| 1 | /* $NetBSD: rf_pqdegdags.c,v 1.13 2011/08/01 12:28:53 mbalmer Exp $ */ |
| 2 | /* |
| 3 | * Copyright (c) 1995 Carnegie-Mellon University. |
| 4 | * All rights reserved. |
| 5 | * |
| 6 | * Author: Daniel Stodolsky |
| 7 | * |
| 8 | * Permission to use, copy, modify and distribute this software and |
| 9 | * its documentation is hereby granted, provided that both the copyright |
| 10 | * notice and this permission notice appear in all copies of the |
| 11 | * software, derivative works or modified versions, and any portions |
| 12 | * thereof, and that both notices appear in supporting documentation. |
| 13 | * |
| 14 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 15 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND |
| 16 | * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 17 | * |
| 18 | * Carnegie Mellon requests users of this software to return to |
| 19 | * |
| 20 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 21 | * School of Computer Science |
| 22 | * Carnegie Mellon University |
| 23 | * Pittsburgh PA 15213-3890 |
| 24 | * |
| 25 | * any improvements or extensions that they make and grant Carnegie the |
| 26 | * rights to redistribute these changes. |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * rf_pqdegdags.c |
| 31 | * Degraded mode dags for double fault cases. |
| 32 | */ |
| 33 | |
| 34 | |
| 35 | #include <sys/cdefs.h> |
| 36 | __KERNEL_RCSID(0, "$NetBSD: rf_pqdegdags.c,v 1.13 2011/08/01 12:28:53 mbalmer Exp $" ); |
| 37 | |
| 38 | #include "rf_archs.h" |
| 39 | |
| 40 | #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) |
| 41 | |
| 42 | #include <dev/raidframe/raidframevar.h> |
| 43 | |
| 44 | #include "rf_raid.h" |
| 45 | #include "rf_dag.h" |
| 46 | #include "rf_dagdegrd.h" |
| 47 | #include "rf_dagdegwr.h" |
| 48 | #include "rf_dagfuncs.h" |
| 49 | #include "rf_dagutils.h" |
| 50 | #include "rf_etimer.h" |
| 51 | #include "rf_acctrace.h" |
| 52 | #include "rf_general.h" |
| 53 | #include "rf_pqdegdags.h" |
| 54 | #include "rf_pq.h" |
| 55 | |
| 56 | static void |
| 57 | applyPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, RF_PhysDiskAddr_t * ppda, |
| 58 | RF_PhysDiskAddr_t * qpda, void *bp); |
| 59 | |
| 60 | /* |
| 61 | Two data drives have failed, and we are doing a read that covers one of them. |
| 62 | We may also be reading some of the surviving drives. |
| 63 | |
| 64 | |
| 65 | ***************************************************************************************** |
| 66 | * |
| 67 | * creates a DAG to perform a degraded-mode read of data within one stripe. |
| 68 | * This DAG is as follows: |
| 69 | * |
| 70 | * Hdr |
| 71 | * | |
| 72 | * Block |
| 73 | * / / \ \ \ \ |
| 74 | * Rud ... Rud Rrd ... Rrd Rp Rq |
| 75 | * | \ | \ | \ | \ | \ | \ |
| 76 | * |
| 77 | * | | |
| 78 | * Unblock X |
| 79 | * \ / |
| 80 | * ------ T ------ |
| 81 | * |
| 82 | * Each R node is a successor of the L node |
| 83 | * One successor arc from each R node goes to U, and the other to X |
| 84 | * There is one Rud for each chunk of surviving user data requested by the user, |
| 85 | * and one Rrd for each chunk of surviving user data _not_ being read by the user |
| 86 | * R = read, ud = user data, rd = recovery (surviving) data, p = P data, q = Qdata |
| 87 | * X = pq recovery node, T = terminate |
| 88 | * |
| 89 | * The block & unblock nodes are leftovers from a previous version. They |
| 90 | * do nothing, but I haven't deleted them because it would be a tremendous |
| 91 | * effort to put them back in. |
| 92 | * |
| 93 | * Note: The target buffer for the XOR node is set to the actual user buffer where the |
| 94 | * failed data is supposed to end up. This buffer is zero'd by the code here. Thus, |
| 95 | * if you create a degraded read dag, use it, and then re-use, you have to be sure to |
| 96 | * zero the target buffer prior to the re-use. |
| 97 | * |
| 98 | * Every buffer read is passed to the pq recovery node, whose job it is to sort out whats |
| 99 | * needs and what's not. |
| 100 | ****************************************************************************************/ |
| 101 | /* init a disk node with 2 successors and one predecessor */ |
| 102 | #define INIT_DISK_NODE(node,name) \ |
| 103 | rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \ |
| 104 | (node)->succedents[0] = unblockNode; \ |
| 105 | (node)->succedents[1] = recoveryNode; \ |
| 106 | (node)->antecedents[0] = blockNode; \ |
| 107 | (node)->antType[0] = rf_control |
| 108 | |
| 109 | #define DISK_NODE_PARAMS(_node_,_p_) \ |
| 110 | (_node_).params[0].p = _p_ ; \ |
| 111 | (_node_).params[1].p = (_p_)->bufPtr; \ |
| 112 | (_node_).params[2].v = parityStripeID; \ |
| 113 | (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru) |
| 114 | |
| 115 | #define DISK_NODE_PDA(node) ((node)->params[0].p) |
| 116 | |
| 117 | RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead) |
| 118 | { |
| 119 | rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList, |
| 120 | "Rq" , "PQ Recovery" , rf_PQDoubleRecoveryFunc); |
| 121 | } |
| 122 | |
| 123 | static void |
| 124 | applyPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, RF_PhysDiskAddr_t *ppda, RF_PhysDiskAddr_t *qpda, void *bp) |
| 125 | { |
| 126 | RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); |
| 127 | RF_RaidAddr_t s0off = rf_StripeUnitOffset(layoutPtr, ppda->startSector); |
| 128 | RF_SectorCount_t s0len = ppda->numSector, len; |
| 129 | RF_SectorNum_t suoffset; |
| 130 | unsigned coeff; |
| 131 | char *pbuf = ppda->bufPtr; |
| 132 | char *qbuf = qpda->bufPtr; |
| 133 | char *buf; |
| 134 | int delta; |
| 135 | |
| 136 | suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); |
| 137 | len = pda->numSector; |
| 138 | /* see if pda intersects a recovery pda */ |
| 139 | if ((suoffset < s0off + s0len) && (suoffset + len > s0off)) { |
| 140 | buf = pda->bufPtr; |
| 141 | coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress); |
| 142 | coeff = (coeff % raidPtr->Layout.numDataCol); |
| 143 | |
| 144 | if (suoffset < s0off) { |
| 145 | delta = s0off - suoffset; |
| 146 | buf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta); |
| 147 | suoffset = s0off; |
| 148 | len -= delta; |
| 149 | } |
| 150 | if (suoffset > s0off) { |
| 151 | delta = suoffset - s0off; |
| 152 | pbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta); |
| 153 | qbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta); |
| 154 | } |
| 155 | if ((suoffset + len) > (s0len + s0off)) |
| 156 | len = s0len + s0off - suoffset; |
| 157 | |
| 158 | /* src, dest, len */ |
| 159 | rf_bxor(buf, pbuf, rf_RaidAddressToByte(raidPtr, len), bp); |
| 160 | |
| 161 | /* dest, src, len, coeff */ |
| 162 | rf_IncQ((unsigned long *) qbuf, (unsigned long *) buf, rf_RaidAddressToByte(raidPtr, len), coeff); |
| 163 | } |
| 164 | } |
| 165 | /* |
| 166 | Recover data in the case of a double failure. There can be two |
| 167 | result buffers, one for each chunk of data trying to be recovered. |
| 168 | The params are pda's that have not been range restricted or otherwise |
| 169 | politely massaged - this should be done here. The last params are the |
| 170 | pdas of P and Q, followed by the raidPtr. The list can look like |
| 171 | |
| 172 | pda, pda, ... , p pda, q pda, raidptr, asm |
| 173 | |
| 174 | or |
| 175 | |
| 176 | pda, pda, ... , p_1 pda, p_2 pda, q_1 pda, q_2 pda, raidptr, asm |
| 177 | |
| 178 | depending on whether two chunks of recovery data were required. |
| 179 | |
| 180 | The second condition only arises if there are two failed buffers |
| 181 | whose lengths do not add up a stripe unit. |
| 182 | */ |
| 183 | |
| 184 | |
| 185 | int |
| 186 | rf_PQDoubleRecoveryFunc(RF_DagNode_t *node) |
| 187 | { |
| 188 | int np = node->numParams; |
| 189 | RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p; |
| 190 | RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p; |
| 191 | RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); |
| 192 | int d, i; |
| 193 | unsigned coeff; |
| 194 | RF_RaidAddr_t sosAddr, suoffset; |
| 195 | RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit; |
| 196 | int two = 0; |
| 197 | RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda; |
| 198 | char *buf; |
| 199 | int numDataCol = layoutPtr->numDataCol; |
| 200 | RF_Etimer_t timer; |
| 201 | RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; |
| 202 | |
| 203 | RF_ETIMER_START(timer); |
| 204 | |
| 205 | if (asmap->failedPDAs[1] && |
| 206 | (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) { |
| 207 | RF_ASSERT(0); |
| 208 | ppda = node->params[np - 6].p; |
| 209 | ppda2 = node->params[np - 5].p; |
| 210 | qpda = node->params[np - 4].p; |
| 211 | qpda2 = node->params[np - 3].p; |
| 212 | d = (np - 6); |
| 213 | two = 1; |
| 214 | } else { |
| 215 | ppda = node->params[np - 4].p; |
| 216 | qpda = node->params[np - 3].p; |
| 217 | d = (np - 4); |
| 218 | } |
| 219 | |
| 220 | for (i = 0; i < d; i++) { |
| 221 | pda = node->params[i].p; |
| 222 | buf = pda->bufPtr; |
| 223 | suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); |
| 224 | len = pda->numSector; |
| 225 | coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress); |
| 226 | /* compute the data unit offset within the column */ |
| 227 | coeff = (coeff % raidPtr->Layout.numDataCol); |
| 228 | /* see if pda intersects a recovery pda */ |
| 229 | applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp); |
| 230 | if (two) |
| 231 | applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp); |
| 232 | } |
| 233 | |
| 234 | /* ok, we got the parity back to the point where we can recover. We |
| 235 | * now need to determine the coeff of the columns that need to be |
| 236 | * recovered. We can also only need to recover a single stripe unit. */ |
| 237 | |
| 238 | if (asmap->failedPDAs[1] == NULL) { /* only a single stripe unit |
| 239 | * to recover. */ |
| 240 | pda = asmap->failedPDAs[0]; |
| 241 | sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); |
| 242 | /* need to determine the column of the other failed disk */ |
| 243 | coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress); |
| 244 | /* compute the data unit offset within the column */ |
| 245 | coeff = (coeff % raidPtr->Layout.numDataCol); |
| 246 | for (i = 0; i < numDataCol; i++) { |
| 247 | npda.raidAddress = sosAddr + (i * secPerSU); |
| 248 | (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0); |
| 249 | /* skip over dead disks */ |
| 250 | if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status)) |
| 251 | if (i != coeff) |
| 252 | break; |
| 253 | } |
| 254 | RF_ASSERT(i < numDataCol); |
| 255 | RF_ASSERT(two == 0); |
| 256 | /* recover the data. Since we need only want to recover one |
| 257 | * column, we overwrite the parity with the other one. */ |
| 258 | if (coeff < i) /* recovering 'a' */ |
| 259 | rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) pda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i); |
| 260 | else /* recovering 'b' */ |
| 261 | rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) pda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff); |
| 262 | } else |
| 263 | RF_PANIC(); |
| 264 | |
| 265 | RF_ETIMER_STOP(timer); |
| 266 | RF_ETIMER_EVAL(timer); |
| 267 | if (tracerec) |
| 268 | tracerec->q_us += RF_ETIMER_VAL_US(timer); |
| 269 | rf_GenericWakeupFunc(node, 0); |
| 270 | return (0); |
| 271 | } |
| 272 | |
| 273 | int |
| 274 | rf_PQWriteDoubleRecoveryFunc(RF_DagNode_t *node) |
| 275 | { |
| 276 | /* The situation: |
| 277 | * |
| 278 | * We are doing a write that hits only one failed data unit. The other |
| 279 | * failed data unit is not being overwritten, so we need to generate |
| 280 | * it. |
| 281 | * |
| 282 | * For the moment, we assume all the nonfailed data being written is in |
| 283 | * the shadow of the failed data unit. (i.e,, either a single data |
| 284 | * unit write or the entire failed stripe unit is being overwritten. ) |
| 285 | * |
| 286 | * Recovery strategy: apply the recovery data to the parity and q. Use P |
| 287 | * & Q to recover the second failed data unit in P. Zero fill Q, then |
| 288 | * apply the recovered data to p. Then apply the data being written to |
| 289 | * the failed drive. Then walk through the surviving drives, applying |
| 290 | * new data when it exists, othewise the recovery data. Quite a mess. |
| 291 | * |
| 292 | * |
| 293 | * The params |
| 294 | * |
| 295 | * read pda0, read pda1, ... read pda (numDataCol-3), write pda0, ... , |
| 296 | * write pda (numStripeUnitAccess - numDataFailed), failed pda, |
| 297 | * raidPtr, asmap */ |
| 298 | |
| 299 | int np = node->numParams; |
| 300 | RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p; |
| 301 | RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p; |
| 302 | RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); |
| 303 | int i; |
| 304 | RF_RaidAddr_t sosAddr; |
| 305 | unsigned coeff; |
| 306 | RF_StripeCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; |
| 307 | RF_PhysDiskAddr_t *ppda, *qpda, *pda, npda; |
| 308 | int numDataCol = layoutPtr->numDataCol; |
| 309 | RF_Etimer_t timer; |
| 310 | RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; |
| 311 | |
| 312 | RF_ASSERT(node->numResults == 2); |
| 313 | RF_ASSERT(asmap->failedPDAs[1] == NULL); |
| 314 | RF_ETIMER_START(timer); |
| 315 | ppda = node->results[0]; |
| 316 | qpda = node->results[1]; |
| 317 | /* apply the recovery data */ |
| 318 | for (i = 0; i < numDataCol - 2; i++) |
| 319 | applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp); |
| 320 | |
| 321 | /* determine the other failed data unit */ |
| 322 | pda = asmap->failedPDAs[0]; |
| 323 | sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); |
| 324 | /* need to determine the column of the other failed disk */ |
| 325 | coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress); |
| 326 | /* compute the data unit offset within the column */ |
| 327 | coeff = (coeff % raidPtr->Layout.numDataCol); |
| 328 | for (i = 0; i < numDataCol; i++) { |
| 329 | npda.raidAddress = sosAddr + (i * secPerSU); |
| 330 | (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0); |
| 331 | /* skip over dead disks */ |
| 332 | if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status)) |
| 333 | if (i != coeff) |
| 334 | break; |
| 335 | } |
| 336 | RF_ASSERT(i < numDataCol); |
| 337 | /* recover the data. The column we want to recover we write over the |
| 338 | * parity. The column we don't care about we dump in q. */ |
| 339 | if (coeff < i) /* recovering 'a' */ |
| 340 | rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i); |
| 341 | else /* recovering 'b' */ |
| 342 | rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff); |
| 343 | |
| 344 | /* OK. The valid data is in P. Zero fill Q, then inc it into it. */ |
| 345 | memset(qpda->bufPtr, 0, rf_RaidAddressToByte(raidPtr, qpda->numSector)); |
| 346 | rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), i); |
| 347 | |
| 348 | /* now apply all the write data to the buffer */ |
| 349 | /* single stripe unit write case: the failed data is only thing we are |
| 350 | * writing. */ |
| 351 | RF_ASSERT(asmap->numStripeUnitsAccessed == 1); |
| 352 | /* dest, src, len, coeff */ |
| 353 | rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) asmap->failedPDAs[0]->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), coeff); |
| 354 | rf_bxor(asmap->failedPDAs[0]->bufPtr, ppda->bufPtr, rf_RaidAddressToByte(raidPtr, ppda->numSector), node->dagHdr->bp); |
| 355 | |
| 356 | /* now apply all the recovery data */ |
| 357 | for (i = 0; i < numDataCol - 2; i++) |
| 358 | applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp); |
| 359 | |
| 360 | RF_ETIMER_STOP(timer); |
| 361 | RF_ETIMER_EVAL(timer); |
| 362 | if (tracerec) |
| 363 | tracerec->q_us += RF_ETIMER_VAL_US(timer); |
| 364 | |
| 365 | rf_GenericWakeupFunc(node, 0); |
| 366 | return (0); |
| 367 | } |
| 368 | RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite) |
| 369 | { |
| 370 | RF_PANIC(); |
| 371 | } |
| 372 | /* |
| 373 | Two lost data unit write case. |
| 374 | |
| 375 | There are really two cases here: |
| 376 | |
| 377 | (1) The write completely covers the two lost data units. |
| 378 | In that case, a reconstruct write that doesn't write the |
| 379 | failed data units will do the correct thing. So in this case, |
| 380 | the dag looks like |
| 381 | |
| 382 | full stripe read of surviving data units (not being overwriten) |
| 383 | write new data (ignoring failed units) compute P&Q |
| 384 | write P&Q |
| 385 | |
| 386 | |
| 387 | (2) The write does not completely cover both failed data units |
| 388 | (but touches at least one of them). Then we need to do the |
| 389 | equivalent of a reconstruct read to recover the missing data |
| 390 | unit from the other stripe. |
| 391 | |
| 392 | For any data we are writing that is not in the "shadow" |
| 393 | of the failed units, we need to do a four cycle update. |
| 394 | PANIC on this case. for now |
| 395 | |
| 396 | */ |
| 397 | |
| 398 | RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG) |
| 399 | { |
| 400 | RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); |
| 401 | RF_SectorCount_t sectorsPerSU = layoutPtr->sectorsPerStripeUnit; |
| 402 | int sum; |
| 403 | int nf = asmap->numDataFailed; |
| 404 | |
| 405 | sum = asmap->failedPDAs[0]->numSector; |
| 406 | if (nf == 2) |
| 407 | sum += asmap->failedPDAs[1]->numSector; |
| 408 | |
| 409 | if ((nf == 2) && (sum == (2 * sectorsPerSU))) { |
| 410 | /* large write case */ |
| 411 | rf_PQ_DDLargeWrite(raidPtr, asmap, dag_h, bp, flags, allocList); |
| 412 | return; |
| 413 | } |
| 414 | if ((nf == asmap->numStripeUnitsAccessed) || (sum >= sectorsPerSU)) { |
| 415 | /* small write case, no user data not in shadow */ |
| 416 | rf_PQ_DDSimpleSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList); |
| 417 | return; |
| 418 | } |
| 419 | RF_PANIC(); |
| 420 | } |
| 421 | RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite) |
| 422 | { |
| 423 | rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Rq" , "Wq" , "PQ Recovery" , rf_PQWriteDoubleRecoveryFunc); |
| 424 | } |
| 425 | #endif /* (RF_INCLUDE_DECL_PQ > 0) || |
| 426 | * (RF_INCLUDE_RAID6 > 0) */ |
| 427 | |