| 1 | /* $NetBSD: lfs_syscalls.c,v 1.172 2015/10/15 06:15:48 dholland Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008 |
| 5 | * The NetBSD Foundation, Inc. |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * This code is derived from software contributed to The NetBSD Foundation |
| 9 | * by Konrad E. Schroder <perseant@hhhh.org>. |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or without |
| 12 | * modification, are permitted provided that the following conditions |
| 13 | * are met: |
| 14 | * 1. Redistributions of source code must retain the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer. |
| 16 | * 2. Redistributions in binary form must reproduce the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer in the |
| 18 | * documentation and/or other materials provided with the distribution. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | /*- |
| 33 | * Copyright (c) 1991, 1993, 1994 |
| 34 | * The Regents of the University of California. All rights reserved. |
| 35 | * |
| 36 | * Redistribution and use in source and binary forms, with or without |
| 37 | * modification, are permitted provided that the following conditions |
| 38 | * are met: |
| 39 | * 1. Redistributions of source code must retain the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer. |
| 41 | * 2. Redistributions in binary form must reproduce the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer in the |
| 43 | * documentation and/or other materials provided with the distribution. |
| 44 | * 3. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95 |
| 61 | */ |
| 62 | |
| 63 | #include <sys/cdefs.h> |
| 64 | __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.172 2015/10/15 06:15:48 dholland Exp $" ); |
| 65 | |
| 66 | #ifndef LFS |
| 67 | # define LFS /* for prototypes in syscallargs.h */ |
| 68 | #endif |
| 69 | |
| 70 | #include <sys/param.h> |
| 71 | #include <sys/systm.h> |
| 72 | #include <sys/proc.h> |
| 73 | #include <sys/buf.h> |
| 74 | #include <sys/mount.h> |
| 75 | #include <sys/vnode.h> |
| 76 | #include <sys/kernel.h> |
| 77 | #include <sys/kauth.h> |
| 78 | #include <sys/syscallargs.h> |
| 79 | |
| 80 | #include <ufs/lfs/ulfs_inode.h> |
| 81 | #include <ufs/lfs/ulfsmount.h> |
| 82 | #include <ufs/lfs/ulfs_extern.h> |
| 83 | |
| 84 | #include <ufs/lfs/lfs.h> |
| 85 | #include <ufs/lfs/lfs_accessors.h> |
| 86 | #include <ufs/lfs/lfs_kernel.h> |
| 87 | #include <ufs/lfs/lfs_extern.h> |
| 88 | |
| 89 | static int lfs_fastvget(struct mount *, ino_t, BLOCK_INFO *, int, |
| 90 | struct vnode **); |
| 91 | static struct buf *lfs_fakebuf(struct lfs *, struct vnode *, daddr_t, |
| 92 | size_t, void *); |
| 93 | |
| 94 | /* |
| 95 | * sys_lfs_markv: |
| 96 | * |
| 97 | * This will mark inodes and blocks dirty, so they are written into the log. |
| 98 | * It will block until all the blocks have been written. The segment create |
| 99 | * time passed in the block_info and inode_info structures is used to decide |
| 100 | * if the data is valid for each block (in case some process dirtied a block |
| 101 | * or inode that is being cleaned between the determination that a block is |
| 102 | * live and the lfs_markv call). |
| 103 | * |
| 104 | * 0 on success |
| 105 | * -1/errno is return on error. |
| 106 | */ |
| 107 | #ifdef USE_64BIT_SYSCALLS |
| 108 | int |
| 109 | sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval) |
| 110 | { |
| 111 | /* { |
| 112 | syscallarg(fsid_t *) fsidp; |
| 113 | syscallarg(struct block_info *) blkiov; |
| 114 | syscallarg(int) blkcnt; |
| 115 | } */ |
| 116 | BLOCK_INFO *blkiov; |
| 117 | int blkcnt, error; |
| 118 | fsid_t fsid; |
| 119 | struct lfs *fs; |
| 120 | struct mount *mntp; |
| 121 | |
| 122 | if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) |
| 123 | return (error); |
| 124 | |
| 125 | if ((mntp = vfs_getvfs(&fsid)) == NULL) |
| 126 | return (ENOENT); |
| 127 | fs = VFSTOULFS(mntp)->um_lfs; |
| 128 | |
| 129 | blkcnt = SCARG(uap, blkcnt); |
| 130 | if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT) |
| 131 | return (EINVAL); |
| 132 | |
| 133 | KERNEL_LOCK(1, NULL); |
| 134 | blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); |
| 135 | if ((error = copyin(SCARG(uap, blkiov), blkiov, |
| 136 | blkcnt * sizeof(BLOCK_INFO))) != 0) |
| 137 | goto out; |
| 138 | |
| 139 | if ((error = lfs_markv(l, &fsid, blkiov, blkcnt)) == 0) |
| 140 | copyout(blkiov, SCARG(uap, blkiov), |
| 141 | blkcnt * sizeof(BLOCK_INFO)); |
| 142 | out: |
| 143 | lfs_free(fs, blkiov, LFS_NB_BLKIOV); |
| 144 | KERNEL_UNLOCK_ONE(NULL); |
| 145 | return error; |
| 146 | } |
| 147 | #else |
| 148 | int |
| 149 | sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval) |
| 150 | { |
| 151 | /* { |
| 152 | syscallarg(fsid_t *) fsidp; |
| 153 | syscallarg(struct block_info *) blkiov; |
| 154 | syscallarg(int) blkcnt; |
| 155 | } */ |
| 156 | BLOCK_INFO *blkiov; |
| 157 | BLOCK_INFO_15 *blkiov15; |
| 158 | int i, blkcnt, error; |
| 159 | fsid_t fsid; |
| 160 | struct lfs *fs; |
| 161 | struct mount *mntp; |
| 162 | |
| 163 | if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) |
| 164 | return (error); |
| 165 | |
| 166 | if ((mntp = vfs_getvfs(&fsid)) == NULL) |
| 167 | return (ENOENT); |
| 168 | fs = VFSTOULFS(mntp)->um_lfs; |
| 169 | |
| 170 | blkcnt = SCARG(uap, blkcnt); |
| 171 | if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT) |
| 172 | return (EINVAL); |
| 173 | |
| 174 | KERNEL_LOCK(1, NULL); |
| 175 | blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); |
| 176 | blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV); |
| 177 | if ((error = copyin(SCARG(uap, blkiov), blkiov15, |
| 178 | blkcnt * sizeof(BLOCK_INFO_15))) != 0) |
| 179 | goto out; |
| 180 | |
| 181 | for (i = 0; i < blkcnt; i++) { |
| 182 | blkiov[i].bi_inode = blkiov15[i].bi_inode; |
| 183 | blkiov[i].bi_lbn = blkiov15[i].bi_lbn; |
| 184 | blkiov[i].bi_daddr = blkiov15[i].bi_daddr; |
| 185 | blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate; |
| 186 | blkiov[i].bi_version = blkiov15[i].bi_version; |
| 187 | blkiov[i].bi_bp = blkiov15[i].bi_bp; |
| 188 | blkiov[i].bi_size = blkiov15[i].bi_size; |
| 189 | } |
| 190 | |
| 191 | if ((error = lfs_markv(l, &fsid, blkiov, blkcnt)) == 0) { |
| 192 | for (i = 0; i < blkcnt; i++) { |
| 193 | blkiov15[i].bi_inode = blkiov[i].bi_inode; |
| 194 | blkiov15[i].bi_lbn = blkiov[i].bi_lbn; |
| 195 | blkiov15[i].bi_daddr = blkiov[i].bi_daddr; |
| 196 | blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate; |
| 197 | blkiov15[i].bi_version = blkiov[i].bi_version; |
| 198 | blkiov15[i].bi_bp = blkiov[i].bi_bp; |
| 199 | blkiov15[i].bi_size = blkiov[i].bi_size; |
| 200 | } |
| 201 | copyout(blkiov15, SCARG(uap, blkiov), |
| 202 | blkcnt * sizeof(BLOCK_INFO_15)); |
| 203 | } |
| 204 | out: |
| 205 | lfs_free(fs, blkiov, LFS_NB_BLKIOV); |
| 206 | lfs_free(fs, blkiov15, LFS_NB_BLKIOV); |
| 207 | KERNEL_UNLOCK_ONE(NULL); |
| 208 | return error; |
| 209 | } |
| 210 | #endif |
| 211 | |
| 212 | #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS) |
| 213 | |
| 214 | int |
| 215 | lfs_markv(struct lwp *l, fsid_t *fsidp, BLOCK_INFO *blkiov, |
| 216 | int blkcnt) |
| 217 | { |
| 218 | BLOCK_INFO *blkp; |
| 219 | IFILE *ifp; |
| 220 | struct buf *bp; |
| 221 | struct inode *ip = NULL; |
| 222 | struct lfs *fs; |
| 223 | struct mount *mntp; |
| 224 | struct ulfsmount *ump; |
| 225 | struct vnode *vp; |
| 226 | ino_t lastino; |
| 227 | daddr_t b_daddr; |
| 228 | int cnt, error; |
| 229 | int do_again = 0; |
| 230 | int numrefed = 0; |
| 231 | ino_t maxino; |
| 232 | size_t obsize; |
| 233 | |
| 234 | /* number of blocks/inodes that we have already bwrite'ed */ |
| 235 | int nblkwritten, ninowritten; |
| 236 | |
| 237 | error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, |
| 238 | KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL); |
| 239 | if (error) |
| 240 | return (error); |
| 241 | |
| 242 | if ((mntp = vfs_getvfs(fsidp)) == NULL) |
| 243 | return (ENOENT); |
| 244 | |
| 245 | ump = VFSTOULFS(mntp); |
| 246 | fs = ump->um_lfs; |
| 247 | |
| 248 | if (fs->lfs_ronly) |
| 249 | return EROFS; |
| 250 | |
| 251 | maxino = (lfs_fragstoblks(fs, lfs_dino_getblocks(fs, VTOI(fs->lfs_ivnode)->i_din)) - |
| 252 | lfs_sb_getcleansz(fs) - lfs_sb_getsegtabsz(fs)) * lfs_sb_getifpb(fs); |
| 253 | |
| 254 | cnt = blkcnt; |
| 255 | |
| 256 | if ((error = vfs_busy(mntp, NULL)) != 0) |
| 257 | return (error); |
| 258 | |
| 259 | /* |
| 260 | * This seglock is just to prevent the fact that we might have to sleep |
| 261 | * from allowing the possibility that our blocks might become |
| 262 | * invalid. |
| 263 | * |
| 264 | * It is also important to note here that unless we specify SEGM_CKP, |
| 265 | * any Ifile blocks that we might be asked to clean will never get |
| 266 | * to the disk. |
| 267 | */ |
| 268 | lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC); |
| 269 | |
| 270 | /* Mark blocks/inodes dirty. */ |
| 271 | error = 0; |
| 272 | |
| 273 | /* these were inside the initialization for the for loop */ |
| 274 | vp = NULL; |
| 275 | lastino = LFS_UNUSED_INUM; |
| 276 | nblkwritten = ninowritten = 0; |
| 277 | for (blkp = blkiov; cnt--; ++blkp) |
| 278 | { |
| 279 | /* Bounds-check incoming data, avoid panic for failed VGET */ |
| 280 | if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) { |
| 281 | error = EINVAL; |
| 282 | goto err3; |
| 283 | } |
| 284 | /* |
| 285 | * Get the IFILE entry (only once) and see if the file still |
| 286 | * exists. |
| 287 | */ |
| 288 | if (lastino != blkp->bi_inode) { |
| 289 | /* |
| 290 | * Finish the old file, if there was one. |
| 291 | */ |
| 292 | if (vp != NULL) { |
| 293 | vput(vp); |
| 294 | vp = NULL; |
| 295 | numrefed--; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Start a new file |
| 300 | */ |
| 301 | lastino = blkp->bi_inode; |
| 302 | |
| 303 | /* Get the vnode/inode. */ |
| 304 | error = lfs_fastvget(mntp, blkp->bi_inode, blkp, |
| 305 | LK_EXCLUSIVE | LK_NOWAIT, &vp); |
| 306 | if (error) { |
| 307 | DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget" |
| 308 | " failed with %d (ino %d, segment %d)\n" , |
| 309 | error, blkp->bi_inode, |
| 310 | lfs_dtosn(fs, blkp->bi_daddr))); |
| 311 | /* |
| 312 | * If we got EAGAIN, that means that the |
| 313 | * Inode was locked. This is |
| 314 | * recoverable: just clean the rest of |
| 315 | * this segment, and let the cleaner try |
| 316 | * again with another. (When the |
| 317 | * cleaner runs again, this segment will |
| 318 | * sort high on the list, since it is |
| 319 | * now almost entirely empty.) |
| 320 | */ |
| 321 | if (error == EAGAIN) { |
| 322 | error = 0; |
| 323 | do_again++; |
| 324 | } else |
| 325 | KASSERT(error == ENOENT); |
| 326 | KASSERT(vp == NULL); |
| 327 | ip = NULL; |
| 328 | continue; |
| 329 | } |
| 330 | |
| 331 | ip = VTOI(vp); |
| 332 | numrefed++; |
| 333 | ninowritten++; |
| 334 | } else if (vp == NULL) { |
| 335 | /* |
| 336 | * This can only happen if the vnode is dead (or |
| 337 | * in any case we can't get it...e.g., it is |
| 338 | * inlocked). Keep going. |
| 339 | */ |
| 340 | continue; |
| 341 | } |
| 342 | |
| 343 | /* Past this point we are guaranteed that vp, ip are valid. */ |
| 344 | |
| 345 | /* Can't clean VU_DIROP directories in case of truncation */ |
| 346 | /* XXX - maybe we should mark removed dirs specially? */ |
| 347 | if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) { |
| 348 | do_again++; |
| 349 | continue; |
| 350 | } |
| 351 | |
| 352 | /* If this BLOCK_INFO didn't contain a block, keep going. */ |
| 353 | if (blkp->bi_lbn == LFS_UNUSED_LBN) { |
| 354 | /* XXX need to make sure that the inode gets written in this case */ |
| 355 | /* XXX but only write the inode if it's the right one */ |
| 356 | if (blkp->bi_inode != LFS_IFILE_INUM) { |
| 357 | LFS_IENTRY(ifp, fs, blkp->bi_inode, bp); |
| 358 | if (lfs_if_getdaddr(fs, ifp) == blkp->bi_daddr) { |
| 359 | mutex_enter(&lfs_lock); |
| 360 | LFS_SET_UINO(ip, IN_CLEANING); |
| 361 | mutex_exit(&lfs_lock); |
| 362 | } |
| 363 | brelse(bp, 0); |
| 364 | } |
| 365 | continue; |
| 366 | } |
| 367 | |
| 368 | b_daddr = 0; |
| 369 | if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) || |
| 370 | LFS_DBTOFSB(fs, b_daddr) != blkp->bi_daddr) |
| 371 | { |
| 372 | if (lfs_dtosn(fs, LFS_DBTOFSB(fs, b_daddr)) == |
| 373 | lfs_dtosn(fs, blkp->bi_daddr)) |
| 374 | { |
| 375 | DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %jx vs %jx\n" , |
| 376 | (intmax_t)blkp->bi_daddr, (intmax_t)LFS_DBTOFSB(fs, b_daddr))); |
| 377 | } |
| 378 | do_again++; |
| 379 | continue; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Check block sizes. The blocks being cleaned come from |
| 384 | * disk, so they should have the same size as their on-disk |
| 385 | * counterparts. |
| 386 | */ |
| 387 | if (blkp->bi_lbn >= 0) |
| 388 | obsize = lfs_blksize(fs, ip, blkp->bi_lbn); |
| 389 | else |
| 390 | obsize = lfs_sb_getbsize(fs); |
| 391 | /* Check for fragment size change */ |
| 392 | if (blkp->bi_lbn >= 0 && blkp->bi_lbn < ULFS_NDADDR) { |
| 393 | obsize = ip->i_lfs_fragsize[blkp->bi_lbn]; |
| 394 | } |
| 395 | if (obsize != blkp->bi_size) { |
| 396 | DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %jd wrong" |
| 397 | " size (%ld != %d), try again\n" , |
| 398 | blkp->bi_inode, (intmax_t)blkp->bi_lbn, |
| 399 | (long) obsize, blkp->bi_size)); |
| 400 | do_again++; |
| 401 | continue; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * If we get to here, then we are keeping the block. If |
| 406 | * it is an indirect block, we want to actually put it |
| 407 | * in the buffer cache so that it can be updated in the |
| 408 | * finish_meta section. If it's not, we need to |
| 409 | * allocate a fake buffer so that writeseg can perform |
| 410 | * the copyin and write the buffer. |
| 411 | */ |
| 412 | if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) { |
| 413 | /* Data Block */ |
| 414 | bp = lfs_fakebuf(fs, vp, blkp->bi_lbn, |
| 415 | blkp->bi_size, blkp->bi_bp); |
| 416 | /* Pretend we used bread() to get it */ |
| 417 | bp->b_blkno = LFS_FSBTODB(fs, blkp->bi_daddr); |
| 418 | } else { |
| 419 | /* Indirect block or ifile */ |
| 420 | if (blkp->bi_size != lfs_sb_getbsize(fs) && |
| 421 | ip->i_number != LFS_IFILE_INUM) |
| 422 | panic("lfs_markv: partial indirect block?" |
| 423 | " size=%d\n" , blkp->bi_size); |
| 424 | bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0); |
| 425 | if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) { |
| 426 | /* |
| 427 | * The block in question was not found |
| 428 | * in the cache; i.e., the block that |
| 429 | * getblk() returned is empty. So, we |
| 430 | * can (and should) copy in the |
| 431 | * contents, because we've already |
| 432 | * determined that this was the right |
| 433 | * version of this block on disk. |
| 434 | * |
| 435 | * And, it can't have changed underneath |
| 436 | * us, because we have the segment lock. |
| 437 | */ |
| 438 | error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size); |
| 439 | if (error) |
| 440 | goto err2; |
| 441 | } |
| 442 | } |
| 443 | if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0) |
| 444 | goto err2; |
| 445 | |
| 446 | nblkwritten++; |
| 447 | /* |
| 448 | * XXX should account indirect blocks and ifile pages as well |
| 449 | */ |
| 450 | if (nblkwritten + lfs_lblkno(fs, ninowritten * DINOSIZE(fs)) |
| 451 | > LFS_MARKV_MAX_BLOCKS) { |
| 452 | DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n" , |
| 453 | nblkwritten, ninowritten)); |
| 454 | lfs_segwrite(mntp, SEGM_CLEAN); |
| 455 | nblkwritten = ninowritten = 0; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * Finish the old file, if there was one |
| 461 | */ |
| 462 | if (vp != NULL) { |
| 463 | vput(vp); |
| 464 | vp = NULL; |
| 465 | numrefed--; |
| 466 | } |
| 467 | |
| 468 | #ifdef DIAGNOSTIC |
| 469 | if (numrefed != 0) |
| 470 | panic("lfs_markv: numrefed=%d" , numrefed); |
| 471 | #endif |
| 472 | DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n" , |
| 473 | nblkwritten, ninowritten)); |
| 474 | |
| 475 | /* |
| 476 | * The last write has to be SEGM_SYNC, because of calling semantics. |
| 477 | * It also has to be SEGM_CKP, because otherwise we could write |
| 478 | * over the newly cleaned data contained in a checkpoint, and then |
| 479 | * we'd be unhappy at recovery time. |
| 480 | */ |
| 481 | lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC); |
| 482 | |
| 483 | lfs_segunlock(fs); |
| 484 | |
| 485 | vfs_unbusy(mntp, false, NULL); |
| 486 | if (error) |
| 487 | return (error); |
| 488 | else if (do_again) |
| 489 | return EAGAIN; |
| 490 | |
| 491 | return 0; |
| 492 | |
| 493 | err2: |
| 494 | DLOG((DLOG_CLEAN, "lfs_markv err2\n" )); |
| 495 | |
| 496 | /* |
| 497 | * XXX we're here because copyin() failed. |
| 498 | * XXX it means that we can't trust the cleanerd. too bad. |
| 499 | * XXX how can we recover from this? |
| 500 | */ |
| 501 | |
| 502 | err3: |
| 503 | /* |
| 504 | * XXX should do segwrite here anyway? |
| 505 | */ |
| 506 | |
| 507 | if (vp != NULL) { |
| 508 | vput(vp); |
| 509 | vp = NULL; |
| 510 | --numrefed; |
| 511 | } |
| 512 | |
| 513 | lfs_segunlock(fs); |
| 514 | vfs_unbusy(mntp, false, NULL); |
| 515 | #ifdef DIAGNOSTIC |
| 516 | if (numrefed != 0) |
| 517 | panic("lfs_markv: numrefed=%d" , numrefed); |
| 518 | #endif |
| 519 | |
| 520 | return (error); |
| 521 | } |
| 522 | |
| 523 | /* |
| 524 | * sys_lfs_bmapv: |
| 525 | * |
| 526 | * This will fill in the current disk address for arrays of blocks. |
| 527 | * |
| 528 | * 0 on success |
| 529 | * -1/errno is return on error. |
| 530 | */ |
| 531 | #ifdef USE_64BIT_SYSCALLS |
| 532 | int |
| 533 | sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval) |
| 534 | { |
| 535 | /* { |
| 536 | syscallarg(fsid_t *) fsidp; |
| 537 | syscallarg(struct block_info *) blkiov; |
| 538 | syscallarg(int) blkcnt; |
| 539 | } */ |
| 540 | BLOCK_INFO *blkiov; |
| 541 | int blkcnt, error; |
| 542 | fsid_t fsid; |
| 543 | struct lfs *fs; |
| 544 | struct mount *mntp; |
| 545 | |
| 546 | if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) |
| 547 | return (error); |
| 548 | |
| 549 | if ((mntp = vfs_getvfs(&fsid)) == NULL) |
| 550 | return (ENOENT); |
| 551 | fs = VFSTOULFS(mntp)->um_lfs; |
| 552 | |
| 553 | blkcnt = SCARG(uap, blkcnt); |
| 554 | #if SIZE_T_MAX <= UINT_MAX |
| 555 | if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO)) |
| 556 | return (EINVAL); |
| 557 | #endif |
| 558 | KERNEL_LOCK(1, NULL); |
| 559 | blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); |
| 560 | if ((error = copyin(SCARG(uap, blkiov), blkiov, |
| 561 | blkcnt * sizeof(BLOCK_INFO))) != 0) |
| 562 | goto out; |
| 563 | |
| 564 | if ((error = lfs_bmapv(l, &fsid, blkiov, blkcnt)) == 0) |
| 565 | copyout(blkiov, SCARG(uap, blkiov), |
| 566 | blkcnt * sizeof(BLOCK_INFO)); |
| 567 | out: |
| 568 | lfs_free(fs, blkiov, LFS_NB_BLKIOV); |
| 569 | KERNEL_UNLOCK_ONE(NULL); |
| 570 | return error; |
| 571 | } |
| 572 | #else |
| 573 | int |
| 574 | sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval) |
| 575 | { |
| 576 | /* { |
| 577 | syscallarg(fsid_t *) fsidp; |
| 578 | syscallarg(struct block_info *) blkiov; |
| 579 | syscallarg(int) blkcnt; |
| 580 | } */ |
| 581 | BLOCK_INFO *blkiov; |
| 582 | BLOCK_INFO_15 *blkiov15; |
| 583 | int i, blkcnt, error; |
| 584 | fsid_t fsid; |
| 585 | struct lfs *fs; |
| 586 | struct mount *mntp; |
| 587 | |
| 588 | if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) |
| 589 | return (error); |
| 590 | |
| 591 | if ((mntp = vfs_getvfs(&fsid)) == NULL) |
| 592 | return (ENOENT); |
| 593 | fs = VFSTOULFS(mntp)->um_lfs; |
| 594 | |
| 595 | blkcnt = SCARG(uap, blkcnt); |
| 596 | if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO)) |
| 597 | return (EINVAL); |
| 598 | KERNEL_LOCK(1, NULL); |
| 599 | blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); |
| 600 | blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV); |
| 601 | if ((error = copyin(SCARG(uap, blkiov), blkiov15, |
| 602 | blkcnt * sizeof(BLOCK_INFO_15))) != 0) |
| 603 | goto out; |
| 604 | |
| 605 | for (i = 0; i < blkcnt; i++) { |
| 606 | blkiov[i].bi_inode = blkiov15[i].bi_inode; |
| 607 | blkiov[i].bi_lbn = blkiov15[i].bi_lbn; |
| 608 | blkiov[i].bi_daddr = blkiov15[i].bi_daddr; |
| 609 | blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate; |
| 610 | blkiov[i].bi_version = blkiov15[i].bi_version; |
| 611 | blkiov[i].bi_bp = blkiov15[i].bi_bp; |
| 612 | blkiov[i].bi_size = blkiov15[i].bi_size; |
| 613 | } |
| 614 | |
| 615 | if ((error = lfs_bmapv(l, &fsid, blkiov, blkcnt)) == 0) { |
| 616 | for (i = 0; i < blkcnt; i++) { |
| 617 | blkiov15[i].bi_inode = blkiov[i].bi_inode; |
| 618 | blkiov15[i].bi_lbn = blkiov[i].bi_lbn; |
| 619 | blkiov15[i].bi_daddr = blkiov[i].bi_daddr; |
| 620 | blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate; |
| 621 | blkiov15[i].bi_version = blkiov[i].bi_version; |
| 622 | blkiov15[i].bi_bp = blkiov[i].bi_bp; |
| 623 | blkiov15[i].bi_size = blkiov[i].bi_size; |
| 624 | } |
| 625 | copyout(blkiov15, SCARG(uap, blkiov), |
| 626 | blkcnt * sizeof(BLOCK_INFO_15)); |
| 627 | } |
| 628 | out: |
| 629 | lfs_free(fs, blkiov, LFS_NB_BLKIOV); |
| 630 | lfs_free(fs, blkiov15, LFS_NB_BLKIOV); |
| 631 | KERNEL_UNLOCK_ONE(NULL); |
| 632 | return error; |
| 633 | } |
| 634 | #endif |
| 635 | |
| 636 | int |
| 637 | lfs_bmapv(struct lwp *l, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt) |
| 638 | { |
| 639 | BLOCK_INFO *blkp; |
| 640 | IFILE *ifp; |
| 641 | struct buf *bp; |
| 642 | struct inode *ip = NULL; |
| 643 | struct lfs *fs; |
| 644 | struct mount *mntp; |
| 645 | struct ulfsmount *ump; |
| 646 | struct vnode *vp; |
| 647 | ino_t lastino; |
| 648 | daddr_t v_daddr; |
| 649 | int cnt, error; |
| 650 | int numrefed = 0; |
| 651 | |
| 652 | error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, |
| 653 | KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL); |
| 654 | if (error) |
| 655 | return (error); |
| 656 | |
| 657 | if ((mntp = vfs_getvfs(fsidp)) == NULL) |
| 658 | return (ENOENT); |
| 659 | |
| 660 | if ((error = vfs_busy(mntp, NULL)) != 0) |
| 661 | return (error); |
| 662 | |
| 663 | ump = VFSTOULFS(mntp); |
| 664 | fs = ump->um_lfs; |
| 665 | |
| 666 | if (fs->lfs_cleaner_thread == NULL) |
| 667 | fs->lfs_cleaner_thread = curlwp; |
| 668 | KASSERT(fs->lfs_cleaner_thread == curlwp); |
| 669 | |
| 670 | cnt = blkcnt; |
| 671 | |
| 672 | error = 0; |
| 673 | |
| 674 | /* these were inside the initialization for the for loop */ |
| 675 | vp = NULL; |
| 676 | v_daddr = LFS_UNUSED_DADDR; |
| 677 | lastino = LFS_UNUSED_INUM; |
| 678 | for (blkp = blkiov; cnt--; ++blkp) |
| 679 | { |
| 680 | /* |
| 681 | * Get the IFILE entry (only once) and see if the file still |
| 682 | * exists. |
| 683 | */ |
| 684 | if (lastino != blkp->bi_inode) { |
| 685 | /* |
| 686 | * Finish the old file, if there was one. |
| 687 | */ |
| 688 | if (vp != NULL) { |
| 689 | vput(vp); |
| 690 | vp = NULL; |
| 691 | numrefed--; |
| 692 | } |
| 693 | |
| 694 | /* |
| 695 | * Start a new file |
| 696 | */ |
| 697 | lastino = blkp->bi_inode; |
| 698 | if (blkp->bi_inode == LFS_IFILE_INUM) |
| 699 | v_daddr = lfs_sb_getidaddr(fs); |
| 700 | else { |
| 701 | LFS_IENTRY(ifp, fs, blkp->bi_inode, bp); |
| 702 | v_daddr = lfs_if_getdaddr(fs, ifp); |
| 703 | brelse(bp, 0); |
| 704 | } |
| 705 | if (v_daddr == LFS_UNUSED_DADDR) { |
| 706 | blkp->bi_daddr = LFS_UNUSED_DADDR; |
| 707 | continue; |
| 708 | } |
| 709 | error = lfs_fastvget(mntp, blkp->bi_inode, NULL, |
| 710 | LK_SHARED, &vp); |
| 711 | if (error) { |
| 712 | DLOG((DLOG_CLEAN, "lfs_bmapv: lfs_fastvget ino" |
| 713 | "%d failed with %d" , |
| 714 | blkp->bi_inode,error)); |
| 715 | KASSERT(vp == NULL); |
| 716 | continue; |
| 717 | } else { |
| 718 | KASSERT(VOP_ISLOCKED(vp)); |
| 719 | numrefed++; |
| 720 | } |
| 721 | ip = VTOI(vp); |
| 722 | } else if (vp == NULL) { |
| 723 | /* |
| 724 | * This can only happen if the vnode is dead. |
| 725 | * Keep going. Note that we DO NOT set the |
| 726 | * bi_addr to anything -- if we failed to get |
| 727 | * the vnode, for example, we want to assume |
| 728 | * conservatively that all of its blocks *are* |
| 729 | * located in the segment in question. |
| 730 | * lfs_markv will throw them out if we are |
| 731 | * wrong. |
| 732 | */ |
| 733 | continue; |
| 734 | } |
| 735 | |
| 736 | /* Past this point we are guaranteed that vp, ip are valid. */ |
| 737 | |
| 738 | if (blkp->bi_lbn == LFS_UNUSED_LBN) { |
| 739 | /* |
| 740 | * We just want the inode address, which is |
| 741 | * conveniently in v_daddr. |
| 742 | */ |
| 743 | blkp->bi_daddr = v_daddr; |
| 744 | } else { |
| 745 | daddr_t bi_daddr; |
| 746 | |
| 747 | error = VOP_BMAP(vp, blkp->bi_lbn, NULL, |
| 748 | &bi_daddr, NULL); |
| 749 | if (error) |
| 750 | { |
| 751 | blkp->bi_daddr = LFS_UNUSED_DADDR; |
| 752 | continue; |
| 753 | } |
| 754 | blkp->bi_daddr = LFS_DBTOFSB(fs, bi_daddr); |
| 755 | /* Fill in the block size, too */ |
| 756 | if (blkp->bi_lbn >= 0) |
| 757 | blkp->bi_size = lfs_blksize(fs, ip, blkp->bi_lbn); |
| 758 | else |
| 759 | blkp->bi_size = lfs_sb_getbsize(fs); |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * Finish the old file, if there was one. |
| 765 | */ |
| 766 | if (vp != NULL) { |
| 767 | vput(vp); |
| 768 | vp = NULL; |
| 769 | numrefed--; |
| 770 | } |
| 771 | |
| 772 | #ifdef DIAGNOSTIC |
| 773 | if (numrefed != 0) |
| 774 | panic("lfs_bmapv: numrefed=%d" , numrefed); |
| 775 | #endif |
| 776 | |
| 777 | vfs_unbusy(mntp, false, NULL); |
| 778 | |
| 779 | return 0; |
| 780 | } |
| 781 | |
| 782 | /* |
| 783 | * sys_lfs_segclean: |
| 784 | * |
| 785 | * Mark the segment clean. |
| 786 | * |
| 787 | * 0 on success |
| 788 | * -1/errno is return on error. |
| 789 | */ |
| 790 | int |
| 791 | sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval) |
| 792 | { |
| 793 | /* { |
| 794 | syscallarg(fsid_t *) fsidp; |
| 795 | syscallarg(u_long) segment; |
| 796 | } */ |
| 797 | struct lfs *fs; |
| 798 | struct mount *mntp; |
| 799 | fsid_t fsid; |
| 800 | int error; |
| 801 | unsigned long segnum; |
| 802 | |
| 803 | error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, |
| 804 | KAUTH_REQ_SYSTEM_LFS_SEGCLEAN, NULL, NULL, NULL); |
| 805 | if (error) |
| 806 | return (error); |
| 807 | |
| 808 | if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) |
| 809 | return (error); |
| 810 | if ((mntp = vfs_getvfs(&fsid)) == NULL) |
| 811 | return (ENOENT); |
| 812 | |
| 813 | fs = VFSTOULFS(mntp)->um_lfs; |
| 814 | segnum = SCARG(uap, segment); |
| 815 | |
| 816 | if ((error = vfs_busy(mntp, NULL)) != 0) |
| 817 | return (error); |
| 818 | |
| 819 | KERNEL_LOCK(1, NULL); |
| 820 | lfs_seglock(fs, SEGM_PROT); |
| 821 | error = lfs_do_segclean(fs, segnum); |
| 822 | lfs_segunlock(fs); |
| 823 | KERNEL_UNLOCK_ONE(NULL); |
| 824 | vfs_unbusy(mntp, false, NULL); |
| 825 | return error; |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * Actually mark the segment clean. |
| 830 | * Must be called with the segment lock held. |
| 831 | */ |
| 832 | int |
| 833 | lfs_do_segclean(struct lfs *fs, unsigned long segnum) |
| 834 | { |
| 835 | extern int lfs_dostats; |
| 836 | struct buf *bp; |
| 837 | CLEANERINFO *cip; |
| 838 | SEGUSE *sup; |
| 839 | |
| 840 | if (lfs_dtosn(fs, lfs_sb_getcurseg(fs)) == segnum) { |
| 841 | return (EBUSY); |
| 842 | } |
| 843 | |
| 844 | LFS_SEGENTRY(sup, fs, segnum, bp); |
| 845 | if (sup->su_nbytes) { |
| 846 | DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:" |
| 847 | " %d live bytes\n" , segnum, sup->su_nbytes)); |
| 848 | brelse(bp, 0); |
| 849 | return (EBUSY); |
| 850 | } |
| 851 | if (sup->su_flags & SEGUSE_ACTIVE) { |
| 852 | DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:" |
| 853 | " segment is active\n" , segnum)); |
| 854 | brelse(bp, 0); |
| 855 | return (EBUSY); |
| 856 | } |
| 857 | if (!(sup->su_flags & SEGUSE_DIRTY)) { |
| 858 | DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:" |
| 859 | " segment is already clean\n" , segnum)); |
| 860 | brelse(bp, 0); |
| 861 | return (EALREADY); |
| 862 | } |
| 863 | |
| 864 | lfs_sb_addavail(fs, lfs_segtod(fs, 1)); |
| 865 | if (sup->su_flags & SEGUSE_SUPERBLOCK) |
| 866 | lfs_sb_subavail(fs, lfs_btofsb(fs, LFS_SBPAD)); |
| 867 | if (lfs_sb_getversion(fs) > 1 && segnum == 0 && |
| 868 | lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) |
| 869 | lfs_sb_subavail(fs, lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs)); |
| 870 | mutex_enter(&lfs_lock); |
| 871 | lfs_sb_addbfree(fs, sup->su_nsums * lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + |
| 872 | lfs_btofsb(fs, sup->su_ninos * lfs_sb_getibsize(fs))); |
| 873 | lfs_sb_subdmeta(fs, sup->su_nsums * lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + |
| 874 | lfs_btofsb(fs, sup->su_ninos * lfs_sb_getibsize(fs))); |
| 875 | if (lfs_sb_getdmeta(fs) < 0) |
| 876 | lfs_sb_setdmeta(fs, 0); |
| 877 | mutex_exit(&lfs_lock); |
| 878 | sup->su_flags &= ~SEGUSE_DIRTY; |
| 879 | LFS_WRITESEGENTRY(sup, fs, segnum, bp); |
| 880 | |
| 881 | LFS_CLEANERINFO(cip, fs, bp); |
| 882 | lfs_ci_shiftdirtytoclean(fs, cip, 1); |
| 883 | lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip)); |
| 884 | mutex_enter(&lfs_lock); |
| 885 | lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); |
| 886 | lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) |
| 887 | - fs->lfs_ravail - fs->lfs_favail); |
| 888 | wakeup(&fs->lfs_availsleep); |
| 889 | mutex_exit(&lfs_lock); |
| 890 | (void) LFS_BWRITE_LOG(bp); |
| 891 | |
| 892 | if (lfs_dostats) |
| 893 | ++lfs_stats.segs_reclaimed; |
| 894 | |
| 895 | return (0); |
| 896 | } |
| 897 | |
| 898 | /* |
| 899 | * This will block until a segment in file system fsid is written. A timeout |
| 900 | * in milliseconds may be specified which will awake the cleaner automatically. |
| 901 | * An fsid of -1 means any file system, and a timeout of 0 means forever. |
| 902 | */ |
| 903 | int |
| 904 | lfs_segwait(fsid_t *fsidp, struct timeval *tv) |
| 905 | { |
| 906 | struct mount *mntp; |
| 907 | void *addr; |
| 908 | u_long timeout; |
| 909 | int error; |
| 910 | |
| 911 | KERNEL_LOCK(1, NULL); |
| 912 | if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL) |
| 913 | addr = &lfs_allclean_wakeup; |
| 914 | else |
| 915 | addr = &VFSTOULFS(mntp)->um_lfs->lfs_nextsegsleep; |
| 916 | /* |
| 917 | * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}! |
| 918 | * XXX IS THAT WHAT IS INTENDED? |
| 919 | */ |
| 920 | timeout = tvtohz(tv); |
| 921 | error = tsleep(addr, PCATCH | PVFS, "segment" , timeout); |
| 922 | KERNEL_UNLOCK_ONE(NULL); |
| 923 | return (error == ERESTART ? EINTR : 0); |
| 924 | } |
| 925 | |
| 926 | /* |
| 927 | * sys_lfs_segwait: |
| 928 | * |
| 929 | * System call wrapper around lfs_segwait(). |
| 930 | * |
| 931 | * 0 on success |
| 932 | * 1 on timeout |
| 933 | * -1/errno is return on error. |
| 934 | */ |
| 935 | int |
| 936 | sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap, |
| 937 | register_t *retval) |
| 938 | { |
| 939 | /* { |
| 940 | syscallarg(fsid_t *) fsidp; |
| 941 | syscallarg(struct timeval *) tv; |
| 942 | } */ |
| 943 | struct timeval atv; |
| 944 | fsid_t fsid; |
| 945 | int error; |
| 946 | |
| 947 | /* XXX need we be su to segwait? */ |
| 948 | error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, |
| 949 | KAUTH_REQ_SYSTEM_LFS_SEGWAIT, NULL, NULL, NULL); |
| 950 | if (error) |
| 951 | return (error); |
| 952 | if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) |
| 953 | return (error); |
| 954 | |
| 955 | if (SCARG(uap, tv)) { |
| 956 | error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval)); |
| 957 | if (error) |
| 958 | return (error); |
| 959 | if (itimerfix(&atv)) |
| 960 | return (EINVAL); |
| 961 | } else /* NULL or invalid */ |
| 962 | atv.tv_sec = atv.tv_usec = 0; |
| 963 | return lfs_segwait(&fsid, &atv); |
| 964 | } |
| 965 | |
| 966 | /* |
| 967 | * VFS_VGET call specialized for the cleaner. If the cleaner is |
| 968 | * processing IINFO structures, it may have the ondisk inode already, so |
| 969 | * don't go retrieving it again. |
| 970 | * |
| 971 | * Return the vnode referenced and locked. |
| 972 | */ |
| 973 | |
| 974 | static int |
| 975 | lfs_fastvget(struct mount *mp, ino_t ino, BLOCK_INFO *blkp, int lk_flags, |
| 976 | struct vnode **vpp) |
| 977 | { |
| 978 | struct ulfsmount *ump; |
| 979 | struct lfs *fs; |
| 980 | int error; |
| 981 | |
| 982 | ump = VFSTOULFS(mp); |
| 983 | fs = ump->um_lfs; |
| 984 | fs->lfs_cleaner_hint = blkp; |
| 985 | error = vcache_get(mp, &ino, sizeof(ino), vpp); |
| 986 | fs->lfs_cleaner_hint = NULL; |
| 987 | if (error) |
| 988 | return error; |
| 989 | error = vn_lock(*vpp, lk_flags); |
| 990 | if (error) { |
| 991 | if (error == EBUSY) |
| 992 | error = EAGAIN; |
| 993 | vrele(*vpp); |
| 994 | *vpp = NULL; |
| 995 | return error; |
| 996 | } |
| 997 | |
| 998 | return 0; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Make up a "fake" cleaner buffer, copy the data from userland into it. |
| 1003 | */ |
| 1004 | static struct buf * |
| 1005 | lfs_fakebuf(struct lfs *fs, struct vnode *vp, daddr_t lbn, size_t size, void *uaddr) |
| 1006 | { |
| 1007 | struct buf *bp; |
| 1008 | int error; |
| 1009 | |
| 1010 | KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM); |
| 1011 | |
| 1012 | bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN); |
| 1013 | error = copyin(uaddr, bp->b_data, size); |
| 1014 | if (error) { |
| 1015 | lfs_freebuf(fs, bp); |
| 1016 | return NULL; |
| 1017 | } |
| 1018 | KDASSERT(bp->b_iodone == lfs_callback); |
| 1019 | |
| 1020 | #if 0 |
| 1021 | mutex_enter(&lfs_lock); |
| 1022 | ++fs->lfs_iocount; |
| 1023 | mutex_exit(&lfs_lock); |
| 1024 | #endif |
| 1025 | bp->b_bufsize = size; |
| 1026 | bp->b_bcount = size; |
| 1027 | return (bp); |
| 1028 | } |
| 1029 | |