| 1 | /* $NetBSD: linux_sched.c,v 1.68 2015/07/03 02:24:28 christos Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 1999 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, |
| 9 | * NASA Ames Research Center; by Matthias Scheler. |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or without |
| 12 | * modification, are permitted provided that the following conditions |
| 13 | * are met: |
| 14 | * 1. Redistributions of source code must retain the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer. |
| 16 | * 2. Redistributions in binary form must reproduce the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer in the |
| 18 | * documentation and/or other materials provided with the distribution. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | /* |
| 34 | * Linux compatibility module. Try to deal with scheduler related syscalls. |
| 35 | */ |
| 36 | |
| 37 | #include <sys/cdefs.h> |
| 38 | __KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.68 2015/07/03 02:24:28 christos Exp $" ); |
| 39 | |
| 40 | #include <sys/param.h> |
| 41 | #include <sys/mount.h> |
| 42 | #include <sys/proc.h> |
| 43 | #include <sys/systm.h> |
| 44 | #include <sys/sysctl.h> |
| 45 | #include <sys/syscallargs.h> |
| 46 | #include <sys/wait.h> |
| 47 | #include <sys/kauth.h> |
| 48 | #include <sys/ptrace.h> |
| 49 | #include <sys/atomic.h> |
| 50 | |
| 51 | #include <sys/cpu.h> |
| 52 | |
| 53 | #include <compat/linux/common/linux_types.h> |
| 54 | #include <compat/linux/common/linux_signal.h> |
| 55 | #include <compat/linux/common/linux_emuldata.h> |
| 56 | #include <compat/linux/common/linux_ipc.h> |
| 57 | #include <compat/linux/common/linux_sem.h> |
| 58 | #include <compat/linux/common/linux_exec.h> |
| 59 | #include <compat/linux/common/linux_machdep.h> |
| 60 | |
| 61 | #include <compat/linux/linux_syscallargs.h> |
| 62 | |
| 63 | #include <compat/linux/common/linux_sched.h> |
| 64 | |
| 65 | static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *, |
| 66 | register_t *); |
| 67 | |
| 68 | /* Unlike Linux, dynamically calculate CPU mask size */ |
| 69 | #define LINUX_CPU_MASK_SIZE (sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT)) |
| 70 | |
| 71 | #if DEBUG_LINUX |
| 72 | #define DPRINTF(x) uprintf x |
| 73 | #else |
| 74 | #define DPRINTF(x) |
| 75 | #endif |
| 76 | |
| 77 | static void |
| 78 | linux_child_return(void *arg) |
| 79 | { |
| 80 | struct lwp *l = arg; |
| 81 | struct proc *p = l->l_proc; |
| 82 | struct linux_emuldata *led = l->l_emuldata; |
| 83 | void *ctp = led->led_child_tidptr; |
| 84 | int error; |
| 85 | |
| 86 | if (ctp) { |
| 87 | if ((error = copyout(&p->p_pid, ctp, sizeof(p->p_pid))) != 0) |
| 88 | printf("%s: LINUX_CLONE_CHILD_SETTID " |
| 89 | "failed (child_tidptr = %p, tid = %d error =%d)\n" , |
| 90 | __func__, ctp, p->p_pid, error); |
| 91 | } |
| 92 | child_return(arg); |
| 93 | } |
| 94 | |
| 95 | int |
| 96 | linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap, |
| 97 | register_t *retval) |
| 98 | { |
| 99 | /* { |
| 100 | syscallarg(int) flags; |
| 101 | syscallarg(void *) stack; |
| 102 | syscallarg(void *) parent_tidptr; |
| 103 | syscallarg(void *) tls; |
| 104 | syscallarg(void *) child_tidptr; |
| 105 | } */ |
| 106 | struct proc *p; |
| 107 | struct linux_emuldata *led; |
| 108 | int flags, sig, error; |
| 109 | |
| 110 | /* |
| 111 | * We don't support the Linux CLONE_PID or CLONE_PTRACE flags. |
| 112 | */ |
| 113 | if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE)) |
| 114 | return EINVAL; |
| 115 | |
| 116 | /* |
| 117 | * Thread group implies shared signals. Shared signals |
| 118 | * imply shared VM. This matches what Linux kernel does. |
| 119 | */ |
| 120 | if (SCARG(uap, flags) & LINUX_CLONE_THREAD |
| 121 | && (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0) |
| 122 | return EINVAL; |
| 123 | if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND |
| 124 | && (SCARG(uap, flags) & LINUX_CLONE_VM) == 0) |
| 125 | return EINVAL; |
| 126 | |
| 127 | /* |
| 128 | * The thread group flavor is implemented totally differently. |
| 129 | */ |
| 130 | if (SCARG(uap, flags) & LINUX_CLONE_THREAD) |
| 131 | return linux_clone_nptl(l, uap, retval); |
| 132 | |
| 133 | flags = 0; |
| 134 | if (SCARG(uap, flags) & LINUX_CLONE_VM) |
| 135 | flags |= FORK_SHAREVM; |
| 136 | if (SCARG(uap, flags) & LINUX_CLONE_FS) |
| 137 | flags |= FORK_SHARECWD; |
| 138 | if (SCARG(uap, flags) & LINUX_CLONE_FILES) |
| 139 | flags |= FORK_SHAREFILES; |
| 140 | if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) |
| 141 | flags |= FORK_SHARESIGS; |
| 142 | if (SCARG(uap, flags) & LINUX_CLONE_VFORK) |
| 143 | flags |= FORK_PPWAIT; |
| 144 | |
| 145 | sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL; |
| 146 | if (sig < 0 || sig >= LINUX__NSIG) |
| 147 | return EINVAL; |
| 148 | sig = linux_to_native_signo[sig]; |
| 149 | |
| 150 | if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) { |
| 151 | led = l->l_emuldata; |
| 152 | led->led_child_tidptr = SCARG(uap, child_tidptr); |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * Note that Linux does not provide a portable way of specifying |
| 157 | * the stack area; the caller must know if the stack grows up |
| 158 | * or down. So, we pass a stack size of 0, so that the code |
| 159 | * that makes this adjustment is a noop. |
| 160 | */ |
| 161 | if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0, |
| 162 | linux_child_return, NULL, retval, &p)) != 0) { |
| 163 | DPRINTF(("%s: fork1: error %d\n" , __func__, error)); |
| 164 | return error; |
| 165 | } |
| 166 | |
| 167 | return 0; |
| 168 | } |
| 169 | |
| 170 | static int |
| 171 | linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval) |
| 172 | { |
| 173 | /* { |
| 174 | syscallarg(int) flags; |
| 175 | syscallarg(void *) stack; |
| 176 | syscallarg(void *) parent_tidptr; |
| 177 | syscallarg(void *) tls; |
| 178 | syscallarg(void *) child_tidptr; |
| 179 | } */ |
| 180 | struct proc *p; |
| 181 | struct lwp *l2; |
| 182 | struct linux_emuldata *led; |
| 183 | void *parent_tidptr, *tls, *child_tidptr; |
| 184 | struct schedstate_percpu *spc; |
| 185 | vaddr_t uaddr; |
| 186 | lwpid_t lid; |
| 187 | int flags, tnprocs, error; |
| 188 | |
| 189 | p = l->l_proc; |
| 190 | flags = SCARG(uap, flags); |
| 191 | parent_tidptr = SCARG(uap, parent_tidptr); |
| 192 | tls = SCARG(uap, tls); |
| 193 | child_tidptr = SCARG(uap, child_tidptr); |
| 194 | |
| 195 | tnprocs = atomic_inc_uint_nv(&nprocs); |
| 196 | if (__predict_false(tnprocs >= maxproc) || |
| 197 | kauth_authorize_process(l->l_cred, KAUTH_PROCESS_FORK, p, |
| 198 | KAUTH_ARG(tnprocs), NULL, NULL) != 0) { |
| 199 | atomic_dec_uint(&nprocs); |
| 200 | return EAGAIN; |
| 201 | } |
| 202 | |
| 203 | uaddr = uvm_uarea_alloc(); |
| 204 | if (__predict_false(uaddr == 0)) { |
| 205 | atomic_dec_uint(&nprocs); |
| 206 | return ENOMEM; |
| 207 | } |
| 208 | |
| 209 | error = lwp_create(l, p, uaddr, LWP_DETACHED | LWP_PIDLID, |
| 210 | SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class); |
| 211 | if (__predict_false(error)) { |
| 212 | DPRINTF(("%s: lwp_create error=%d\n" , __func__, error)); |
| 213 | atomic_dec_uint(&nprocs); |
| 214 | uvm_uarea_free(uaddr); |
| 215 | return error; |
| 216 | } |
| 217 | lid = l2->l_lid; |
| 218 | |
| 219 | /* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */ |
| 220 | if (flags & LINUX_CLONE_CHILD_CLEARTID) { |
| 221 | led = l2->l_emuldata; |
| 222 | led->led_clear_tid = child_tidptr; |
| 223 | } |
| 224 | |
| 225 | /* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */ |
| 226 | if (flags & LINUX_CLONE_PARENT_SETTID) { |
| 227 | if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0) |
| 228 | printf("%s: LINUX_CLONE_PARENT_SETTID " |
| 229 | "failed (parent_tidptr = %p tid = %d error=%d)\n" , |
| 230 | __func__, parent_tidptr, lid, error); |
| 231 | } |
| 232 | |
| 233 | /* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory */ |
| 234 | if (flags & LINUX_CLONE_CHILD_SETTID) { |
| 235 | if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0) |
| 236 | printf("%s: LINUX_CLONE_CHILD_SETTID " |
| 237 | "failed (child_tidptr = %p, tid = %d error=%d)\n" , |
| 238 | __func__, child_tidptr, lid, error); |
| 239 | } |
| 240 | |
| 241 | if (flags & LINUX_CLONE_SETTLS) { |
| 242 | error = LINUX_LWP_SETPRIVATE(l2, tls); |
| 243 | if (error) { |
| 244 | DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n" , __func__, |
| 245 | error)); |
| 246 | lwp_exit(l2); |
| 247 | return error; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * Set the new LWP running, unless the process is stopping, |
| 253 | * then the LWP is created stopped. |
| 254 | */ |
| 255 | mutex_enter(p->p_lock); |
| 256 | lwp_lock(l2); |
| 257 | spc = &l2->l_cpu->ci_schedstate; |
| 258 | if ((l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) { |
| 259 | if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { |
| 260 | KASSERT(l2->l_wchan == NULL); |
| 261 | l2->l_stat = LSSTOP; |
| 262 | p->p_nrlwps--; |
| 263 | lwp_unlock_to(l2, spc->spc_lwplock); |
| 264 | } else { |
| 265 | KASSERT(lwp_locked(l2, spc->spc_mutex)); |
| 266 | l2->l_stat = LSRUN; |
| 267 | sched_enqueue(l2, false); |
| 268 | lwp_unlock(l2); |
| 269 | } |
| 270 | } else { |
| 271 | l2->l_stat = LSSUSPENDED; |
| 272 | p->p_nrlwps--; |
| 273 | lwp_unlock_to(l2, spc->spc_lwplock); |
| 274 | } |
| 275 | mutex_exit(p->p_lock); |
| 276 | |
| 277 | retval[0] = lid; |
| 278 | retval[1] = 0; |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * linux realtime priority |
| 284 | * |
| 285 | * - SCHED_RR and SCHED_FIFO tasks have priorities [1,99]. |
| 286 | * |
| 287 | * - SCHED_OTHER tasks don't have realtime priorities. |
| 288 | * in particular, sched_param::sched_priority is always 0. |
| 289 | */ |
| 290 | |
| 291 | #define LINUX_SCHED_RTPRIO_MIN 1 |
| 292 | #define LINUX_SCHED_RTPRIO_MAX 99 |
| 293 | |
| 294 | static int |
| 295 | sched_linux2native(int linux_policy, struct linux_sched_param *linux_params, |
| 296 | int *native_policy, struct sched_param *native_params) |
| 297 | { |
| 298 | |
| 299 | switch (linux_policy) { |
| 300 | case LINUX_SCHED_OTHER: |
| 301 | if (native_policy != NULL) { |
| 302 | *native_policy = SCHED_OTHER; |
| 303 | } |
| 304 | break; |
| 305 | |
| 306 | case LINUX_SCHED_FIFO: |
| 307 | if (native_policy != NULL) { |
| 308 | *native_policy = SCHED_FIFO; |
| 309 | } |
| 310 | break; |
| 311 | |
| 312 | case LINUX_SCHED_RR: |
| 313 | if (native_policy != NULL) { |
| 314 | *native_policy = SCHED_RR; |
| 315 | } |
| 316 | break; |
| 317 | |
| 318 | default: |
| 319 | return EINVAL; |
| 320 | } |
| 321 | |
| 322 | if (linux_params != NULL) { |
| 323 | int prio = linux_params->sched_priority; |
| 324 | |
| 325 | KASSERT(native_params != NULL); |
| 326 | |
| 327 | if (linux_policy == LINUX_SCHED_OTHER) { |
| 328 | if (prio != 0) { |
| 329 | return EINVAL; |
| 330 | } |
| 331 | native_params->sched_priority = PRI_NONE; /* XXX */ |
| 332 | } else { |
| 333 | if (prio < LINUX_SCHED_RTPRIO_MIN || |
| 334 | prio > LINUX_SCHED_RTPRIO_MAX) { |
| 335 | return EINVAL; |
| 336 | } |
| 337 | native_params->sched_priority = |
| 338 | (prio - LINUX_SCHED_RTPRIO_MIN) |
| 339 | * (SCHED_PRI_MAX - SCHED_PRI_MIN) |
| 340 | / (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN) |
| 341 | + SCHED_PRI_MIN; |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | return 0; |
| 346 | } |
| 347 | |
| 348 | static int |
| 349 | sched_native2linux(int native_policy, struct sched_param *native_params, |
| 350 | int *linux_policy, struct linux_sched_param *linux_params) |
| 351 | { |
| 352 | |
| 353 | switch (native_policy) { |
| 354 | case SCHED_OTHER: |
| 355 | if (linux_policy != NULL) { |
| 356 | *linux_policy = LINUX_SCHED_OTHER; |
| 357 | } |
| 358 | break; |
| 359 | |
| 360 | case SCHED_FIFO: |
| 361 | if (linux_policy != NULL) { |
| 362 | *linux_policy = LINUX_SCHED_FIFO; |
| 363 | } |
| 364 | break; |
| 365 | |
| 366 | case SCHED_RR: |
| 367 | if (linux_policy != NULL) { |
| 368 | *linux_policy = LINUX_SCHED_RR; |
| 369 | } |
| 370 | break; |
| 371 | |
| 372 | default: |
| 373 | panic("%s: unknown policy %d\n" , __func__, native_policy); |
| 374 | } |
| 375 | |
| 376 | if (native_params != NULL) { |
| 377 | int prio = native_params->sched_priority; |
| 378 | |
| 379 | KASSERT(prio >= SCHED_PRI_MIN); |
| 380 | KASSERT(prio <= SCHED_PRI_MAX); |
| 381 | KASSERT(linux_params != NULL); |
| 382 | |
| 383 | DPRINTF(("%s: native: policy %d, priority %d\n" , |
| 384 | __func__, native_policy, prio)); |
| 385 | |
| 386 | if (native_policy == SCHED_OTHER) { |
| 387 | linux_params->sched_priority = 0; |
| 388 | } else { |
| 389 | linux_params->sched_priority = |
| 390 | (prio - SCHED_PRI_MIN) |
| 391 | * (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN) |
| 392 | / (SCHED_PRI_MAX - SCHED_PRI_MIN) |
| 393 | + LINUX_SCHED_RTPRIO_MIN; |
| 394 | } |
| 395 | DPRINTF(("%s: linux: policy %d, priority %d\n" , |
| 396 | __func__, -1, linux_params->sched_priority)); |
| 397 | } |
| 398 | |
| 399 | return 0; |
| 400 | } |
| 401 | |
| 402 | int |
| 403 | linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval) |
| 404 | { |
| 405 | /* { |
| 406 | syscallarg(linux_pid_t) pid; |
| 407 | syscallarg(const struct linux_sched_param *) sp; |
| 408 | } */ |
| 409 | int error, policy; |
| 410 | struct linux_sched_param lp; |
| 411 | struct sched_param sp; |
| 412 | |
| 413 | if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) { |
| 414 | error = EINVAL; |
| 415 | goto out; |
| 416 | } |
| 417 | |
| 418 | error = copyin(SCARG(uap, sp), &lp, sizeof(lp)); |
| 419 | if (error) |
| 420 | goto out; |
| 421 | |
| 422 | /* We need the current policy in Linux terms. */ |
| 423 | error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL); |
| 424 | if (error) |
| 425 | goto out; |
| 426 | error = sched_native2linux(policy, NULL, &policy, NULL); |
| 427 | if (error) |
| 428 | goto out; |
| 429 | |
| 430 | error = sched_linux2native(policy, &lp, &policy, &sp); |
| 431 | if (error) |
| 432 | goto out; |
| 433 | |
| 434 | error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp); |
| 435 | if (error) |
| 436 | goto out; |
| 437 | |
| 438 | out: |
| 439 | return error; |
| 440 | } |
| 441 | |
| 442 | int |
| 443 | linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval) |
| 444 | { |
| 445 | /* { |
| 446 | syscallarg(linux_pid_t) pid; |
| 447 | syscallarg(struct linux_sched_param *) sp; |
| 448 | } */ |
| 449 | struct linux_sched_param lp; |
| 450 | struct sched_param sp; |
| 451 | int error, policy; |
| 452 | |
| 453 | if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) { |
| 454 | error = EINVAL; |
| 455 | goto out; |
| 456 | } |
| 457 | |
| 458 | error = do_sched_getparam(SCARG(uap, pid), 0, &policy, &sp); |
| 459 | if (error) |
| 460 | goto out; |
| 461 | DPRINTF(("%s: native: policy %d, priority %d\n" , |
| 462 | __func__, policy, sp.sched_priority)); |
| 463 | |
| 464 | error = sched_native2linux(policy, &sp, NULL, &lp); |
| 465 | if (error) |
| 466 | goto out; |
| 467 | DPRINTF(("%s: linux: policy %d, priority %d\n" , |
| 468 | __func__, policy, lp.sched_priority)); |
| 469 | |
| 470 | error = copyout(&lp, SCARG(uap, sp), sizeof(lp)); |
| 471 | if (error) |
| 472 | goto out; |
| 473 | |
| 474 | out: |
| 475 | return error; |
| 476 | } |
| 477 | |
| 478 | int |
| 479 | linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval) |
| 480 | { |
| 481 | /* { |
| 482 | syscallarg(linux_pid_t) pid; |
| 483 | syscallarg(int) policy; |
| 484 | syscallarg(cont struct linux_sched_param *) sp; |
| 485 | } */ |
| 486 | int error, policy; |
| 487 | struct linux_sched_param lp; |
| 488 | struct sched_param sp; |
| 489 | |
| 490 | if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) { |
| 491 | error = EINVAL; |
| 492 | goto out; |
| 493 | } |
| 494 | |
| 495 | error = copyin(SCARG(uap, sp), &lp, sizeof(lp)); |
| 496 | if (error) |
| 497 | goto out; |
| 498 | DPRINTF(("%s: linux: policy %d, priority %d\n" , |
| 499 | __func__, SCARG(uap, policy), lp.sched_priority)); |
| 500 | |
| 501 | error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp); |
| 502 | if (error) |
| 503 | goto out; |
| 504 | DPRINTF(("%s: native: policy %d, priority %d\n" , |
| 505 | __func__, policy, sp.sched_priority)); |
| 506 | |
| 507 | error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp); |
| 508 | if (error) |
| 509 | goto out; |
| 510 | |
| 511 | out: |
| 512 | return error; |
| 513 | } |
| 514 | |
| 515 | int |
| 516 | linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval) |
| 517 | { |
| 518 | /* { |
| 519 | syscallarg(linux_pid_t) pid; |
| 520 | } */ |
| 521 | int error, policy; |
| 522 | |
| 523 | *retval = -1; |
| 524 | |
| 525 | error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL); |
| 526 | if (error) |
| 527 | goto out; |
| 528 | |
| 529 | error = sched_native2linux(policy, NULL, &policy, NULL); |
| 530 | if (error) |
| 531 | goto out; |
| 532 | |
| 533 | *retval = policy; |
| 534 | |
| 535 | out: |
| 536 | return error; |
| 537 | } |
| 538 | |
| 539 | int |
| 540 | linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval) |
| 541 | { |
| 542 | |
| 543 | yield(); |
| 544 | return 0; |
| 545 | } |
| 546 | |
| 547 | int |
| 548 | linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval) |
| 549 | { |
| 550 | /* { |
| 551 | syscallarg(int) policy; |
| 552 | } */ |
| 553 | |
| 554 | switch (SCARG(uap, policy)) { |
| 555 | case LINUX_SCHED_OTHER: |
| 556 | *retval = 0; |
| 557 | break; |
| 558 | case LINUX_SCHED_FIFO: |
| 559 | case LINUX_SCHED_RR: |
| 560 | *retval = LINUX_SCHED_RTPRIO_MAX; |
| 561 | break; |
| 562 | default: |
| 563 | return EINVAL; |
| 564 | } |
| 565 | |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | int |
| 570 | linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval) |
| 571 | { |
| 572 | /* { |
| 573 | syscallarg(int) policy; |
| 574 | } */ |
| 575 | |
| 576 | switch (SCARG(uap, policy)) { |
| 577 | case LINUX_SCHED_OTHER: |
| 578 | *retval = 0; |
| 579 | break; |
| 580 | case LINUX_SCHED_FIFO: |
| 581 | case LINUX_SCHED_RR: |
| 582 | *retval = LINUX_SCHED_RTPRIO_MIN; |
| 583 | break; |
| 584 | default: |
| 585 | return EINVAL; |
| 586 | } |
| 587 | |
| 588 | return 0; |
| 589 | } |
| 590 | |
| 591 | int |
| 592 | linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval) |
| 593 | { |
| 594 | |
| 595 | lwp_exit(l); |
| 596 | return 0; |
| 597 | } |
| 598 | |
| 599 | #ifndef __m68k__ |
| 600 | /* Present on everything but m68k */ |
| 601 | int |
| 602 | linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval) |
| 603 | { |
| 604 | |
| 605 | return sys_exit(l, (const void *)uap, retval); |
| 606 | } |
| 607 | #endif /* !__m68k__ */ |
| 608 | |
| 609 | int |
| 610 | linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval) |
| 611 | { |
| 612 | /* { |
| 613 | syscallarg(int *) tidptr; |
| 614 | } */ |
| 615 | struct linux_emuldata *led; |
| 616 | |
| 617 | led = (struct linux_emuldata *)l->l_emuldata; |
| 618 | led->led_clear_tid = SCARG(uap, tid); |
| 619 | *retval = l->l_lid; |
| 620 | |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | /* ARGUSED1 */ |
| 625 | int |
| 626 | linux_sys_gettid(struct lwp *l, const void *v, register_t *retval) |
| 627 | { |
| 628 | |
| 629 | *retval = l->l_lid; |
| 630 | return 0; |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * The affinity syscalls assume that the layout of our cpu kcpuset is |
| 635 | * the same as linux's: a linear bitmask. |
| 636 | */ |
| 637 | int |
| 638 | linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval) |
| 639 | { |
| 640 | /* { |
| 641 | syscallarg(linux_pid_t) pid; |
| 642 | syscallarg(unsigned int) len; |
| 643 | syscallarg(unsigned long *) mask; |
| 644 | } */ |
| 645 | struct lwp *t; |
| 646 | kcpuset_t *kcset; |
| 647 | size_t size; |
| 648 | cpuid_t i; |
| 649 | int error; |
| 650 | |
| 651 | size = LINUX_CPU_MASK_SIZE; |
| 652 | if (SCARG(uap, len) < size) |
| 653 | return EINVAL; |
| 654 | |
| 655 | /* Lock the LWP */ |
| 656 | t = lwp_find2(SCARG(uap, pid), l->l_lid); |
| 657 | if (t == NULL) |
| 658 | return ESRCH; |
| 659 | |
| 660 | /* Check the permission */ |
| 661 | if (kauth_authorize_process(l->l_cred, |
| 662 | KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) { |
| 663 | mutex_exit(t->l_proc->p_lock); |
| 664 | return EPERM; |
| 665 | } |
| 666 | |
| 667 | kcpuset_create(&kcset, true); |
| 668 | lwp_lock(t); |
| 669 | if (t->l_affinity != NULL) |
| 670 | kcpuset_copy(kcset, t->l_affinity); |
| 671 | else { |
| 672 | /* |
| 673 | * All available CPUs should be masked when affinity has not |
| 674 | * been set. |
| 675 | */ |
| 676 | kcpuset_zero(kcset); |
| 677 | for (i = 0; i < ncpu; i++) |
| 678 | kcpuset_set(kcset, i); |
| 679 | } |
| 680 | lwp_unlock(t); |
| 681 | mutex_exit(t->l_proc->p_lock); |
| 682 | error = kcpuset_copyout(kcset, (cpuset_t *)SCARG(uap, mask), size); |
| 683 | kcpuset_unuse(kcset, NULL); |
| 684 | *retval = size; |
| 685 | return error; |
| 686 | } |
| 687 | |
| 688 | int |
| 689 | linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval) |
| 690 | { |
| 691 | /* { |
| 692 | syscallarg(linux_pid_t) pid; |
| 693 | syscallarg(unsigned int) len; |
| 694 | syscallarg(unsigned long *) mask; |
| 695 | } */ |
| 696 | struct sys__sched_setaffinity_args ssa; |
| 697 | size_t size; |
| 698 | |
| 699 | size = LINUX_CPU_MASK_SIZE; |
| 700 | if (SCARG(uap, len) < size) |
| 701 | return EINVAL; |
| 702 | |
| 703 | SCARG(&ssa, pid) = SCARG(uap, pid); |
| 704 | SCARG(&ssa, lid) = l->l_lid; |
| 705 | SCARG(&ssa, size) = size; |
| 706 | SCARG(&ssa, cpuset) = (cpuset_t *)SCARG(uap, mask); |
| 707 | |
| 708 | return sys__sched_setaffinity(l, &ssa, retval); |
| 709 | } |
| 710 | |