| 1 | /* |
| 2 | * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting |
| 3 | * Copyright (c) 2002-2008 Atheros Communications, Inc. |
| 4 | * |
| 5 | * Permission to use, copy, modify, and/or distribute this software for any |
| 6 | * purpose with or without fee is hereby granted, provided that the above |
| 7 | * copyright notice and this permission notice appear in all copies. |
| 8 | * |
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 | * |
| 17 | * $Id: ar2413.c,v 1.3 2013/09/12 12:04:37 martin Exp $ |
| 18 | */ |
| 19 | #include "opt_ah.h" |
| 20 | |
| 21 | #include "ah.h" |
| 22 | #include "ah_internal.h" |
| 23 | |
| 24 | #include "ar5212/ar5212.h" |
| 25 | #include "ar5212/ar5212reg.h" |
| 26 | #include "ar5212/ar5212phy.h" |
| 27 | |
| 28 | #include "ah_eeprom_v3.h" |
| 29 | |
| 30 | #define AH_5212_2413 |
| 31 | #include "ar5212/ar5212.ini" |
| 32 | |
| 33 | #define N(a) (sizeof(a)/sizeof(a[0])) |
| 34 | |
| 35 | struct ar2413State { |
| 36 | RF_HAL_FUNCS base; /* public state, must be first */ |
| 37 | uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; |
| 38 | |
| 39 | uint32_t Bank1Data[N(ar5212Bank1_2413)]; |
| 40 | uint32_t Bank2Data[N(ar5212Bank2_2413)]; |
| 41 | uint32_t Bank3Data[N(ar5212Bank3_2413)]; |
| 42 | uint32_t Bank6Data[N(ar5212Bank6_2413)]; |
| 43 | uint32_t Bank7Data[N(ar5212Bank7_2413)]; |
| 44 | |
| 45 | /* |
| 46 | * Private state for reduced stack usage. |
| 47 | */ |
| 48 | /* filled out Vpd table for all pdGains (chanL) */ |
| 49 | uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] |
| 50 | [MAX_PWR_RANGE_IN_HALF_DB]; |
| 51 | /* filled out Vpd table for all pdGains (chanR) */ |
| 52 | uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] |
| 53 | [MAX_PWR_RANGE_IN_HALF_DB]; |
| 54 | /* filled out Vpd table for all pdGains (interpolated) */ |
| 55 | uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] |
| 56 | [MAX_PWR_RANGE_IN_HALF_DB]; |
| 57 | }; |
| 58 | #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal) |
| 59 | |
| 60 | extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, |
| 61 | uint32_t numBits, uint32_t firstBit, uint32_t column); |
| 62 | |
| 63 | static void |
| 64 | ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, |
| 65 | int writes) |
| 66 | { |
| 67 | HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes); |
| 68 | HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes); |
| 69 | HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes); |
| 70 | } |
| 71 | |
| 72 | /* |
| 73 | * Take the MHz channel value and set the Channel value |
| 74 | * |
| 75 | * ASSUMES: Writes enabled to analog bus |
| 76 | */ |
| 77 | static HAL_BOOL |
| 78 | ar2413SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) |
| 79 | { |
| 80 | uint32_t channelSel = 0; |
| 81 | uint32_t bModeSynth = 0; |
| 82 | uint32_t aModeRefSel = 0; |
| 83 | uint32_t reg32 = 0; |
| 84 | uint16_t freq; |
| 85 | |
| 86 | OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); |
| 87 | |
| 88 | if (chan->channel < 4800) { |
| 89 | uint32_t txctl; |
| 90 | |
| 91 | if (((chan->channel - 2192) % 5) == 0) { |
| 92 | channelSel = ((chan->channel - 672) * 2 - 3040)/10; |
| 93 | bModeSynth = 0; |
| 94 | } else if (((chan->channel - 2224) % 5) == 0) { |
| 95 | channelSel = ((chan->channel - 704) * 2 - 3040) / 10; |
| 96 | bModeSynth = 1; |
| 97 | } else { |
| 98 | HALDEBUG(ah, HAL_DEBUG_ANY, |
| 99 | "%s: invalid channel %u MHz\n" , |
| 100 | __func__, chan->channel); |
| 101 | return AH_FALSE; |
| 102 | } |
| 103 | |
| 104 | channelSel = (channelSel << 2) & 0xff; |
| 105 | channelSel = ath_hal_reverseBits(channelSel, 8); |
| 106 | |
| 107 | txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); |
| 108 | if (chan->channel == 2484) { |
| 109 | /* Enable channel spreading for channel 14 */ |
| 110 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
| 111 | txctl | AR_PHY_CCK_TX_CTRL_JAPAN); |
| 112 | } else { |
| 113 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
| 114 | txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); |
| 115 | } |
| 116 | } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) { |
| 117 | freq = chan->channel - 2; /* Align to even 5MHz raster */ |
| 118 | channelSel = ath_hal_reverseBits( |
| 119 | (uint32_t)(((freq - 4800)*10)/25 + 1), 8); |
| 120 | aModeRefSel = ath_hal_reverseBits(0, 2); |
| 121 | } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { |
| 122 | channelSel = ath_hal_reverseBits( |
| 123 | ((chan->channel - 4800) / 20 << 2), 8); |
| 124 | aModeRefSel = ath_hal_reverseBits(3, 2); |
| 125 | } else if ((chan->channel % 10) == 0) { |
| 126 | channelSel = ath_hal_reverseBits( |
| 127 | ((chan->channel - 4800) / 10 << 1), 8); |
| 128 | aModeRefSel = ath_hal_reverseBits(2, 2); |
| 129 | } else if ((chan->channel % 5) == 0) { |
| 130 | channelSel = ath_hal_reverseBits( |
| 131 | (chan->channel - 4800) / 5, 8); |
| 132 | aModeRefSel = ath_hal_reverseBits(1, 2); |
| 133 | } else { |
| 134 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n" , |
| 135 | __func__, chan->channel); |
| 136 | return AH_FALSE; |
| 137 | } |
| 138 | |
| 139 | reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | |
| 140 | (1 << 12) | 0x1; |
| 141 | OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); |
| 142 | |
| 143 | reg32 >>= 8; |
| 144 | OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); |
| 145 | |
| 146 | AH_PRIVATE(ah)->ah_curchan = chan; |
| 147 | |
| 148 | return AH_TRUE; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Reads EEPROM header info from device structure and programs |
| 153 | * all rf registers |
| 154 | * |
| 155 | * REQUIRES: Access to the analog rf device |
| 156 | */ |
| 157 | static HAL_BOOL |
| 158 | ar2413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain) |
| 159 | { |
| 160 | #define RF_BANK_SETUP(_priv, _ix, _col) do { \ |
| 161 | int i; \ |
| 162 | for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \ |
| 163 | (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\ |
| 164 | } while (0) |
| 165 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 166 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
| 167 | uint16_t ob2GHz = 0, db2GHz = 0; |
| 168 | struct ar2413State *priv = AR2413(ah); |
| 169 | int regWrites = 0; |
| 170 | |
| 171 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, |
| 172 | "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n" , |
| 173 | __func__, chan->channel, chan->channelFlags, modesIndex); |
| 174 | |
| 175 | HALASSERT(priv); |
| 176 | |
| 177 | /* Setup rf parameters */ |
| 178 | switch (chan->channelFlags & CHANNEL_ALL) { |
| 179 | case CHANNEL_B: |
| 180 | ob2GHz = ee->ee_obFor24; |
| 181 | db2GHz = ee->ee_dbFor24; |
| 182 | break; |
| 183 | case CHANNEL_G: |
| 184 | case CHANNEL_108G: |
| 185 | ob2GHz = ee->ee_obFor24g; |
| 186 | db2GHz = ee->ee_dbFor24g; |
| 187 | break; |
| 188 | default: |
| 189 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n" , |
| 190 | __func__, chan->channelFlags); |
| 191 | return AH_FALSE; |
| 192 | } |
| 193 | |
| 194 | /* Bank 1 Write */ |
| 195 | RF_BANK_SETUP(priv, 1, 1); |
| 196 | |
| 197 | /* Bank 2 Write */ |
| 198 | RF_BANK_SETUP(priv, 2, modesIndex); |
| 199 | |
| 200 | /* Bank 3 Write */ |
| 201 | RF_BANK_SETUP(priv, 3, modesIndex); |
| 202 | |
| 203 | /* Bank 6 Write */ |
| 204 | RF_BANK_SETUP(priv, 6, modesIndex); |
| 205 | |
| 206 | ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 168, 0); |
| 207 | ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 165, 0); |
| 208 | |
| 209 | /* Bank 7 Setup */ |
| 210 | RF_BANK_SETUP(priv, 7, modesIndex); |
| 211 | |
| 212 | /* Write Analog registers */ |
| 213 | HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites); |
| 214 | HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites); |
| 215 | HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites); |
| 216 | HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites); |
| 217 | HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites); |
| 218 | |
| 219 | /* Now that we have reprogrammed rfgain value, clear the flag. */ |
| 220 | ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; |
| 221 | |
| 222 | return AH_TRUE; |
| 223 | #undef RF_BANK_SETUP |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Return a reference to the requested RF Bank. |
| 228 | */ |
| 229 | static uint32_t * |
| 230 | ar2413GetRfBank(struct ath_hal *ah, int bank) |
| 231 | { |
| 232 | struct ar2413State *priv = AR2413(ah); |
| 233 | |
| 234 | HALASSERT(priv != AH_NULL); |
| 235 | switch (bank) { |
| 236 | case 1: return priv->Bank1Data; |
| 237 | case 2: return priv->Bank2Data; |
| 238 | case 3: return priv->Bank3Data; |
| 239 | case 6: return priv->Bank6Data; |
| 240 | case 7: return priv->Bank7Data; |
| 241 | } |
| 242 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n" , |
| 243 | __func__, bank); |
| 244 | return AH_NULL; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * Return indices surrounding the value in sorted integer lists. |
| 249 | * |
| 250 | * NB: the input list is assumed to be sorted in ascending order |
| 251 | */ |
| 252 | static void |
| 253 | GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, |
| 254 | uint32_t *vlo, uint32_t *vhi) |
| 255 | { |
| 256 | int16_t target = v; |
| 257 | const uint16_t *ep = lp+listSize; |
| 258 | const uint16_t *tp; |
| 259 | |
| 260 | /* |
| 261 | * Check first and last elements for out-of-bounds conditions. |
| 262 | */ |
| 263 | if (target < lp[0]) { |
| 264 | *vlo = *vhi = 0; |
| 265 | return; |
| 266 | } |
| 267 | if (target >= ep[-1]) { |
| 268 | *vlo = *vhi = listSize - 1; |
| 269 | return; |
| 270 | } |
| 271 | |
| 272 | /* look for value being near or between 2 values in list */ |
| 273 | for (tp = lp; tp < ep; tp++) { |
| 274 | /* |
| 275 | * If value is close to the current value of the list |
| 276 | * then target is not between values, it is one of the values |
| 277 | */ |
| 278 | if (*tp == target) { |
| 279 | *vlo = *vhi = tp - (const uint16_t *) lp; |
| 280 | return; |
| 281 | } |
| 282 | /* |
| 283 | * Look for value being between current value and next value |
| 284 | * if so return these 2 values |
| 285 | */ |
| 286 | if (target < tp[1]) { |
| 287 | *vlo = tp - (const uint16_t *) lp; |
| 288 | *vhi = *vlo + 1; |
| 289 | return; |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * Fill the Vpdlist for indices Pmax-Pmin |
| 296 | */ |
| 297 | static HAL_BOOL |
| 298 | ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, |
| 299 | const int16_t *pwrList, const uint16_t *VpdList, |
| 300 | uint16_t numIntercepts, uint16_t retVpdList[][64]) |
| 301 | { |
| 302 | uint16_t ii, kk; |
| 303 | int16_t currPwr = (int16_t)(2*Pmin); |
| 304 | /* since Pmin is pwr*2 and pwrList is 4*pwr */ |
| 305 | uint32_t idxL = 0, idxR = 0; |
| 306 | |
| 307 | ii = 0; |
| 308 | |
| 309 | if (numIntercepts < 2) |
| 310 | return AH_FALSE; |
| 311 | |
| 312 | while (ii <= (uint16_t)(Pmax - Pmin)) { |
| 313 | GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, |
| 314 | numIntercepts, &(idxL), &(idxR)); |
| 315 | if (idxR < 1) |
| 316 | idxR = 1; /* extrapolate below */ |
| 317 | if (idxL == (uint32_t)(numIntercepts - 1)) |
| 318 | idxL = numIntercepts - 2; /* extrapolate above */ |
| 319 | if (pwrList[idxL] == pwrList[idxR]) |
| 320 | kk = VpdList[idxL]; |
| 321 | else |
| 322 | kk = (uint16_t) |
| 323 | (((currPwr - pwrList[idxL])*VpdList[idxR]+ |
| 324 | (pwrList[idxR] - currPwr)*VpdList[idxL])/ |
| 325 | (pwrList[idxR] - pwrList[idxL])); |
| 326 | retVpdList[pdGainIdx][ii] = kk; |
| 327 | ii++; |
| 328 | currPwr += 2; /* half dB steps */ |
| 329 | } |
| 330 | |
| 331 | return AH_TRUE; |
| 332 | } |
| 333 | |
| 334 | /* |
| 335 | * Returns interpolated or the scaled up interpolated value |
| 336 | */ |
| 337 | static int16_t |
| 338 | interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, |
| 339 | int16_t targetLeft, int16_t targetRight) |
| 340 | { |
| 341 | int16_t rv; |
| 342 | |
| 343 | if (srcRight != srcLeft) { |
| 344 | rv = ((target - srcLeft)*targetRight + |
| 345 | (srcRight - target)*targetLeft) / (srcRight - srcLeft); |
| 346 | } else { |
| 347 | rv = targetLeft; |
| 348 | } |
| 349 | return rv; |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * Uses the data points read from EEPROM to reconstruct the pdadc power table |
| 354 | * Called by ar2413SetPowerTable() |
| 355 | */ |
| 356 | static int |
| 357 | ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, |
| 358 | const RAW_DATA_STRUCT_2413 *pRawDataset, |
| 359 | uint16_t pdGainOverlap_t2, |
| 360 | int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], |
| 361 | uint16_t pPdGainValues[], uint16_t pPDADCValues[]) |
| 362 | { |
| 363 | struct ar2413State *priv = AR2413(ah); |
| 364 | #define VpdTable_L priv->vpdTable_L |
| 365 | #define VpdTable_R priv->vpdTable_R |
| 366 | #define VpdTable_I priv->vpdTable_I |
| 367 | uint32_t ii, jj, kk; |
| 368 | int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ |
| 369 | uint32_t idxL = 0, idxR = 0; |
| 370 | uint32_t numPdGainsUsed = 0; |
| 371 | /* |
| 372 | * If desired to support -ve power levels in future, just |
| 373 | * change pwr_I_0 to signed 5-bits. |
| 374 | */ |
| 375 | int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
| 376 | /* to accomodate -ve power levels later on. */ |
| 377 | int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
| 378 | /* to accomodate -ve power levels later on */ |
| 379 | uint16_t numVpd = 0; |
| 380 | uint16_t Vpd_step; |
| 381 | int16_t tmpVal ; |
| 382 | uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; |
| 383 | |
| 384 | /* Get upper lower index */ |
| 385 | GetLowerUpperIndex(channel, pRawDataset->pChannels, |
| 386 | pRawDataset->numChannels, &(idxL), &(idxR)); |
| 387 | |
| 388 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
| 389 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
| 390 | /* work backwards 'cause highest pdGain for lowest power */ |
| 391 | numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; |
| 392 | if (numVpd > 0) { |
| 393 | pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; |
| 394 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; |
| 395 | if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { |
| 396 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; |
| 397 | } |
| 398 | Pmin_t2[numPdGainsUsed] = (int16_t) |
| 399 | (Pmin_t2[numPdGainsUsed] / 2); |
| 400 | Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
| 401 | if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) |
| 402 | Pmax_t2[numPdGainsUsed] = |
| 403 | pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
| 404 | Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); |
| 405 | ar2413FillVpdTable( |
| 406 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
| 407 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), |
| 408 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L |
| 409 | ); |
| 410 | ar2413FillVpdTable( |
| 411 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
| 412 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), |
| 413 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R |
| 414 | ); |
| 415 | for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { |
| 416 | VpdTable_I[numPdGainsUsed][kk] = |
| 417 | interpolate_signed( |
| 418 | channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], |
| 419 | (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); |
| 420 | } |
| 421 | /* fill VpdTable_I for this pdGain */ |
| 422 | numPdGainsUsed++; |
| 423 | } |
| 424 | /* if this pdGain is used */ |
| 425 | } |
| 426 | |
| 427 | *pMinCalPower = Pmin_t2[0]; |
| 428 | kk = 0; /* index for the final table */ |
| 429 | for (ii = 0; ii < numPdGainsUsed; ii++) { |
| 430 | if (ii == (numPdGainsUsed - 1)) |
| 431 | pPdGainBoundaries[ii] = Pmax_t2[ii] + |
| 432 | PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; |
| 433 | else |
| 434 | pPdGainBoundaries[ii] = (uint16_t) |
| 435 | ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); |
| 436 | if (pPdGainBoundaries[ii] > 63) { |
| 437 | HALDEBUG(ah, HAL_DEBUG_ANY, |
| 438 | "%s: clamp pPdGainBoundaries[%d] %d\n" , |
| 439 | __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ |
| 440 | pPdGainBoundaries[ii] = 63; |
| 441 | } |
| 442 | |
| 443 | /* Find starting index for this pdGain */ |
| 444 | if (ii == 0) |
| 445 | ss = 0; /* for the first pdGain, start from index 0 */ |
| 446 | else |
| 447 | ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - |
| 448 | pdGainOverlap_t2; |
| 449 | Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); |
| 450 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
| 451 | /* |
| 452 | *-ve ss indicates need to extrapolate data below for this pdGain |
| 453 | */ |
| 454 | while (ss < 0) { |
| 455 | tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); |
| 456 | pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); |
| 457 | ss++; |
| 458 | } |
| 459 | |
| 460 | sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; |
| 461 | tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; |
| 462 | maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; |
| 463 | |
| 464 | while (ss < (int16_t)maxIndex) |
| 465 | pPDADCValues[kk++] = VpdTable_I[ii][ss++]; |
| 466 | |
| 467 | Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - |
| 468 | VpdTable_I[ii][sizeCurrVpdTable-2]); |
| 469 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
| 470 | /* |
| 471 | * for last gain, pdGainBoundary == Pmax_t2, so will |
| 472 | * have to extrapolate |
| 473 | */ |
| 474 | if (tgtIndex > maxIndex) { /* need to extrapolate above */ |
| 475 | while(ss < (int16_t)tgtIndex) { |
| 476 | tmpVal = (uint16_t) |
| 477 | (VpdTable_I[ii][sizeCurrVpdTable-1] + |
| 478 | (ss-maxIndex)*Vpd_step); |
| 479 | pPDADCValues[kk++] = (tmpVal > 127) ? |
| 480 | 127 : tmpVal; |
| 481 | ss++; |
| 482 | } |
| 483 | } /* extrapolated above */ |
| 484 | } /* for all pdGainUsed */ |
| 485 | |
| 486 | while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { |
| 487 | pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; |
| 488 | ii++; |
| 489 | } |
| 490 | while (kk < 128) { |
| 491 | pPDADCValues[kk] = pPDADCValues[kk-1]; |
| 492 | kk++; |
| 493 | } |
| 494 | |
| 495 | return numPdGainsUsed; |
| 496 | #undef VpdTable_L |
| 497 | #undef VpdTable_R |
| 498 | #undef VpdTable_I |
| 499 | } |
| 500 | |
| 501 | static HAL_BOOL |
| 502 | ar2413SetPowerTable(struct ath_hal *ah, |
| 503 | int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, |
| 504 | uint16_t *rfXpdGain) |
| 505 | { |
| 506 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 507 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
| 508 | const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; |
| 509 | uint16_t pdGainOverlap_t2; |
| 510 | int16_t minCalPower2413_t2; |
| 511 | uint16_t *pdadcValues = ahp->ah_pcdacTable; |
| 512 | uint16_t gainBoundaries[4]; |
| 513 | uint32_t reg32, regoffset; |
| 514 | int i, numPdGainsUsed; |
| 515 | #ifndef AH_USE_INIPDGAIN |
| 516 | uint32_t tpcrg1; |
| 517 | #endif |
| 518 | |
| 519 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n" , |
| 520 | __func__, chan->channel,chan->channelFlags); |
| 521 | |
| 522 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
| 523 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
| 524 | else if (IS_CHAN_B(chan)) |
| 525 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
| 526 | else { |
| 527 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n" , __func__); |
| 528 | return AH_FALSE; |
| 529 | } |
| 530 | |
| 531 | pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), |
| 532 | AR_PHY_TPCRG5_PD_GAIN_OVERLAP); |
| 533 | |
| 534 | numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah, |
| 535 | chan->channel, pRawDataset, pdGainOverlap_t2, |
| 536 | &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues); |
| 537 | HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); |
| 538 | |
| 539 | #ifdef AH_USE_INIPDGAIN |
| 540 | /* |
| 541 | * Use pd_gains curve from eeprom; Atheros always uses |
| 542 | * the default curve from the ini file but some vendors |
| 543 | * (e.g. Zcomax) want to override this curve and not |
| 544 | * honoring their settings results in tx power 5dBm low. |
| 545 | */ |
| 546 | OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
| 547 | (pRawDataset->pDataPerChannel[0].numPdGains - 1)); |
| 548 | #else |
| 549 | tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); |
| 550 | tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) |
| 551 | | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); |
| 552 | switch (numPdGainsUsed) { |
| 553 | case 3: |
| 554 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; |
| 555 | tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); |
| 556 | /* fall thru... */ |
| 557 | case 2: |
| 558 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; |
| 559 | tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); |
| 560 | /* fall thru... */ |
| 561 | case 1: |
| 562 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; |
| 563 | tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); |
| 564 | break; |
| 565 | } |
| 566 | #ifdef AH_DEBUG |
| 567 | if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) |
| 568 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " |
| 569 | "pd_gains (default 0x%x, calculated 0x%x)\n" , |
| 570 | __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); |
| 571 | #endif |
| 572 | OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); |
| 573 | #endif |
| 574 | |
| 575 | /* |
| 576 | * Note the pdadc table may not start at 0 dBm power, could be |
| 577 | * negative or greater than 0. Need to offset the power |
| 578 | * values by the amount of minPower for griffin |
| 579 | */ |
| 580 | if (minCalPower2413_t2 != 0) |
| 581 | ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2); |
| 582 | else |
| 583 | ahp->ah_txPowerIndexOffset = 0; |
| 584 | |
| 585 | /* Finally, write the power values into the baseband power table */ |
| 586 | regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ |
| 587 | for (i = 0; i < 32; i++) { |
| 588 | reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | |
| 589 | ((pdadcValues[4*i + 1] & 0xFF) << 8) | |
| 590 | ((pdadcValues[4*i + 2] & 0xFF) << 16) | |
| 591 | ((pdadcValues[4*i + 3] & 0xFF) << 24) ; |
| 592 | OS_REG_WRITE(ah, regoffset, reg32); |
| 593 | regoffset += 4; |
| 594 | } |
| 595 | |
| 596 | OS_REG_WRITE(ah, AR_PHY_TPCRG5, |
| 597 | SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
| 598 | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
| 599 | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
| 600 | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
| 601 | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
| 602 | |
| 603 | return AH_TRUE; |
| 604 | } |
| 605 | |
| 606 | static int16_t |
| 607 | ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) |
| 608 | { |
| 609 | uint32_t ii,jj; |
| 610 | uint16_t Pmin=0,numVpd; |
| 611 | |
| 612 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
| 613 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
| 614 | /* work backwards 'cause highest pdGain for lowest power */ |
| 615 | numVpd = data->pDataPerPDGain[jj].numVpd; |
| 616 | if (numVpd > 0) { |
| 617 | Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; |
| 618 | return(Pmin); |
| 619 | } |
| 620 | } |
| 621 | return(Pmin); |
| 622 | } |
| 623 | |
| 624 | static int16_t |
| 625 | ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) |
| 626 | { |
| 627 | uint32_t ii; |
| 628 | uint16_t Pmax=0,numVpd; |
| 629 | |
| 630 | for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
| 631 | /* work forwards cuase lowest pdGain for highest power */ |
| 632 | numVpd = data->pDataPerPDGain[ii].numVpd; |
| 633 | if (numVpd > 0) { |
| 634 | Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; |
| 635 | return(Pmax); |
| 636 | } |
| 637 | } |
| 638 | return(Pmax); |
| 639 | } |
| 640 | |
| 641 | static HAL_BOOL |
| 642 | ar2413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, |
| 643 | int16_t *maxPow, int16_t *minPow) |
| 644 | { |
| 645 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
| 646 | const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; |
| 647 | const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL; |
| 648 | uint16_t numChannels; |
| 649 | int totalD,totalF, totalMin,last, i; |
| 650 | |
| 651 | *maxPow = 0; |
| 652 | |
| 653 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
| 654 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
| 655 | else if (IS_CHAN_B(chan)) |
| 656 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
| 657 | else |
| 658 | return(AH_FALSE); |
| 659 | |
| 660 | numChannels = pRawDataset->numChannels; |
| 661 | data = pRawDataset->pDataPerChannel; |
| 662 | |
| 663 | /* Make sure the channel is in the range of the TP values |
| 664 | * (freq piers) |
| 665 | */ |
| 666 | if (numChannels < 1) |
| 667 | return(AH_FALSE); |
| 668 | |
| 669 | if ((chan->channel < data[0].channelValue) || |
| 670 | (chan->channel > data[numChannels-1].channelValue)) { |
| 671 | if (chan->channel < data[0].channelValue) { |
| 672 | *maxPow = ar2413GetMaxPower(ah, &data[0]); |
| 673 | *minPow = ar2413GetMinPower(ah, &data[0]); |
| 674 | return(AH_TRUE); |
| 675 | } else { |
| 676 | *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]); |
| 677 | *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]); |
| 678 | return(AH_TRUE); |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | /* Linearly interpolate the power value now */ |
| 683 | for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); |
| 684 | last = i++); |
| 685 | totalD = data[i].channelValue - data[last].channelValue; |
| 686 | if (totalD > 0) { |
| 687 | totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]); |
| 688 | *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + |
| 689 | ar2413GetMaxPower(ah, &data[last])*totalD)/totalD); |
| 690 | totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]); |
| 691 | *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + |
| 692 | ar2413GetMinPower(ah, &data[last])*totalD)/totalD); |
| 693 | return(AH_TRUE); |
| 694 | } else { |
| 695 | if (chan->channel == data[i].channelValue) { |
| 696 | *maxPow = ar2413GetMaxPower(ah, &data[i]); |
| 697 | *minPow = ar2413GetMinPower(ah, &data[i]); |
| 698 | return(AH_TRUE); |
| 699 | } else |
| 700 | return(AH_FALSE); |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | * Free memory for analog bank scratch buffers |
| 706 | */ |
| 707 | static void |
| 708 | ar2413RfDetach(struct ath_hal *ah) |
| 709 | { |
| 710 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 711 | |
| 712 | HALASSERT(ahp->ah_rfHal != AH_NULL); |
| 713 | ath_hal_free(ahp->ah_rfHal); |
| 714 | ahp->ah_rfHal = AH_NULL; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * Allocate memory for analog bank scratch buffers |
| 719 | * Scratch Buffer will be reinitialized every reset so no need to zero now |
| 720 | */ |
| 721 | static HAL_BOOL |
| 722 | ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status) |
| 723 | { |
| 724 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 725 | struct ar2413State *priv; |
| 726 | |
| 727 | HALASSERT(ah->ah_magic == AR5212_MAGIC); |
| 728 | |
| 729 | HALASSERT(ahp->ah_rfHal == AH_NULL); |
| 730 | priv = ath_hal_malloc(sizeof(struct ar2413State)); |
| 731 | if (priv == AH_NULL) { |
| 732 | HALDEBUG(ah, HAL_DEBUG_ANY, |
| 733 | "%s: cannot allocate private state\n" , __func__); |
| 734 | *status = HAL_ENOMEM; /* XXX */ |
| 735 | return AH_FALSE; |
| 736 | } |
| 737 | priv->base.rfDetach = ar2413RfDetach; |
| 738 | priv->base.writeRegs = ar2413WriteRegs; |
| 739 | priv->base.getRfBank = ar2413GetRfBank; |
| 740 | priv->base.setChannel = ar2413SetChannel; |
| 741 | priv->base.setRfRegs = ar2413SetRfRegs; |
| 742 | priv->base.setPowerTable = ar2413SetPowerTable; |
| 743 | priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower; |
| 744 | priv->base.getNfAdjust = ar5212GetNfAdjust; |
| 745 | |
| 746 | ahp->ah_pcdacTable = priv->pcdacTable; |
| 747 | ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); |
| 748 | ahp->ah_rfHal = &priv->base; |
| 749 | |
| 750 | return AH_TRUE; |
| 751 | } |
| 752 | |
| 753 | static HAL_BOOL |
| 754 | ar2413Probe(struct ath_hal *ah) |
| 755 | { |
| 756 | return IS_2413(ah); |
| 757 | } |
| 758 | AH_RF(RF2413, ar2413Probe, ar2413RfAttach); |
| 759 | |