| Copyright | (c) 2016 Stephen Diehl (c) 2016-2018 Serokell (c) 2018-2023 Kowainik |
|---|---|
| License | MIT |
| Maintainer | Kowainik <xrom.xkov@gmail.com> |
| Stability | Stable |
| Portability | Portable |
| Safe Haskell | Safe |
| Language | Haskell2010 |
Relude.Function
Contents
- Reexports
- Data.Function reexports
- Control.Category reexports
- Control.Arrow reexports
- Combinators
Description
This module reexports very basic and primitive functions and function combinators.
Synopsis
- (.) :: (b -> c) -> (a -> b) -> a -> c
- ($) :: (a -> b) -> a -> b
- (&) :: a -> (a -> b) -> b
- id :: a -> a
- const :: a -> b -> a
- flip :: (a -> b -> c) -> b -> a -> c
- fix :: (a -> a) -> a
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- (>>>) :: forall {k} cat (a :: k) (b :: k) (c :: k). Category cat => cat a b -> cat b c -> cat a c
- (<<<) :: forall {k} cat (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c
- (&&&) :: Arrow a => a b c -> a b c' -> a b (c, c')
- identity :: a -> a
Reexports
Data.Function reexports
(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 #
Right to left function composition.
(f . g) x = f (g x)
f . id = f = id . f
Examples
>>>map ((*2) . length) [[], [0, 1, 2], [0]][0,6,2]
>>>foldr (.) id [(+1), (*3), (^3)] 225
>>>let (...) = (.).(.) in ((*2)...(+)) 5 1030
($) :: (a -> b) -> a -> b infixr 0 #
is the function application operator.($)
Applying to a function ($)f and an argument x gives the same result as applying f to x directly. The definition is akin to this:
($) :: (a -> b) -> a -> b ($) f x = f x
This is specialized from ida -> a to (a -> b) -> (a -> b) which by the associativity of (->)
is the same as (a -> b) -> a -> b.
On the face of it, this may appear pointless! But it's actually one of the most useful and important operators in Haskell.
The order of operations is very different between ($) and normal function application. Normal function application has precedence 10 - higher than any operator - and associates to the left. So these two definitions are equivalent:
expr = min 5 1 + 5 expr = ((min 5) 1) + 5
($) has precedence 0 (the lowest) and associates to the right, so these are equivalent:
expr = min 5 $ 1 + 5 expr = (min 5) (1 + 5)
Examples
A common use cases of ($) is to avoid parentheses in complex expressions.
For example, instead of using nested parentheses in the following Haskell function:
-- | Sum numbers in a string: strSum "100 5 -7" == 98 strSum ::String->IntstrSum s =sum(mapMaybereadMaybe(wordss))
we can deploy the function application operator:
-- | Sum numbers in a string: strSum "100 5 -7" == 98 strSum ::String->IntstrSum s =sum$mapMaybereadMaybe$wordss
($) is also used as a section (a partially applied operator), in order to indicate that we wish to apply some yet-unspecified function to a given value. For example, to apply the argument 5 to a list of functions:
applyFive :: [Int] applyFive = map ($ 5) [(+1), (2^)] >>> [6, 32]
Technical Remark (Representation Polymorphism)
($) is fully representation-polymorphic. This allows it to also be used with arguments of unlifted and even unboxed kinds, such as unboxed integers:
fastMod :: Int -> Int -> Int fastMod (I# x) (I# m) = I# $ remInt# x m
(&) :: a -> (a -> b) -> b infixl 1 #
& is a reverse application operator. This provides notational
convenience. Its precedence is one higher than that of the forward
application operator $, which allows & to be nested in $.
This is a version of , where flip idid is specialized from a -> a to (a -> b) -> (a -> b)
which by the associativity of (->) is (a -> b) -> a -> b.
flipping this yields a -> (a -> b) -> b which is the type signature of &
Examples
>>>5 & (+1) & show"6"
>>>sqrt $ [1 / n^2 | n <- [1..1000]] & sum & (*6)3.1406380562059946
Since: base-4.8.0.0
Identity function.
id x = x
This function might seem useless at first glance, but it can be very useful in a higher order context.
Examples
>>>length $ filter id [True, True, False, True]3
>>>Just (Just 3) >>= idJust 3
>>>foldr id 0 [(^3), (*5), (+2)]1000
const x y always evaluates to x, ignoring its second argument.
const x = \_ -> x
This function might seem useless at first glance, but it can be very useful in a higher order context.
Examples
>>>const 42 "hello"42
>>>map (const 42) [0..3][42,42,42,42]
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip ff.
flip f x y = f y x
flip . flip = id
Examples
>>>flip (++) "hello" "world""worldhello"
>>>let (.>) = flip (.) in (+1) .> show $ 5"6"
is the least fixed point of the function fix ff,
i.e. the least defined x such that f x = x.
When f is strict, this means that because, by the definition of strictness,
f ⊥ = ⊥ and such the least defined fixed point of any strict function is ⊥.
Examples
We can write the factorial function using direct recursion as
>>>let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5120
This uses the fact that Haskell’s let introduces recursive bindings. We can
rewrite this definition using fix,
Instead of making a recursive call, we introduce a dummy parameter rec;
when used within fix, this parameter then refers to fix’s argument, hence
the recursion is reintroduced.
>>>fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5120
Using fix, we can implement versions of repeat as
and fix . (:)cycle as fix . (++)
>>>take 10 $ fix (0:)[0,0,0,0,0,0,0,0,0,0]
>>>map (fix (\rec n -> if n < 2 then n else rec (n - 1) + rec (n - 2))) [1..10][1,1,2,3,5,8,13,21,34,55]
Implementation Details
on :: (b -> b -> c) -> (a -> b) -> a -> a -> c infixl 0 #
runs the binary function on b u x yb on the results of applying
unary function u to two arguments x and y. From the opposite
perspective, it transforms two inputs and combines the outputs.
(op `on` f) x y = f x `op` f y
Examples
>>>sortBy (compare `on` length) [[0, 1, 2], [0, 1], [], [0]][[],[0],[0,1],[0,1,2]]
>>>((+) `on` length) [1, 2, 3] [-1]4
>>>((,) `on` (*2)) 2 3(4,6)
Algebraic properties
Control.Category reexports
(>>>) :: forall {k} cat (a :: k) (b :: k) (c :: k). Category cat => cat a b -> cat b c -> cat a c infixr 1 #
Left-to-right composition
(<<<) :: forall {k} cat (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c infixr 1 #
Right-to-left composition
Control.Arrow reexports
(&&&) :: Arrow a => a b c -> a b c' -> a b (c, c') infixr 3 #
Fanout: send the input to both argument arrows and combine their output.
The default definition may be overridden with a more efficient version if desired.