulerphi(n) for all n € Z.

The library syntax is GEN eulerphi(GEN x).

3.8.30 factor(z,{D}). Factor z over domain D; if D is omitted, it is determined from z. For
instance, if = is an integer, it is factored in Z, if it is a polynomial with rational coeflicients, it is
factored in Q[z], etc., see below for details. The result is a two-column matrix: the first contains
the irreducibles dividing x (rational or Gaussian primes, irreducible polynomials), and the second
the exponents. By convention, 0 is factored as 0'.

x € Q. See factorint for the algorithms used. The factorization includes the unit —1 when x < 0
and all other factors are positive; a denominator is factored with negative exponents. The factors
are sorted in increasing order.

? factor(-7/106)

W=

-1 1]
[2 -1]
[7 1]
[63 -1]

By convention, 1 is factored as matrix(0,2) (the empty factorization, printed as [;]).

Large rational “primes” > 264 in the factorization are in fact pseudoprimes (see ispseudo-
prime), a priori not rigorously proven primes. Use isprime to prove primality of these factors, as
in

187

? fa = factor(2°2°7 + 1)
%2 =
[59649589127497217 1]

[5704689200685129054721 1]

? isprime(fal[,1])
%3 = [1, 11~ \\ both entries are proven primes

Another possibility is to globally set the default factor_proven, which will perform a rigorous
primality proof for each pseudoprime factor but will slow down PARI.

A t_INT argument D can be added, meaning that we only trial divide by all primes p < D
and the addprimes entries, then skip all expensive factorization methods. The limit D must be
nonnegative. In this case, one entry in the factorization may be a composite number: all factors
less than D? and primes from the addprimes table are actual primes. But (at most) one entry may
not verify this criterion, and it may be prime or composite: it is only known to be coprime to all
other entries and not a pure power..

? factor(2°2°7 +1, 1075)
%4 =
[340282366920938463463374607431768211457 1]

Deprecated feature. Setting D = 0 is the same as setting it to primelimit + 1.

This routine uses trial division and perfect power tests, and should not be used for huge
values of D (at most 10%, say): factorint(, 1 + 8) will in general be faster. The latter does
not guarantee that all small prime factors are found, but it also finds larger factors and in a more
efficient way.

7 F =(272"7 + 1) * 1009 * (10°5+3); factor(F, 10°5) \\ fast, incomplete
time = O ms.

%5 =

[1009 1]

[34029257539194609161727850866999116450334371 1]

? factor(F, 1079) \\ slow
time = 3,260 ms.

%6 =

[1009 1]

[100003 1]
[340282366920938463463374607431768211457 1]

7 factorint(F, 1+8) \\ much faster and all small primes were found
time = 8 ms.

Wl =

[1009 1]

[100003 1]
[340282366920938463463374607431768211457 1]

? factor(F) \\ complete factorization
time = 60 ms.

188

w8 =
[1009 1]

[100003 1]
[69649589127497217 1]
[5704689200685129054721 1]

x € Q(i). The factorization is performed with Gaussian primes in Z[i] and includes Gaussian units
in {£1, +i}; factors are sorted by increasing norm. Except for a possible leading unit, the Gaussian
factors are normalized: rational factors are positive and irrational factors have positive imaginary
part.

Unless factor_proven is set, large factors are actually pseudoprimes, not proven primes; a
rational factor is prime if less than 264 and an irrational one if its norm is less than 264

? factor(5%I)
%9 =
[2+ 1I1]

[1 + 2*I 1]
One can force the factorization of a rational number by setting the domain D = I:

? factor(-5, I)
%10 =
L I 1]

[2+ 1I1]

[1 + 2%I 1]
? factorback(%)
%11 = -5

Univariate polynomials and rational functions. PARI can factor univariate polynomials in
K|t]. The following base fields K are currently supported: Q, R, C, Q,, finite fields and number
fields. See factormod and factorff for the algorithms used over finite fields and nffactor for
the algorithms over number fields. The irreducible factors are sorted by increasing degree and
normalized: they are monic except when K = Q where they are primitive in Z[t].

The content is not included in the factorization, in particular factorback will in general
recover the original x only up to multiplication by an element of K*: when K # Q, this scalar
is pollead(z) (since irreducible factors are monic); and when K = Q you can either ask for the
Q-content explicitly of use factorback:

7P
%12
[t + 2 1]

[2%t + 1 1]

? content(P, 1) \\ Q-content
%13 = 1/2

? pollead(factorback(F)) / pollead(P)
W4 = 2

t°2 + 5%t/2 + 1; F = factor(P)

You can specify K using the optional “domain” argument D as follows

189

e K =Q: D arational number (t_INT or t_FRAC),

e K = Z/pZ with p prime : D a t_INTMOD modulo p; factoring modulo a composite number
is not supported.

e K =F,: D a t_FFELT encoding the finite field; you can also use a t_POLMOD of t_INTMOD
modulo a prime p but this is usualy less convenient;

o K = Q[X]/(T) a number field : D a t_POLMOD modulo 7,
e K = Q(i) (alternate syntax for special case): D =1,
e K = Q(w) a quadratic number field (alternate syntax for special case): D a t_QUAD,

e K =R : D areal number (t_REAL); truncate the factorization at accuracy precision(D).
If x is inexact and precision(z) is less than precision(D), then the precision of x is used instead.

e K = C: D a complex number with a t_REAL component, e.g. I * 1.; truncate the
factorization as for K = R,

e K = Q, : D at_PADIC; truncate the factorization at p-adic accuracy padicprec(D), possibly
less if z is inexact with insufficient p-adic accuracy;

7?7 T = x"2+1;

? factor (T, 1); \\ over Q

? factor(T, Mod(1,3)) \\ over F_3

? factor(T, ffgen(ffinit(3,2,’t))"0) \\ over F_{3°2}

7 factor(T, Mod(Mod(1,3), t~2+t+2)) \\ over F_{372}, again

? factor(T, 0(376)) \\ over Q_3, precision 6

? factor(T, 1.) \\ over R, current precision
? factor(T, Ix*1.) \\ over C

? factor (T, Mod(1, y~3-2)) \\ over Q(2°{1/3})

In most cases, it is possible and simpler to call a specialized variant rather than use the above
scheme:

? factormod(T, 3) \\ over F_3

? factormod(T, [t~2+t+2, 3]) \\ over F_{3°2}

? factormod(T, ffgen(3~2, ’t)) \\ over F_{372}

? factorpadic(T, 3,6) \\ over Q_3, precision 6

? nffactor(y~3-2, T) \\ over Q(2°{1/33})

7 polroots(T) \\ over C

? polrootsreal(T) \\ over R (real polynomial)

It is also possible to let the routine use the smallest field containing all coefficients, taking into
account quotient structures induced by t_INTMODs and t_POLMODs (e.g. if a coefficient in Z/nZ is
known, all rational numbers encountered are first mapped to Z/nZ; different moduli will produce
an error):

T = x72+1;

factor(T); \\ over Q
factor (T*Mod(1,3)) \\ over F_3
factor(Txffgen(£ffinit(3,2,’t))"0) \\ over F_{372}
factor(T*Mod (Mod(1,3), t~2+t+2)) \\ over F_{37°2}, again
factor(T*(1 + 0(376)) \\ over Q_3, precision 6

N N N N N N

190

7 factor(Tx1.) \\ over R, current precision
? factor(Tx(1.+0.%I)) \\ over C
? factor(T*Mod (1, y~3-2)) \\ over Q(2°{1/3})

Multiplying by a suitable field element equal to 1 € K in this way is error-prone and is not
recommanded. Factoring existing polynomials with obvious fields of coefficients is fine, the domain
argument D should be used instead ad hoc conversions.

Note on inexact polynomials. Polynomials with inexact coefficients (e.g. floating point or
p-adic numbers) are first rounded to an exact representation, then factored to (potentially) infinite
accuracy and we return a truncated approximation of that virtual factorization. To avoid pitfalls,
we advise to only factor exact polynomials:

? factor(x~2-1+0(2"2)) \\ rounded to x"2 + 3, irreducible in Q_2
%l =
[(1 +00272))*x"2 + 0(272)*x + (1 + 2 + 0(272)) 1]

? factor(x~2-1+0(2°3)) \\ rounded to x"2 + 7, reducible !
%2 =
[(1 +00@3))*x + (1 +2 + 0(273)) 1]

[(1 +0023))*x + (1 + 272 + 0(2°3)) 1]

7 factor(x~2-1, 0(2°2)) \\ no ambiguity now
%3 =
[(1 +0(272))*x + (1 + 0(272)) 1]

[(1 +0@2)*x + (1 + 2+ 0(2°2)) 1]

Note about inseparable polynomials. Polynomials with inexact coefficients are considered to
be squarefree: indeed, there exist a squarefree polynomial arbitrarily close to the input, and they
cannot be distinguished at the input accuracy. This means that irreducible factors are repeated
according to their apparent multiplicity. On the contrary, using a specialized function such as
factorpadic with an ezact rational input yields the correct multiplicity when the (now exact)
input is not separable. Compare:

? factor(z~"2 + 0(5°2)))
%1 =
[(1 + 0(6"2))*z + 0(5"2) 1]

[(1 + 0(5"2))*z + 0(5°2) 1]
? factor(z"2, 0(5°2))

%2 =

[1 + 0(572))*z + 0(572) 2]

191

Multivariate polynomials and rational functions. PARI recursively factors multivariate poly-
nomials in K[ty,...,t4] for the same fields K as above and the argument D is used in the same way
to specify K. The irreducible factors are sorted by their main variable (least priority first) then by
increasing degree.

? factor(x"2 + y~2, Mod(1,5))
Wl o=
[x + Mod(2, 5)*y 1]

[Mod (1, 5)*x + Mod(3, 5)*y 1]

7 factor(x"2 + y~2, 0(572))
h2 =
[(1 +0(572))*xx + (0(6"2)xy~2 + (2 + 5 + 0(572))*y + 0(572)) 1]

[(1 +0(572))*x + (0(572)*y~2 + (3 + 3%5 + 0(572))*y + 0(572)) 1]

? 1ift (%)
%3 =
[x + 7%y 1]

[x + 18%y 1]

Note that the implementation does not really support inexact real fields (R or C) and usually
misses factors even if the input is exact:

? factor(x"2 + y~2, I) \\ over Q(i)

W =
[x - I*xy 1]
[x + I*xy 1]

? factor(x"2 + y~2, I*1.) \\ over C
W5 =
[x"2 + y"2 1]

The library syntax is GEN factorO(GEN x, GEN D = NULL).
GEN factor(GEN x) GEN boundfact(GEN x, ulong lim).

3.8.31 factorback(f, {e}). Gives back the factored object corresponding to a factorization. The
integer 1 corresponds to the empty factorization.

If e is present, e and f must be vectors of the same length (e being integral), and the corre-
sponding factorization is the product of the f[i]°l").

If not, and f is vector, it is understood as in the preceding case with e a vector of 1s: we return
the product of the f[i]. Finally, f can be a regular factorization, as produced with any factor
command. A few examples:

? factor(12)

%1 =

[2 2]

[3 1]

? factorback(¥)

%2 = 12

? factorback([2,3], [2,1]) \\ 273 * 371

192

%3 = 12
? factorback([5,2,3])
%4 = 30

The library syntax is GEN factorback2(GEN f, GEN e = NULL). Also available is GEN fac-
torback(GEN f) (case e = NULL).

3.8.32 factorcantor(z,p). This function is obsolete, use factormod.

The library syntax is GEN factmod(GEN x, GEN p).

3.8.33 factorff(x, {p}, {a}). Obsolete, kept for backward compatibility: use factormod.

The library syntax is GEN factorff(GEN x, GEN p = NULL, GEN a = NULL).

3.8.34 factorial(z). Factorial of z. The expression z! gives a result which is an integer, while
factorial(z) gives a real number.

The library syntax is GEN mpfactr(long x, long prec). GEN mpfact(long x) returns z! as
a t_INT.

3.8.35 factorint(z, {flag = 0}). Factors the integer n into a product of pseudoprimes (see ispseu-
doprime), using a combination of the Shanks SQUFOF and Pollard Rho method (with modifications
due to Brent), Lenstra’s ECM (with modifications by Montgomery), and MPQS (the latter adapted
from the LiDIA code with the kind permission of the LiDIA maintainers), as well as a search for
pure powers. The output is a two-column matrix as for factor: the first column contains the
“prime” divisors of n, the second one contains the (positive) exponents.

By convention 0 is factored as 0!, and 1 as the empty factorization; also the divisors are by
default not proven primes if they are larger than 254, they only failed the BPSW compositeness
test (see ispseudoprime). Use isprime on the result if you want to guarantee primality or set the
factor_proven default to 1. Entries of the private prime tables (see addprimes) are also included
as is.

This gives direct access to the integer factoring engine called by most arithmetical functions.
flag is optional; its binary digits mean 1: avoid MPQS, 2: skip first stage ECM (we may still
fall back to it later), 4: avoid Rho and SQUFOF, 8: don’t run final ECM (as a result, a huge
composite may be declared to be prime). Note that a (strong) probabilistic primality test is used;
thus composites might not be detected, although no example is known.

You are invited to play with the flag settings and watch the internals at work by using gp’s
debug default parameter (level 3 shows just the outline, 4 turns on time keeping, 5 and above show
an increasing amount of internal details).

The library syntax is GEN factorint(GEN x, long flag).

193

3.8.36 factormod(f,{D},{flag = 0}). Factors the polynomial f over the finite field defined by
the domain D as follows:

e D = p a prime: factor over F;

e D = [T,p] for a prime p and T'(y) an irreducible polynomial over F,: factor over F,[y]/(T)
(as usual the main variable of 7" must have lower priority than the main variable of f);

e D a t_FFELT: factor over the attached field;
e D omitted: factor over the field of definition of f, which must be a finite field.

The coefficients of f must be operation-compatible with the corresponding finite field. The
result is a two-column matrix, the first column being the irreducible polynomials dividing f, and the
second the exponents. By convention, the 0 polynomial factors as 0'; a nonzero constant polynomial
has empty factorization, a 0 x 2 matrix. The irreducible factors are ordered by increasing degree
and the result is canonical: it will not change across multiple calls or sessions.

? factormod(x~2 + 1, 3) \\ over F_3

% =

[Mod(1, 3)*x~2 + Mod(1, 3) 1]

? 1iftall(factormod(x~2 + 1, [t~2+1, 3])) \\ over F_9

%2 =
[x+ t 1]
[x + 2%t 1]

\\ same, now letting GP choose a model

?7 T = £finit(3,2,°t)

%3 = Mod(1, 3)*t~2 + Mod(1, 3)*t + Mod(2, 3)
? 1iftall(factormod(x~2 + 1, [T, 3]1))

%# = \\ t is a root of T !

[x+ (¢ +2)1]

[x + (2xt + 1) 1]

7 t = ffgen(t"2+Mod(1,3)); factormod(x~2 + t~0) \\ same using t_FFELT
W5 =

[x+t 1]

[x + 2%t 1]

? factormod(x~2+Mod(1,3))

%6 =

[Mod(1, 3)*x~2 + Mod(1, 3) 1]

7 1iftall(factormod(x"2 + Mod(Mod(1,3), y~"2+1)))

Wt =

[x+y 1]

[x + 2%y 1]

If flag is nonzero, outputs only the degrees of the irreducible polynomials (for example to
compute an L-function). By convention, a constant polynomial (including the 0 polynomial) has

empty factorization. The degrees appear in increasing order but need not correspond to the ordering
with flag = 0 when multiplicities are present.

7 f =x"3 + 2%x"2 + x + 2;
? factormod(f, 5) \\ (x+2)°2 * (x+3)

194

%l =
[Mod(1, 5)*x + Mod(2, 5) 2]

[Mod(1, 5)*x + Mod(3, 5) 1]

? factormod(f, 5, 1) \\ (deg 1) * (deg 1)°2
h2 =

[1 1]

[1 2]
The library syntax is GEN factormodO(GEN f, GEN D = NULL, long flag).

3.8.37 factormodDDF(f,{D}). Distinct-degree factorization of the squarefree polynomial f over
the finite field defined by the domain D as follows:

e D = p a prime: factor over Fy;

e D = [T, p] for a prime p and T an irreducible polynomial over F,,: factor over F,[z]/(T);
e D a t_FFELT: factor over the attached field;

e D omitted: factor over the field of definition of f, which must be a finite field.

This is somewhat faster than full factorization. The coefficients of f must be operation-
compatible with the corresponding finite field. The result is a two-column matrix:

e the first column contains monic (squarefree) pairwise coprime polynomials dividing f, all of
whose irreducible factors have degree d;

e the second column contains the degrees of the irreducible factors.

The factors are ordered by increasing degree and the result is canonical: it will not change
across multiple calls or sessions.

?7f=(x"2+ 1) *x (x°2-1);

? factormodSQF(f,3) \\ squarefree over F_3

%2 =

[Mod(1, 3)*x"4 + Mod(2, 3) 1]

? factormodDDF(f, 3)

%3 =

[Mod (1, 3)*x"2 + Mod(2, 3) 1] \\ two degree 1 factors
[Mod (1, 3)*x"2 + Mod(1, 3) 2] \\ irred of degree 2

? for(i=1,10"5,factormodDDF (f,3))

time = 424 ms.

? for(i=1,10"5,factormod(f,3)) \\ full factorization is slower
time = 464 ms.

7 1liftall(factormodDDF(x~2 + 1, [3, t~2+1])) \\ over F_9

%6 =

[x"2 + 1 1] \\ product of two degree 1 factors

7 t = ffgen(t~2+Mod(1,3)); factormodDDF(x"2 + t~0) \\ same using t_FFELT
%7 =

[x~2 + 1 1]

? factormodDDF (x~2-Mod(1,3))

195

%8 =
[Mod(1, 3)*x"2 + Mod(2, 3) 1]

The library syntax is GEN factormodDDF(GEN f, GEN D = NULL).

3.8.38 factormodSQF(f, {D}). Squarefree factorization of the polynomial f over the finite field
defined by the domain D as follows:

e D = p a prime: factor over F;

e D = [T, p] for a prime p and T an irreducible polynomial over F,: factor over F,[z]/(T);
e D a t_FFELT: factor over the attached field;

e D omitted: factor over the field of definition of f, which must be a finite field.

This is somewhat faster than full factorization. The coefficients of f must be operation-
compatible with the corresponding finite field. The result is a two-column matrix:

e the first column contains monic squarefree pairwise coprime polynomials dividing f;
e the second column contains the power to which the polynomial in column 1 divides f;

The factors are ordered by increasing degree and the result is canonical: it will not change
across multiple calls or sessions.

?f=(x"2+1)"3 % (x72-1)"2;

? factormodSQF(f, 3) \\ over F_3
%1 =

[Mod(1, 3)*x"2 + Mod(2, 3) 2]

[Mod(1, 3)*x"2 + Mod(1, 3) 3]

? for(i=1,10"5,factormodSQF(f,3))

time = 192 ms.

? for(i=1,10"5,factormod(f,3)) \\ full factorization is slower
time = 409 ms.

? 1iftall(factormodSQF((x~2 + 1)°3, [3, t~2+1])) \\ over F_9

W =

[x~2 + 1 3]

7?7 t = ffgen(t"2+Mod(1,3)); factormodSQF((x~2 + t~0)"3) \\ same using t_FFELT
%5 =

[x~2 + 1 3]

? factormodSQF(x"8 + x°7 + x"6 + x"2 + x + Mod(1,2))

W6 =

[Mod (1, 2)*x + Mod(1, 2) 2]

[Mod(1, 2)*x"2 + Mod(1, 2)*x + Mod(1, 2) 3]

The library syntax is GEN factormodSQF(GEN f, GEN D = NULL).

196

3.8.39 factormodcyclo(n, p, {single = 0},{v =" z}). Factors n-th cyclotomic polynomial &, (z)
mod p, where p is a prime number not dividing n. Much faster than factormod(polcyclo(n),
p); the irreducible factors should be identical and given in the same order. If single is set, return
a single irreducible factor; else (default) return all the irreducible factors. Note that repeated
calls of this function with the single flag set may return different results because the algorithm is
probabilistic. Algorithms used are as follows.

Let F = Q((,)- Let K be the splitting field of p in F' and e the conductor of K. Then ®,,(x)
and ®.(x) have the same number of irreducible factors mod p and there is a simple algorithm
constructing irreducible factors of ®,,(z) from irreducible factors of ®.(x). So we may assume n is
equal to the conductor of K. Let d be the order of p in (Z/nZ)* and ¢(n) = df. Then ®,(z) has
f irreducible factors g;(x) (1 <i < f) of degree d over F, or Z,,.

e If d is small, then we factor g;(x) into d linear factors g;;(z), 1 < j < d in Fyz] (¢ = p?)
d

and construct Gi(z) = [[;_; gi;(z) € Fy[z]. Then Gi(z) € Fp[z] and gi(z) = Gi(z).
e If f is small, then we work in K, which is a Galois extension of degree f over Q. The
Gaussian period 0, = Trp/x (C%) is a sum of k-th power of roots of g;(z) and K = Q(6;).

Now, for each k, there is a polynomial Tj(z) € Qlz] satisfying 6 = Ty (01) because all 0, are
in K. Let T(x) € Z[z] be the minimal polynomial of #; over Q. We get #; mod p from T'(x)
and construct 601, --,04 mod p using Ty (x). Finally we recover g;(x) from 6,---,04 by Newton’s
formula.

7 lift(factormodcyclo(15, 11))

%1 = [x"2 + 9%x + 4, x"2 + 4%x + 5, x”2 + 3%x + 9, x"2 + 5%x + 3]
7 factormodcyclo(15, 11, 1) \\ single

%2 = Mod(1, 11)*x"2 + Mod(5, 11)*x + Mod(3, 11)

7 z1 = lift(factormod(polcyclo(12345),11311)[,1]);
time = 32,498 ms.

? z2 = factormodcyclo(12345,11311);

time = 47 ms.

? zl == z2

% =1

The library syntax is GEN factormodcyclo(long n, GEN p, long single, long v = -1)
where v is a variable number.

3.8.40 ffcompomap(f, g). Let k, [, m be three finite fields and f a (partial) map from [to m and
g a (partial) map from k to [, return the (partial) map f o g from k to m.

a = ffgen([3,5],’a); b = ffgen([3,10],’b); c = ffgen([3,20],’°c);
m = ffembed(a, b); n = ffembed(b, c);

rm = ffinvmap(m); rn = ffinvmap(n);

nm = ffcompomap(n,m);

ffmap(n,ffmap(m,a)) == ffmap(am, a)

% =1
ffcompomap(rm, rn) == ffinvmap(nm)
%6 =1

The library syntax is GEN ffcompomap(GEN f, GEN g).

197

3.8.41 ffembed(a,b). Given two finite fields elements a and b, return a map embedding the
definition field of a to the definition field of . Assume that the latter contains the former.

ffgen([3,5],’a);
ffgen([3,10],°b);
ffembed(a, b);
ffmap(m, a);

RUBEEVIEEV RN
=8 T @
I

7 minpoly(A) == minpoly(a)
W =1

The library syntax is GEN ffembed(GEN a, GEN b).

3.8.42 ffextend(a, P, {v}). Extend the field K of definition of a by a root of the polynomial
P € K[X] assumed to be irreducible over K. Return [r, m] where 7 is a root of P in the extension
field L and m is a map from K to L, see £fmap. If v is given, the variable name is used to display
the generator of L, else the name of the variable of P is used. A generator of L can be recovered
using b = f fgen(r). The image of P in L[X] can be recovered using PL = f fmap(m, P).

? a = ffgen([3,5],a);
7?7 P = x"2-a; polisirreducible(P)

%2 =1
? [r,m] = ffextend(a, P, ’b);
7r

%3 = b"9+2%b"8+b~7+2*xb"6+b"4+1
? subst(ffmap(m, P), x, 1)

%4 =0
? ffgen(r)
%5 =Db

The library syntax is GEN ffextend(GEN a, GEN P, long v = -1) where v is a variable
number.

3.8.43 fffrobenius(m,{n = 1}). Return the n-th power of the Frobenius map over the field of
definition of m.

7 a = ffgen([3,5],’a);
7 £f = fffrobenius(a);
? ffmap(f,a) == a"3
%3 =1

? g = fffrobenius(a, 5);
7 ffmap(g,a) ==

%5 =1

? h = fffrobenius(a, 2);
? h == ffcompomap(f,f)
wro=1

The library syntax is GEN fffrobenius(GEN m, long n).

198

3.8.44 figen(k, {v =’ z}). Return a generator for the finite field k¥ as a t_FFELT. The field k can
be given by

e its order ¢

e the pair [p, f] where ¢ = pf

e a monic irreducible polynomial with t_INTMOD coefficients modulo a prime.
e a t_FFELT belonging to k.

If v is given, the variable name is used to display g, else the variable of the polynomial or the
t_FFELT is used, else x is used.

When only the order is specified, the function uses the polynomial generated by ffinit and
is deterministic: two calls to the function with the same parameters will always give the same
generator.

For efficiency, the characteristic is not checked to be prime; similarly if a polynomial is given,
we do not check whether it is irreducible.

To obtain a multiplicative generator, call ffprimroot on the result.

? g = ffgen(16, ’t);

7 g.mod \\ recover the underlying polynomial.
h2 = tTA+ET3+E7 24841

? g.pol \\ lift g as a t_POL

w3 =t

7 g.p \\ recover the characteristic

W =2

7 fforder(g) \\ g is not a multiplicative generator
%5 =5

7 a = ffprimroot(g) \\ recover a multiplicative generator
W6 = t73+t72+t

7 fforder(a)

%7 = 15

The library syntax is GEN ffgen(GEN k, long v = -1) where v is a variable number.
To create a generator for a prime finite field, the function GEN p_to_GEN(GEN p, long v)
returns ffgen(p,v) 0.

3.8.45 flinit(p,n, {v =" z}). Computes a monic polynomial of degree n which is irreducible over
F,, where p is assumed to be prime. This function uses a fast variant of Adleman and Lenstra’s
algorithm.

It is useful in conjunction with ffgen; for instance if P = £finit(3,2), you can represent
elements in Fg2 in term of g = ffgen(P,’t). This can be abbreviated as g = ffgen(372, ’t),
where the defining polynomial P can be later recovered as g.mod.

The library syntax is GEN ffinit(GEN p, long n, 1long v = -1) where v is a variable
number.

199

3.8.46 flinvmap(m). m being a map from K to L two finite fields, return the partial map p from
L to K such that for all k € K, p(m(k)) = k.

7 a = ffgen([3,5],’a);
? b = ffgen([3,10],°Db);
? m = ffembed(a, b);

? p = ffinvmap(m);

? u = random(a);

? v = ffmap(m, u);

? ffmap(p, v™2+v+2) == u"2+u+2
w =1

? ffmap(p, b)
%8 =[]

The library syntax is GEN ffinvmap(GEN m).

3.8.47 fllog(x, g, {o}). Discrete logarithm of the finite field element x in base g, i.e. an e in Z such
that g¢ = o. If present, o represents the multiplicative order of g, see Section 3.8.2; the preferred
format for this parameter is [ord, factor(ord)], where ord is the order of g. It may be set as a
side effect of calling ffprimroot. The result is undefined if e does not exist. This function uses

e a combination of generic discrete log algorithms (see znlog)
e a cubic sieve index calculus algorithm for large fields of degree at least 5.
e Coppersmith’s algorithm for fields of characteristic at most 5.

7 t = ffgen(££finit(7,5));

? o = fforder(t)

%2 = 5602 \\ not a primitive root.
? £flog(t°10,t)

w3 = 10
? fflog(t~10,t, o)
%4 = 10

? g = ffprimroot(t, &o);

? o0 \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 11]

7 fforder(g, o)

%7 = 16806
? fflog(g~10000, g, o)
%8 = 10000

The library syntax is GEN fflog(GEN x, GEN g, GEN o = NULL).

200

3.8.48 ffmap(m,x). Given a (partial) map m between two finite fields, return the image of x by
m. The function is applied recursively to the component of vectors, matrices and polynomials. If
m is a partial map that is not defined at x, return [].

7 a = ffgen([3,5],%a);

? b = ffgen([3,10],°b);

? m = ffembed(a, b);

7 P = x"2+ax*xx+1;

7?7 Q = ffmap(m,P);

? ffmap(m,poldisc(P)) == poldisc(Q)
%6 =1

The library syntax is GEN ffmap(GEN m, GEN x).

3.8.49 fimaprel(m, z). Given a (partial) map m between two finite fields, express = as an algebraic
element over the codomain of m in a way which is compatible with m. The function is applied
recursively to the component of vectors, matrices and polynomials.

7 a = ffgen([3,5],a);
? b = ffgen([3,10],°b);
? m = ffembed(a, b);

?

mi= ffinvmap(m);
? R = ffmaprel(mi,b)
%5 = Mod(b,b"2+(at+l)*b+(a~2+2%a+2))

In particular, this function can be used to compute the relative minimal polynomial, norm and
trace:

7 minpoly(R)

%6 = x"2+(a+l)*x+(a"2+2*a+2)
? trace(R)

%7 = 2xa+2

? norm(R)

%8 = a”2+2*a+2

The library syntax is GEN ffmaprel(GEN m, GEN x).
3.8.50 ffnbirred(q,n,{fl = 0}). Computes the number of monic irreducible polynomials over F,,
of degree exactly n, (flag = 0 or omitted) or at most n (flag = 1).

The library syntax is GEN ffnbirredO(GEN q, long n, long f1). Also available are GEN
ffnbirred(GEN q, long n) (for flag = 0) and GEN ffsumnbirred(GEN q, long n) (for flag = 1).

201

3.8.51 fforder(zx, {o}). Multiplicative order of the finite field element x. If o is present, it represents
a multiple of the order of the element, see Section 3.8.2; the preferred format for this parameter
is [N, factor(N)], where N is the cardinality of the multiplicative group of the underlying finite
field.

?t ffgen(ffinit (nextprime(1078), 5));

? g = ffprimroot(t, &o); \\ o will be useful!

? fforder(g~1000000, o)

time = O ms.

%5 = 5000001750000245000017150000600250008403

? fforder (g~1000000)

time = 16 ms. \\ noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403

The library syntax is GEN fforder (GEN x, GEN o = NULL).

3.8.52 ffprimroot(z, {&o}). Return a primitive root of the multiplicative group of the definition
field of the finite field element x (not necessarily the same as the field generated by x). If present, o is
set to a vector [ord, fal, where ord is the order of the group and fa its factorization factor (ord).
This last parameter is useful in fflog and fforder, see Section 3.8.2.

7t
”g
7 o[1]

%3 = 100000950003610006859006516052476098
7 o[2]

%4 =

[2 1]

[7 2]
[31 1]

ffgen(ffinit (nextprime(1077), 5));
ffprimroot(t, &o);

[41 1]

(67 1]

[1523 1]
(10498781 1]
[15992881 1]
(46858913131 1]

7 £flog(g~1000000, g, o)
time = 1,312 ms.
%5 = 1000000

The library syntax is GEN ffprimroot(GEN x, GEN *o = NULL).

202

3.8.53 ged(z, {y}). Creates the greatest common divisor of x and y. If you also need the u and v
such that = * u + y *x v = ged(z, y), use the gcdext function. x and y can have rather quite general
types, for instance both rational numbers. If y is omitted and x is a vector, returns the ged of all
components of x, i.e. this is equivalent to content (x).

When z and y are both given and one of them is a vector /matrix type, the GCD is again taken
recursively on each component, but in a different way. If y is a vector, resp. matrix, then the result
has the same type as y, and components equal to gcd(x, y[i]), resp. gcd(x, y[,1]). Else if = is
a vector /matrix the result has the same type as z and an analogous definition. Note that for these
types, gcd is not commutative.

The algorithm used is a naive Euclid except for the following inputs:
e integers: use modified right-shift binary (“plus-minus” variant).

e univariate polynomials with coefficients in the same number field (in particular rational):
use modular ged algorithm.

e general polynomials: use the subresultant algorithm if coefficient explosion is likely (non
modular coefficients).

If w and v are polynomials in the same variable with inexact coefficients, their gcd is defined
to be scalar, so that

?7a=x+0.0; gcd(a,a)

% =1

? b = y*x + 0(y); gcd(b,b)
%2 =y

7 ¢ = 4xx + 0(273); gcd(c,c)
%3 =4

A good quantitative check to decide whether such a ged “should be” nontrivial, is to use polre-
sultant: a value close to 0 means that a small deformation of the inputs has nontrivial ged. You
may also use gcdext, which does try to compute an approximate ged d and provides u, v to check
whether uz 4 vy is close to d.

The library syntax is GEN ggcdO(GEN x, GEN y = NULL). Also available are GEN ggcd (GEN
x, GEN y), if y is not NULL, and GEN content (GEN x), if y = NULL.

3.8.54 gcdext(x,y). Returns [u,v,d] such that d is the ged of z,y, x * u 4+ y * v = ged(z,y), and
u and v minimal in a natural sense. The arguments must be integers or polynomials.

? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]

7 d

w2 = 2

7 gcdext(x™2-x, x"2+x-2)

%3 = [-1/2, 1/2, x - 1]

If x,y are polynomials in the same variable and inezact coefficients, then compute u, v, d such
that =« u + y * v = d, where d approximately divides both and x and y; in particular, we do not
obtain gcd(x,y) which is defined to be a scalar in this case:

7 a=x+0.0; gcd(a,a)
%1 =1

203

? gcdext(a,a)
%2 = [0, 1, x + 0.E-28]

7 gcdext(x-Pi, 6*x"2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]

For inexact inputs, the output is thus not well defined mathematically, but you obtain explicit
polynomials to check whether the approximation is close enough for your needs.

The library syntax is GEN gcdextO(GEN x, GEN y).

3.8.55 halfged(z,y). Let inputs and y be both integers, or both polynomials in the same
variable. Return a vector [M, [a,bl~], where M is an invertible 2 x 2 matrix such that Mx[x,y]~=
[a,b]~, where b is small. More precisely,

e polynomial case: det M has degree 0 and we have

dega > [max(degz,degy))/2| > degb.

e integer case: det M = +1 and we have

a > [\/max(kz:], \y|)1 > b.

Assuming x and y are nonnegative, then M ~! has nonnegative coefficients, and det M is equal to
the sign of both main diagonal terms M1, 1] and M2, 2].

The library syntax is GEN ghalfgcd(GEN x, GEN y).

3.8.56 hilbert(z,y, {p}). Hilbert symbol of z and y modulo the prime p, p = 0 meaning the place
at infinity (the result is undefined if p # 0 is not prime).

It is possible to omit p, in which case we take p = 0 if both x and y are rational, or one of them
is a real number. And take p = ¢ if one of x, y is a t_INTMOD modulo ¢ or a g-adic. (Incompatible
types will raise an error.)

The library syntax is long hilbert(GEN x, GEN y, GEN p = NULL).

3.8.57 isfundamental(D). True (1) if D is equal to 1 or to the discriminant of a quadratic field,
false (0) otherwise. D can be input in factored form as for arithmetic functions:

? isfundamental (factor(-8))

% =1

\\ count fundamental discriminants up to 1078

? ¢ = 0; forfactored(d = 1, 1078, if (isfundamental(d), c++)); c
time = 40,840 ms.

%2 = 30396325

? ¢ =0; for(d =1, 1078, if (isfundamental(d), c++)); c

time = 1min, 33,593 ms. \\ slower !

%3 = 30396325

The library syntax is long isfundamental (GEN D).

204

3.8.58 ispolygonal(z, s, {&N}). True (1) if the integer x is an s-gonal number, false (0) if not.
The parameter s > 2 must be a t_INT. If N is given, set it to n if z is the n-th s-gonal number.

? ispolygonal(36, 3, &N)
%=1
? N

The library syntax is long ispolygonal(GEN x, GEN s, GEN *N = NULL).
3.8.59 ispower(z, {k},{&n}). If k is given, returns true (1) if x is a k-th power, false (0) if not.
What it means to be a k-th power depends on the type of x; see issquare for details.

If £ is omitted, only integers and fractions are allowed for x and the function returns the
maximal k& > 2 such that z = n* is a perfect power, or 0 if no such k exist; in particular ispower (-
1), ispower(0), and ispower (1) all return 0.

If a third argument &n is given and x is indeed a k-th power, sets n to a k-th root of x.

For a t_FFELT x, instead of omitting k (which is not allowed for this type), it may be natural to
set

k= (x.p "~ x.f -1) / fforder(x)

The library syntax is long ispower (GEN x, GEN k = NULL, GEN *n = NULL). Also available
is long gisanypower (GEN x, GEN *pty) (k omitted).

3.8.60 ispowerful(z). True (1) if x is a powerful integer, false (0) if not; an integer is powerful if
and only if its valuation at all primes dividing z is greater than 1.

7 ispowerful(50)

%l =0

7 ispowerful(100)

%2 =1

7 ispowerful(573*(1071000+1)"2)

%3 =1

The library syntax is long ispowerful (GEN x).
3.8.61 isprime(z, {flag = 0}). True (1) if z is a prime number, false (0) otherwise. A prime number

is a positive integer having exactly two distinct divisors among the natural numbers, namely 1 and
itself.

This routine proves or disproves rigorously that a number is prime, which can be very slow
when z is indeed a large prime integer. For instance a 1000 digits prime should require 15 to 30
minutes with default algorithms. Use ispseudoprime to quickly check for compositeness. Use
primecert in order to obtain a primality proof instead of a yes/no answer; see also factor.

The function accepts vector/matrices arguments, and is then applied componentwise.

If flag = 0, use a combination of

e Baillie-Pomerance-Selfridge-Wagstaff compositeness test (see ispseudoprime),

e Selfridge “p — 17 test if x — 1 is smooth enough,

e Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general medium-sized x (less than

1500 bits),

205

o Atkin-Morain’s Elliptic Curve Primality Prover (ECPP) for general large x.

If flag = 1, use Selfridge-Pocklington-Lehmer “p — 1”7 test; this requires partially factoring
various auxilliary integers and is likely to be very slow.

If flag = 2, use APRCL only.
If flag = 3, use ECPP only.

The library syntax is GEN gisprime(GEN x, long flag).

3.8.62 isprimepower(z, {&n}). If z = p* is a prime power (p prime, k > 0), return k, else return
0. If a second argument &n is given and x is indeed the k-th power of a prime p, sets n to p.

The library syntax is long isprimepower (GEN x, GEN *n = NULL).

3.8.63 ispseudoprime(z, {flag}). True (1) if x is a strong pseudo prime (see below), false (0)
otherwise. If this function returns false, x is not prime; if, on the other hand it returns true, it
is only highly likely that x is a prime number. Use isprime (which is of course much slower) to
prove that z is indeed prime. The function accepts vector /matrices arguments, and is then applied
componentwise.

If flag = 0, checks whether = has no small prime divisors (up to 101 included) and is a Baillie-
Pomerance-Selfridge-Wagstaff pseudo prime. Such a pseudo prime passes a Rabin-Miller test for
base 2, followed by a Lucas test for the sequence (P, 1), where P > 3 is the smallest odd integer
such that P? — 4 is not a square mod x. (Technically, we are using an “almost extra strong Lucas
test” that checks whether V,, is 42, without computing U, .)

There are no known composite numbers passing the above test, although it is expected that
infinitely many such numbers exist. In particular, all composites < 24 are correctly detected
(checked using http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html).

If flag > 0, checks whether x is a strong Miller-Rabin pseudo prime for flag randomly chosen
bases (with end-matching to catch square roots of —1).

The library syntax is GEN gispseudoprime(GEN x, long flag).
3.8.64 ispseudoprimepower(x, {&n}). If z = p¥ is a pseudo-prime power (p pseudo-prime as

per ispseudoprime, k£ > 0), return k, else return 0. If a second argument &n is given and z is
indeed the k-th power of a prime p, sets n to p.

More precisely, k is always the largest integer such that = n* for some integer n and, when
n < 264 the function returns & > 0 if and only if n is indeed prime. When n > 254 is larger
than the threshold, the function may return 1 even though n is composite: it only passed an
ispseudoprime(n) test.

The library syntax is long ispseudoprimepower (GEN x, GEN *n = NULL).

206

3.8.65 issquare(z, {&n}). True (1) if z is a square, false (0) if not. What “being a square” means
depends on the type of z: all t_COMPLEX are squares, as well as all nonnegative t_REAL; for exact
types such as t_INT, t_FRAC and t_INTMOD, squares are numbers of the form s? with s in Z, Q and
Z/NZ respectively.

? issquare(3) \\ as an integer

%1 =0

? issquare(3.) \\ as a real number
w2 =1

? issquare(Mod(7, 8)) \\ in Z/8Z

w3 =0

? issquare(5 + 0(1374)) \\ in Q_13

W4 =0

If n is given, a square root of x is put into n.

7 issquare(4, &n)

%L =1
7 n
%2 = 2

For polynomials, either we detect that the characteristic is 2 (and check directly odd and
even-power monomials) or we assume that 2 is invertible and check whether squaring the truncated
power series for the square root yields the original input.

For t_POLMOD z, we only support t_POLMODs of t_INTMODs encoding finite fields, assuming
without checking that the intmod modulus p is prime and that the polmod modulus is irreducible
modulo p.

? issquare(Mod(Mod(2,3), x"2+1), &n)

% =1

?7n

%2 = Mod(Mod (2, 3)*x, Mod(1, 3)*x~2 + Mod(1, 3))

The library syntax is long issquareall(GEN x, GEN *n = NULL). Also available is long is-
square (GEN x). Deprecated GP-specific functions GEN gissquare(GEN x) and GEN gissquare-
all(GEN x, GEN *pt) return gen O and gen_1 instead of a boolean value.

3.8.66 issquarefree(x). True (1) if x is squarefree, false (0) if not. Here x can be an integer or a
polynomial with coefficients in an integral domain.

? issquarefree(12)

%l =0

? issquarefree(6)

w2 =1

? issquarefree(x"3+x"2)

%3 =0

? issquarefree (Mod(1,4)*(x"2+x+1)) \\ Z/4Z is not a domain !
*x*x at top-level: issquarefree(Mod(1,4)*(x"2+x+1))
* oKk e
x** issquarefree: impossible inverse in Fp_inv: Mod(2, 4).

A polynomial is declared squarefree if ged(z,2’) is 1. In particular a nonzero polynomial with
inexact coefficients is considered to be squarefree. Note that this may be inconsistent with factor,

207

which first rounds the input to some exact approximation before factoring in the apropriate domain;
this is correct when the input is not close to an inseparable polynomial (the resultant of x and z’
is not close to 0).

An integer can be input in factored form as in arithmetic functions.

7 issquarefree(factor(6))

%1 =1

\\ count squarefree integers up to 1078

? ¢ =0; for(d =1, 1078, if (issquarefree(d), c++)); c

time = 3min, 2,590 ms.

%2 = 60792694

? ¢ = 0; forfactored(d = 1, 1078, if (issquarefree(d), c++)); c
time = 45,348 ms. \\ faster !

%3 = 60792694

The library syntax is long issquarefree(GEN x).

3.8.67 istotient(x, {&N}). True (1) if x = ¢(n) for some integer n, false (0) if not.

? istotient(14)

%1 =0
? istotient (100)
%2 =0

If N is given, set N = n as well.

? istotient(4, &n)

%L =1
7 n
%2 = 10

The library syntax is long istotient(GEN x, GEN *N = NULL).

3.8.68 kronecker(z,y). Kronecker symbol (z|y), where 2 and y must be of type integer. By
definition, this is the extension of Legendre symbol to Z x Z by total multiplicativity in both
arguments with the following special rules for y = 0, —1 or 2:

e (2|0) =1if |z| =1 and 0 otherwise.
o (x| —1)=1if x > 0 and —1 otherwise.
e (z|2)=0if zriseven and 1 if z = 1,—1mod 8 and —1 if z = 3, -3 mod 8.

The library syntax is long kronecker (GEN x, GEN y).

208

3.8.69 lem(z, {y}). Least common multiple of x and y, i.e. such that lem(z,y) * ged(z,y) = x * y,
up to units. If y is omitted and «x is a vector, returns the lem of all components of z. For integer
arguments, return the nonnegative lem.

When z and y are both given and one of them is a vector/matrix type, the LCM is again taken
recursively on each component, but in a different way. If y is a vector, resp. matrix, then the result
has the same type as y, and components equal to lem(x, y[i]), resp. lem(x, y[,1i]). Else if z is
a vector /matrix the result has the same type as z and an analogous definition. Note that for these
types, lcm is not commutative.

Note that 1cm(v) is quite different from
1 =v[1]; for (1 =1, #v, 1 = 1lcm(1, v[i]))

Indeed, 1em(v) is a scalar, but 1 may not be (if one of the v[i] is a vector/matrix). The computa-
tion uses a divide-conquer tree and should be much more efficient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):

? v = vector(10”5, i, random);

? lem(v);

time = 546 ms.

?1=v[1]; for (i =1, #v, 1 = 1lcm(1, v[i]))
time = 4,561 ms.

The library syntax is GEN glcmO(GEN x, GEN y = NULL).
3.8.70 logint(x, b, {&z}). Return the largest integer e so that b < x, where the b > 1 is an integer
and x is a positive real number. If the parameter z is present, set it to b°.

? logint (1000, 2)

%1 =9

? 279

%2 = 512

7 logint (1000, 2, &=z)
%3 =9

? z

%4 = 512

? logint(Pi~2, 2, &=z)
%5 =3

? z

%6 = 8

The number of digits used to write = in base b is 1 + logint(x,b):

? #digits(1000!, 10)

%5 = 2568
? logint(1000!, 10)
%6 = 2567

This function may conveniently replace
floor(log(x) / log(b))
which may not give the correct answer since PARI does not guarantee exact rounding.

The library syntax is long logintO(GEN x, GEN b, GEN *z = NULL).

209

3.8.71 moebius(z). Moebius p-function of |z|; must be a nonzero integer.

The library syntax is long moebius(GEN x).

3.8.72 nextprime(x). Finds the smallest pseudoprime (see ispseudoprime) greater than or equal
to x. x can be of any real type. Note that if x is a pseudoprime, this function returns z and not
the smallest pseudoprime strictly larger than x. To rigorously prove that the result is prime, use
isprime.

7 nextprime(2)

%1 =2
? precprime(Pi)
%2 =5

7 nextprime(-10)
%3 = 2 \\ primes are positive

Despite the name, please note that the function is not guaranteed to return a prime number,
although no counter-example is known at present. The return value is a guaranteed prime if
x < 294, To rigorously prove that the result is prime in all cases, use isprime.

The library syntax is GEN nextprime (GEN x).

3.8.73 numdiv(z). Number of divisors of |z|. must be of type integer.

The library syntax is GEN numdiv(GEN x).

3.8.74 omega(z). Number of distinct prime divisors of |z|. must be of type integer.
7 factor(392)
hl =
[2 3]
[7 2]
7 omega(392)
%2 = 2; \\ without multiplicity
7 bigomega(392)
%3 =5; \\ = 3+2, with multiplicity

The library syntax is long omega(GEN x).

3.8.75 precprime(z). Finds the largest pseudoprime (see ispseudoprime) less than or equal to
x; the input x can be of any real type. Returns 0 if z < 1. Note that if « is a prime, this function
returns and not the largest prime strictly smaller than x.

? precprime(2)

%1 =2
? precprime(Pi)
%2 =3

? precprime(-10)

%3 = 0 \\ primes are positive
The function name comes from preceding prime. Despite the name, please note that the function
is not guaranteed to return a prime number (although no counter-example is known at present);
the return value is a guaranteed prime if 2 < 264, To rigorously prove that the result is prime in
all cases, use isprime.

The library syntax is GEN precprime (GEN x).

210

3.8.76 prime(n). The n'" prime number

7 prime(1079)
%1 = 22801763489

Uses checkpointing and a naive O(n) algorithm. Will need about 30 minutes for n up to 10'!; make

sure to start gp with primelimit at least \/p,, e.g. the value y/nlog(nlogn) is guaranteed to be
sufficient.

The library syntax is GEN prime(long n).
3.8.77 primecert(N, {flag = 0}, {partial = 0}). If N is a prime, return a PARI Primality Certifi-

cate for the prime N, as described below. Otherwise, return 0. A Primality Certificate ¢ can be
checked using primecertisvalid(c).

If flag = 0 (default), return an ECPP certificate (Atkin-Morain)
If flag = 0 and partial > 0, return a (potentially) partial ECPP certificate.

A PARI ECPP Primality Certificate for the prime N is either a prime integer N < 2% or
a vector C of length ¢ whose ith component C[i] is a vector [N;,t;,s;,a;, P;] of length 5 where
N; = N. It is said to be walid if for each i = 1,..., ¢, all of the following conditions are satisfied

e N, is a positive integer
e t; is an integer such that t? < 4N;
e s; is a positive integer which divides m; where m; = N; +1 —¢;

o If we set ¢; = ~*, then

°q > (Ni1/4 +1)2
e g =N 1if1 <i<l
o g, < 2% is prime
e g; is an integer

e P[i] is a vector of length 2 representing the affine point P; = (z;,y;) on the elliptic curve
E :y? = 23 4+ a;x + b; modulo N; where b; = y? — xf’ — a;x; satisfying the following:

o miP; = 0o
OSiPi%OO

Using the following theorem, the data in the vector C allows to recursively certify the primality
of N (and all the ¢;) under the single assumption that ¢, be prime.

211

Theorem. If N is an integer and there exist positive integers m,q and a point P on the elliptic
curve E : y?> = 2% + ax + b defined modulo N such that ¢ > (N4 +1)2, ¢ is a prime divisor of m,
mP = oo and %P # 00, then N is prime.

264 2partizzl

A partial certificate is identical except that the condition g, < is replaced by gy <
Such partial certificate C' can be extended to a full certificate by calling C' = primecert(C), or to
a longer partial certificate by calling C' = primecert(C,,b) with b < partial.

? primecert(10°35 + 69)

%1 = [[100000000000000000000000000000000069, 5468679110354
52074, 2963504668391148, 0, [60737979324046450274283740674
208692, 24368673584839493121227731392450025]], [3374383076
4501150277, -11610830419, 734208843, 0, [26740412374402652
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0
, [18022351516, 9326882 511]]

7 primecert(nextprime(2764))

%2 = [[18446744073709551629, -8423788454, 160388, 1, [1059
8342506117936052, 2225259013356795550]1]]

? primecert(6)

%3 =0
? primecert(41)
= 41

7 N = 272000+841;

7 Cpl = primecert(N,,1500); \\ partial certificate
time = 16,018 ms.

7 Cp2 = primecert(Cpl,,1000); \\ (longer) partial certificate
time = 5,890 ms.

? C = primecert(Cp2); \\ full certificate for N
time = 1,777 ms.

7 primecertisvalid(C)

%9 =1

? primecert(N);

time = 23,625 ms.

As the last command shows, attempting a succession of partial certificates should be about as fast
as a direct computation.

If flag =1 (very slow), return an N — 1 certificate (Pocklington Lehmer)

A PARI N — 1 Primality Certificate for the prime N is either a prime integer N < 254 or a
pair [N, C], where C'is a vector with £ elements which are either a single integer p; < 2%4 or a triple
[pi, a;, C;] with p; > 264 satisfying the following properties:

e p; is a prime divisor of N — 1;
e a; is an integer such that ¢ "' =1 (mod N) and aEN_l)/pi — 1 is coprime with N;
e (; is an N — 1 Primality Certificate for p;

e The product F of the p:p (N1 is strictly larger than N'/3. Provided that all p; are indeed
primes, this implies that any divisor of NV is congruent to 1 modulo F.

212

e The Brillhart-Lehmer-Selfridge criterion is satisfied: when we write N =1+ ¢; F + ¢ F? in
base F the polynomial 1+ ¢; X + c3X? is irreducible over Z, i.e. ¢ — 4cy is not a square. This
implies that IV is prime.

This algorithm requires factoring partially p—1 for various prime integers p with an unfactored
parted < p?/3 and this may be exceedingly slow compared to the default.

The algorithm fails if one of the pseudo-prime factors is not prime, which is exceedingly unlikely
and well worth a bug report. Note that if you monitor the algorithm at a high enough debug level,
you may see warnings about untested integers being declared primes. This is normal: we ask for
partial factorizations (sufficient to prove primality if the unfactored part is not too large), and
factor warns us that the cofactor hasn’t been tested. It may or may not be tested later, and may
or may not be prime. This does not affect the validity of the whole Primality Certificate.

The library syntax is GEN primecertO(GEN N, long flag, long partial). Also available
is GEN ecppO(GEN N, long partial) (flag = 0).

3.8.78 primecertexport(cert, { format = 0}). Returns a string suitable for print/write to display
a primality certificate from primecert, the format of which depends on the value of format:

e 0 (default): Human-readable format. See ??primecert for the meaning of the successive
N,t,s,a,m,q, E, P. The integer D is the negative fundamental discriminant coredisc(t? — 4N).

e 1: Primo format 4.
e 2: MAGMA format.

Currently, only ECPP Primality Certificates are supported.

? cert = primecert(10°35+69);

7 s = primecertexport(cert); \\ Human-readable

? print(s)

[1]
N
t
s

100000000000000000000000000000000069
546867911035452074
2963504668391148

=0

= -3

= 99999999999999999453132088964547996
= 33743830764501150277

o, 1]
[21567861682493263464353543707814204,
49167839501923147849639425291163552]

(2]
N
t
s

uvmae B Op

33743830764501150277
-11610830419
734208843

=0

= -3

= 33743830776111980697

= 45959444779

[0, 25895956964997806805]
[29257172487394218479, 3678591960085668324]

utmQe B Op

213

\\ Primo format
? s = primecertexport(cert,l); write("cert.out", s);

\\ Magma format, write to file
? s = primecertexport(cert,2); write("cert.m", s);

? cert = primecert(10735+69, 1); \\ N-1 certificate

? primecertexport(cert)

x** at top-level: primecertexport(cert)

*kk T

% primecertexport: sorry, N-1 certificate is not yet implemented.

The library syntax is GEN primecertexport(GEN cert, long format).

3.8.79 primecertisvalid(cert). Verifies if cert is a valid PARI ECPP Primality certificate, as
described in ?7primecert.

? cert = primecert(107°35 + 69)

%1 = [[100000000000000000000000000000000069, 5468679110354
52074, 2963504668391148, 0, [60737979324046450274283740674
208692, 24368673584839493121227731392450025]1], [3374383076
4501150277, -11610830419, 734208843, 0, [26740412374402652
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0O
, [18022351516, 9326882 51]11]

? primecertisvalid(cert)

w2 =1

? cert[1] [1]++; \\ random perturbation
? primecertisvalid(cert)

%4 = 0 \\ no longer valid

? primecertisvalid(primecert(6))

%5 =0

The library syntax is long primecertisvalid(GEN cert).

3.8.80 primepi(x). The prime counting function. Returns the number of primes p, p < z.

7 primepi(10)

Wl = 4;

? primes(5)

%2 = [2, 3, 5, 7, 11]
? primepi(10711)

%3 = 4118054813

Uses checkpointing and a naive O(x) algorithm; make sure to start gp with primelimit at least

JZ.

The library syntax is GEN primepi(GEN x).

214

3.8.81 primes(n). Creates a row vector whose components are the first n prime numbers. (Returns
the empty vector for n < 0.) A t_VEC n = [a,b] is also allowed, in which case the primes in [a,]
are returned

7 primes(10) \\ the first 10 primes
% =102, 3, 5, 7, 11, 13, 17, 19, 23, 29]
7 primes([0,29]) \\ the primes up to 29
%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])

%3 = [17, 19, 23, 29]

The library syntax is GEN primesO(GEN n).

3.8.82 gfbclassno(D, {flag = 0}). Ordinary class number of the quadratic order of discriminant
D, for “small” values of D.

e if D > 0 or flag = 1, use a O(|D|'/?) algorithm (compute L(1,xp) with the approximate
functional equation). This is slower than quadclassunit as soon as |D| ~ 102 or so and is not
meant to be used for large D.

eif D < 0 and flag = 0 (or omitted), use a O(|D|'/*) algorithm (Shanks’s baby-step/giant-step
method). It should be faster than quadclassunit for small values of D, say |D| < 10'8.

Important warning. In the latter case, this function only implements part of Shanks’s method
(which allows to speed it up considerably). It gives unconditionnally correct results for |D| < 2-1019,
but may give incorrect results for larger values if the class group has many cyclic factors. We thus
recommend to double-check results using the function quadclassunit, which is about 2 to 3 times
slower in the range |D| € [1019,10'8], assuming GRH. We currently have no counter-examples but
they should exist: we would appreciate a bug report if you find one.

Warning. Contrary to what its name implies, this routine does not compute the number of classes
of binary primitive forms of discriminant D, which is equal to the narrow class number. The two
notions are the same when D < 0 or the fundamental unit € has negative norm; when D > 0 and
Ne > 0, the number of classes of forms is twice the ordinary class number. This is a problem
which we cannot fix for backward compatibility reasons. Use the following routine if you are only
interested in the number of classes of forms:

7 QFBclassno(D) = gfbclassno(D) * if (D > 0 &% quadunitnorm(D) > 0, 2, 1)
? QFBclassno(136)

w =4

? gfbclassno(136)

w2 = 2

7 quadunitnorm(136)

w3 =1

7 bnfnarrow(bnfinit(x"2 - 136)).cyc

%4 = [4] \\ narrow class group is cyclic ~ Z/4Z

Note that the use of bnfnarrow above is only valid because 136 is a fundamental discriminant:
that function is asymptotically faster (and returns the group structure, not only its order) but only
supports mazximal orders. Here are a few more examples:

? gfbclassno(400000028) \\ D > 0: slow
time = 3,140 ms.

215

%=1

7 quadclassunit(400000028) .no

time = 20 ms. \\ much faster, assume GRH

%2 =1

? gqfbclassno(-400000028) \\ D < 0: fast enough
time = 0 ms.

%3 = 7253

? quadclassunit(-400000028) .no

time = 0 ms.

%4 = 7253

See also qfbhclassno.

The library syntax is GEN gqfbclassnoO(GEN D, long flag).

3.8.83 qfbcomp(z,y). composition of the binary quadratic forms z and y, with reduction of the
result.

The library syntax is GEN qfbcomp(GEN x, GEN y).

3.8.84 gqfbcompraw(zx,y). composition of the binary quadratic forms = and y, without reduction
of the result. This is useful e.g. to compute a generating element of an ideal. The result is undefined
if x and y do not have the same discriminant.

The library syntax is GEN gqfbcompraw(GEN x, GEN y).

3.8.85 qfbcornacchia(D,n). Solve the equation x? + Dy? = n in integers = and y, where D > 0
and n is prime or 4 times a prime (in the latter case, z and y need not be coprime). This
function is a special case of qfbsolve applied to the principal form in the imaginary quadratic
order of discriminant —4D (returning the solution with non-negative z and y). As its name implies,
gfbcornacchia uses Cornacchia’s algorithm and runs in time polynomial in log D and log p, in fact
quasi-linear in their max (through halfgcd; in practical ranges, gfbcornacchia should be two or
three times faster than qfbsolve.

? gfbcornacchia(1l, 113)

%l = [8, 7]

? qfbsolve(Qfb(1,0,1), 113)

w2 = [7, -8]

7 gfbcornacchia(l, 4%113) \\ no solution
w3 =[]

? qfbcornacchia(l, 4x109) \\ no solution

%4 = [20, 6]

7 p = 122838793181521; qgfbcornacchia(24, p)

%4 = [10547339, 694995]

7?7 Q = Qfb(1,0,24); gfbsolve(q,p)

%5 = [10547339, 694995]

? for(i=1,10"5,qfbsolve(Q,p))

time = 589 ms.

? for(i=1,10"5,gfbcornacchia(24,p)) \\ faster than gfbsolve
time = 216 ms.

The library syntax is GEN gqfbcornacchia(GEN D, GEN n).

216

3.8.86 gfbhclassno(z). Hurwitz class number of , when z is nonnegative and congruent to 0 or
3 modulo 4, and 0 for other values. For > 5 - 10°, we assume the GRH, and use quadclassunit
with default parameters.

7 gfbhclassno(l) \\ not 0 or 3 mod 4

%l =0

? gfbhclassno(3)
%2 = 1/3

? gfbhclassno(4)
%3 = 1/2

? gfbhclassno(23)
W =3

The library syntax is GEN hclassno(GEN x).

3.8.87 gqfbnucomp(z,y, L). composition of the primitive positive definite binary quadratic forms
x and y (type t_QFB) using the NUCOMP and NUDUPL algorithms of Shanks, a la Atkin.
L is any positive constant, but for optimal speed, one should take L = |D/4|'/%, i.e. sqrt-
nint (abs(D)>>2,4), where D is the common discriminant of x and y. When z and y do not have
the same discriminant, the result is undefined.

The current implementation is slower than the generic routine for small D, and becomes faster
when D has about 45 bits.

The library syntax is GEN nucomp(GEN x, GEN y, GEN L). Also available is GEN nudupl (GEN
x, GEN L) when x =y.

3.8.88 qfbnupow(z,n,{L}). n-th power of the primitive positive definite binary quadratic
form z using Shanks’s NUCOMP and NUDUPL algorithms; if set, L should be equal to sqrt-
nint (abs(D)>>2,4), where D < 0 is the discriminant of x.

The current implementation is slower than the generic routine for small discriminant D, and
becomes faster for D = 24°.

The library syntax is GEN nupow(GEN x, GEN n, GEN L = NULL).
3.8.89 qfbpow(z,n). n-th power of the binary quadratic form z, computed with reduction (i.e. us-
ing qfbcomp).

The library syntax is GEN qfbpow(GEN x, GEN n).
3.8.90 gfbpowraw(z,n). n-th power of the binary quadratic form z, computed without doing
any reduction (i.e. using qgfbcompraw). Here n must be nonnegative and n < 23

The library syntax is GEN gqfbpowraw(GEN x, long n).
3.8.91 gfbprimeform(z, p). Prime binary quadratic form of discriminant = whose first coefficient
is p, where |p| is a prime number. By abuse of notation, p = +1 is also valid and returns the unit

form. Returns an error if x is not a quadratic residue mod p, or if z < 0 and p < 0. (Negative
definite t_QFB are not implemented.)

The library syntax is GEN primeform(GEN x, GEN p).

217

3.8.92 gfbred(z, {flag = 0}, {isd}, {sd}). Reduces the binary quadratic form x (updating Shanks’s
distance function d if x = [q, d] is and extended indefinite form). If flag is 1, the function performs
a single reduction step, and a complete reduction otherwise.

The arguments isd, sd, if present, supply the values of L\/T)J, and /D respectively, where D

is the discriminant (this is not checked). If d < 0 these values are useless.

The library syntax is GEN qfbredO(GEN x, long flag, GEN isd = NULL, GEN sd = NULL)
. Also available is GEN qfbred(GEN x) (flagis 0, isd and sd are NULL)

3.8.93 gfbredsl2(x, {isD}). Reduction of the (real or imaginary) binary quadratic form z, return
[y, g] where y is reduced and g in SL(2,Z) is such that g - x = y; isD, if present, must be equal to
sqrtint(D), where D > 0 is the discriminant of .

The library syntax is GEN qfbredsl12(GEN x, GEN isD = NULL).

3.8.94 qgfbsolve(Q,n,{flag = 0}). Solve the equation Q(z,y) = n in coprime integers = and y
(primitive solutions), where @ is a binary quadratic form and n an integer, up to the action of the
special orthogonal group G = SO(Q, Z), which is isomorphic to the group of units of positive norm
of the quadratic order of discriminant D = disc@. If D > 0, G is infinite. If D < —4, G is of order
2,if D = —=3, G is of order 6 and if D = —4, G is of order 4.

Binary digits of flag mean: 1: return all solutions if set, else a single solution; return [] if a
single solution is wanted (bit unset) but none exist. 2: also include imprimitive solutions.

When flag = 2 (return a single solution, possibly imprimitive), the algorithm returns a solution
with minimal content; in particular, a primitive solution exists if and only if one is returned.

The integer n can be given by its factorization matrix fa = factor(n) or by the pair [n, fa].

7 gfbsolve(Qfb(1,0,2), 603) \\ a single primitive solution
%1 =[5, 17]

? qfbsolve(Qfb(1,0,2), 603, 1) \\ all primitive solutions
%2 = [[5, 171, [-19, -11]1, [19, -11]1, [5, -17]1]

7 gfbsolve(Qfb(1,0,2), 603, 2) \\ a single, possibly imprimitive solution
%3 = [5, 17] \\ actually primitive

? qfbsolve(Qfb(1,0,2), 603, 3) \\ all solutions
% = [[5, 171, [-19, -11], [19, -11], [6, -17], [-21, 9], [-21, -9]]

? N = 27128+1; F = factor(N);

7 gfbsolve(Qfb(1,0,1),[N,F],1)

%3 = [[-16382350221535464479,8479443857936402504] ,
[18446744073709551616,-1], [-18446744073709551616,-1],
[16382350221535464479,8479443857936402504]]

For fixed @), assuming the factorisation of n is given, the algorithm runs in probabilistic
polynomial time in logp, where p is the largest prime divisor of n, through the computation of
square roots of D modulo 4p). The dependency on @ is more complicated: polynomial time in
log|D| if @ is imaginary, but exponential time if) is real (through the computation of a full cycle
of reduced forms). In the latter case, note that bnfisprincipal provides a solution in heuristic
subexponential time assuming the GRH.

The library syntax is GEN qfbsolve(GEN Q, GEN n, long flag).

218

3.8.95 quadclassunit(D, {flag = 0}, {tech = []}). Buchmann-McCurley’s sub-exponential algo-
rithm for computing the class group of a quadratic order of discriminant D.

This function should be used instead of gfbclassno or quadregulator when D < —1025,
D > 109, or when the structure is wanted. It is a special case of bnfinit, which is slower, but
more robust.

The result is a vector v whose components should be accessed using member functions:
e v.no: the class number

e v.cyc: a vector giving the structure of the class group as a product of cyclic groups;
e v.gen: a vector giving generators of those cyclic groups (as binary quadratic forms).

e v.reg: the regulator, computed to an accuracy which is the maximum of an internal accuracy
determined by the program and the current default (note that once the regulator is known to a
small accuracy it is trivial to compute it to very high accuracy, see the tutorial).

The flag is obsolete and should be left alone. In older versions, it supposedly computed the
narrow class group when D > 0, but this did not work at all; use the general function bnfnarrow.

Optional parameter tech is a row vector of the form [cy, ¢2], where ¢; < ¢o are nonnegative real
numbers which control the execution time and the stack size, see 3.13.7. The parameter is used as a
threshold to balance the relation finding phase against the final linear algebra. Increasing the default
c1 means that relations are easier to find, but more relations are needed and the linear algebra will
be harder. The default value for ¢; is 0 and means that it is taken equal to co. The parameter cs is
mostly obsolete and should not be changed, but we still document it for completeness: we compute
a tentative class group by generators and relations using a factorbase of prime ideals < ¢ (log|D|)?,
then prove that ideals of norm < cy(log|D|)? do not generate a larger group. By default an optimal
¢ is chosen, so that the result is provably correct under the GRH — a famous result of Bach states
that co = 6 is fine, but it is possible to improve on this algorithmically. You may provide a smaller
c2, it will be ignored (we use the provably correct one); you may provide a larger co than the default
value, which results in longer computing times for equally correct outputs (under GRH).

The library syntax is GEN quadclassunitO(GEN D, long flag, GEN tech = NULL, long
prec). If you really need to experiment with the tech parameter, it will be more convenient to use
GEN Buchquad(GEN D, double cl1, double c2, long prec).

3.8.96 quaddisc(x). Discriminant of the étale algebra Q(y/x), where z € Q*. This is the same as
coredisc(d) where d is the integer squarefree part of x, so z = df? with f € Q* and d € Z. This
returns 0 for z = 0, 1 for x square and the discriminant of the quadratic field Q(y/x) otherwise.

? quaddisc(7)

%1 = 28
? quaddisc(-7)
%2 = -7

The library syntax is GEN quaddisc(GEN x).

219

3.8.97 quadgen(D, {v =" w}). Creates the quadratic number w = (a + v/D)/2 where a = 0 if
D =0mod4, a =1if D = 1mod4, so that (1,w) is an integral basis for the quadratic order of
discriminant D. D must be an integer congruent to 0 or 1 modulo 4, which is not a square. If v is
given, the variable name is used to display g else 'w’ is used.
? w = quadgen(5, ’w); w2 - w - 1
% =0
? w = quadgen(0, ’w)
*x** at top-level: w=quadgen(0)
*ok ok B
*x** quadgen: domain error in quadpoly: issquare(disc) = 1

The library syntax is GEN quadgenO(GEN D, long v = -1) where v is a variable number.
When v does not matter, the function GEN quadgen(GEN D) is also available.
3.8.98 quadhilbert(D). Relative equation defining the Hilbert class field of the quadratic field of
discriminant D.
If D <0, uses complex multiplication (Schertz’s variant).

If D > 0 Stark units are used and (in rare cases) a vector of extensions may be returned whose
compositum is the requested class field. See bnrstark for details.

The library syntax is GEN quadhilbert(GEN D, long prec).

3.8.99 quadpoly(D, {v =" x}). Creates the “canonical” quadratic polynomial (in the variable v)
corresponding to the discriminant D, i.e. the minimal polynomial of quadgen(D). D must be an
integer congruent to 0 or 1 modulo 4, which is not a square.
? quadpoly(5,’y)
" =y2-y-1
? quadpoly(0,’y)
*x** at top-level: quadpoly(0,’y)
* Kk B
*x** quadpoly: domain error in quadpoly: issquare(disc) = 1

The library syntax is GEN quadpolyO(GEN D, long v = -1) where v is a variable number.
3.8.100 quadray(D, f). Relative equation for the ray class field of conductor f for the quadratic
field of discriminant D using analytic methods. A bnf for 22 — D is also accepted in place of D.

For D < 0, uses the ¢ function and Schertz’s method.

For D > 0, uses Stark’s conjecture, and a vector of relative equations may be returned. See
bnrstark for more details.

The library syntax is GEN quadray(GEN D, GEN f, long prec).
3.8.101 quadregulator (D). Regulator of the quadratic order of positive discriminant D in time
O(D'/?) using the continued fraction algorithm. Raise an error if D is not a discriminant (funda-

mental or not) or if D is a square. The function quadclassunit is asymptotically faster (and also
in practice for D > 10'° or so) but depends on the GRH.

The library syntax is GEN quadregulator(GEN D, long prec).

220

3.8.102 quadunit(D, {v =" w}). A fundamental unit u of the real quadratic order of discriminant
D. The integer D must be congruent to 0 or 1 modulo 4 and not a square; the result is a quadratic
number (see Section 3.8.97). If D is not a fundamental discriminant, the algorithm is wasteful: if
D = df? with d fundamental, it will be faster to compute quadunit(d) then raise it to the power
quadunitindex(d, f); or keep it in factored form.

If v is given, the variable name is used to display u else 'w’ is used. The algorithm computes
the continued fraction of (1 + v/D)/2 or vD/2 (see GTM 138, algorithm 5.7.2). Although the
continued fraction length is only O(v/D), the function still runs in time O(D), in part because the
output size is not polynomially bounded in terms of log D. See bnfinit and bnfunits for a better
alternative for large D, running in time subexponential in log D and returning the fundamental
units in compact form (as a short list of S-units of size O(log D)? raised to possibly large exponents).

The library syntax is GEN quadunitO(GEN D, long v = -1) where v is a variable number.

When v does not matter, the function GEN quadunit (GEN D) is also available.

3.8.103 quadunitindex(D, f). Given a fundamental discriminant D, return the index of the unit
group of the order of conductor f in the units of Q(\/T)) This function uses the continued fraction
algorithm and has O(Dl/ 2+¢ f€) complexity; quadclassunit is asymptotically faster but depends
on the GRH.

? quadunitindex (-3, 2)

%l =3

? quadunitindex(5, 2732) \\ instantaneous

%2 = 3221225472

? quadregulator(5 * 2764) / quadregulator(5)
time = 3min, 1,488 ms.

%3 = 3221225472.0000000000000000000000000000

The conductor f can be given in factored form or as [f, factor(f)]:

? quadunitindex(5, [100, [2,2;5,2]1]1)

%4 = 150

? quadunitindex(5, 100)

%5 = 150

? quadunitindex(5, [2,2;5,2])
%6 = 150

If D is not fundamental, the result is undefined; you may use the following script instead:

index(d, f) =
{ my([D,F] = coredisc(d, 1));
quadunitindex(D, f * F) / quadunitindex(D, F)

}
? index(5 * 1072, 10)
%7 = 10

The library syntax is GEN quadunitindex(GEN D, GEN f).

221

3.8.104 quadunitnorm(D). Return the norm (1 or —1) of the fundamental unit of the quadratic
order of discriminant D. The integer D must be congruent to 0 or 1 modulo 4 and not a square.
This is of course equal to norm(quadunit (D)) but faster.

7 quadunitnorm(-3) \\ the result is always 1 in the imaginary case
n =1

? quadunitnorm(5)

w2 = -1

7 quadunitnorm(17345)

w3 = -1

7 u = quadunit(17345)

%4 = 299685042291 + 4585831442%w

7 norm(u)

W = -1

This function computes the parity of the continued fraction expansion and runs in time O(Dl/).
If D is fundamental, the function bnfinit is asymptotically faster but depends of the GRH. If
D = df? is not fundamental, it will usually be faster to first compute quadunitindex(d, f). If it
is even, the result is 1, else the result is quadunitnorm(d). The narrow class number of the order
of discriminant D is equal to the class number if the unit norm is 1 and to twice the class number
otherwise.

The library syntax is long quadunitnorm(GEN D).

3.8.105 ramanujantau(n, {ell = 12}). Compute the value of Ramanujan’s tau function at an
individual n, assuming the truth of the GRH (to compute quickly class numbers of imaginary
quadratic fields using quadclassunit). If ell is 16, 18, 20, 22, or 26, same for the newform of
level 1 and corresponding weight. Otherwise, compute the coefficient of the trace form at n. The
complexity is in O(n'/?) using O(logn) space.

If all values up to N are required, then

Y rn)g =q (1 -qm*

n>1

and more generally, setting u = ¢ — 13 and C' = 2/((—u) for ¢ > 12,

Sne =a[[0-a)*(1+C> nte/(1- ")

n>1 n>1

produces them in time O(N), against O(N3/?) for individual calls to ramanujantau; of course the
space complexity then becomes O(N). For other values of ¢, mfcoefs(mftraceform([1,e11]),N)
is much faster.

? tauvec(N) = Vec(g*eta(q + 0(q"N))"24);

? N =10"4; v = tauvec(N);

time = 26 ms.

? ramanujantau(N)

%3 = -482606811957501440000

? w = vector(N, n, ramanujantau(n)); \\ much slower !
time = 13,190 ms.

?7v==w

%4 =1

The library syntax is GEN ramanujantau(GEN n, long ell).

222

3.8.106 randomprime({N = 23!} {q}). Returns a strong pseudo prime (see ispseudoprime) in
[2, N —1]. A t_VEC N = [a,] is also allowed, with @ < b in which case a pseudo prime a < p < b is
returned; if no prime exists in the interval, the function will run into an infinite loop. If the upper
bound is less than 264 the pseudo prime returned is a proven prime.

7 randomprime (100)

%1 =71
? randomprime([3,100])
h2 = 61

? randomprime([1,1])
*x** at top-level: randomprime([1,1])
®kk e
**%* randomprime: domain error in randomprime:
*okk floor(b) - max(ceil(a),2) < 0
? randomprime([24,28]) \\ infinite loop

If the optional parameter ¢ is an integer, return a prime congruent to 1 mod ¢; if ¢ is an intmod,
return a prime in the given congruence class. If the class contains no prime in the given interval,
the function will raise an exception if the class is not invertible, else run into an infinite loop

? randomprime (100, 4) \\ 1 mod 4

% =171

? randomprime (100, 4)

%2 = 13

? randomprime([10,100], Mod(2,5))

%3 = 47

? randomprime (100, Mod(0,2)) \\ silly but works
W =2

? randomprime([3,100], Mod(0,2)) \\ not invertible
*okok at top-level: randomprime([3,100],Mod(0,2))
KoKk R
**%* randomprime: elements not coprime in randomprime:

0
2
? randomprime (100, 97) \\ infinite loop

The library syntax is GEN randomprimeO(GEN N = NULL, GEN g = NULL). Also available is
GEN randomprime(GEN N = NULL).

3.8.107 removeprimes({z = [|}). Removes the primes listed in 2 from the prime number table.
In particular removeprimes(addprimes()) empties the extra prime table. x can also be a single
integer. List the current extra primes if z is omitted.

The library syntax is GEN removeprimes(GEN x = NULL).
3.8.108 sigma(z, {k = 1}). Sum of the k' powers of the positive divisors of |x|. and k must be
of type integer.

The library syntax is GEN sumdivk(GEN x, long k). Also available is GEN sumdiv(GEN n)
for k = 1.
Y

223

3.8.109 sqrtint(z, {&r}). Returns the integer square root of z, i.e. the largest integer y such that
y?> < x, where = a nonnegative real number. If is present, set it to the remainder r = = — y?,
which satisfies 0 < r < 2y + 1. Further, when x is an integer, r is an integer satisfying 0 < r < 2y.

? x = 120938191237; sqrtint(x)

%1 = 347761

7 sqrt(x)

%2 = 347761.68741970412747602130964414095216
7 y = sqrtint(x, &r); r

%3 = 478116

?x -y2

%4 = 478116

? sqrtint(9/4, &r) \\ not 3/2 !

%5 =1
7r
%6 = 5/4

The library syntax is GEN sqrtintO(GEN x, GEN *r = NULL). Also available is GEN
sqrtint (GEN a).

3.8.110 sqrtnint(x,n). Returns the integer n-th root of z, i.e. the largest integer y such that
y™ < x, where z is a nonnegative real number.

7 N = 120938191237; sqrtnint(N, 5)

%l = 164

? N~(1/5)

%2 = 164.63140849829660842958614676939677391
? sqrtnint(Pi~2, 3)

w3 =2

The special case n = 2 is sqrtint

The library syntax is GEN sqrtnint(GEN x, long n).

3.8.111 sumdedekind(h, k). Returns the Dedekind sum attached to the integers h and k, corre-
sponding to a fast implementation of

s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))
The library syntax is GEN sumdedekind (GEN h, GEN k).

3.8.112 sumdigits(n, {B = 10}). Sum of digits in the integer |n|, when written in base B > 1.
? sumdigits(123456789)

%1 = 45
7 sumdigits (123456789, 2)
1 = 16

Note that the sum of bits in n is also returned by hammingweight. This function is much faster
than vecsum(digits(n,B)) when B is 10 or a power of 2, and only slightly faster in other cases.

The library syntax is GEN sumdigitsO(GEN n, GEN B = NULL). Also available is GEN sumdig-
its(GEN n), for B = 10.

224

3.8.113 znchar(D). Given a datum D describing a group (Z/NZ)* and a Dirichlet character x;,
return the pair [G, chi], where G is znstar(N, 1)) and chi is a GP character.

The following possibilities for D are supported

e a nonzero t_INT congruent to 0,1 modulo 4, return the real character modulo D given by
the Kronecker symbol (D/.);

e a t_INTMOD Mod(m, N), return the Conrey character modulo N of index m (see znconrey-
log).

e a modular form space as per mfinit([N,k, x]) or a modular form for such a space, return
the underlying Dirichlet character x (which may be defined modulo a divisor of N but need not be
primitive).

In the remaining cases, G is initialized by znstar (N, 1).

e a pair [G, chil, where chi is a standard GP Dirichlet character ¢ = (¢;) on G (generic
character t_VEC or Conrey characters t_COL or t_INT); given generators G = &(Z/d;Z)g;, x(g;) =

e(c;/dj)-
e a pair [G, chin], where chin is a normalized representation [n, ¢] of the Dirichlet character

¢; x(gj) = e(¢;/n) where n is minimal (order of x).

? [G,chi] = znchar(-3);

? G.cyc

%2 = [2]

? chareval(G, chi, 2)

%3 = 1/2

? kronecker(-3,2)

%4 = -1

? znchartokronecker (G, chi)
%5 = -3

? mf = mfinit([28, 5/2, Mod(2,7)]); [f] = mfbasis(mf);
? [G,chi] = znchar(mf); [G.mod, chi]

w7 = [7, [2]1~]

? [G,chi] = znchar(f); chi

%8 = [28, [0, 2]~]

The library syntax is GEN znchar (GEN D).

3.8.114 zncharconductor(G, chi). Let G be attached to (Z/qZ)* (as per G = znstar(q, 1))
and chi be a Dirichlet character on (Z/qZ)* (see Section 3.8.3 or ??character). Return the
conductor of chi:

? G = znstar (126000, 1);
? zncharconductor(G,11) \\ primitive

%2 = 126000

? zncharconductor(G,1) \\ trivial character, not primitive!
%3 =1

? zncharconductor(G,1009) \\ character mod 573

W4 = 125

The library syntax is GEN zncharconductor (GEN G, GEN chi).

225

3.8.115 znchardecompose(G, chi, Q). Let N = Hp p» and a Dirichlet character y, we have a
decomposition y =]_[p Xp into character modulo N where the conductor of ,, divides p°r; it equals
p°r for all p if and only if y is primitive.

Given a znstar G describing a group (Z/NZ)*, a Dirichlet character chi and an integer @,
return Hp| (@.N) Xp- For instance, if @) = p is a prime divisor of N, the function returns y, (as a
character modulo N), given as a Conrey character (t_COL).

? G = znstar(40, 1);
? G.cyc

%2 = [4, 2, 2]

7 chi = [2, 1, 1];

? chi2 = znchardecompose(G, chi, 2)
% = [1, 1, 0]~
? chib = znchardecompose(G, chi, 5)

%5 = [0, 0, 2]~

? znchardecompose(G, chi, 3)

%6 = [0, 0, O]~

? ¢ = charmul(G, chi2, chib)

%7 = [1, 1, 2]~ \\ t_COL: in terms of Conrey generators !
? znconreychar(G,c)

% = [2, 1, 1] \\ t_VEC: in terms of SNF generators

The library syntax is GEN znchardecompose(GEN G, GEN chi, GEN Q).

3.8.116 znchargauss(G, chi,{a = 1}). Given a Dirichlet character x on G = (Z/NZ)* (see
znchar), return the complex Gauss sum

N
g(x,;a) =Y _ x(n)e(an/N)

n=1

? [G,chi] = znchar(-3); \\ quadratic Gauss sum: I*sqrt(3)

? znchargauss(G,chi)

%2 = 1.7320508075688772935274463415058723670*1

? [G,chi] = znchar(5);

? znchargauss(G,chi) \\ sqrt(5)

%2 = 2.2360679774997896964091736687312762354

? G = znstar(300,1); chi = [1,1,12]~;

? znchargauss(G,chi) / sqrt(300) - exp(2xI*Pix11/25) \\ = 0
%4 = 2.350988701644575016 E-38 + 1.4693679385278593850 E-39*1
? 1funtheta([G,chi], 1) \\ =0

%5 = -5.79[...] E-39 - 2.71[...] E-40%I

The library syntax is GEN znchargauss(GEN G, GEN chi, GEN a = NULL, long bitprec)

226

3.8.117 zncharinduce(G, chi, N). Let G be attached to (Z/qZ)* (as per G = znstar(q,1)) and
let chi be a Dirichlet character on (Z/qZ)*, given by

e a t_VEC: a standard character on bid.gen,

e a t_INT or a t_COL: a Conrey index in (Z/qZ)* or its Conrey logarithm; see Section 3.8.3 or
??character.

Let N be a multiple of ¢, return the character modulo N extending chi. As usual for arithmetic
functions, the new modulus N can be given as a t_INT, via a factorization matrix or a pair [N,
factor(NW)1], or by znstar(N,1).

? G = znstar(4, 1);

? chi = znconreylog(G,1); \\ trivial character mod 4

? zncharinduce(G, chi, 80) \\ now mod 80

%3 = [0, 0, 0]~

? zncharinduce(G, 1, 80) \\ same using directly Conrey label
%4 = [0, 0, 0]~

? G2 = znstar(80, 1);

? zncharinduce(G, 1, G2) \\ same

%4 = [0, 0, 0]~

? chi = zncharinduce(G, 3, G2) \\ extend the nontrivial character mod 4
%5 = [1, 0, 0]~

? [GO,chiO] = znchartoprimitive(G2, chi);

? GO.mod

%7 =4

? chiO

%8 = [1]~

Here is a larger example:

? G = znstar(126000, 1);

? label = 1009;

7 chi = znconreylog(G, label)

%3 = [0, 0, 0, 14, 0]~

? [GO,chiO] = znchartoprimitive(G, label); \\ works also with ’chi’
? GO.mod

%5 = 125

7 chiO \\ primitive character mod 573 attached to chi
%6 = [14]-~

? GO = znstar(NO, 1);

? zncharinduce (GO, chiO, G) \\ induce back

%8 = [0, 0, O, 14, 0]~

? znconreyexp(G, %)

%9 = 1009

The library syntax is GEN zncharinduce(GEN G, GEN chi, GEN N).

227

3.8.118 zncharisodd(G, chi). Let G be attached to (Z/NZ)* (as per G = znstar(N,1)) and let
chi be a Dirichlet character on (Z/NZ)*, given by

e a t_VEC: a standard character on G.gen,

e a t_INT or a t_COL: a Conrey index in (Z/qZ)* or its Conrey logarithm; see Section 3.8.3 or
?7character.

Return 1 if and only if chi(—1) = —1 and 0 otherwise.

? G = znstar(8, 1);
? zncharisodd(G, 1) \\ trivial character

%2 =0

? zncharisodd (G, 3)
%3 =1

? chareval(G, 3, -1)
W = 1/2

The library syntax is long zncharisodd(GEN G, GEN chi).

3.8.119 znchartokronecker(G, chi,{flag = 0}). Let G be attached to (Z/NZ)* (as per G =
znstar(N,1)) and let chi be a Dirichlet character on (Z/NZ)*, given by

e a t_VEC: a standard character on bid.gen,

e a t_INT or a t_COL: a Conrey index in (Z/gZ)* or its Conrey logarithm; see Section 3.8.3 or
?7character.

If flag = 0, return the discriminant D if chi is real equal to the Kronecker symbol (D/.) and
0 otherwise. The discriminant D is fundamental if and only if chi is primitive.

If flag = 1, return the fundamental discriminant attached to the corresponding primitive
character.

? G = znstar(8,1); CHARS = [1,3,5,7]; \\ Conrey labels
7 apply(t->znchartokronecker(G,t), CHARS)

%2 = [4, -8, 8, -4]

7 apply(t->znchartokronecker(G,t,1), CHARS)

%3 = [1, -8, 8, -4]

The library syntax is GEN znchartokronecker (GEN G, GEN chi, long flag).

3.8.120 znchartoprimitive(G, chi). Let G be attached to (Z/qZ)* (as per G = znstar(q, 1))
and chi be a Dirichlet character on (Z/qZ)*, of conductor qq | g.

? G = znstar (126000, 1);

? [GO,chiO] = znchartoprimitive(G,11)

? GO.mod

%3 = 126000

? chiO

%4 = 11

? [GO,chiO] = znchartoprimitive(G,1);\\ trivial character, not primitive!
? GO.mod

%6 =1

? chiO

228

w7 = [~

? [GO,chiO] = znchartoprimitive(G,1009)
? GO.mod

%4 = 125

7 chiO

%5 = [14]~

Note that znconreyconductor is more efficient since it can return xg and its conductor gy without
needing to initialize GGy. The price to pay is a more cryptic format and the need to initalize G
later, but that needs to be done only once for all characters with conductor q.

The library syntax is GEN znchartoprimitive (GEN G, GEN chi).

3.8.121 znconreychar(G,m). Given a znstar G attached to (Z/qZ)* (as per G = znstar(q,1)),
this function returns the Dirichlet character attached to m € (Z/qZ)* via Conrey’s logarithm,
which establishes a “canonical” bijection between (Z/qZ)* and its dual.

Let ¢ = Hp p°? be the factorization of ¢ into distinct primes. For all odd p with e, > 0, let g,
be the element in (Z/gZ)* which is

e congruent to 1 mod ¢/p°»,
e congruent mod p» to the smallest positive integer that generates (Z/p*Z)*.

For p = 2, we let g4 (if 2°2 > 4) and gg (if furthermore (22 > 8) be the elements in (Z/qZ)*
which are

e congruent to 1 mod ¢/2°2,
e g4 = —1mod2°2,
® (g — 5m0d262.

Then the g, (and the extra g4 and gs if 2°2 > 2) are independent generators of (Z/qZ)*, i.e.
every m in (Z/qZ)* can be written uniquely as Hp gp", where m,, is defined modulo the order o,
of g, and p € S, the set of prime divisors of ¢ together with 4 if 4 | ¢ and 8 if 8 | ¢. Note that the
gp are in general not SNF generators as produced by znstar whenever w(q) > 2, although their
number is the same. They however allow to handle the finite abelian group (Z/qZ)* in a fast and
elegant way. (Which unfortunately does not generalize to ray class groups or Hecke characters.)

The Conrey logarithm of m is the vector (m,),es,, obtained via znconreylog. The Conrey
character x,(m,) attached to m mod ¢ maps each g,, p € S, to e(m,/0,), where e(x) = exp(2imx).
This function returns the Conrey character expressed in the standard PARI way in terms of the
SNF generators G.gen.

? G = znstar(8,1);
? G.cyc
w2 =1[2, 21 \\ Z/2 x Z/2
? G.gen
w3 = [7, 3]
7 znconreychar(G,1) \\ 1 is always the trivial character
h4 = [0, O]
7 znconreychar(G,2) \\ 2 is not coprime to 8 !!!
x% at top-level: znconreychar(G,2)
KoKk e

**%* znconreychar: elements not coprime in Zideallog:
2
8
**x* Break loop: type ’break’ to go back to GP prompt
break>

7 znconreychar(G,3)
%5 = [0, 1]
? znconreychar(G,5)
%6 = [1, 1]
? znconreychar(G,7)
%7 = [1, 0]
We indeed get all 4 characters of (Z/8Z)*.

For convenience, we allow to input the Conrey logarithm of m instead of m:

? G = znstar(b5, 1);
7 znconreychar(G,7)

h2 = [7, 0]
? znconreychar (G, znconreylog(G,7))
w3 = [7, 0]

The library syntax is GEN znconreychar(GEN G, GEN m).

3.8.122 znconreyconductor (G, chi,{&chi0}). Let G be attached to (Z/qZ)* (as per G = zn-
star(q, 1)) and chi be a Dirichlet character on (Z/qZ)*, given by

e a t_VEC: a standard character on bid.gen,

e a t_INT or a t_COL: a Conrey index in (Z/qZ)* or its Conrey logarithm; see Section 3.8.3 or
?7?character.

Return the conductor of chi, as the t_INT bid.mod if chi is primitive, and as a pair [N, fal]
(with faN the factorization of N) otherwise.

If chiO is present, set it to the Conrey logarithm of the attached primitive character.

? G = znstar (126000, 1);

? znconreyconductor(G,11) \\ primitive

%2 = 126000

? znconreyconductor(G,1) \\ trivial character, not primitive!
%3 = [1, matrix(0,2)]

? NO = znconreyconductor(G,1009, &chiO) \\ character mod 573
%4 = [125, Mat([5, 31)]

? chiO

5 = [14]~

? GO = znstar(NO, 1); \\ format [N,factor(N)] accepted
? znconreyexp (GO, chiO)

hT =9

? znconreyconductor (GO, chiO) \\ now primitive, as expected
%8 = 125

The group GO is not computed as part of znconreyconductor because it needs to be computed
only once per conductor, not once per character.

230

The library syntax is GEN znconreyconductor (GEN G, GEN chi, GEN *chiO = NULL).

3.8.123 znconreyexp(G, chi). Given a znstar G attached to (Z/qZ)* (as per G = znstar(q,
1)), this function returns the Conrey exponential of the character chi: it returns the integer
m € (Z/qZ)* such that znconreylog(G, m) is chi.

The character che is given either as a
e t_VEC: in terms of the generators G.gen;
e t_COL: a Conrey logarithm.

? G = znstar (126000, 1)

? znconreylog(G,1)

%2 = [0, 0, 0, O, O]~

? znconreyexp(G,%)

w3 =1

? G.cyc \\ SNF generators

%4 = [300, 12, 2, 2, 2]

? chi = [100, 1, O, 1, 0]; \\ some random character on SNF generators
7 znconreylog(G, chi) \\ in terms of Conrey generators
%6 = [0, 3, 3, 0, 2]~

7 znconreyexp(G, %) \\ apply to a Conrey log

%7 = 18251
7 znconreyexp(G, chi) \\ ... or a char on SNF generators
%8 = 18251

? znconreychar (G, %)
%9 = [100, 1, O, 1, O]

The library syntax is GEN znconreyexp(GEN G, GEN chi).
3.8.124 znconreylog(G,m). Given a znstar attached to (Z/qZ)* (as per G = znstar(q,1)), this
function returns the Conrey logarithm of m € (Z/qZ)*.

Let ¢ = Hp p°? be the factorization of ¢ into distinct primes, where we assume e; = 0 or
ea > 2. (If e = 1, we can ignore 2 from the factorization, as if we replaced ¢ by ¢/2, since

(Z2/q2)" ~ (2/(a/2)2)".)
For all odd p with e, > 0, let g, be the element in (Z/qZ)* which is
e congruent to 1 mod ¢/p°»,

e congruent mod p°» to the smallest positive integer that generates (Z/p*Z)*.

For p = 2, we let g4 (if 22 > 4) and gs (if furthermore (22 > 8) be the elements in (Z/qZ)*
which are

e congruent to 1 mod ¢/2°2,
e g4 = —1mod2°2,
® (g = 5m0d2€2.

Then the g, (and the extra g4 and gg if 2°> > 2) are independent generators of Z/qZ*, i.e.
every m in (Z/qZ)* can be written uniquely as Hp gp ", where m,, is defined modulo the order o,
of g, and p € S, the set of prime divisors of ¢ together with 4 if 4 | ¢ and 8 if 8 | g. Note that the

231

gp are in general not SNF generators as produced by znstar whenever w(q) > 2, although their
number is the same. They however allow to handle the finite abelian group (Z/¢Z)* in a fast and
elegant way. (Which unfortunately does not generalize to ray class groups or Hecke characters.)

The Conrey logarithm of m is the vector (m;),cs,. The inverse function znconreyexp recovers
the Conrey label m from a character.

? G = znstar (126000, 1);

? znconreylog(G,1)

%2 = [0, 0, 0, 0, O]~

? znconreyexp(G, %)

%3 =1

7 znconreylog(G,2) \\ 2 is not coprime to modulus !!!
*** at top-level: znconreylog(G,2)
KoKk N

**k* znconreylog: elements not coprime in Zideallog:

2
126000
**%x Break loop: type ’break’ to go back to GP prompt
break>

7 znconreylog(G,11) \\ wrt. Conrey generators

% = [0, 3, 1, 76, 4]~

? logll = ideallog(,11,G) \\ wrt. SNF generators
%5 = [178, 3, -75, 1, 0]~

For convenience, we allow to input the ordinary discrete log of m, ideallog(,m, bid), which
allows to convert discrete logs from bid.gen generators to Conrey generators.

? znconreylog(G, logll)
%7 = [O, 31 19 76; 4]"'

We also allow a character (t_VEC) on bid.gen and return its representation on the Conrey gener-
ators.

? G.cyc

%8 = [300, 12, 2, 2, 2]
? chi = [10,1,0,1,1];

? znconreylog(G, chi)

%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)
%11 = 84149

? znconreychar (G, n)
%12 = [10, 1, 0, 1, 1]

The library syntax is GEN znconreylog(GEN G, GEN m).

232

3.8.125 zncoppersmith(P, N, X,{B = N}). Coppersmith’s algorithm. N being an integer and
P € Z[t], finds in polynomial time in log(N) and d = deg(P) all integers = with |z| < X such that

ged(N, P(x)) > B.

This is a famous application of the LLL algorithm meant to help in the factorization of N. Notice
that P may be reduced modulo NZ[t] without affecting the situation. The parameter X must not
be too large: assume for now that the leading coefficient of P is coprime to N, then we must have

dlog X log N < log? B,

ie., X < N4 when B = N. Let now P, be the ged of the leading coefficient of P and N. In
applications to factorization, we should have Py = 1; otherwise, either Py = N and we can reduce
the degree of P, or Py is a non trivial factor of N. For completeness, we nevertheless document the
exact conditions that X must satisfy in this case: let p :=logy Py, b :=logy B, x := logy X, then

o either p > d/(2d — 1) is large and we must have xd < 2b — 1;

eor p < d/(2d—1) and we must have both p < b < 1—p+p/d and x(d+p(1 —2d)) < (b—p)?.
Note that this reduces to xd < b when p = 0, i.e., the condition described above.

Some x larger than X may be returned if you are very lucky. The routine runs in polynomial
time in log N and d but the smaller B, or the larger X, the slower. The strength of Coppersmith
method is the ability to find roots modulo a general composite N: if N is a prime or a prime power,
polrootsmod or polrootspadic will be much faster.

We shall now present two simple applications. The first one is finding nontrivial factors of IV,
given some partial information on the factors; in that case B must obviously be smaller than the
largest nontrivial divisor of V.

setrand(1); \\ to make the example reproducible

[a,b] = [10730, 10731]; D = 20;

p = randomprime([a,b]);

q = randomprime([a,b]l); N = pxq;

\\ assume we know 0) p | N; 1) p in [a,b]; 2) the last D digits of p
p0 = p % 107D;

7 L = zncoppersmith(10°D*x + pO, N, b \ 107D, a)
time = 1ims.

%6 = [738281386540]

? gcd(L[1] * 10°D + p0, N) == p

wro=1

and we recovered p, faster than by trying all possibilities z < 10!,

The second application is an attack on RSA with low exponent, when the message x is short
and the padding P is known to the attacker. We use the same RSA modulus N as in the first
example:

setrand(1);

P = random(N) ; \\ known padding

e = 3; \\ small public encryption exponent
X = floor(N70.3); \\ N~ (1/e - epsilon)

x0 = random(X); \\ unknown short message

233

C = 1lift((Mod(x0,N) + P)"e); \\ known ciphertext, with padding P
zncoppersmith((P + x)°3 - C, N, X)

\\ result in 244ms.
%14 = [2679982004001230401]

? %h[1] == x0
%15 =1

We guessed an integer of the order of 10'®, almost instantly.

The library syntax is GEN zncoppersmith(GEN P, GEN N, GEN X, GEN B = NULL).

3.8.126 znlog(z, g,{o}). This functions allows two distinct modes of operation depending on g:

e if g is the output of znstar (with initialization), we compute the discrete logarithm of x
with respect to the generators contained in the structure. See ideallog for details.

e else g is an explicit element in (Z/NZ)*, we compute the discrete logarithm of z in (Z/NZ)*
in base g. The rest of this entry describes the latter possibility.

The result is [| when z is not a power of g, though the function may also enter an infinite loop
in this case.

If present, o represents the multiplicative order of g, see Section 3.8.2; the preferred format
for this parameter is [ord, factor(ord)], where ord is the order of g. This provides a definite
speedup when the discrete log problem is simple:

? p = nextprime(10°4); g = znprimroot(p); o = [p-1, factor(p-1)1;
7 for(i=1,10"4, znlog(i, g, o))

time = 163 ms.

7 for(i=1,10"4, znlog(i, g))

time = 200 ms. \\ a little slower

The result is undefined if g is not invertible mod N or if the supplied order is incorrect.
This function uses
e a combination of generic discrete log algorithms (see below).

e in (Z/NZ)* when N is prime: a linear sieve index calculus method, suitable for N < 10°°,
say, is used for large prime divisors of the order.

The generic discrete log algorithms are:

e Pohlig-Hellman algorithm, to reduce to groups of prime order ¢, where ¢g|p — 1 and p is an
odd prime divisor of N,

e Shanks baby-step/giant-step (¢ < 232 is small),
e Pollard rho method (g > 232).

The latter two algorithms require O(,/q) operations in the group on average, hence will not
be able to treat cases where ¢ > 103°, say. In addition, Pollard rho is not able to handle the case
where there are no solutions: it will enter an infinite loop.

? g = znprimroot(101)
%1 = Mod(2,101)
7 znlog(5, g)

234

W2 = 24

? g°24

%3 = Mod(5, 101)

7 G = znprimroot(2 * 101710)

%4 = Mod(110462212541120451003, 220924425082240902002)
7 znlog(5, G)

%5 = 76210072736547066624

? G ==

%6 =1

? N = 2°4%3°2%5"3%7°4x11; g = Mod(13, N); znlog(g~110, g)
%7 = 110

7 znlog(6, Mod(2,3)) \\ no solution

%8 = [

For convenience, g is also allowed to be a p-adic number:

? g = 3+0(5710); znlog(2, g)
%1 = 1015243

?7 g%

%2 = 2 + 0(5710)

The library syntax is GEN znlogO(GEN x, GEN g, GEN o = NULL). The function GEN zn-
log(GEN x, GEN g, GEN o) is also available

3.8.127 znorder(z, {o}). x must be an integer mod n, and the result is the order of x in the
multiplicative group (Z/nZ)*. Returns an error if x is not invertible. The parameter o, if present,
represents a nonzero multiple of the order of x, see Section 3.8.2; the preferred format for this
parameter is [ord, factor(ord)], where ord = eulerphi(n) is the cardinality of the group.

The library syntax is GEN znorder (GEN x, GEN o = NULL).

3.8.128 znprimroot(n). Returns a primitive root (generator) of (Z/nZ)*, whenever this latter
group is cyclic (n = 4 or n = 2p* or n = p*, where p is an odd prime and k > 0). If the group is
not cyclic, the function will raise an exception. If n is a prime power, then the smallest positive
primitive root is returned. This may not be true for n = 2p*, p odd.

Note that this function requires factoring p — 1 for p as above, in order to determine the exact
order of elements in (Z/nZ)*: this is likely to be costly if p is large.

The library syntax is GEN znprimroot(GEN n).
3.8.129 znstar(n, {flag = 0}). Gives the structure of the multiplicative group (Z/nZ)*. The
output G depends on the value of flag:

e flag = 0 (default), an abelian group structure [h, d, g], where h = ¢(n) is the order (G.no), d
(G.cyc) is a k-component row-vector d of integers d; such that d; > 1, d; | d;—; for i > 2 and

k

(Z/nZ)" ~ [(2/d:Z),

i=1

and g (G.gen) is a k-component row vector giving generators of the image of the cyclic groups
Z/d;Z.

235

e flag = 1 the result is a bid structure; this allows computing discrete logarithms using znlog
(also in the noncyclic case!).

? G = znstar(40)

%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]1]
? G.no \\ eulerphi(40)

%2 = 16

7 G.cyc \\ cycle structure

%3 = [4, 2, 2]

7 G.gen \\ generators for the cyclic components

%4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]

7 apply(znorder, G.gen)

w5 = [4, 2, 2]

For user convenience, we define znstar(0) as [2, [2], [-11], corresponding to Z*, but flag = 1
is not implemented in this trivial case.

The library syntax is GEN znstarO(GEN n, long flag).

3.8.130 znsubgroupgenerators(H, {flag = 0}). Finds a minimal set of generators for the sub-
group of (Z/fZ)* given by a vector (or vectorsmall) H of length f: for 1 < a < f, H[a] is 1 or 0
according as a € Hp or a ¢ Hp. In most PARI functions, subgroups of an abelian group are given
as HNF left-divisors of a diagonal matrix, representing the discrete logarithms of the subgroup
generators in terms of a fixed generators for the group cyclic components. The present function
allows to convert an enumeration of the subgroup elements to this representation as follows:

? G = znstar(f, 1);
? v = znsubgroupgenerators(H) ;
? subHNF(G, v) = mathnfmodid(Mat([znlog(h, G) | h<-v]), G.cyc);

The function subHNF can be applied to any elements of (Z/fZ)*, yielding the subgroup they
generate, but using znsubgroupgenerators first allows to reduce the number of discrete logarithms
to be computed.

For example, if H ={1,4,11,14} C (Z/15Z)*, then we have

? f = 15; H = vector(f); H[1]=H[4]=H[11]1=H[14] = 1;
? v = znsubgroupgenerators (H)

%2 = [4, 11]

7?7 G = znstar(f, 1); G.cyc

%3 = [4, 2]

? subHNF (G, v)

%4 =

[2 0]

[0 1]
7 subHNF(G, [1,4,11,14])
%5 =
[2 0]

[0 1]

This function is mostly useful when f is large and H has small index: if H has few elements, one
may just use subHNF directly on the elements of H. For instance, let K = Q((,, vm) C L = Q(¢y),

236

where p is a prime, /m is a quadratic number and f is the conductor of the abelian extension
K/Q. The following GP script creates H as the Galois group of L/K, as a subgroub of (Z/fZ)*:

HK(m, p, flag = 0)=

{ my(d = quaddisc(m), f = lcm(d, p), H);
H = vectorsmall(f, a, a % p == 1 && kronecker(d,a) > 0);
[f, znsubgroupgenerators(H,flag)];

}

? [f, v] = HK(36322, 5)

time = 193 ms.

%1 = [726440, [41, 61, 111, 131]]

? G = znstar(f,1); G.cyc;

%2 = [1260, 12, 2, 2, 2, 2]

? A = subHNF(G, v)

%3

[2

110 1]

(04000 2]

[00010 0]

(0000 10]

0
4
[00O100 0]
0
0
[00O0O0O0 1]
\\ Double check
? p =5; d= quaddisc(36322);
7?7 w = select(a->a % p == 1 && kronecker(d,a) > 0, [1..f]); #w
time = 133 ms.
%5 = 30240 \\ w enumerates the elements of H
? subHNF(G, w) == A \\ same result, about twice slower
time = 242 ms.
%6 =1

This shows that K = Q(v/36322,(5) is contained in Q((r26440) and H = (41,61,111,131). Note
that H = (41)(61)(111)(131) is not a direct product. If flag = 1, then the function finds generators
which decompose H to direct factors:

7 HK(36322, 5, 1)
%3 = [726440, [41, 31261, 324611, 506221]]

This time H = (41) x (31261) x (324611) x (506221).

The library syntax is GEN znsubgroupgenerators(GEN H, long flag).

237

3.9 Polynomials and power series.

We group here all functions which are specific to polynomials or power series. Many other
functions which can be applied on these objects are described in the other sections. Also, some of
the functions described here can be applied to other types.

3.9.1 O(p~e). If p is an integer greater than 2, returns a p-adic 0 of precision e. In all other cases,
returns a power series zero with precision given by ev, where v is the X-adic valuation of p with
respect to its main variable.

The library syntax is GEN ggrando(). GEN zeropadic(GEN p, long e) for a p-adic and GEN
zeroser (long v, long e) for a power series zero in variable v.

3.9.2 bezoutres(A, B, {v}). Deprecated alias for polresultantext

The library syntax is GEN polresultantextO(GEN A, GEN B, long v = -1) where v is a
variable number.

3.9.3 deriv(x,{v}). Derivative of x with respect to the main variable if v is omitted, and with
respect to v otherwise. The derivative of a scalar type is zero, and the derivative of a vector or
matrix is done componentwise. One can use z’ as a shortcut if the derivative is with respect to the
main variable of x; and also use z”, etc., for multiple derivatives altough derivn is often preferrable.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from
its two polynomial components (representative and modulus); in other words, assuming a polmod
represents an element of R[X]/(T(X)), the variable X is a mute variable and the derivative is taken
with respect to the main variable used in the base ring R.

?7 f = (x/y)°5;

? deriv(f)
%2 = 5/y"b*x"4
7 £

%3 = 5/y"5*x"4

? deriv(f, ’x) \\ same since ’x is the main variable
W = 5/y"b*x"4

? deriv(f, ’y)

Y5 = -5/y~6%x"5

This function also operates on closures, in which case the variable must be omitted. It returns
a closure performing a numerical differentiation as per derivnum:

? f(x) = x72;

? g = deriv({f)

7 g(1)

%3 = 2.0000000000000000000000000000000000000
? £(x) = sin(exp(x));

? deriv(f) (0)

%5 = 0.54030230586813971740093660744297660373
? cos(1)

%6 = 0.54030230586813971740093660744297660373

The library syntax is GEN deriv(GEN x, long v = -1) where v is a variable number.

238

3.9.4 derivn(z,n, {v}). n-th derivative of x with respect to the main variable if v is omitted, and
with respect to v otherwise; the integer n must be nonnegative. The derivative of a scalar type is
zero, and the derivative of a vector or matrix is done componentwise. One can use z’, x”, etc., as
a shortcut if the derivative is with respect to the main variable of .

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from
its two polynomial components (representative and modulus); in other words, assuming a polmod
represents an element of R[X]/(T(X)), the variable X is a mute variable and the derivative is taken
with respect to the main variable used in the base ring R.

7 f = (x/y)°5;

? derivn(f, 2)

%2 = 20/y"5*x"3

? £

%3 = 20/y"5%x"3

? derivn(f, 2, ’x) \\ same since ’x is the main variable
W4 = 20/y"5*x"3

? derivn(f, 2, ’y)

%5 = 30/y T*x"5

This function also operates on closures, in which case the variable must be omitted. It returns
a closure performing a numerical differentiation as per derivnum:

? £f(x) = x710;

7 g = derivn(f, 5)

7 g(1)

%3 = 30240.000000000000000000000000000000000

? derivn(zeta, 2)(0)

%4 = -2.0063564559085848512101000267299604382
? zeta’’ (0)

%5 = -2.0063564559085848512101000267299604382

The library syntax is GEN derivn(GEN x, 1long n, long v = -1) where v is a variable
number.

3.9.5 diffop(z,v,d,{n = 1}). Let v be a vector of variables, and d a vector of the same length,
return the image of = by the m-power (1 if n is not given) of the differential operator D that
assumes the value d[i] on the variable v[i]. The value of D on a scalar type is zero, and D
applies componentwise to a vector or matrix. When applied to a t_POLMOD, if no value is provided
for the variable of the modulus, such value is derived using the implicit function theorem.

239

Examples. This function can be used to differentiate formal expressions: if E = exp(X?) then we
have E' = 2 x X * E. We derivate X * exp(X?) as follows:

7 diffop(ExX, [X,E], [1,2+X*E])
%1 = (2%X"2 + 1)%E

Let Sin and Cos be two function such that Sin? + Cos? = 1 and Cos’ = —Sin. We can
differentiate Sin/Cos as follows, PARI inferring the value of Sin’ from the equation:

? diffop(Mod(’Sin/’Cos,’Sin"~2+’Cos~2-1),[’Cos], [-’Sin])
%1 = Mod(1/Cos~2, Sin~2 + (Cos™2 - 1))
Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:
Bell(k,n=-1)=
{ my(x, v, dv, var = i->eval(Str("X",i)));
v = vector(k, i, if (i==1, °’E, var(i-1)));
dv = vector(k, i, if (i==1, ’X*xvar(1)*’E, var(i)));
x = diffop(’E,v,dv,k) / ’E;
if (n < 0, subst(x,’X,1), polcoef(x,n,’X));
}
The library syntax is GEN diffopO(GEN x, GEN v, GEN d, long n).

For n = 1, the function GEN diffop(GEN x, GEN v, GEN d) is also available.

3.9.6 eval(z). Replaces in x the formal variables by the values that have been assigned to them
after the creation of x. This is mainly useful in GP, and not in library mode. Do not confuse this
with substitution (see subst).

If x is a character string, eval (z) executes x as a GP command, as if directly input from the
keyboard, and returns its output.

7 x1 = "one"; x2 = "two";
?n=1; eval(Str("x", n))
%2 = "one"

? f = "exp"; v =1,
? eval(Str(f, "(', v, ")")
%4 = 2.7182818284590452353602874713526624978

Note that the first construct could be implemented in a simpler way by using a vector x =
["one","two"]; x[n], and the second by using a closure £ = exp; f(v). The final example
is more interesting;:

7 genmat(u,v) = matrix(u,v,i,j, eval(Str("x",i,j)));
7 genmat(2,3) \\ generic 2 x 3 matrix

%2 =

[x11 x12 x13]

[x21 x22 x23]

A syntax error in the evaluation expression raises an e_SYNTAX exception, which can be trapped
as usual:

7 la
*kok syntax error, unexpected variable name, expecting $end or ’;’: la

240

Kok ok -
? E(expr) =
{
iferr(eval(expr),
e, print("syntax error"),
errname(e) == "e_SYNTAX");
}
7 E("1+1")
hl =2
7 E("1a")
syntax error

The library syntax is geval(GEN x).

3.9.7 factorpadic(pol,p,r). p-adic factorization of the polynomial pol to precision r, the re-
sult being a two-column matrix as in factor. Note that this is not the same as a factorization
over Z/p"Z (polynomials over that ring do not form a unique factorization domain, anyway), but
approximations in Q/p"Z of the true factorization in Q,[X].

7 factorpadic(x~2 + 9, 3,5)

% =

[(1 + 0(38"5))*x"2 + 0(3"5)*x + (32 + 0(3°5)) 1]
? factorpadic(x”2 + 1, 5,3)

%2 =

[(1 +0("3))*xx + (2 +5 + 2x5°2 + 0(5°3)) 1]

[(1 + 0(573))*x + (3 + 3*x5 + 2x5°2 + 0(5°3)) 1]

The factors are normalized so that their leading coefficient is a power of p. The method used is a
modified version of the round 4 algorithm of Zassenhaus.

If pol has inexact t_PADIC coeflicients, this is not always well-defined; in this case, the poly-
nomial is first made integral by dividing out the p-adic content, then lifted to Z using truncate
coefficientwise. Hence we actually factor exactly a polynomial which is only p-adically close to the
input. To avoid pitfalls, we advise to only factor polynomials with exact rational coefficients.

The library syntax is factorpadic(GEN f,GEN p, long r) . The function factorpadicO is
deprecated, provided for backward compatibility.

3.9.8 fft(w,P). Let w = [1,2,...,2N 7] from some primitive N-roots of unity z where N is a
power of 2, and P be a polynomial < N, return the unnormalized discrete Fourier transform of P,
{P(wli]),1 <i < N}. Also allow P to be a vector [po, ..., pn] representing the polynomial > p; X°.
Composing £ft and fftinv returns IV times the original input coefficients.

? w = rootsof1(4); fft(w, x"3+x+1)

%1 = [3, 1, -1, 1]

? fftinv(w, %)

%2 = [4, 4, 0, 4]

? Polrev(%) / 4

%3 =x"3 +x + 1

? w = powers(znprimroot(5),3); fft(w, x"3+x+1)
%4 = [Mod(3,5),Mod(1,5),Mod(4,5),Mod(1,5)]

? fftinv(w, %)

241

%5 = [Mod(4,5),Mod(4,5),M0d(0,5) ,Mod(4,5)]
The library syntax is GEN FFT(GEN w, GEN P).

3.9.9 fftinv(w, P). Let w = [1,z2,...,2"V 1] from some primitive N-roots of unity z where N is
a power of 2, and P be a polynomial < N, return the unnormalized discrete Fourier transform of
P, {P(1/w[i]),1 < i < N}. Also allow P to be a vector [po,...,ps] representing the polynomial
S p; X*'. Composing fft and fftinv returns N times the original input coefficients.

? w = rootsof1(4); fft(w, x"3+x+1)
% = [3, 1, -1, 1]

? fftinv(w, %)

%2 = [4, 4, 0, 4]

? Polrev(%) / 4

%3 =x"3 +x + 1

? N = 512; w = rootsof1(N); T = random(1000 * x~(N-1));
? U = fft(w, T);

time = 3 ms.

? V = vector(N, i, subst(T, ’x, wl[il));

time = 65 ms.

7 exponent(V - U)

W7 = =97
? round(Polrev(fftinv(w,U) / N)) ==
%8 =1

The library syntax is GEN FFTinv(GEN w, GEN P).

3.9.10 intformal(z, {v}). formal integration of x with respect to the variable v (wrt. the main
variable if v is omitted). Since PARI cannot represent logarithmic or arctangent terms, any such
term in the result will yield an error:

7 intformal(x~2)
%1 = 1/3%x"3
? intformal(x"2, y)
%2 = y*x~2
7 intformal(1l/x)
*** at top-level: intformal(1/x)
*okok e
*** intformal: domain error in intformal: residue(series, pole) != 0

The argument z can be of any type. When z is a rational function, we assume that the base
ring is an integral domain of characteristic zero.

By definition, the main variable of a t_POLMOD is the main variable among the coeflicients
from its two polynomial components (representative and modulus); in other words, assuming a
polmod represents an element of R[X]/(T(X)), the variable X is a mute variable and the integral
is taken with respect to the main variable used in the base ring R. In particular, it is meaningless
to integrate with respect to the main variable of x.mod:

? intformal (Mod(1,x"2+1), ’x)
***x intformal: incorrect priority in intformal: variable x = x

The library syntax is GEN integ(GEN x, long v = -1) where v is a variable number.

242

3.9.11 padicappr(pol,a). Vector of p-adic roots of the polynomial pol congruent to the p-adic
number a¢ modulo p, and with the same p-adic precision as a. The number a can be an ordinary p-
adic number (type t_PADIC, i.e. an element of Z,,) or can be an integral element of a finite unramified
extension Q,[X]/(T) of Qp, given as a t_POLMOD Mod(A,T") at least one of whose coefficients is a
t_PADIC and T irreducible modulo p. In this case, the result is the vector of roots belonging to the
same extension of Q,, as a. The polynomial pol should have exact coefficients; if not, its coefficients
are first rounded to Q or Q[X]/(T") and this is the polynomial whose roots we consider.

The library syntax is GEN padicappr (GEN pol, GEN a). Also available is GEN Zp_appr (GEN
f, GEN a) when a is a t_PADIC.

3.9.12 padicfields(p, N, {flag = 0}). Returns a vector of polynomials generating all the extensions
of degree N of the field Q) of p-adic rational numbers; NN is allowed to be a 2-component vector
[n,d], in which case we return the extensions of degree n and discriminant p?.

The list is minimal in the sense that two different polynomials generate nonisomorphic exten-
sions; in particular, the number of polynomials is the number of classes of nonisomorphic extensions.
If P is a polynomial in this list, o is any root of P and K = Q(«a), then « is the sum of a uni-
formizer and a (lift of a) generator of the residue field of K; in particular, the powers of o generate
the ring of p-adic integers of K.

If flag = 1, replace each polynomial P by a vector [P, e, f,d,c] where e is the ramification
index, f the residual degree, d the valuation of the discriminant, and ¢ the number of conjugate
fields. If flag = 2, only return the number of extensions in a fixed algebraic closure (Krasner’s
formula), which is much faster.

The library syntax is GEN padicfieldsO(GEN p, GEN N, long flag). Also available is GEN
padicfields(GEN p, long n, long d, long flag), which computes extensions of Q, of degree
n and discriminant p?.

3.9.13 polchebyshev(n, {flag = 1},{a =" z}). Returns the n'" Chebyshev polynomial of the first
kind T}, (flag = 1) or the second kind U,, (flag = 2), evaluated at a (’x by default). Both series of
polynomials satisfy the 3-term relation

Pn+1 :2xpn_Pn—17

and are determined by the initial conditions Uy = Ty = 1, T = z, U; = 2z. In fact T) = nU,_;
and, for all complex numbers z, we have T, (cos z) = cos(nz) and U,_1(cosz) = sin(nz)/sinz. If
n > 0, then these polynomials have degree n. For n < 0, T}, is equal to T_,, and U, is equal to
—U_9_,,. In particular, U_; = 0.

The library syntax is GEN polchebyshev_eval(long n, long flag, GEN a = NULL). Also
available are GEN polchebyshev(long n, long flag, long v), GEN polchebyshevi(long n,
long v) and GEN polchebyshev2(long n, long v) for 7, and U, respectively.

243

3.9.14 polclass(D, {inv = 0}, {z =" z}). Return a polynomial in Z[z] generating the Hilbert class
field for the imaginary quadratic discriminant D. If inv is 0 (the default), use the modular j-
function and return the classical Hilbert polynomial, otherwise use a class invariant. The following
invariants correspond to the different values of inv, where f denotes Weber’s function weber, and

wy, 4 the double eta quotient given by w, , = %’m

The invariants wy, , are not allowed unless they satisfy the following technical conditions en-
suring they do generate the Hilbert class field and not a strict subfield:

e if p # ¢, we need them both noninert, prime to the conductor of Z[v/D]. Let P,Q be prime
ideals above p and ¢; if both are unramified, we further require that PE1Q*! be all distinct in the
class group of Z[v/D]; if both are ramified, we require that PQ # 1 in the class group.

e if p = ¢, we want it split and prime to the conductor and the prime ideal above it must have
order # 1,2, 4 in the class group.

Invariants are allowed under the additional conditions on D listed below.
e(:j
el: f,D=1mod8 and D = 1,2mod 3;
e2: f2. D=1mod8 and D = 1,2mod 3;
e3: 3, D=1modS;
e4: f4* D=1mod8 and D = 1,2mod 3;
e5: v =73 D=1 2mod3;
e6: wy3, D=1mod8 and D = 1,2mod 3;
e8: f8 D=1mod8 and D = 1,2mod 3;
©9: w33, D=1mod2 and D = 1,2mod 3;
e 10: w5, D # 60mod 80 and D = 1,2mod 3;
e 14: wy 7, D = 1modS§;
e 15: wg 5, D =1,2mod 3;
e 21: wg 7, D = 1mod2 and 21 does not divide D
® 23: fw%g, D =1,2mod 3;
® 24: w35, D =1,2mod3;
® 26: wy 13, D # 156 mod 208;
® 27: w3 7, D # 28 mod 112;
e 28: w§73, D =1,2mod 3;
e 35: ws7, D =1,2mod 3;
® 39: w313, D =1mod2 and D = 1,2mod 3;

The algorithm for computing the polynomial does not use the floating point approach, which
would evaluate a precise modular function in a precise complex argument. Instead, it relies on a
faster Chinese remainder based approach modulo small primes, in which the class invariant is only

244

defined algebraically by the modular polynomial relating the modular function to j. So in fact,
any of the several roots of the modular polynomial may actually be the class invariant, and more
precise assertions cannot be made.

For instance, while polclass(D) returns the minimal polynomial of j(7) with 7 (any) quadratic
integer for the discriminant D, the polynomial returned by polclass(D, 5) can be the minimal
polynomial of any of y2(7), (372(7) or (372(7), the three roots of the modular polynomial j = 73,
in which j has been specialised to j(7).

The modular polynomial is given by j = (f24f+416)3 for Weber’s function f.

For the double eta quotients of level N = pq, all functions are covered such that the modular
curve X, (N), the function field of which is generated by the functions invariant under I'’(N) and
the Fricke-Atkin—Lehner involution, is of genus 0 with function field generated by (a power of) the
double eta quotient w. This ensures that the full Hilbert class field (and not a proper subfield) is
generated by class invariants from these double eta quotients. Then the modular polynomial is of
degree 2 in j, and of degree ¥(N) = (p+1)(¢+ 1) in w.

? polclass(-163)

%1 = x + 262537412640768000

? polclass(-51, , ’z)

%2 = z"2 + 5541101568*z + 6262062317568
? polclass(-151,1)

X7 - x"6 + x75 + 3%x”3 - x72 + 3xx + 1

The library syntax is GEN polclass(GEN D, long inv, long x = -1) where x is a variable
number.

3.9.15 polcoef(z,n,{v}). Coefficient of degree n of the polynomial z, with respect to the main
variable if v is omitted, with respect to v otherwise. If n is greater than the degree, the result is
ZETO.

Naturally applies to scalars (polynomial of degree 0), as well as to rational functions whose
denominator is a monomial. It also applies to power series: if n is less than the valuation, the result
is zero. If it is greater than the largest significant degree, then an error message is issued.

The library syntax is GEN polcoef (GEN x, long n, long v = -1) where v is a variable
number.
3.9.16 polcoeft(x,n, {v}). Deprecated alias for polcoef.

The library syntax is GEN polcoef(GEN x, long n, long v = -1) where v is a variable
number.
3.9.17 polcyclo(n,{a =’ z}). n-th cyclotomic polynomial, evaluated at a (’x by default). The
integer n must be positive.

Algorithm used: reduce to the case where n is squarefree; to compute the cyclotomic polyno-
mial, use ®,,,(x) = ®,,(2?)/P®(x); to compute it evaluated, use ®,,(x) = Hd|n(37d —1)#/d)Tn the
evaluated case, the algorithm assumes that a? — 1 is either 0 or invertible, for all d | n. If this is
not the case (the base ring has zero divisors), use subst (polcyclo(n),x,a).

The library syntax is GEN polcyclo_eval(long n, GEN a = NULL). The variant GEN polcy-
clo(long n, long v) returns the n-th cyclotomic polynomial in variable v.

245

3.9.18 polcyclofactors(f). Returns a vector of polynomials, whose product is the product of
distinct cyclotomic polynomials dividing f.

? £ = x710+5%x78-x"7+8%xX"6-4*x"5+8%x"4-3*x"3+7*x"2+3;
7 v = polcyclofactors(f)

%2 = [x"2+1, x2+x+1, x4 -x"3+x"2-x+ 1]
7 apply(poliscycloprod, v)

%3 =[1, 1, 1]

? apply(poliscyclo, v)

% = [4, 3, 10]

In general, the polynomials are products of cyclotomic polynomials and not themselves irreducible:

? g = xT8+2*XTT+6*x"6+9*%x"5+12%x"4+11%x"3+10*x"2+6%x+3;
7 polcyclofactors(g)

h2 = [x76 + 2%xx"5 + 3*x74 + 3xx"3 + 3*kx"2 + 2*x + 1]

? factor(%[11)

w3 =

[x"2 +x + 1 1]

[x"4 + x°3 + x"2 + x + 1 1]

The library syntax is GEN polcyclofactors(GEN f).

3.9.19 poldegree(z, {v}). Degree of the polynomial z in the main variable if v is omitted, in the
variable v otherwise.

The degree of 0 is —oo. The degree of a nonzero scalar is 0. Finally, when x is a nonzero
polynomial or rational function, returns the ordinary degree of x. Raise an error otherwise.

The library syntax is GEN gppoldegree(GEN x, long v = -1) where v is a variable number.
Also available is long poldegree(GEN x, long v), which returns -LONG_MAX if x = 0 and the
degree as a long integer.

3.9.20 poldisc(pol, {v}). Discriminant of the polynomial pol in the main variable if v is omitted,
in v otherwise. Uses a modular algorithm over Z or Q, and the subresultant algorithm otherwise.

7T =x"4 + 2%x+1;
? poldisc(T)

h2 = -176
? poldisc(T"2)
%3 =0

For convenience, the function also applies to types t_QUAD and t_QFB:

? z = 3*quadgen(8) + 4;
? poldisc(z)

W2 =8

? q = Qfb(1,2,3);

? poldisc(q)

W4 = -8

The library syntax is GEN poldiscO(GEN pol, long v = -1) where v is a variable number.

246

3.9.21 poldiscfactors(T,{flag = 0}). Given a polynomial T with integer coefficients, return
[D, faD] where D is the discriminant of T" and faD is a cheap partial factorization of |D|: entries
in its first column are coprime and not perfect powers but need not be primes. The factors are
obtained by a combination of trial division, testing for perfect powers, factorizations in coprimes,
and computing Euclidean remainder sequences for (7', 7") modulo composite factors d of D (which
is likely to produce O-divisors in Z/dZ). If flag is 1, finish the factorization using factorint.

?T=x"3 6021021*x72 + 12072210077769*x - 8092423140177664432;
? [D,faD] = poldiscfactors(T); print(faD); D

[3, 3; 7, 2; 373, 2; 500009, 2; 24639061, 2]

%2 = -27937108625866859018515540967767467

?7T=x"3 + 9%x"2 + 27*x - 125014250689643346789780229390526092263790263725;
7 [D,faD] = poldiscfactors(T); print(faD)

[2, 6; 3, 3; 125007125141751093502187, 4]

7 [D,faD] = poldiscfactors(T, 1); print(faD)

[2, 6; 3, 3; 500009, 12; 1000003, 4]

The library syntax is GEN poldiscfactors(GEN T, long flag).

3.9.22 poldiscreduced(f). Reduced discriminant vector of the (integral, monic) polynomial f.
This is the vector of elementary divisors of Z[a]/ f'(a)Z[a], where « is a root of the polynomial f.
The components of the result are all positive, and their product is equal to the absolute value of
the discriminant of f.

The library syntax is GEN reduceddiscsmith(GEN f).

3.9.23 polgraeffe(f). Returns the Graeffe transform g of f, such that g(2?) = f(z)f(—x).

The library syntax is GEN polgraeffe(GEN f).

3.9.24 polhensellift(A, B,p,e). Given a prime p, an integral polynomial A whose leading co-
efficient is a p-unit, a vector B of integral polynomials that are monic and pairwise relatively
prime modulo p, and whose product is congruent to A/lc(A) modulo p, lift the elements of B to
polynomials whose product is congruent to A modulo p°.

More generally, if T is an integral polynomial irreducible mod p, and B is a factorization of
A over the finite field F,[t]/(T), you can lift it to Z,[t]/(T,p°) by replacing the p argument with
[p, T:

?7{T=%t"3-2;p=7; A=x"2+1t+1;
B=[x+ (B*t"2 +t + 1), x + (4*t"2 + 6%t + 6)];
r = polhensellift(A, B, [p, T1, 6) }

%1 = [x + (20191%t~2 + 50604*t + 75783), x + (97458%t~2 + 67045t + 41866)]
? 1liftall(r[1] * r[2] =* MOd(MOd(l,pAG),T))
%2 =x"2 + (¢t + 1)

The library syntax is GEN polhensellift(GEN A, GEN B, GEN p, long e).

247

3.9.25 polhermite(n, {a =’ x}, {flag = 0}). n*" Hermite polynomial H,, evaluated at a (’x by
default), i.e.
2 d"” 2
Ho(z) = (—1)"e™ ——e=".
(@)= (e T

If flag is nonzero and n > 0, return [H,,_1(a), Hy(a)].

? polhermite(5)

%1 = 32%x"5 - 160*x"3 + 120%*x

? polhermite(5, -2) \\ H_5(-2)

%2 = 16

? polhermite(5,,1)

%3 = [16*x74 - 48%x72 + 12, 32*x"5 - 160*x"3 + 120%*x]
? polhermite(5,-2,1)

%4 = [76, 16]

The library syntax is GEN polhermite_evalO(long n, GEN a = NULL, long flag). The
variant GEN polhermite(long n, long v) returns the n-th Hermite polynomial in variable v. To
obtain H,(a), use GEN polhermite_eval(long n, GEN a).

3.9.26 polinterpolate(X,{Y'},{t =" z},{&e}). Given the data vectors X and Y of the same
length n (X containing the z-coordinates, and Y the corresponding y-coordinates), this function
finds the interpolating polynomial P of minimal degree passing through these points and evaluates
it at ¢. If Y is omitted, the polynomial P interpolates the (i, X[i]).

?7v=1[1, 2, 4, 8, 11, 13];

7 P = polinterpolate(v) \\ formal interpolation

%1 = 7/120%x"5 - 25/24%x"4 + 163/24%x"3 - 467/24%x"2 + 513/20*x - 11
? [subst(P,’x,a) | a <= [1..6]]

%2 = [1, 2, 4, 8, 11, 13]

? polinterpolate(v,, 10) \\ evaluate at 10

%3 = 508
? subst(P, x, 10)
%4 = 508

? P = polinterpolate([1,2,4], [9,8,7])

%5 = 1/6*x"2 - 3/2*xx + 31/3

? [subst(P, ’x, a) | a <- [1,2,4]]

%6 = [9, 8, 7]

7 P = polinterpolate([1,2,4], [9,8,7], 0)
%7 = 31/3

If the goal is to extrapolate a function at a unique point, it is more efficient to use the ¢ argument
rather than interpolate formally then evaluate:

? x0 = 1.5;

7 v = vector(20, i,random([-10,101));

? for(i=1,10"3, subst(polinterpolate(v),’x, x0))
time = 352 ms.

? for(i=1,10"3, polinterpolate(v,,x0))

time = 111 ms.

? v = vector(40, i,random([-10,10]));

248

? for(i=1,10"3, subst(polinterpolate(v), ’x, x0))
time = 3,035 ms.

? for(i=1,10"3, polinterpolate(v,, x0))

time = 436 ms.

The threshold depends on the base field. Over small prime finite fields, interpolating formally first
is more efficient

? bench(p, N, T = 10°3) =
{ my (v = vector(N, i, random(Mod(0,p))));
my (x0 = Mod(3, p), tl, t2);
gettime () ;
for(i=1, T, subst(polinterpolate(v), ’x, x0));
tl = gettime();
for(i=1, T, polinterpolate(v,, x0));
t2 = gettime(); [t1, t2];
}
? p = 101;
? bench(p, 4, 1074) \\ both methods are equivalent
%3 = [39, 40]
7 bench(p, 40) \\ with 40 points formal is much faster
%4 = [45, 355]

As the cardinality increases, formal interpolation requires more points to become interesting;:

7 p = nextprime(27128);

? bench(p, 4) \\ formal is slower

»3 = [16, 9]

7 bench(p, 10) \\ formal has become faster
%4 = [61, 70]

? bench(p, 100) \\ formal is much faster
%5 = [1682, 9081]

7 p = nextprime(107500);

? bench(p, 4) \\ formal is slower

%7 = [72, 354]

? bench(p, 20) \\ formal is still slower

%8 = [1287, 962]

? bench(p, 40) \\ formal has become faster

%9 = [3717, 4227]

7 bench(p, 100) \\ faster but relatively less impressive
%10 = [16237, 32335]

If ¢ is a complex numeric value and e is present, e will contain an error estimate on the
returned value. More precisely, let P be the interpolation polynomial on the given n points;
there exist a subset of n — 1 points and) the attached interpolation polynomial such that e =
exponent(P(t) — Q(t)) (Neville’s algorithm).

? f(x) =1/ (1 + 25%xx"2);
? x0 = 975/1000;
? test(X) =

{ my (P, &);

249

P = polinterpolate(X, [f(x) | x <- X], x0, &e);
[exponent(P - £(x0)), e 1;
}

\\ equidistant nodes vs. Chebyshev nodes

? test([-10..10] / 10)

%4 = [6, 5]

? test(polrootsreal(polchebyshev(21)))

%5 = [-156, -10]

? test([-100..100] / 100)

%7 = [93, 971 \\ P(x0) is way different from f(x0)

7 test(polrootsreal(polchebyshev(201)))

%8 = [-60, -55]

This is an example of Runge’s phenomenon: increasing the number of equidistant nodes makes
extrapolation much worse. Note that the error estimate is not a guaranteed upper bound (cf %4),
but is reasonably tight in practice.

Numerical stability. The interpolation is performed in a numerically stable way using
[1,:(X[i] — X[j]) instead of Q'(X[z]) with @ = [];(x — X[i]). Centering the interpolation points
X fz] around 0, thereby reconstructing P(x —m), for a suitable m will further reduce the numerical
€ITor.

The library syntax is GEN polint(GEN X, GEN Y = NULL, GEN t = NULL, GEN *e = NULL)

3.9.27 poliscyclo(f). Returns 0 if f is not a cyclotomic polynomial, and n > 0 if f = ®,,, the
n-th cyclotomic polynomial.

7 poliscyclo(x~4-x"2+1)
o= 12

7 polcyclo(12)

%2 =x74 - x72 + 1

? poliscyclo(x~4-x"2-1)
%3 =0

The library syntax is long poliscyclo(GEN f).

3.9.28 poliscycloprod(f). Returns 1 if f is a product of cyclotomic polynomial, and 0 otherwise.

7?7 f = x76+x75-x"3+x+1;
7 poliscycloprod(f)

%2 =1
? factor(f)
%3 =

[x*2 +x + 1 1]

[x"4 - x"2 + 1 1]

? [poliscyclo(T) | T <= %[,1] 1
4 = [3, 12]

7 polcyclo(3) * polcyclo(12)

% =x"6 + x5 -x"3+x+1

The library syntax is long poliscycloprod(GEN f)

250

3.9.29 polisirreducible(pol). pol being a polynomial (univariate in the present version 2.15.0),
returns 1 if pol is nonconstant and irreducible, 0 otherwise. Irreducibility is checked over the
smallest base field over which pol seems to be defined.

The library syntax is long polisirreducible(GEN pol).

3.9.30 pollaguerre(n, {a = 0}, {b =" z}, {flag = 0}). n'" Laguerre polynomial L of degree n
and parameter a evaluated at b (’x by default), i.e.
ve

n! dxn

LW (z) = (e="a"te).

If flag is 1, return [L'” (b), L ().

n—1
The library syntax is GEN pollaguerre_evalO(long n, GEN a = NULL, GEN b = NULL, long
flag). To obtain the n-th Laguerre polynomial in variable v, use GEN pollaguerre(long n, GEN
a, GEN b, long v). To obtain Lq({l)(b)7 use GEN pollaguerre_eval(long n, GEN a, GEN b)

3.9.31 pollead(x, {v}). Leading coefficient of the polynomial or power series . This is computed
with respect to the main variable of x if v is omitted, with respect to the variable v otherwise.

The library syntax is GEN pollead(GEN x, long v = -1) where v is a variable number.

3.9.32 pollegendre(n, {a =" x}, {flag = 0}). n*" Legendre polynomial P, evaluated at a (’x by
default), where
1 d»

_ 2
ol dpn (2" =1)".

P (z)

If flag is 1, return [P,—_1(a), P,(a)].

The library syntax is GEN pollegendre_evalO(long n, GEN a = NULL, long flag). To
obtain the n-th Legendre polynomial P, in variable v, use GEN pollegendre(long n, long v)
. To obtain P, (a), use GEN pollegendre_eval(long n, GEN a).

3.9.33 polmodular(L, {inv = 0}, {x =" =}, {y =" y}, {derivs = 0}). Return the modular polyno-
mial of prime level L in variables x and y for the modular function specified by inv. If inv is 0
(the default), use the modular j function, if inv is 1 use the Weber-f function, and if inv is 5 use
Yo = \ﬂ?)]j. See polclass for the full list of invariants. If x is given as Mod(j, p) or an element
j of a finite field (as a t_FFELT), then return the modular polynomial of level L evaluated at j. If
7 is from a finite field and derivs is nonzero, then return a triple where the last two elements are
the first and second derivatives of the modular polynomial evaluated at j.

? polmodular(3)

Y1 = x°4 + (-y"3 + 2232%y°2 - 1069956%y + 36864000)*x"3 + ...
7 polmodular(7, 1, , ’J)

%2 = x°8 = JTT*x"7 + TxJ 4*xx"4 - 8*Jxx + J°8

? polmodular(7, 5, 7xffgen(19)°0, ’j)

%3 = j°8 + A%J"7 + 4%j"6 + 8%j°5 + j~4 + 12%j°2 + 18%j + 18
? polmodular(7, 5, Mod(7,19), ’j)

Y4 = Mod(1, 19)*j°8 + Mod(4, 19)%j°7 + Mod(4, 19)*j"6 + ...

? u = ffgen(5)~0; T = polmodular(3,0,,’j)*u;

251

? polmodular(3, 0, u,’j,1)

W6 = [374 + 3%j72 + 4xj + 1, 3%j72 + 2% + 4, 3%J73 + 4*xj"2 + 4xj + 2]
? subst(T,x,u)

BT = 374 + 3%j72 + 4xj + 1

? subst(T’,x,u)

% = 3%j72 + 2xj + 4

? subst(T’’,x,u)

%9 = 3%j°3 + 4%j"2 + 4*j + 2

The library syntax is GEN polmodular(long L, long inv, GEN x = NULL, long y = -1,
long derivs) where y is a variable number.

3.9.34 polrecip(pol). Reciprocal polynomial of pol with respect to its main variable, i.e. the
coefficients of the result are in reverse order; pol must be a polynomial.

7 polrecip(x”2 + 2*x + 3)
hl = 3*x72 + 2xx + 1

7 polrecip(2*x + y)

h2 = yxx + 2

The library syntax is GEN polrecip(GEN pol).

3.9.35 polresultant(z,y, {v}, {flag = 0}). Resultant of the two polynomials x and y with exact
entries, with respect to the main variables of x and y if v is omitted, with respect to the variable
v otherwise. The algorithm assumes the base ring is a domain. If you also need the u and v such
that x * u 4+ y *x v = Res(z, y), use the polresultantext function.

If flag = 0 (default), uses the algorithm best suited to the inputs, either the subresultant
algorithm (Lazard /Ducos variant, generic case), a modular algorithm (inputs in Q[X]) or Sylvester’s
matrix (inexact inputs).

If flag = 1, uses the determinant of Sylvester’s matrix instead; this should always be slower
than the default.

If z or y are multivariate with a huge polynomial content, it is advisable to remove it before
calling this function. Compare:

? a = polcyclo(7) * ((t+1)/(t+2))~100;

7 b = polcyclo(11)* ((t+2)/(t+3))~100);

? polresultant(a,b);

time = 3,833 ms.

? ca = content(a); cb = content(b); \
polresultant(a/ca,b/cb)*ca"poldegree(b)*cb*poldegree(a); \\ instantaneous

The function only removes rational denominators and does not compute automatically the content
because it is generically small and potentially very expensive (e.g. in multivariate contexts). The
choice is yours, depending on your application.

The library syntax is GEN polresultantO(GEN x, GEN y, long v = -1, long flag) where
v is a variable number.

252

3.9.36 polresultantext(A, B, {v}). Finds polynomials U and V such that AxU+BxV = R, where
R is the resultant of U and V with respect to the main variables of A and B if v is omitted, and
with respect to v otherwise. Returns the row vector [U,V, R]. The algorithm used (subresultant)
assumes that the base ring is a domain.

? A = x*xy; B = (x+y)~2;

? [U,V,R] = polresultantext(A, B)

%2 = [-y*x - 2*xy~2, y~2, y 4]

7 A*U + Bx*V

%3 =y 4

? [U,V,R] = polresultantext(A, B, y)
%4 [-2%x"2 - y*x, x72, x74]

7 A*U+BxV

%5 = x"4

o

The library syntax is GEN polresultantextO(GEN A, GEN B, long v = -1) where v is a
variable number. Also available is GEN polresultantext(GEN x, GEN y).

3.9.37 polroots(7T'). Complex roots of the polynomial T', given as a column vector where each
root is repeated according to its multiplicity and given as floating point complex numbers at the
current realprecision:

? polroots(x~2)
%1 = [0.E-38 + 0.E-38%I, 0.E-38 + 0.E-38+*I]~

? polroots(x~3+1)
%2 = [-1.00... + 0.E-38%I, 0.50... - 0.866...*I, 0.50... + 0.866...*%I]~

The algorithm used is a modification of Schénhage’s root-finding algorithm, due to and orig-
inally implemented by Gourdon. It runs in polynomial time in deg(7") and the precision. If
furthermore T has rational coefficients, roots are guaranteed to the required relative accuracy. If
the input polynomial T is exact, then the ordering of the roots does not depend on the precision:
they are ordered by increasing |3z|, then by increasing Rz; in case of tie (conjugates), the root
with negative imaginary part comes first.

The library syntax is GEN roots(GEN T, long prec).

3.9.38 polrootsbound(7, {tau = 0.01}). Return a sharp upper bound B for the modulus of the
largest complex root of the polynomial 7" with complex coefficients with relative error 7. More
precisely, we have |z| < B for all roots and there exist one root such that |zg| > Bexp(—27). Much
faster than either polroots or polrootsreal.

? T=poltchebi (500);

7 vecmax(abs(polroots(T)))

time = 5,706 ms.

%2 = 0.99999506520185816611184481744870013191
? vecmax (abs(polrootsreal(T)))

time = 1,972 ms.

%3 = 0.99999506520185816611184481744870013191
7 polrootsbound(T)

time = 217 ms.

%4 = 1.0098792554165905155

? polrootsbound(T, log(2)/2) \\ allow a factor 2, much faster

253

time = 51 ms.

%5 = 1.4065759938190154354
? polrootsbound(T, le-4)
time = 504 ms.

%6 = 1.0000920717983847741
? polrootsbound(T, 1e-6)
time = 810 ms.

%7 = 0.9999960628901692905
7 polrootsbound(T, 1e-10)
time = 1,351 ms.

%8 = 0.9999950652993869760

The library syntax is GEN polrootsbound(GEN T, GEN tau = NULL).

3.9.39 polrootsfi(z, {p},{a}). Obsolete, kept for backward compatibility: use factormod.

The library syntax is GEN polrootsff(GEN x, GEN p = NULL, GEN a = NULL).

3.9.40 polrootsmod(f,{D}). Vector of roots of the polynomial f over the finite field defined by
the domain D as follows:

e D = p a prime: factor over F;

e D = [T,p] for a prime p and T'(y) an irreducible polynomial over F,: factor over F,[y]/(T)
(as usual the main variable of 7" must have lower priority than the main variable of f);

e D a t_FFELT: factor over the attached field;
e D omitted: factor over the field of definition of f, which must be a finite field.
Multiple roots are not repeated.

7 polrootsmod(x~2-1,2)

%1 = [Mod(1, 2)]~

? polrootsmod(x~2+1,3)

%2 = [1~

7 polrootsmod(x~2+1, [y~2+1,3])

%3 = [Mod(Mod(1, 3)*y, Mod(1, 3)*y~2 + Mod(1, 3)),
Mod(Mod (2, 3)*y, Mod(1, 3)*y~2 + Mod(1, 3))]~

? polrootsmod(x~2 + Mod(1,3))

W = [1~

7 1iftall(polrootsmod(x~2 + Mod(Mod(1,3),y"2+1)))

%5 = Ly, 2*xyl~

? t = ffgen(y~2+Mod(1,3)); polrootsmod(x~2 + t~0)

%6 = Ly, 2*xyl~

The library syntax is GEN polrootsmod(GEN f, GEN D = NULL).

254

3.9.41 polrootspadic(f,p,r). Vector of p-adic roots of the polynomial pol, given to p-adic pre-
cision r; the integer p is assumed to be a prime. Multiple roots are not repeated. Note that this
is not the same as the roots in Z/p"Z, rather it gives approximations in Z/p"Z of the true roots
living in Q:

? polrootspadic(x”3 - x"2 + 64, 2, 4)

%1 = [2"3 + 0(274), 273 + 0(2"4), 1 + 0(2"4)]~

? polrootspadic(x”3 - x"2 + 64, 2, 5)

%2 = [273 + 0(275), 273 + 274 + 0(2°5), 1 + 0(2°5)]~

As the second commands show, the first two roots are distinct in Q,,, even though they are equal
modulo 2%

More generally, if T is an integral polynomial irreducible mod p and f has coefficients in
QJt]/(T), the argument p may be replaced by the vector [T, p|; we then return the roots of f in the
unramified extension Q,[t]/(T).

? polrootspadic(x”3 - x72 + 64xy, [y~ 2+y+1,2], 5)

%3 = Mod((2°3 + 0(2°8))*y + (273 + 0(2°5)), y"2 +y + 1),
Mod((273 + 274 + 0(2°5))*y + (273 + 274 + 0(2°5)), y" 2 +y + 1),
Mod(1 + 0(275), y 2 +y + 1)]~

If pol has inexact t_PADIC coeflicients, this need not well-defined; in this case, the polynomial
is first made integral by dividing out the p-adic content, then lifted to Z using truncate coeffi-
cientwise. Hence the roots given are approximations of the roots of an exact polynomial which is
p-adically close to the input. To avoid pitfalls, we advise to only factor polynomials with exact
rational coefficients.

The library syntax is GEN polrootspadic(GEN f, GEN p, long r).

3.9.42 polrootsreal (T, {ab}). Real roots of the polynomial 7" with real coefficients, multiple roots
being included according to their multiplicity. If the polynomial does not have rational coefficients,
it is first rescaled and rounded. The roots are given to a relative accuracy of realprecision. If
argument ab is present, it must be a vector [a,b] with two components (of type t_INT, t_FRAC or
t_INFINITY) and we restrict to roots belonging to that closed interval.

7 \p9

? polrootsreal (x"2-2)

%1 = [-1.41421356, 1.41421356]~

? polrootsreal(x~2-2, [1,+00])

%2 = [1.41421356] ~

7 polrootsreal(x~2-2, [2,3])

w3 = [1~

? polrootsreal ((x-1)*(x-2), [2,3])
%4 = [2.00000000] ~

The algorithm used is a modification of Uspensky’s method (relying on Descartes’s rule of
sign), following Rouillier and Zimmerman’s article “Efficient isolation of a polynomial real roots”
(http://hal.inria.fr/inria-00072518/). Barring bugs, it is guaranteed to converge and to give
the roots to the required accuracy.

255

Remark. If the polynomial 7T is of the form Q(z") for some h > 2 and ab is omitted, the routine
will apply the algorithm to @ (restricting to nonnegative roots when h is even), then take h-th
roots. On the other hand, if you want to specify ab, you should apply the routine to @} yourself
and a suitable interval [a’, 0’| using approximate h-th roots adapted to your problem: the function
will not perform this change of variables if ab is present.

The library syntax is GEN realroots(GEN T, GEN ab = NULL, long prec).

3.9.43 polsturm(7, {ab}). Number of distinct real roots of the real polynomial T'. If the argument
ab is present, it must be a vector [a, b] with two real components (of type t_INT, t_REAL, t_FRAC
or t_INFINITY) and we count roots belonging to that closed interval.

If possible, you should stick to exact inputs, that is avoid t _REALs in T" and the bounds a, b: the
result is then guaranteed and we use a fast algorithm (Uspensky’s method, relying on Descartes’s
rule of sign, see polrootsreal). Otherwise, the polynomial is rescaled and rounded first and the
result may be wrong due to that initial error. If only a or b is inexact, on the other hand, the
interval is first thickened using rational endpoints and the result remains guaranteed unless there
exist a root very close to a nonrational endpoint (which may be missed or unduly included).

?7 T = (x-1)*(x-2)*(x-3);
? polsturm(T)

%2 = 3

? polsturm(T, [-00,2])

%3 = 2

? polsturm(T, [1/2,+00])

% = 3

? polsturm(T, [1, Pil) \\ Pi inexact: not recommended !

%5 =3

? polsturm(T*1., [0, 4]) \\ T*1l. inexact: not recommended !
%6 =3

? polsturm(T~2, [0, 4]) \\ not squarefree: roots are not repeated!
%7 =3

The library syntax is long RgX_sturmpart(GEN T, GEN ab) or long sturm(GEN T) (for the
case ab = NULL). The function long sturmpart(GEN T, GEN a, GEN b) is obsolete and deprecated.

3.9.44 polsubcyclo(n,d,{v =" z}). Gives polynomials (in variable v) defining the (Abelian)
subextensions of degree d of the cyclotomic field Q((,,), where d | ¢(n).

If there is exactly one such extension the output is a polynomial, else it is a vector of polyno-
mials, possibly empty. To get a vector in all cases, use concat ([], polsubcyclo(n,d)).

Each such polynomial is the minimal polynomial for a Gaussian period Trqc,),.((r), where
L is the degree d subextension of Q((,) and f|n is its conductor. In Galois-theoretic terms,
L = Q(¢,)", where H runs through all index d subgroups of (Z/nZ)*.

The function galoissubcyclo allows to specify exactly which sub-Abelian extension should
be computed by giving H.

256

Complexity. Ignoring logarithmic factors, polsubcyclo runs in time O(n). The function pol-
subcyclofast returns different, less canonical, polynomials but runs in time O(d*), again ignoring
logarithmic factors; thus it can handle much larger values of n.

The library syntax is GEN polsubcyclo(long n, long d, long v = -1) where v is a variable
number.

3.9.45 polsubcyclofast(n, d, {s = 0}, {exact = 0}). If 1 < d < 6 or a prime, finds an equation for
the subfields of Q((,) with Galois group Cy; the special value d = —4 provides the subfields with
group V; = Cy x Cy. Contrary to polsubcyclo, the output is always a (possibly empty) vector of
polynomials. If s = 0 (default) all signatures, otherwise s = 1 (resp., —1) for totally real (resp.,
totally complex). Set exact = 1 for subfields of conductor n.

The argument n can be given as in arithmetic functions: as an integer, as a factorization
matrix, or (preferred) as a pair [N, factor(N)].

Comparison with polsubcyclo. First polsubcyclofast does not usually return Gaussian pe-
riods, but ad hoc polynomials which do generate the same field. Roughly speaking (ignoring
logarithmic factors), the complexity of polsubcyclo is independent of d and the complexity of
polsubcyclofast is independent of n. Ignoring logarithmic factors, polsubcylo runs in time
O(n) and polsubcyclofast in time O(d*). So the latter is much faster than polsubcyclo if n is
large, but gets slower as d increases and becomes unusable for d > 40 or so.

7 polsubcyclo(107°7+19,7);

time = 1,852 ms.

7 polsubcyclofast(1077+19,7);

time = 15 ms.

? polsubcyclo(10°17+21,5); \\ won’t finish
% polsubcyclo: user interrupt after 2h
7 polsubcyclofast(10717+21,5);

time = 3 ms.

7 polsubcyclofast(10717+3,7);

time = 26 ms.

? polsubcyclo(1076+117,13);

time = 193 ms.

? polsubcyclofast(1076+117,13);

time = 50 ms.

7 polsubcyclofast(1076+199,19);

time = 202 ms.

7 polsubcyclo(1076+199,19); \\ about as fast

time = 3191ms.

7 polsubcyclo(1077+271,19);

time = 2,067 ms.

? polsubcyclofast(1077+271,19);

time = 201 ms.

The library syntax is GEN polsubcyclofast(GEN n, long d, long s, long exact).

257

3.9.46 polsylvestermatrix(z,y). Forms the Sylvester matrix corresponding to the two polyno-
mials z and y, where the coefficients of the polynomials are put in the columns of the matrix (which
is the natural direction for solving equations afterwards). The use of this matrix can be essential
when dealing with polynomials with inexact entries, since polynomial Euclidean division doesn’t
make much sense in this case.

The library syntax is GEN sylvestermatrix(GEN x, GEN y).

3.9.47 polsym(z,n). Creates the column vector of the symmetric powers of the roots of the
polynomial x up to power n, using Newton’s formula.

The library syntax is GEN polsym(GEN x, long n).

3.9.48 poltchebi(n, {v =" z}). Deprecated alias for polchebyshev

The library syntax is GEN polchebyshevl(long n, long v = -1) where v is a variable
number.

3.9.49 polteichmuller(T,p,r). Given T € F,[X] return the polynomial P € Z,[X] whose roots
(resp. leading coefficient) are the Teichmuller lifts of the roots (resp. leading coefficient) of T', to
p-adic precision r. If T' is monic, P is the reduction modulo p” of the unique monic polynomial
congruent to 7' modulo p such that P(X?) =0 (mod P(X),p").

? T = ffinit(3, 3, ’t)

%1 = Mod(1,3)*t"3 + Mod(1,3)*t"2 + Mod(1,3)*t + Mod(2,3)
? P = polteichmuller(T,3,5)

%2 = t73 + 166*xt~2 + 52xt + 242

? subst(P, t, t°3) % (P*Mod(1,375))

%3 = Mod (0, 243)

? [algdep(a+0(375),2) | a <= Vec(P)]

% = [x - 1, 5%x"2 + 1, x°2 + 4*xx + 4, x + 1]

When 7T is monic and irreducible mod p, this provides a model Q,[X]/(P) of the unramified
extension Q,[X]/(T") where the Frobenius has the simple form X mod P — X? mod P.

The library syntax is GEN polteichmuller (GEN T, ulong p, long r).

3.9.50 poltomonic(7,{&L}). Let T € Q[z] be a nonzero polynomial; return U monic in Z[z]
such that U(z) = CT(x/L) for some C, L € Q. If the pointer argument &L is present, set L to L.

? poltomonic(9*x~2 - 1/2)
ho=x"2 -2

? U = poltomonic(9*x~2 - 1/2, &L)
%2 = x"2 - 2

7L
%3 = 6
? U/ subst(9%x~2 - 1/2, x, x/L)
%4 = 4

This function does not compute discriminants or maximal orders and runs with complexity
almost linear in the input size. If T is already monic with integer coefficient, poltomonic may still
transf