| 1 | /* $NetBSD: ip_encap.c,v 1.61 2016/07/04 04:40:13 knakahara Exp $ */ |
| 2 | /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */ |
| 3 | |
| 4 | /* |
| 5 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * 3. Neither the name of the project nor the names of its contributors |
| 17 | * may be used to endorse or promote products derived from this software |
| 18 | * without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 21 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 26 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 27 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 29 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 30 | * SUCH DAMAGE. |
| 31 | */ |
| 32 | /* |
| 33 | * My grandfather said that there's a devil inside tunnelling technology... |
| 34 | * |
| 35 | * We have surprisingly many protocols that want packets with IP protocol |
| 36 | * #4 or #41. Here's a list of protocols that want protocol #41: |
| 37 | * RFC1933 configured tunnel |
| 38 | * RFC1933 automatic tunnel |
| 39 | * RFC2401 IPsec tunnel |
| 40 | * RFC2473 IPv6 generic packet tunnelling |
| 41 | * RFC2529 6over4 tunnel |
| 42 | * RFC3056 6to4 tunnel |
| 43 | * isatap tunnel |
| 44 | * mobile-ip6 (uses RFC2473) |
| 45 | * Here's a list of protocol that want protocol #4: |
| 46 | * RFC1853 IPv4-in-IPv4 tunnelling |
| 47 | * RFC2003 IPv4 encapsulation within IPv4 |
| 48 | * RFC2344 reverse tunnelling for mobile-ip4 |
| 49 | * RFC2401 IPsec tunnel |
| 50 | * Well, what can I say. They impose different en/decapsulation mechanism |
| 51 | * from each other, so they need separate protocol handler. The only one |
| 52 | * we can easily determine by protocol # is IPsec, which always has |
| 53 | * AH/ESP/IPComp header right after outer IP header. |
| 54 | * |
| 55 | * So, clearly good old protosw does not work for protocol #4 and #41. |
| 56 | * The code will let you match protocol via src/dst address pair. |
| 57 | */ |
| 58 | /* XXX is M_NETADDR correct? */ |
| 59 | |
| 60 | /* |
| 61 | * With USE_RADIX the code will use radix table for tunnel lookup, for |
| 62 | * tunnels registered with encap_attach() with a addr/mask pair. |
| 63 | * Faster on machines with thousands of tunnel registerations (= interfaces). |
| 64 | * |
| 65 | * The code assumes that radix table code can handle non-continuous netmask, |
| 66 | * as it will pass radix table memory region with (src + dst) sockaddr pair. |
| 67 | */ |
| 68 | #define USE_RADIX |
| 69 | |
| 70 | #include <sys/cdefs.h> |
| 71 | __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.61 2016/07/04 04:40:13 knakahara Exp $" ); |
| 72 | |
| 73 | #ifdef _KERNEL_OPT |
| 74 | #include "opt_mrouting.h" |
| 75 | #include "opt_inet.h" |
| 76 | #include "opt_net_mpsafe.h" |
| 77 | #endif |
| 78 | |
| 79 | #include <sys/param.h> |
| 80 | #include <sys/systm.h> |
| 81 | #include <sys/socket.h> |
| 82 | #include <sys/sockio.h> |
| 83 | #include <sys/mbuf.h> |
| 84 | #include <sys/errno.h> |
| 85 | #include <sys/queue.h> |
| 86 | #include <sys/kmem.h> |
| 87 | #include <sys/mutex.h> |
| 88 | #include <sys/condvar.h> |
| 89 | #include <sys/psref.h> |
| 90 | #include <sys/pslist.h> |
| 91 | |
| 92 | #include <net/if.h> |
| 93 | |
| 94 | #include <netinet/in.h> |
| 95 | #include <netinet/in_systm.h> |
| 96 | #include <netinet/ip.h> |
| 97 | #include <netinet/ip_var.h> |
| 98 | #include <netinet/ip_encap.h> |
| 99 | #ifdef MROUTING |
| 100 | #include <netinet/ip_mroute.h> |
| 101 | #endif /* MROUTING */ |
| 102 | |
| 103 | #ifdef INET6 |
| 104 | #include <netinet/ip6.h> |
| 105 | #include <netinet6/ip6_var.h> |
| 106 | #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */ |
| 107 | #include <netinet6/in6_var.h> |
| 108 | #include <netinet6/in6_pcb.h> |
| 109 | #include <netinet/icmp6.h> |
| 110 | #endif |
| 111 | |
| 112 | #include <net/net_osdep.h> |
| 113 | |
| 114 | #ifdef NET_MPSAFE |
| 115 | #define ENCAP_MPSAFE 1 |
| 116 | #endif |
| 117 | |
| 118 | enum direction { INBOUND, OUTBOUND }; |
| 119 | |
| 120 | #ifdef INET |
| 121 | static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction, |
| 122 | struct psref *); |
| 123 | #endif |
| 124 | #ifdef INET6 |
| 125 | static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction, |
| 126 | struct psref *); |
| 127 | #endif |
| 128 | static int encap_add(struct encaptab *); |
| 129 | static int encap_remove(struct encaptab *); |
| 130 | static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *); |
| 131 | #ifdef USE_RADIX |
| 132 | static struct radix_node_head *encap_rnh(int); |
| 133 | static int mask_matchlen(const struct sockaddr *); |
| 134 | #else |
| 135 | static int mask_match(const struct encaptab *, const struct sockaddr *, |
| 136 | const struct sockaddr *); |
| 137 | #endif |
| 138 | static void encap_fillarg(struct mbuf *, const struct encaptab *); |
| 139 | |
| 140 | /* |
| 141 | * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking |
| 142 | * encap_table. So, it cannot use pserialize_read_enter() |
| 143 | */ |
| 144 | static struct { |
| 145 | struct pslist_head list; |
| 146 | pserialize_t psz; |
| 147 | struct psref_class *elem_class; /* for the element of et_list */ |
| 148 | } encaptab __cacheline_aligned = { |
| 149 | .list = PSLIST_INITIALIZER, |
| 150 | }; |
| 151 | #define encap_table encaptab.list |
| 152 | |
| 153 | static struct { |
| 154 | kmutex_t lock; |
| 155 | kcondvar_t cv; |
| 156 | struct lwp *busy; |
| 157 | } encap_whole __cacheline_aligned; |
| 158 | |
| 159 | #ifdef USE_RADIX |
| 160 | struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */ |
| 161 | static bool encap_head_updating = false; |
| 162 | #endif |
| 163 | |
| 164 | /* |
| 165 | * must be done before other encap interfaces initialization. |
| 166 | */ |
| 167 | void |
| 168 | encapinit(void) |
| 169 | { |
| 170 | |
| 171 | encaptab.psz = pserialize_create(); |
| 172 | encaptab.elem_class = psref_class_create("encapelem" , IPL_SOFTNET); |
| 173 | if (encaptab.elem_class == NULL) |
| 174 | panic("encaptab.elem_class cannot be allocated.\n" ); |
| 175 | |
| 176 | mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE); |
| 177 | cv_init(&encap_whole.cv, "ip_encap cv" ); |
| 178 | encap_whole.busy = NULL; |
| 179 | } |
| 180 | |
| 181 | void |
| 182 | encap_init(void) |
| 183 | { |
| 184 | static int initialized = 0; |
| 185 | |
| 186 | if (initialized) |
| 187 | return; |
| 188 | initialized++; |
| 189 | #if 0 |
| 190 | /* |
| 191 | * we cannot use LIST_INIT() here, since drivers may want to call |
| 192 | * encap_attach(), on driver attach. encap_init() will be called |
| 193 | * on AF_INET{,6} initialization, which happens after driver |
| 194 | * initialization - using LIST_INIT() here can nuke encap_attach() |
| 195 | * from drivers. |
| 196 | */ |
| 197 | PSLIST_INIT(&encap_table); |
| 198 | #endif |
| 199 | |
| 200 | #ifdef USE_RADIX |
| 201 | /* |
| 202 | * initialize radix lookup table when the radix subsystem is inited. |
| 203 | */ |
| 204 | rn_delayedinit((void *)&encap_head[0], |
| 205 | sizeof(struct sockaddr_pack) << 3); |
| 206 | #ifdef INET6 |
| 207 | rn_delayedinit((void *)&encap_head[1], |
| 208 | sizeof(struct sockaddr_pack) << 3); |
| 209 | #endif |
| 210 | #endif |
| 211 | } |
| 212 | |
| 213 | #ifdef INET |
| 214 | static struct encaptab * |
| 215 | encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir, |
| 216 | struct psref *match_psref) |
| 217 | { |
| 218 | struct ip *ip; |
| 219 | struct ip_pack4 pack; |
| 220 | struct encaptab *ep, *match; |
| 221 | int prio, matchprio; |
| 222 | int s; |
| 223 | #ifdef USE_RADIX |
| 224 | struct radix_node_head *rnh = encap_rnh(AF_INET); |
| 225 | struct radix_node *rn; |
| 226 | #endif |
| 227 | |
| 228 | KASSERT(m->m_len >= sizeof(*ip)); |
| 229 | |
| 230 | ip = mtod(m, struct ip *); |
| 231 | |
| 232 | memset(&pack, 0, sizeof(pack)); |
| 233 | pack.p.sp_len = sizeof(pack); |
| 234 | pack.mine.sin_family = pack.yours.sin_family = AF_INET; |
| 235 | pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in); |
| 236 | if (dir == INBOUND) { |
| 237 | pack.mine.sin_addr = ip->ip_dst; |
| 238 | pack.yours.sin_addr = ip->ip_src; |
| 239 | } else { |
| 240 | pack.mine.sin_addr = ip->ip_src; |
| 241 | pack.yours.sin_addr = ip->ip_dst; |
| 242 | } |
| 243 | |
| 244 | match = NULL; |
| 245 | matchprio = 0; |
| 246 | |
| 247 | s = pserialize_read_enter(); |
| 248 | #ifdef USE_RADIX |
| 249 | if (encap_head_updating) { |
| 250 | /* |
| 251 | * Update in progress. Do nothing. |
| 252 | */ |
| 253 | pserialize_read_exit(s); |
| 254 | return NULL; |
| 255 | } |
| 256 | |
| 257 | rn = rnh->rnh_matchaddr((void *)&pack, rnh); |
| 258 | if (rn && (rn->rn_flags & RNF_ROOT) == 0) { |
| 259 | struct encaptab *encapp = (struct encaptab *)rn; |
| 260 | |
| 261 | psref_acquire(match_psref, &encapp->psref, |
| 262 | encaptab.elem_class); |
| 263 | match = encapp; |
| 264 | matchprio = mask_matchlen(match->srcmask) + |
| 265 | mask_matchlen(match->dstmask); |
| 266 | } |
| 267 | #endif |
| 268 | PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) { |
| 269 | struct psref elem_psref; |
| 270 | |
| 271 | membar_datadep_consumer(); |
| 272 | |
| 273 | if (ep->af != AF_INET) |
| 274 | continue; |
| 275 | if (ep->proto >= 0 && ep->proto != proto) |
| 276 | continue; |
| 277 | |
| 278 | psref_acquire(&elem_psref, &ep->psref, |
| 279 | encaptab.elem_class); |
| 280 | if (ep->func) { |
| 281 | pserialize_read_exit(s); |
| 282 | /* ep->func is sleepable. e.g. rtalloc1 */ |
| 283 | prio = (*ep->func)(m, off, proto, ep->arg); |
| 284 | s = pserialize_read_enter(); |
| 285 | } else { |
| 286 | #ifdef USE_RADIX |
| 287 | psref_release(&elem_psref, &ep->psref, |
| 288 | encaptab.elem_class); |
| 289 | continue; |
| 290 | #else |
| 291 | prio = mask_match(ep, (struct sockaddr *)&pack.mine, |
| 292 | (struct sockaddr *)&pack.yours); |
| 293 | #endif |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * We prioritize the matches by using bit length of the |
| 298 | * matches. mask_match() and user-supplied matching function |
| 299 | * should return the bit length of the matches (for example, |
| 300 | * if both src/dst are matched for IPv4, 64 should be returned). |
| 301 | * 0 or negative return value means "it did not match". |
| 302 | * |
| 303 | * The question is, since we have two "mask" portion, we |
| 304 | * cannot really define total order between entries. |
| 305 | * For example, which of these should be preferred? |
| 306 | * mask_match() returns 48 (32 + 16) for both of them. |
| 307 | * src=3ffe::/16, dst=3ffe:501::/32 |
| 308 | * src=3ffe:501::/32, dst=3ffe::/16 |
| 309 | * |
| 310 | * We need to loop through all the possible candidates |
| 311 | * to get the best match - the search takes O(n) for |
| 312 | * n attachments (i.e. interfaces). |
| 313 | * |
| 314 | * For radix-based lookup, I guess source takes precedence. |
| 315 | * See rn_{refines,lexobetter} for the correct answer. |
| 316 | */ |
| 317 | if (prio <= 0) { |
| 318 | psref_release(&elem_psref, &ep->psref, |
| 319 | encaptab.elem_class); |
| 320 | continue; |
| 321 | } |
| 322 | if (prio > matchprio) { |
| 323 | /* release last matched ep */ |
| 324 | if (match != NULL) |
| 325 | psref_release(match_psref, &match->psref, |
| 326 | encaptab.elem_class); |
| 327 | |
| 328 | psref_copy(match_psref, &elem_psref, |
| 329 | encaptab.elem_class); |
| 330 | matchprio = prio; |
| 331 | match = ep; |
| 332 | } |
| 333 | KASSERTMSG((match == NULL) || psref_held(&match->psref, |
| 334 | encaptab.elem_class), |
| 335 | "current match = %p, but not hold its psref" , match); |
| 336 | |
| 337 | psref_release(&elem_psref, &ep->psref, |
| 338 | encaptab.elem_class); |
| 339 | } |
| 340 | pserialize_read_exit(s); |
| 341 | |
| 342 | return match; |
| 343 | } |
| 344 | |
| 345 | void |
| 346 | encap4_input(struct mbuf *m, ...) |
| 347 | { |
| 348 | int off, proto; |
| 349 | va_list ap; |
| 350 | const struct encapsw *esw; |
| 351 | struct encaptab *match; |
| 352 | struct psref match_psref; |
| 353 | |
| 354 | va_start(ap, m); |
| 355 | off = va_arg(ap, int); |
| 356 | proto = va_arg(ap, int); |
| 357 | va_end(ap); |
| 358 | |
| 359 | match = encap4_lookup(m, off, proto, INBOUND, &match_psref); |
| 360 | if (match) { |
| 361 | /* found a match, "match" has the best one */ |
| 362 | esw = match->esw; |
| 363 | if (esw && esw->encapsw4.pr_input) { |
| 364 | encap_fillarg(m, match); |
| 365 | (*esw->encapsw4.pr_input)(m, off, proto); |
| 366 | psref_release(&match_psref, &match->psref, |
| 367 | encaptab.elem_class); |
| 368 | } else { |
| 369 | psref_release(&match_psref, &match->psref, |
| 370 | encaptab.elem_class); |
| 371 | m_freem(m); |
| 372 | } |
| 373 | return; |
| 374 | } |
| 375 | |
| 376 | /* last resort: inject to raw socket */ |
| 377 | rip_input(m, off, proto); |
| 378 | } |
| 379 | #endif |
| 380 | |
| 381 | #ifdef INET6 |
| 382 | static struct encaptab * |
| 383 | encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir, |
| 384 | struct psref *match_psref) |
| 385 | { |
| 386 | struct ip6_hdr *ip6; |
| 387 | struct ip_pack6 pack; |
| 388 | int prio, matchprio; |
| 389 | int s; |
| 390 | struct encaptab *ep, *match; |
| 391 | #ifdef USE_RADIX |
| 392 | struct radix_node_head *rnh = encap_rnh(AF_INET6); |
| 393 | struct radix_node *rn; |
| 394 | #endif |
| 395 | |
| 396 | KASSERT(m->m_len >= sizeof(*ip6)); |
| 397 | |
| 398 | ip6 = mtod(m, struct ip6_hdr *); |
| 399 | |
| 400 | memset(&pack, 0, sizeof(pack)); |
| 401 | pack.p.sp_len = sizeof(pack); |
| 402 | pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6; |
| 403 | pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6); |
| 404 | if (dir == INBOUND) { |
| 405 | pack.mine.sin6_addr = ip6->ip6_dst; |
| 406 | pack.yours.sin6_addr = ip6->ip6_src; |
| 407 | } else { |
| 408 | pack.mine.sin6_addr = ip6->ip6_src; |
| 409 | pack.yours.sin6_addr = ip6->ip6_dst; |
| 410 | } |
| 411 | |
| 412 | match = NULL; |
| 413 | matchprio = 0; |
| 414 | |
| 415 | s = pserialize_read_enter(); |
| 416 | #ifdef USE_RADIX |
| 417 | if (encap_head_updating) { |
| 418 | /* |
| 419 | * Update in progress. Do nothing. |
| 420 | */ |
| 421 | pserialize_read_exit(s); |
| 422 | return NULL; |
| 423 | } |
| 424 | |
| 425 | rn = rnh->rnh_matchaddr((void *)&pack, rnh); |
| 426 | if (rn && (rn->rn_flags & RNF_ROOT) == 0) { |
| 427 | struct encaptab *encapp = (struct encaptab *)rn; |
| 428 | |
| 429 | psref_acquire(match_psref, &encapp->psref, |
| 430 | encaptab.elem_class); |
| 431 | match = encapp; |
| 432 | matchprio = mask_matchlen(match->srcmask) + |
| 433 | mask_matchlen(match->dstmask); |
| 434 | } |
| 435 | #endif |
| 436 | PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) { |
| 437 | struct psref elem_psref; |
| 438 | |
| 439 | membar_datadep_consumer(); |
| 440 | |
| 441 | if (ep->af != AF_INET6) |
| 442 | continue; |
| 443 | if (ep->proto >= 0 && ep->proto != proto) |
| 444 | continue; |
| 445 | |
| 446 | psref_acquire(&elem_psref, &ep->psref, |
| 447 | encaptab.elem_class); |
| 448 | |
| 449 | if (ep->func) { |
| 450 | pserialize_read_exit(s); |
| 451 | /* ep->func is sleepable. e.g. rtalloc1 */ |
| 452 | prio = (*ep->func)(m, off, proto, ep->arg); |
| 453 | s = pserialize_read_enter(); |
| 454 | } else { |
| 455 | #ifdef USE_RADIX |
| 456 | psref_release(&elem_psref, &ep->psref, |
| 457 | encaptab.elem_class); |
| 458 | continue; |
| 459 | #else |
| 460 | prio = mask_match(ep, (struct sockaddr *)&pack.mine, |
| 461 | (struct sockaddr *)&pack.yours); |
| 462 | #endif |
| 463 | } |
| 464 | |
| 465 | /* see encap4_lookup() for issues here */ |
| 466 | if (prio <= 0) { |
| 467 | psref_release(&elem_psref, &ep->psref, |
| 468 | encaptab.elem_class); |
| 469 | continue; |
| 470 | } |
| 471 | if (prio > matchprio) { |
| 472 | /* release last matched ep */ |
| 473 | if (match != NULL) |
| 474 | psref_release(match_psref, &match->psref, |
| 475 | encaptab.elem_class); |
| 476 | |
| 477 | psref_copy(match_psref, &elem_psref, |
| 478 | encaptab.elem_class); |
| 479 | matchprio = prio; |
| 480 | match = ep; |
| 481 | } |
| 482 | KASSERTMSG((match == NULL) || psref_held(&match->psref, |
| 483 | encaptab.elem_class), |
| 484 | "current match = %p, but not hold its psref" , match); |
| 485 | |
| 486 | psref_release(&elem_psref, &ep->psref, |
| 487 | encaptab.elem_class); |
| 488 | } |
| 489 | pserialize_read_exit(s); |
| 490 | |
| 491 | return match; |
| 492 | } |
| 493 | |
| 494 | int |
| 495 | encap6_input(struct mbuf **mp, int *offp, int proto) |
| 496 | { |
| 497 | struct mbuf *m = *mp; |
| 498 | const struct encapsw *esw; |
| 499 | struct encaptab *match; |
| 500 | struct psref match_psref; |
| 501 | |
| 502 | match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref); |
| 503 | |
| 504 | if (match) { |
| 505 | /* found a match */ |
| 506 | esw = match->esw; |
| 507 | if (esw && esw->encapsw6.pr_input) { |
| 508 | int ret; |
| 509 | encap_fillarg(m, match); |
| 510 | ret = (*esw->encapsw6.pr_input)(mp, offp, proto); |
| 511 | psref_release(&match_psref, &match->psref, |
| 512 | encaptab.elem_class); |
| 513 | return ret; |
| 514 | } else { |
| 515 | psref_release(&match_psref, &match->psref, |
| 516 | encaptab.elem_class); |
| 517 | m_freem(m); |
| 518 | return IPPROTO_DONE; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | /* last resort: inject to raw socket */ |
| 523 | return rip6_input(mp, offp, proto); |
| 524 | } |
| 525 | #endif |
| 526 | |
| 527 | /* |
| 528 | * XXX |
| 529 | * The encaptab list and the rnh radix tree must be manipulated atomically. |
| 530 | */ |
| 531 | static int |
| 532 | encap_add(struct encaptab *ep) |
| 533 | { |
| 534 | #ifdef USE_RADIX |
| 535 | struct radix_node_head *rnh = encap_rnh(ep->af); |
| 536 | #endif |
| 537 | |
| 538 | KASSERT(encap_lock_held()); |
| 539 | |
| 540 | #ifdef USE_RADIX |
| 541 | if (!ep->func && rnh) { |
| 542 | /* Disable access to the radix tree for reader. */ |
| 543 | encap_head_updating = true; |
| 544 | /* Wait for all readers to drain. */ |
| 545 | pserialize_perform(encaptab.psz); |
| 546 | |
| 547 | if (!rnh->rnh_addaddr((void *)ep->addrpack, |
| 548 | (void *)ep->maskpack, rnh, ep->nodes)) { |
| 549 | encap_head_updating = false; |
| 550 | return EEXIST; |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * The ep added to the radix tree must be skipped while |
| 555 | * encap[46]_lookup walks encaptab list. In other words, |
| 556 | * encap_add() does not need to care whether the ep has |
| 557 | * been added encaptab list or not yet. |
| 558 | * So, we can re-enable access to the radix tree for now. |
| 559 | */ |
| 560 | encap_head_updating = false; |
| 561 | } |
| 562 | #endif |
| 563 | PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain); |
| 564 | |
| 565 | return 0; |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | * XXX |
| 570 | * The encaptab list and the rnh radix tree must be manipulated atomically. |
| 571 | */ |
| 572 | static int |
| 573 | encap_remove(struct encaptab *ep) |
| 574 | { |
| 575 | #ifdef USE_RADIX |
| 576 | struct radix_node_head *rnh = encap_rnh(ep->af); |
| 577 | #endif |
| 578 | int error = 0; |
| 579 | |
| 580 | KASSERT(encap_lock_held()); |
| 581 | |
| 582 | #ifdef USE_RADIX |
| 583 | if (!ep->func && rnh) { |
| 584 | /* Disable access to the radix tree for reader. */ |
| 585 | encap_head_updating = true; |
| 586 | /* Wait for all readers to drain. */ |
| 587 | pserialize_perform(encaptab.psz); |
| 588 | |
| 589 | if (!rnh->rnh_deladdr((void *)ep->addrpack, |
| 590 | (void *)ep->maskpack, rnh)) |
| 591 | error = ESRCH; |
| 592 | |
| 593 | /* |
| 594 | * The ep added to the radix tree must be skipped while |
| 595 | * encap[46]_lookup walks encaptab list. In other words, |
| 596 | * encap_add() does not need to care whether the ep has |
| 597 | * been added encaptab list or not yet. |
| 598 | * So, we can re-enable access to the radix tree for now. |
| 599 | */ |
| 600 | encap_head_updating = false; |
| 601 | } |
| 602 | #endif |
| 603 | PSLIST_WRITER_REMOVE(ep, chain); |
| 604 | |
| 605 | return error; |
| 606 | } |
| 607 | |
| 608 | static int |
| 609 | encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp) |
| 610 | { |
| 611 | if (sp && dp) { |
| 612 | if (sp->sa_len != dp->sa_len) |
| 613 | return EINVAL; |
| 614 | if (af != sp->sa_family || af != dp->sa_family) |
| 615 | return EINVAL; |
| 616 | } else if (!sp && !dp) |
| 617 | ; |
| 618 | else |
| 619 | return EINVAL; |
| 620 | |
| 621 | switch (af) { |
| 622 | case AF_INET: |
| 623 | if (sp && sp->sa_len != sizeof(struct sockaddr_in)) |
| 624 | return EINVAL; |
| 625 | if (dp && dp->sa_len != sizeof(struct sockaddr_in)) |
| 626 | return EINVAL; |
| 627 | break; |
| 628 | #ifdef INET6 |
| 629 | case AF_INET6: |
| 630 | if (sp && sp->sa_len != sizeof(struct sockaddr_in6)) |
| 631 | return EINVAL; |
| 632 | if (dp && dp->sa_len != sizeof(struct sockaddr_in6)) |
| 633 | return EINVAL; |
| 634 | break; |
| 635 | #endif |
| 636 | default: |
| 637 | return EAFNOSUPPORT; |
| 638 | } |
| 639 | |
| 640 | return 0; |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * sp (src ptr) is always my side, and dp (dst ptr) is always remote side. |
| 645 | * length of mask (sm and dm) is assumed to be same as sp/dp. |
| 646 | * Return value will be necessary as input (cookie) for encap_detach(). |
| 647 | */ |
| 648 | const struct encaptab * |
| 649 | encap_attach(int af, int proto, |
| 650 | const struct sockaddr *sp, const struct sockaddr *sm, |
| 651 | const struct sockaddr *dp, const struct sockaddr *dm, |
| 652 | const struct encapsw *esw, void *arg) |
| 653 | { |
| 654 | struct encaptab *ep; |
| 655 | int error; |
| 656 | int pss; |
| 657 | size_t l; |
| 658 | struct ip_pack4 *pack4; |
| 659 | #ifdef INET6 |
| 660 | struct ip_pack6 *pack6; |
| 661 | #endif |
| 662 | #ifndef ENCAP_MPSAFE |
| 663 | int s; |
| 664 | |
| 665 | s = splsoftnet(); |
| 666 | #endif |
| 667 | /* sanity check on args */ |
| 668 | error = encap_afcheck(af, sp, dp); |
| 669 | if (error) |
| 670 | goto fail; |
| 671 | |
| 672 | /* check if anyone have already attached with exactly same config */ |
| 673 | pss = pserialize_read_enter(); |
| 674 | PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) { |
| 675 | membar_datadep_consumer(); |
| 676 | |
| 677 | if (ep->af != af) |
| 678 | continue; |
| 679 | if (ep->proto != proto) |
| 680 | continue; |
| 681 | if (ep->func) |
| 682 | continue; |
| 683 | |
| 684 | KASSERT(ep->src != NULL); |
| 685 | KASSERT(ep->dst != NULL); |
| 686 | KASSERT(ep->srcmask != NULL); |
| 687 | KASSERT(ep->dstmask != NULL); |
| 688 | |
| 689 | if (ep->src->sa_len != sp->sa_len || |
| 690 | memcmp(ep->src, sp, sp->sa_len) != 0 || |
| 691 | memcmp(ep->srcmask, sm, sp->sa_len) != 0) |
| 692 | continue; |
| 693 | if (ep->dst->sa_len != dp->sa_len || |
| 694 | memcmp(ep->dst, dp, dp->sa_len) != 0 || |
| 695 | memcmp(ep->dstmask, dm, dp->sa_len) != 0) |
| 696 | continue; |
| 697 | |
| 698 | error = EEXIST; |
| 699 | pserialize_read_exit(pss); |
| 700 | goto fail; |
| 701 | } |
| 702 | pserialize_read_exit(pss); |
| 703 | |
| 704 | switch (af) { |
| 705 | case AF_INET: |
| 706 | l = sizeof(*pack4); |
| 707 | break; |
| 708 | #ifdef INET6 |
| 709 | case AF_INET6: |
| 710 | l = sizeof(*pack6); |
| 711 | break; |
| 712 | #endif |
| 713 | default: |
| 714 | goto fail; |
| 715 | } |
| 716 | |
| 717 | /* M_NETADDR ok? */ |
| 718 | ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP); |
| 719 | if (ep == NULL) { |
| 720 | error = ENOBUFS; |
| 721 | goto fail; |
| 722 | } |
| 723 | ep->addrpack = kmem_zalloc(l, KM_NOSLEEP); |
| 724 | if (ep->addrpack == NULL) { |
| 725 | error = ENOBUFS; |
| 726 | goto gc; |
| 727 | } |
| 728 | ep->maskpack = kmem_zalloc(l, KM_NOSLEEP); |
| 729 | if (ep->maskpack == NULL) { |
| 730 | error = ENOBUFS; |
| 731 | goto gc; |
| 732 | } |
| 733 | |
| 734 | ep->af = af; |
| 735 | ep->proto = proto; |
| 736 | ep->addrpack->sa_len = l & 0xff; |
| 737 | ep->maskpack->sa_len = l & 0xff; |
| 738 | switch (af) { |
| 739 | case AF_INET: |
| 740 | pack4 = (struct ip_pack4 *)ep->addrpack; |
| 741 | ep->src = (struct sockaddr *)&pack4->mine; |
| 742 | ep->dst = (struct sockaddr *)&pack4->yours; |
| 743 | pack4 = (struct ip_pack4 *)ep->maskpack; |
| 744 | ep->srcmask = (struct sockaddr *)&pack4->mine; |
| 745 | ep->dstmask = (struct sockaddr *)&pack4->yours; |
| 746 | break; |
| 747 | #ifdef INET6 |
| 748 | case AF_INET6: |
| 749 | pack6 = (struct ip_pack6 *)ep->addrpack; |
| 750 | ep->src = (struct sockaddr *)&pack6->mine; |
| 751 | ep->dst = (struct sockaddr *)&pack6->yours; |
| 752 | pack6 = (struct ip_pack6 *)ep->maskpack; |
| 753 | ep->srcmask = (struct sockaddr *)&pack6->mine; |
| 754 | ep->dstmask = (struct sockaddr *)&pack6->yours; |
| 755 | break; |
| 756 | #endif |
| 757 | } |
| 758 | |
| 759 | memcpy(ep->src, sp, sp->sa_len); |
| 760 | memcpy(ep->srcmask, sm, sp->sa_len); |
| 761 | memcpy(ep->dst, dp, dp->sa_len); |
| 762 | memcpy(ep->dstmask, dm, dp->sa_len); |
| 763 | ep->esw = esw; |
| 764 | ep->arg = arg; |
| 765 | psref_target_init(&ep->psref, encaptab.elem_class); |
| 766 | |
| 767 | error = encap_add(ep); |
| 768 | if (error) |
| 769 | goto gc; |
| 770 | |
| 771 | error = 0; |
| 772 | #ifndef ENCAP_MPSAFE |
| 773 | splx(s); |
| 774 | #endif |
| 775 | return ep; |
| 776 | |
| 777 | gc: |
| 778 | if (ep->addrpack) |
| 779 | kmem_free(ep->addrpack, l); |
| 780 | if (ep->maskpack) |
| 781 | kmem_free(ep->maskpack, l); |
| 782 | if (ep) |
| 783 | kmem_free(ep, sizeof(*ep)); |
| 784 | fail: |
| 785 | #ifndef ENCAP_MPSAFE |
| 786 | splx(s); |
| 787 | #endif |
| 788 | return NULL; |
| 789 | } |
| 790 | |
| 791 | const struct encaptab * |
| 792 | encap_attach_func(int af, int proto, |
| 793 | int (*func)(struct mbuf *, int, int, void *), |
| 794 | const struct encapsw *esw, void *arg) |
| 795 | { |
| 796 | struct encaptab *ep; |
| 797 | int error; |
| 798 | #ifndef ENCAP_MPSAFE |
| 799 | int s; |
| 800 | |
| 801 | s = splsoftnet(); |
| 802 | #endif |
| 803 | /* sanity check on args */ |
| 804 | if (!func) { |
| 805 | error = EINVAL; |
| 806 | goto fail; |
| 807 | } |
| 808 | |
| 809 | error = encap_afcheck(af, NULL, NULL); |
| 810 | if (error) |
| 811 | goto fail; |
| 812 | |
| 813 | ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP); /*XXX*/ |
| 814 | if (ep == NULL) { |
| 815 | error = ENOBUFS; |
| 816 | goto fail; |
| 817 | } |
| 818 | memset(ep, 0, sizeof(*ep)); |
| 819 | |
| 820 | ep->af = af; |
| 821 | ep->proto = proto; |
| 822 | ep->func = func; |
| 823 | ep->esw = esw; |
| 824 | ep->arg = arg; |
| 825 | psref_target_init(&ep->psref, encaptab.elem_class); |
| 826 | |
| 827 | error = encap_add(ep); |
| 828 | if (error) |
| 829 | goto fail; |
| 830 | |
| 831 | error = 0; |
| 832 | #ifndef ENCAP_MPSAFE |
| 833 | splx(s); |
| 834 | #endif |
| 835 | return ep; |
| 836 | |
| 837 | fail: |
| 838 | #ifndef ENCAP_MPSAFE |
| 839 | splx(s); |
| 840 | #endif |
| 841 | return NULL; |
| 842 | } |
| 843 | |
| 844 | /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */ |
| 845 | |
| 846 | #ifdef INET6 |
| 847 | void * |
| 848 | encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0) |
| 849 | { |
| 850 | void *d = d0; |
| 851 | struct ip6_hdr *ip6; |
| 852 | struct mbuf *m; |
| 853 | int off; |
| 854 | struct ip6ctlparam *ip6cp = NULL; |
| 855 | int nxt; |
| 856 | int s; |
| 857 | struct encaptab *ep; |
| 858 | const struct encapsw *esw; |
| 859 | |
| 860 | if (sa->sa_family != AF_INET6 || |
| 861 | sa->sa_len != sizeof(struct sockaddr_in6)) |
| 862 | return NULL; |
| 863 | |
| 864 | if ((unsigned)cmd >= PRC_NCMDS) |
| 865 | return NULL; |
| 866 | if (cmd == PRC_HOSTDEAD) |
| 867 | d = NULL; |
| 868 | else if (cmd == PRC_MSGSIZE) |
| 869 | ; /* special code is present, see below */ |
| 870 | else if (inet6ctlerrmap[cmd] == 0) |
| 871 | return NULL; |
| 872 | |
| 873 | /* if the parameter is from icmp6, decode it. */ |
| 874 | if (d != NULL) { |
| 875 | ip6cp = (struct ip6ctlparam *)d; |
| 876 | m = ip6cp->ip6c_m; |
| 877 | ip6 = ip6cp->ip6c_ip6; |
| 878 | off = ip6cp->ip6c_off; |
| 879 | nxt = ip6cp->ip6c_nxt; |
| 880 | |
| 881 | if (ip6 && cmd == PRC_MSGSIZE) { |
| 882 | int valid = 0; |
| 883 | struct encaptab *match; |
| 884 | struct psref elem_psref; |
| 885 | |
| 886 | /* |
| 887 | * Check to see if we have a valid encap configuration. |
| 888 | */ |
| 889 | match = encap6_lookup(m, off, nxt, OUTBOUND, |
| 890 | &elem_psref); |
| 891 | if (match) |
| 892 | valid++; |
| 893 | psref_release(&elem_psref, &match->psref, |
| 894 | encaptab.elem_class); |
| 895 | |
| 896 | /* |
| 897 | * Depending on the value of "valid" and routing table |
| 898 | * size (mtudisc_{hi,lo}wat), we will: |
| 899 | * - recalcurate the new MTU and create the |
| 900 | * corresponding routing entry, or |
| 901 | * - ignore the MTU change notification. |
| 902 | */ |
| 903 | icmp6_mtudisc_update((struct ip6ctlparam *)d, valid); |
| 904 | } |
| 905 | } else { |
| 906 | m = NULL; |
| 907 | ip6 = NULL; |
| 908 | nxt = -1; |
| 909 | } |
| 910 | |
| 911 | /* inform all listeners */ |
| 912 | |
| 913 | s = pserialize_read_enter(); |
| 914 | PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) { |
| 915 | struct psref elem_psref; |
| 916 | |
| 917 | membar_datadep_consumer(); |
| 918 | |
| 919 | if (ep->af != AF_INET6) |
| 920 | continue; |
| 921 | if (ep->proto >= 0 && ep->proto != nxt) |
| 922 | continue; |
| 923 | |
| 924 | /* should optimize by looking at address pairs */ |
| 925 | |
| 926 | /* XXX need to pass ep->arg or ep itself to listeners */ |
| 927 | psref_acquire(&elem_psref, &ep->psref, |
| 928 | encaptab.elem_class); |
| 929 | esw = ep->esw; |
| 930 | if (esw && esw->encapsw6.pr_ctlinput) { |
| 931 | pserialize_read_exit(s); |
| 932 | /* pr_ctlinput is sleepable. e.g. rtcache_free */ |
| 933 | (*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg); |
| 934 | s = pserialize_read_enter(); |
| 935 | } |
| 936 | psref_release(&elem_psref, &ep->psref, |
| 937 | encaptab.elem_class); |
| 938 | } |
| 939 | pserialize_read_exit(s); |
| 940 | |
| 941 | rip6_ctlinput(cmd, sa, d0); |
| 942 | return NULL; |
| 943 | } |
| 944 | #endif |
| 945 | |
| 946 | int |
| 947 | encap_detach(const struct encaptab *cookie) |
| 948 | { |
| 949 | const struct encaptab *ep = cookie; |
| 950 | struct encaptab *p; |
| 951 | int error; |
| 952 | |
| 953 | KASSERT(encap_lock_held()); |
| 954 | |
| 955 | PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) { |
| 956 | membar_datadep_consumer(); |
| 957 | |
| 958 | if (p == ep) { |
| 959 | error = encap_remove(p); |
| 960 | if (error) |
| 961 | return error; |
| 962 | else |
| 963 | break; |
| 964 | } |
| 965 | } |
| 966 | if (p == NULL) |
| 967 | return ENOENT; |
| 968 | |
| 969 | #ifndef USE_RADIX |
| 970 | /* |
| 971 | * pserialize_perform(encaptab.psz) is already done in encap_remove(). |
| 972 | */ |
| 973 | pserialize_perform(encaptab.psz); |
| 974 | #endif |
| 975 | psref_target_destroy(&p->psref, |
| 976 | encaptab.elem_class); |
| 977 | if (!ep->func) { |
| 978 | kmem_free(p->addrpack, ep->addrpack->sa_len); |
| 979 | kmem_free(p->maskpack, ep->maskpack->sa_len); |
| 980 | } |
| 981 | kmem_free(p, sizeof(*p)); |
| 982 | |
| 983 | return 0; |
| 984 | } |
| 985 | |
| 986 | #ifdef USE_RADIX |
| 987 | static struct radix_node_head * |
| 988 | encap_rnh(int af) |
| 989 | { |
| 990 | |
| 991 | switch (af) { |
| 992 | case AF_INET: |
| 993 | return encap_head[0]; |
| 994 | #ifdef INET6 |
| 995 | case AF_INET6: |
| 996 | return encap_head[1]; |
| 997 | #endif |
| 998 | default: |
| 999 | return NULL; |
| 1000 | } |
| 1001 | } |
| 1002 | |
| 1003 | static int |
| 1004 | mask_matchlen(const struct sockaddr *sa) |
| 1005 | { |
| 1006 | const char *p, *ep; |
| 1007 | int l; |
| 1008 | |
| 1009 | p = (const char *)sa; |
| 1010 | ep = p + sa->sa_len; |
| 1011 | p += 2; /* sa_len + sa_family */ |
| 1012 | |
| 1013 | l = 0; |
| 1014 | while (p < ep) { |
| 1015 | l += (*p ? 8 : 0); /* estimate */ |
| 1016 | p++; |
| 1017 | } |
| 1018 | return l; |
| 1019 | } |
| 1020 | #endif |
| 1021 | |
| 1022 | #ifndef USE_RADIX |
| 1023 | static int |
| 1024 | mask_match(const struct encaptab *ep, |
| 1025 | const struct sockaddr *sp, |
| 1026 | const struct sockaddr *dp) |
| 1027 | { |
| 1028 | struct sockaddr_storage s; |
| 1029 | struct sockaddr_storage d; |
| 1030 | int i; |
| 1031 | const u_int8_t *p, *q; |
| 1032 | u_int8_t *r; |
| 1033 | int matchlen; |
| 1034 | |
| 1035 | KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match" ); |
| 1036 | |
| 1037 | if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d)) |
| 1038 | return 0; |
| 1039 | if (sp->sa_family != ep->af || dp->sa_family != ep->af) |
| 1040 | return 0; |
| 1041 | if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len) |
| 1042 | return 0; |
| 1043 | |
| 1044 | matchlen = 0; |
| 1045 | |
| 1046 | p = (const u_int8_t *)sp; |
| 1047 | q = (const u_int8_t *)ep->srcmask; |
| 1048 | r = (u_int8_t *)&s; |
| 1049 | for (i = 0 ; i < sp->sa_len; i++) { |
| 1050 | r[i] = p[i] & q[i]; |
| 1051 | /* XXX estimate */ |
| 1052 | matchlen += (q[i] ? 8 : 0); |
| 1053 | } |
| 1054 | |
| 1055 | p = (const u_int8_t *)dp; |
| 1056 | q = (const u_int8_t *)ep->dstmask; |
| 1057 | r = (u_int8_t *)&d; |
| 1058 | for (i = 0 ; i < dp->sa_len; i++) { |
| 1059 | r[i] = p[i] & q[i]; |
| 1060 | /* XXX rough estimate */ |
| 1061 | matchlen += (q[i] ? 8 : 0); |
| 1062 | } |
| 1063 | |
| 1064 | /* need to overwrite len/family portion as we don't compare them */ |
| 1065 | s.ss_len = sp->sa_len; |
| 1066 | s.ss_family = sp->sa_family; |
| 1067 | d.ss_len = dp->sa_len; |
| 1068 | d.ss_family = dp->sa_family; |
| 1069 | |
| 1070 | if (memcmp(&s, ep->src, ep->src->sa_len) == 0 && |
| 1071 | memcmp(&d, ep->dst, ep->dst->sa_len) == 0) { |
| 1072 | return matchlen; |
| 1073 | } else |
| 1074 | return 0; |
| 1075 | } |
| 1076 | #endif |
| 1077 | |
| 1078 | static void |
| 1079 | encap_fillarg(struct mbuf *m, const struct encaptab *ep) |
| 1080 | { |
| 1081 | struct m_tag *mtag; |
| 1082 | |
| 1083 | mtag = m_tag_get(PACKET_TAG_ENCAP, sizeof(void *), M_NOWAIT); |
| 1084 | if (mtag) { |
| 1085 | *(void **)(mtag + 1) = ep->arg; |
| 1086 | m_tag_prepend(m, mtag); |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | void * |
| 1091 | encap_getarg(struct mbuf *m) |
| 1092 | { |
| 1093 | void *p; |
| 1094 | struct m_tag *mtag; |
| 1095 | |
| 1096 | p = NULL; |
| 1097 | mtag = m_tag_find(m, PACKET_TAG_ENCAP, NULL); |
| 1098 | if (mtag != NULL) { |
| 1099 | p = *(void **)(mtag + 1); |
| 1100 | m_tag_delete(m, mtag); |
| 1101 | } |
| 1102 | return p; |
| 1103 | } |
| 1104 | |
| 1105 | int |
| 1106 | encap_lock_enter(void) |
| 1107 | { |
| 1108 | int error; |
| 1109 | |
| 1110 | mutex_enter(&encap_whole.lock); |
| 1111 | while (encap_whole.busy != NULL) { |
| 1112 | error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock); |
| 1113 | if (error) { |
| 1114 | mutex_exit(&encap_whole.lock); |
| 1115 | return error; |
| 1116 | } |
| 1117 | } |
| 1118 | KASSERT(encap_whole.busy == NULL); |
| 1119 | encap_whole.busy = curlwp; |
| 1120 | mutex_exit(&encap_whole.lock); |
| 1121 | |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | void |
| 1126 | encap_lock_exit(void) |
| 1127 | { |
| 1128 | |
| 1129 | mutex_enter(&encap_whole.lock); |
| 1130 | KASSERT(encap_whole.busy == curlwp); |
| 1131 | encap_whole.busy = NULL; |
| 1132 | cv_broadcast(&encap_whole.cv); |
| 1133 | mutex_exit(&encap_whole.lock); |
| 1134 | } |
| 1135 | |
| 1136 | bool |
| 1137 | encap_lock_held(void) |
| 1138 | { |
| 1139 | |
| 1140 | return (encap_whole.busy == curlwp); |
| 1141 | } |
| 1142 | |