| 1 | /* $NetBSD: kern_resource.c,v 1.175 2016/07/13 09:52:00 njoly Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 1982, 1986, 1991, 1993 |
| 5 | * The Regents of the University of California. All rights reserved. |
| 6 | * (c) UNIX System Laboratories, Inc. |
| 7 | * All or some portions of this file are derived from material licensed |
| 8 | * to the University of California by American Telephone and Telegraph |
| 9 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with |
| 10 | * the permission of UNIX System Laboratories, Inc. |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms, with or without |
| 13 | * modification, are permitted provided that the following conditions |
| 14 | * are met: |
| 15 | * 1. Redistributions of source code must retain the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer. |
| 17 | * 2. Redistributions in binary form must reproduce the above copyright |
| 18 | * notice, this list of conditions and the following disclaimer in the |
| 19 | * documentation and/or other materials provided with the distribution. |
| 20 | * 3. Neither the name of the University nor the names of its contributors |
| 21 | * may be used to endorse or promote products derived from this software |
| 22 | * without specific prior written permission. |
| 23 | * |
| 24 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 25 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 28 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 29 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 30 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 31 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 32 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 33 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 34 | * SUCH DAMAGE. |
| 35 | * |
| 36 | * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 |
| 37 | */ |
| 38 | |
| 39 | #include <sys/cdefs.h> |
| 40 | __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.175 2016/07/13 09:52:00 njoly Exp $" ); |
| 41 | |
| 42 | #include <sys/param.h> |
| 43 | #include <sys/systm.h> |
| 44 | #include <sys/kernel.h> |
| 45 | #include <sys/file.h> |
| 46 | #include <sys/resourcevar.h> |
| 47 | #include <sys/kmem.h> |
| 48 | #include <sys/namei.h> |
| 49 | #include <sys/pool.h> |
| 50 | #include <sys/proc.h> |
| 51 | #include <sys/sysctl.h> |
| 52 | #include <sys/timevar.h> |
| 53 | #include <sys/kauth.h> |
| 54 | #include <sys/atomic.h> |
| 55 | #include <sys/mount.h> |
| 56 | #include <sys/syscallargs.h> |
| 57 | #include <sys/atomic.h> |
| 58 | |
| 59 | #include <uvm/uvm_extern.h> |
| 60 | |
| 61 | /* |
| 62 | * Maximum process data and stack limits. |
| 63 | * They are variables so they are patchable. |
| 64 | */ |
| 65 | rlim_t maxdmap = MAXDSIZ; |
| 66 | rlim_t maxsmap = MAXSSIZ; |
| 67 | |
| 68 | static pool_cache_t plimit_cache __read_mostly; |
| 69 | static pool_cache_t pstats_cache __read_mostly; |
| 70 | |
| 71 | static kauth_listener_t resource_listener; |
| 72 | static struct sysctllog *proc_sysctllog; |
| 73 | |
| 74 | static int donice(struct lwp *, struct proc *, int); |
| 75 | static void sysctl_proc_setup(void); |
| 76 | |
| 77 | static int |
| 78 | resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, |
| 79 | void *arg0, void *arg1, void *arg2, void *arg3) |
| 80 | { |
| 81 | struct proc *p; |
| 82 | int result; |
| 83 | |
| 84 | result = KAUTH_RESULT_DEFER; |
| 85 | p = arg0; |
| 86 | |
| 87 | switch (action) { |
| 88 | case KAUTH_PROCESS_NICE: |
| 89 | if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) && |
| 90 | kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) { |
| 91 | break; |
| 92 | } |
| 93 | |
| 94 | if ((u_long)arg1 >= p->p_nice) |
| 95 | result = KAUTH_RESULT_ALLOW; |
| 96 | |
| 97 | break; |
| 98 | |
| 99 | case KAUTH_PROCESS_RLIMIT: { |
| 100 | enum kauth_process_req req; |
| 101 | |
| 102 | req = (enum kauth_process_req)(unsigned long)arg1; |
| 103 | |
| 104 | switch (req) { |
| 105 | case KAUTH_REQ_PROCESS_RLIMIT_GET: |
| 106 | result = KAUTH_RESULT_ALLOW; |
| 107 | break; |
| 108 | |
| 109 | case KAUTH_REQ_PROCESS_RLIMIT_SET: { |
| 110 | struct rlimit *new_rlimit; |
| 111 | u_long which; |
| 112 | |
| 113 | if ((p != curlwp->l_proc) && |
| 114 | (proc_uidmatch(cred, p->p_cred) != 0)) |
| 115 | break; |
| 116 | |
| 117 | new_rlimit = arg2; |
| 118 | which = (u_long)arg3; |
| 119 | |
| 120 | if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max) |
| 121 | result = KAUTH_RESULT_ALLOW; |
| 122 | |
| 123 | break; |
| 124 | } |
| 125 | |
| 126 | default: |
| 127 | break; |
| 128 | } |
| 129 | |
| 130 | break; |
| 131 | } |
| 132 | |
| 133 | default: |
| 134 | break; |
| 135 | } |
| 136 | |
| 137 | return result; |
| 138 | } |
| 139 | |
| 140 | void |
| 141 | resource_init(void) |
| 142 | { |
| 143 | |
| 144 | plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0, |
| 145 | "plimitpl" , NULL, IPL_NONE, NULL, NULL, NULL); |
| 146 | pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0, |
| 147 | "pstatspl" , NULL, IPL_NONE, NULL, NULL, NULL); |
| 148 | |
| 149 | resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, |
| 150 | resource_listener_cb, NULL); |
| 151 | |
| 152 | sysctl_proc_setup(); |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * Resource controls and accounting. |
| 157 | */ |
| 158 | |
| 159 | int |
| 160 | sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, |
| 161 | register_t *retval) |
| 162 | { |
| 163 | /* { |
| 164 | syscallarg(int) which; |
| 165 | syscallarg(id_t) who; |
| 166 | } */ |
| 167 | struct proc *curp = l->l_proc, *p; |
| 168 | id_t who = SCARG(uap, who); |
| 169 | int low = NZERO + PRIO_MAX + 1; |
| 170 | |
| 171 | mutex_enter(proc_lock); |
| 172 | switch (SCARG(uap, which)) { |
| 173 | case PRIO_PROCESS: |
| 174 | p = who ? proc_find(who) : curp; |
| 175 | if (p != NULL) |
| 176 | low = p->p_nice; |
| 177 | break; |
| 178 | |
| 179 | case PRIO_PGRP: { |
| 180 | struct pgrp *pg; |
| 181 | |
| 182 | if (who == 0) |
| 183 | pg = curp->p_pgrp; |
| 184 | else if ((pg = pgrp_find(who)) == NULL) |
| 185 | break; |
| 186 | LIST_FOREACH(p, &pg->pg_members, p_pglist) { |
| 187 | if (p->p_nice < low) |
| 188 | low = p->p_nice; |
| 189 | } |
| 190 | break; |
| 191 | } |
| 192 | |
| 193 | case PRIO_USER: |
| 194 | if (who == 0) |
| 195 | who = (int)kauth_cred_geteuid(l->l_cred); |
| 196 | PROCLIST_FOREACH(p, &allproc) { |
| 197 | mutex_enter(p->p_lock); |
| 198 | if (kauth_cred_geteuid(p->p_cred) == |
| 199 | (uid_t)who && p->p_nice < low) |
| 200 | low = p->p_nice; |
| 201 | mutex_exit(p->p_lock); |
| 202 | } |
| 203 | break; |
| 204 | |
| 205 | default: |
| 206 | mutex_exit(proc_lock); |
| 207 | return EINVAL; |
| 208 | } |
| 209 | mutex_exit(proc_lock); |
| 210 | |
| 211 | if (low == NZERO + PRIO_MAX + 1) { |
| 212 | return ESRCH; |
| 213 | } |
| 214 | *retval = low - NZERO; |
| 215 | return 0; |
| 216 | } |
| 217 | |
| 218 | int |
| 219 | sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, |
| 220 | register_t *retval) |
| 221 | { |
| 222 | /* { |
| 223 | syscallarg(int) which; |
| 224 | syscallarg(id_t) who; |
| 225 | syscallarg(int) prio; |
| 226 | } */ |
| 227 | struct proc *curp = l->l_proc, *p; |
| 228 | id_t who = SCARG(uap, who); |
| 229 | int found = 0, error = 0; |
| 230 | |
| 231 | mutex_enter(proc_lock); |
| 232 | switch (SCARG(uap, which)) { |
| 233 | case PRIO_PROCESS: |
| 234 | p = who ? proc_find(who) : curp; |
| 235 | if (p != NULL) { |
| 236 | mutex_enter(p->p_lock); |
| 237 | found++; |
| 238 | error = donice(l, p, SCARG(uap, prio)); |
| 239 | mutex_exit(p->p_lock); |
| 240 | } |
| 241 | break; |
| 242 | |
| 243 | case PRIO_PGRP: { |
| 244 | struct pgrp *pg; |
| 245 | |
| 246 | if (who == 0) |
| 247 | pg = curp->p_pgrp; |
| 248 | else if ((pg = pgrp_find(who)) == NULL) |
| 249 | break; |
| 250 | LIST_FOREACH(p, &pg->pg_members, p_pglist) { |
| 251 | mutex_enter(p->p_lock); |
| 252 | found++; |
| 253 | error = donice(l, p, SCARG(uap, prio)); |
| 254 | mutex_exit(p->p_lock); |
| 255 | if (error) |
| 256 | break; |
| 257 | } |
| 258 | break; |
| 259 | } |
| 260 | |
| 261 | case PRIO_USER: |
| 262 | if (who == 0) |
| 263 | who = (int)kauth_cred_geteuid(l->l_cred); |
| 264 | PROCLIST_FOREACH(p, &allproc) { |
| 265 | mutex_enter(p->p_lock); |
| 266 | if (kauth_cred_geteuid(p->p_cred) == |
| 267 | (uid_t)SCARG(uap, who)) { |
| 268 | found++; |
| 269 | error = donice(l, p, SCARG(uap, prio)); |
| 270 | } |
| 271 | mutex_exit(p->p_lock); |
| 272 | if (error) |
| 273 | break; |
| 274 | } |
| 275 | break; |
| 276 | |
| 277 | default: |
| 278 | mutex_exit(proc_lock); |
| 279 | return EINVAL; |
| 280 | } |
| 281 | mutex_exit(proc_lock); |
| 282 | |
| 283 | return (found == 0) ? ESRCH : error; |
| 284 | } |
| 285 | |
| 286 | /* |
| 287 | * Renice a process. |
| 288 | * |
| 289 | * Call with the target process' credentials locked. |
| 290 | */ |
| 291 | static int |
| 292 | donice(struct lwp *l, struct proc *chgp, int n) |
| 293 | { |
| 294 | kauth_cred_t cred = l->l_cred; |
| 295 | |
| 296 | KASSERT(mutex_owned(chgp->p_lock)); |
| 297 | |
| 298 | if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) && |
| 299 | kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) && |
| 300 | kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred)) |
| 301 | return EPERM; |
| 302 | |
| 303 | if (n > PRIO_MAX) { |
| 304 | n = PRIO_MAX; |
| 305 | } |
| 306 | if (n < PRIO_MIN) { |
| 307 | n = PRIO_MIN; |
| 308 | } |
| 309 | n += NZERO; |
| 310 | |
| 311 | if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp, |
| 312 | KAUTH_ARG(n), NULL, NULL)) { |
| 313 | return EACCES; |
| 314 | } |
| 315 | |
| 316 | sched_nice(chgp, n); |
| 317 | return 0; |
| 318 | } |
| 319 | |
| 320 | int |
| 321 | sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, |
| 322 | register_t *retval) |
| 323 | { |
| 324 | /* { |
| 325 | syscallarg(int) which; |
| 326 | syscallarg(const struct rlimit *) rlp; |
| 327 | } */ |
| 328 | int error, which = SCARG(uap, which); |
| 329 | struct rlimit alim; |
| 330 | |
| 331 | error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); |
| 332 | if (error) { |
| 333 | return error; |
| 334 | } |
| 335 | return dosetrlimit(l, l->l_proc, which, &alim); |
| 336 | } |
| 337 | |
| 338 | int |
| 339 | dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp) |
| 340 | { |
| 341 | struct rlimit *alimp; |
| 342 | int error; |
| 343 | |
| 344 | if ((u_int)which >= RLIM_NLIMITS) |
| 345 | return EINVAL; |
| 346 | |
| 347 | if (limp->rlim_cur > limp->rlim_max) { |
| 348 | /* |
| 349 | * This is programming error. According to SUSv2, we should |
| 350 | * return error in this case. |
| 351 | */ |
| 352 | return EINVAL; |
| 353 | } |
| 354 | |
| 355 | alimp = &p->p_rlimit[which]; |
| 356 | /* if we don't change the value, no need to limcopy() */ |
| 357 | if (limp->rlim_cur == alimp->rlim_cur && |
| 358 | limp->rlim_max == alimp->rlim_max) |
| 359 | return 0; |
| 360 | |
| 361 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, |
| 362 | p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which)); |
| 363 | if (error) |
| 364 | return error; |
| 365 | |
| 366 | lim_privatise(p); |
| 367 | /* p->p_limit is now unchangeable */ |
| 368 | alimp = &p->p_rlimit[which]; |
| 369 | |
| 370 | switch (which) { |
| 371 | |
| 372 | case RLIMIT_DATA: |
| 373 | if (limp->rlim_cur > maxdmap) |
| 374 | limp->rlim_cur = maxdmap; |
| 375 | if (limp->rlim_max > maxdmap) |
| 376 | limp->rlim_max = maxdmap; |
| 377 | break; |
| 378 | |
| 379 | case RLIMIT_STACK: |
| 380 | if (limp->rlim_cur > maxsmap) |
| 381 | limp->rlim_cur = maxsmap; |
| 382 | if (limp->rlim_max > maxsmap) |
| 383 | limp->rlim_max = maxsmap; |
| 384 | |
| 385 | /* |
| 386 | * Return EINVAL if the new stack size limit is lower than |
| 387 | * current usage. Otherwise, the process would get SIGSEGV the |
| 388 | * moment it would try to access anything on its current stack. |
| 389 | * This conforms to SUSv2. |
| 390 | */ |
| 391 | if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE || |
| 392 | limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) { |
| 393 | return EINVAL; |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * Stack is allocated to the max at exec time with |
| 398 | * only "rlim_cur" bytes accessible (In other words, |
| 399 | * allocates stack dividing two contiguous regions at |
| 400 | * "rlim_cur" bytes boundary). |
| 401 | * |
| 402 | * Since allocation is done in terms of page, roundup |
| 403 | * "rlim_cur" (otherwise, contiguous regions |
| 404 | * overlap). If stack limit is going up make more |
| 405 | * accessible, if going down make inaccessible. |
| 406 | */ |
| 407 | limp->rlim_max = round_page(limp->rlim_max); |
| 408 | limp->rlim_cur = round_page(limp->rlim_cur); |
| 409 | if (limp->rlim_cur != alimp->rlim_cur) { |
| 410 | vaddr_t addr; |
| 411 | vsize_t size; |
| 412 | vm_prot_t prot; |
| 413 | char *base, *tmp; |
| 414 | |
| 415 | base = p->p_vmspace->vm_minsaddr; |
| 416 | if (limp->rlim_cur > alimp->rlim_cur) { |
| 417 | prot = VM_PROT_READ | VM_PROT_WRITE; |
| 418 | size = limp->rlim_cur - alimp->rlim_cur; |
| 419 | tmp = STACK_GROW(base, alimp->rlim_cur); |
| 420 | } else { |
| 421 | prot = VM_PROT_NONE; |
| 422 | size = alimp->rlim_cur - limp->rlim_cur; |
| 423 | tmp = STACK_GROW(base, limp->rlim_cur); |
| 424 | } |
| 425 | addr = (vaddr_t)STACK_ALLOC(tmp, size); |
| 426 | (void) uvm_map_protect(&p->p_vmspace->vm_map, |
| 427 | addr, addr + size, prot, false); |
| 428 | } |
| 429 | break; |
| 430 | |
| 431 | case RLIMIT_NOFILE: |
| 432 | if (limp->rlim_cur > maxfiles) |
| 433 | limp->rlim_cur = maxfiles; |
| 434 | if (limp->rlim_max > maxfiles) |
| 435 | limp->rlim_max = maxfiles; |
| 436 | break; |
| 437 | |
| 438 | case RLIMIT_NPROC: |
| 439 | if (limp->rlim_cur > maxproc) |
| 440 | limp->rlim_cur = maxproc; |
| 441 | if (limp->rlim_max > maxproc) |
| 442 | limp->rlim_max = maxproc; |
| 443 | break; |
| 444 | |
| 445 | case RLIMIT_NTHR: |
| 446 | if (limp->rlim_cur > maxlwp) |
| 447 | limp->rlim_cur = maxlwp; |
| 448 | if (limp->rlim_max > maxlwp) |
| 449 | limp->rlim_max = maxlwp; |
| 450 | break; |
| 451 | } |
| 452 | |
| 453 | mutex_enter(&p->p_limit->pl_lock); |
| 454 | *alimp = *limp; |
| 455 | mutex_exit(&p->p_limit->pl_lock); |
| 456 | return 0; |
| 457 | } |
| 458 | |
| 459 | int |
| 460 | sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, |
| 461 | register_t *retval) |
| 462 | { |
| 463 | /* { |
| 464 | syscallarg(int) which; |
| 465 | syscallarg(struct rlimit *) rlp; |
| 466 | } */ |
| 467 | struct proc *p = l->l_proc; |
| 468 | int which = SCARG(uap, which); |
| 469 | struct rlimit rl; |
| 470 | |
| 471 | if ((u_int)which >= RLIM_NLIMITS) |
| 472 | return EINVAL; |
| 473 | |
| 474 | mutex_enter(p->p_lock); |
| 475 | memcpy(&rl, &p->p_rlimit[which], sizeof(rl)); |
| 476 | mutex_exit(p->p_lock); |
| 477 | |
| 478 | return copyout(&rl, SCARG(uap, rlp), sizeof(rl)); |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | * Transform the running time and tick information in proc p into user, |
| 483 | * system, and interrupt time usage. |
| 484 | * |
| 485 | * Should be called with p->p_lock held unless called from exit1(). |
| 486 | */ |
| 487 | void |
| 488 | calcru(struct proc *p, struct timeval *up, struct timeval *sp, |
| 489 | struct timeval *ip, struct timeval *rp) |
| 490 | { |
| 491 | uint64_t u, st, ut, it, tot; |
| 492 | struct lwp *l; |
| 493 | struct bintime tm; |
| 494 | struct timeval tv; |
| 495 | |
| 496 | KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock)); |
| 497 | |
| 498 | mutex_spin_enter(&p->p_stmutex); |
| 499 | st = p->p_sticks; |
| 500 | ut = p->p_uticks; |
| 501 | it = p->p_iticks; |
| 502 | mutex_spin_exit(&p->p_stmutex); |
| 503 | |
| 504 | tm = p->p_rtime; |
| 505 | |
| 506 | LIST_FOREACH(l, &p->p_lwps, l_sibling) { |
| 507 | lwp_lock(l); |
| 508 | bintime_add(&tm, &l->l_rtime); |
| 509 | if ((l->l_pflag & LP_RUNNING) != 0) { |
| 510 | struct bintime diff; |
| 511 | /* |
| 512 | * Adjust for the current time slice. This is |
| 513 | * actually fairly important since the error |
| 514 | * here is on the order of a time quantum, |
| 515 | * which is much greater than the sampling |
| 516 | * error. |
| 517 | */ |
| 518 | binuptime(&diff); |
| 519 | bintime_sub(&diff, &l->l_stime); |
| 520 | bintime_add(&tm, &diff); |
| 521 | } |
| 522 | lwp_unlock(l); |
| 523 | } |
| 524 | |
| 525 | tot = st + ut + it; |
| 526 | bintime2timeval(&tm, &tv); |
| 527 | u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec; |
| 528 | |
| 529 | if (tot == 0) { |
| 530 | /* No ticks, so can't use to share time out, split 50-50 */ |
| 531 | st = ut = u / 2; |
| 532 | } else { |
| 533 | st = (u * st) / tot; |
| 534 | ut = (u * ut) / tot; |
| 535 | } |
| 536 | if (sp != NULL) { |
| 537 | sp->tv_sec = st / 1000000; |
| 538 | sp->tv_usec = st % 1000000; |
| 539 | } |
| 540 | if (up != NULL) { |
| 541 | up->tv_sec = ut / 1000000; |
| 542 | up->tv_usec = ut % 1000000; |
| 543 | } |
| 544 | if (ip != NULL) { |
| 545 | if (it != 0) |
| 546 | it = (u * it) / tot; |
| 547 | ip->tv_sec = it / 1000000; |
| 548 | ip->tv_usec = it % 1000000; |
| 549 | } |
| 550 | if (rp != NULL) { |
| 551 | *rp = tv; |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | int |
| 556 | sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap, |
| 557 | register_t *retval) |
| 558 | { |
| 559 | /* { |
| 560 | syscallarg(int) who; |
| 561 | syscallarg(struct rusage *) rusage; |
| 562 | } */ |
| 563 | int error; |
| 564 | struct rusage ru; |
| 565 | struct proc *p = l->l_proc; |
| 566 | |
| 567 | error = getrusage1(p, SCARG(uap, who), &ru); |
| 568 | if (error != 0) |
| 569 | return error; |
| 570 | |
| 571 | return copyout(&ru, SCARG(uap, rusage), sizeof(ru)); |
| 572 | } |
| 573 | |
| 574 | int |
| 575 | getrusage1(struct proc *p, int who, struct rusage *ru) { |
| 576 | |
| 577 | switch (who) { |
| 578 | case RUSAGE_SELF: |
| 579 | mutex_enter(p->p_lock); |
| 580 | memcpy(ru, &p->p_stats->p_ru, sizeof(*ru)); |
| 581 | calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL); |
| 582 | rulwps(p, ru); |
| 583 | mutex_exit(p->p_lock); |
| 584 | break; |
| 585 | case RUSAGE_CHILDREN: |
| 586 | mutex_enter(p->p_lock); |
| 587 | memcpy(ru, &p->p_stats->p_cru, sizeof(*ru)); |
| 588 | mutex_exit(p->p_lock); |
| 589 | break; |
| 590 | default: |
| 591 | return EINVAL; |
| 592 | } |
| 593 | |
| 594 | return 0; |
| 595 | } |
| 596 | |
| 597 | void |
| 598 | ruadd(struct rusage *ru, struct rusage *ru2) |
| 599 | { |
| 600 | long *ip, *ip2; |
| 601 | int i; |
| 602 | |
| 603 | timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); |
| 604 | timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); |
| 605 | if (ru->ru_maxrss < ru2->ru_maxrss) |
| 606 | ru->ru_maxrss = ru2->ru_maxrss; |
| 607 | ip = &ru->ru_first; ip2 = &ru2->ru_first; |
| 608 | for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) |
| 609 | *ip++ += *ip2++; |
| 610 | } |
| 611 | |
| 612 | void |
| 613 | rulwps(proc_t *p, struct rusage *ru) |
| 614 | { |
| 615 | lwp_t *l; |
| 616 | |
| 617 | KASSERT(mutex_owned(p->p_lock)); |
| 618 | |
| 619 | LIST_FOREACH(l, &p->p_lwps, l_sibling) { |
| 620 | ruadd(ru, &l->l_ru); |
| 621 | ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); |
| 622 | ru->ru_nivcsw += l->l_nivcsw; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | /* |
| 627 | * lim_copy: make a copy of the plimit structure. |
| 628 | * |
| 629 | * We use copy-on-write after fork, and copy when a limit is changed. |
| 630 | */ |
| 631 | struct plimit * |
| 632 | lim_copy(struct plimit *lim) |
| 633 | { |
| 634 | struct plimit *newlim; |
| 635 | char *corename; |
| 636 | size_t alen, len; |
| 637 | |
| 638 | newlim = pool_cache_get(plimit_cache, PR_WAITOK); |
| 639 | mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE); |
| 640 | newlim->pl_writeable = false; |
| 641 | newlim->pl_refcnt = 1; |
| 642 | newlim->pl_sv_limit = NULL; |
| 643 | |
| 644 | mutex_enter(&lim->pl_lock); |
| 645 | memcpy(newlim->pl_rlimit, lim->pl_rlimit, |
| 646 | sizeof(struct rlimit) * RLIM_NLIMITS); |
| 647 | |
| 648 | /* |
| 649 | * Note: the common case is a use of default core name. |
| 650 | */ |
| 651 | alen = 0; |
| 652 | corename = NULL; |
| 653 | for (;;) { |
| 654 | if (lim->pl_corename == defcorename) { |
| 655 | newlim->pl_corename = defcorename; |
| 656 | newlim->pl_cnlen = 0; |
| 657 | break; |
| 658 | } |
| 659 | len = lim->pl_cnlen; |
| 660 | if (len == alen) { |
| 661 | newlim->pl_corename = corename; |
| 662 | newlim->pl_cnlen = len; |
| 663 | memcpy(corename, lim->pl_corename, len); |
| 664 | corename = NULL; |
| 665 | break; |
| 666 | } |
| 667 | mutex_exit(&lim->pl_lock); |
| 668 | if (corename) { |
| 669 | kmem_free(corename, alen); |
| 670 | } |
| 671 | alen = len; |
| 672 | corename = kmem_alloc(alen, KM_SLEEP); |
| 673 | mutex_enter(&lim->pl_lock); |
| 674 | } |
| 675 | mutex_exit(&lim->pl_lock); |
| 676 | |
| 677 | if (corename) { |
| 678 | kmem_free(corename, alen); |
| 679 | } |
| 680 | return newlim; |
| 681 | } |
| 682 | |
| 683 | void |
| 684 | lim_addref(struct plimit *lim) |
| 685 | { |
| 686 | atomic_inc_uint(&lim->pl_refcnt); |
| 687 | } |
| 688 | |
| 689 | /* |
| 690 | * lim_privatise: give a process its own private plimit structure. |
| 691 | */ |
| 692 | void |
| 693 | lim_privatise(proc_t *p) |
| 694 | { |
| 695 | struct plimit *lim = p->p_limit, *newlim; |
| 696 | |
| 697 | if (lim->pl_writeable) { |
| 698 | return; |
| 699 | } |
| 700 | |
| 701 | newlim = lim_copy(lim); |
| 702 | |
| 703 | mutex_enter(p->p_lock); |
| 704 | if (p->p_limit->pl_writeable) { |
| 705 | /* Other thread won the race. */ |
| 706 | mutex_exit(p->p_lock); |
| 707 | lim_free(newlim); |
| 708 | return; |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * Since p->p_limit can be accessed without locked held, |
| 713 | * old limit structure must not be deleted yet. |
| 714 | */ |
| 715 | newlim->pl_sv_limit = p->p_limit; |
| 716 | newlim->pl_writeable = true; |
| 717 | p->p_limit = newlim; |
| 718 | mutex_exit(p->p_lock); |
| 719 | } |
| 720 | |
| 721 | void |
| 722 | lim_setcorename(proc_t *p, char *name, size_t len) |
| 723 | { |
| 724 | struct plimit *lim; |
| 725 | char *oname; |
| 726 | size_t olen; |
| 727 | |
| 728 | lim_privatise(p); |
| 729 | lim = p->p_limit; |
| 730 | |
| 731 | mutex_enter(&lim->pl_lock); |
| 732 | oname = lim->pl_corename; |
| 733 | olen = lim->pl_cnlen; |
| 734 | lim->pl_corename = name; |
| 735 | lim->pl_cnlen = len; |
| 736 | mutex_exit(&lim->pl_lock); |
| 737 | |
| 738 | if (oname != defcorename) { |
| 739 | kmem_free(oname, olen); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | void |
| 744 | lim_free(struct plimit *lim) |
| 745 | { |
| 746 | struct plimit *sv_lim; |
| 747 | |
| 748 | do { |
| 749 | if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) { |
| 750 | return; |
| 751 | } |
| 752 | if (lim->pl_corename != defcorename) { |
| 753 | kmem_free(lim->pl_corename, lim->pl_cnlen); |
| 754 | } |
| 755 | sv_lim = lim->pl_sv_limit; |
| 756 | mutex_destroy(&lim->pl_lock); |
| 757 | pool_cache_put(plimit_cache, lim); |
| 758 | } while ((lim = sv_lim) != NULL); |
| 759 | } |
| 760 | |
| 761 | struct pstats * |
| 762 | pstatscopy(struct pstats *ps) |
| 763 | { |
| 764 | struct pstats *nps; |
| 765 | size_t len; |
| 766 | |
| 767 | nps = pool_cache_get(pstats_cache, PR_WAITOK); |
| 768 | |
| 769 | len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero; |
| 770 | memset(&nps->pstat_startzero, 0, len); |
| 771 | |
| 772 | len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy; |
| 773 | memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len); |
| 774 | |
| 775 | return nps; |
| 776 | } |
| 777 | |
| 778 | void |
| 779 | pstatsfree(struct pstats *ps) |
| 780 | { |
| 781 | |
| 782 | pool_cache_put(pstats_cache, ps); |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that |
| 787 | * need to pick a valid process by PID. |
| 788 | * |
| 789 | * => Hold a reference on the process, on success. |
| 790 | */ |
| 791 | static int |
| 792 | sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2) |
| 793 | { |
| 794 | proc_t *p; |
| 795 | int error; |
| 796 | |
| 797 | if (pid == PROC_CURPROC) { |
| 798 | p = l->l_proc; |
| 799 | } else { |
| 800 | mutex_enter(proc_lock); |
| 801 | p = proc_find(pid); |
| 802 | if (p == NULL) { |
| 803 | mutex_exit(proc_lock); |
| 804 | return ESRCH; |
| 805 | } |
| 806 | } |
| 807 | error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; |
| 808 | if (pid != PROC_CURPROC) { |
| 809 | mutex_exit(proc_lock); |
| 810 | } |
| 811 | *p2 = p; |
| 812 | return error; |
| 813 | } |
| 814 | |
| 815 | /* |
| 816 | * sysctl_proc_corename: helper routine to get or set the core file name |
| 817 | * for a process specified by PID. |
| 818 | */ |
| 819 | static int |
| 820 | sysctl_proc_corename(SYSCTLFN_ARGS) |
| 821 | { |
| 822 | struct proc *p; |
| 823 | struct plimit *lim; |
| 824 | char *cnbuf, *cname; |
| 825 | struct sysctlnode node; |
| 826 | size_t len; |
| 827 | int error; |
| 828 | |
| 829 | /* First, validate the request. */ |
| 830 | if (namelen != 0 || name[-1] != PROC_PID_CORENAME) |
| 831 | return EINVAL; |
| 832 | |
| 833 | /* Find the process. Hold a reference (p_reflock), if found. */ |
| 834 | error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); |
| 835 | if (error) |
| 836 | return error; |
| 837 | |
| 838 | /* XXX-elad */ |
| 839 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, |
| 840 | KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); |
| 841 | if (error) { |
| 842 | rw_exit(&p->p_reflock); |
| 843 | return error; |
| 844 | } |
| 845 | |
| 846 | cnbuf = PNBUF_GET(); |
| 847 | |
| 848 | if (oldp) { |
| 849 | /* Get case: copy the core name into the buffer. */ |
| 850 | error = kauth_authorize_process(l->l_cred, |
| 851 | KAUTH_PROCESS_CORENAME, p, |
| 852 | KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL); |
| 853 | if (error) { |
| 854 | goto done; |
| 855 | } |
| 856 | lim = p->p_limit; |
| 857 | mutex_enter(&lim->pl_lock); |
| 858 | strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN); |
| 859 | mutex_exit(&lim->pl_lock); |
| 860 | } |
| 861 | |
| 862 | node = *rnode; |
| 863 | node.sysctl_data = cnbuf; |
| 864 | error = sysctl_lookup(SYSCTLFN_CALL(&node)); |
| 865 | |
| 866 | /* Return if error, or if caller is only getting the core name. */ |
| 867 | if (error || newp == NULL) { |
| 868 | goto done; |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * Set case. Check permission and then validate new core name. |
| 873 | * It must be either "core", "/core", or end in ".core". |
| 874 | */ |
| 875 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME, |
| 876 | p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL); |
| 877 | if (error) { |
| 878 | goto done; |
| 879 | } |
| 880 | len = strlen(cnbuf); |
| 881 | if ((len < 4 || strcmp(cnbuf + len - 4, "core" ) != 0) || |
| 882 | (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) { |
| 883 | error = EINVAL; |
| 884 | goto done; |
| 885 | } |
| 886 | |
| 887 | /* Allocate, copy and set the new core name for plimit structure. */ |
| 888 | cname = kmem_alloc(++len, KM_NOSLEEP); |
| 889 | if (cname == NULL) { |
| 890 | error = ENOMEM; |
| 891 | goto done; |
| 892 | } |
| 893 | memcpy(cname, cnbuf, len); |
| 894 | lim_setcorename(p, cname, len); |
| 895 | done: |
| 896 | rw_exit(&p->p_reflock); |
| 897 | PNBUF_PUT(cnbuf); |
| 898 | return error; |
| 899 | } |
| 900 | |
| 901 | /* |
| 902 | * sysctl_proc_stop: helper routine for checking/setting the stop flags. |
| 903 | */ |
| 904 | static int |
| 905 | sysctl_proc_stop(SYSCTLFN_ARGS) |
| 906 | { |
| 907 | struct proc *p; |
| 908 | int isset, flag, error = 0; |
| 909 | struct sysctlnode node; |
| 910 | |
| 911 | if (namelen != 0) |
| 912 | return EINVAL; |
| 913 | |
| 914 | /* Find the process. Hold a reference (p_reflock), if found. */ |
| 915 | error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); |
| 916 | if (error) |
| 917 | return error; |
| 918 | |
| 919 | /* XXX-elad */ |
| 920 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, |
| 921 | KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); |
| 922 | if (error) { |
| 923 | goto out; |
| 924 | } |
| 925 | |
| 926 | /* Determine the flag. */ |
| 927 | switch (rnode->sysctl_num) { |
| 928 | case PROC_PID_STOPFORK: |
| 929 | flag = PS_STOPFORK; |
| 930 | break; |
| 931 | case PROC_PID_STOPEXEC: |
| 932 | flag = PS_STOPEXEC; |
| 933 | break; |
| 934 | case PROC_PID_STOPEXIT: |
| 935 | flag = PS_STOPEXIT; |
| 936 | break; |
| 937 | default: |
| 938 | error = EINVAL; |
| 939 | goto out; |
| 940 | } |
| 941 | isset = (p->p_flag & flag) ? 1 : 0; |
| 942 | node = *rnode; |
| 943 | node.sysctl_data = &isset; |
| 944 | error = sysctl_lookup(SYSCTLFN_CALL(&node)); |
| 945 | |
| 946 | /* Return if error, or if callers is only getting the flag. */ |
| 947 | if (error || newp == NULL) { |
| 948 | goto out; |
| 949 | } |
| 950 | |
| 951 | /* Check if caller can set the flags. */ |
| 952 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG, |
| 953 | p, KAUTH_ARG(flag), NULL, NULL); |
| 954 | if (error) { |
| 955 | goto out; |
| 956 | } |
| 957 | mutex_enter(p->p_lock); |
| 958 | if (isset) { |
| 959 | p->p_sflag |= flag; |
| 960 | } else { |
| 961 | p->p_sflag &= ~flag; |
| 962 | } |
| 963 | mutex_exit(p->p_lock); |
| 964 | out: |
| 965 | rw_exit(&p->p_reflock); |
| 966 | return error; |
| 967 | } |
| 968 | |
| 969 | /* |
| 970 | * sysctl_proc_plimit: helper routine to get/set rlimits of a process. |
| 971 | */ |
| 972 | static int |
| 973 | sysctl_proc_plimit(SYSCTLFN_ARGS) |
| 974 | { |
| 975 | struct proc *p; |
| 976 | u_int limitno; |
| 977 | int which, error = 0; |
| 978 | struct rlimit alim; |
| 979 | struct sysctlnode node; |
| 980 | |
| 981 | if (namelen != 0) |
| 982 | return EINVAL; |
| 983 | |
| 984 | which = name[-1]; |
| 985 | if (which != PROC_PID_LIMIT_TYPE_SOFT && |
| 986 | which != PROC_PID_LIMIT_TYPE_HARD) |
| 987 | return EINVAL; |
| 988 | |
| 989 | limitno = name[-2] - 1; |
| 990 | if (limitno >= RLIM_NLIMITS) |
| 991 | return EINVAL; |
| 992 | |
| 993 | if (name[-3] != PROC_PID_LIMIT) |
| 994 | return EINVAL; |
| 995 | |
| 996 | /* Find the process. Hold a reference (p_reflock), if found. */ |
| 997 | error = sysctl_proc_findproc(l, (pid_t)name[-4], &p); |
| 998 | if (error) |
| 999 | return error; |
| 1000 | |
| 1001 | /* XXX-elad */ |
| 1002 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, |
| 1003 | KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); |
| 1004 | if (error) |
| 1005 | goto out; |
| 1006 | |
| 1007 | /* Check if caller can retrieve the limits. */ |
| 1008 | if (newp == NULL) { |
| 1009 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, |
| 1010 | p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim, |
| 1011 | KAUTH_ARG(which)); |
| 1012 | if (error) |
| 1013 | goto out; |
| 1014 | } |
| 1015 | |
| 1016 | /* Retrieve the limits. */ |
| 1017 | node = *rnode; |
| 1018 | memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim)); |
| 1019 | if (which == PROC_PID_LIMIT_TYPE_HARD) { |
| 1020 | node.sysctl_data = &alim.rlim_max; |
| 1021 | } else { |
| 1022 | node.sysctl_data = &alim.rlim_cur; |
| 1023 | } |
| 1024 | error = sysctl_lookup(SYSCTLFN_CALL(&node)); |
| 1025 | |
| 1026 | /* Return if error, or if we are only retrieving the limits. */ |
| 1027 | if (error || newp == NULL) { |
| 1028 | goto out; |
| 1029 | } |
| 1030 | error = dosetrlimit(l, p, limitno, &alim); |
| 1031 | out: |
| 1032 | rw_exit(&p->p_reflock); |
| 1033 | return error; |
| 1034 | } |
| 1035 | |
| 1036 | /* |
| 1037 | * Setup sysctl nodes. |
| 1038 | */ |
| 1039 | static void |
| 1040 | sysctl_proc_setup(void) |
| 1041 | { |
| 1042 | |
| 1043 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, |
| 1044 | CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, |
| 1045 | CTLTYPE_NODE, "curproc" , |
| 1046 | SYSCTL_DESCR("Per-process settings" ), |
| 1047 | NULL, 0, NULL, 0, |
| 1048 | CTL_PROC, PROC_CURPROC, CTL_EOL); |
| 1049 | |
| 1050 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, |
| 1051 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, |
| 1052 | CTLTYPE_STRING, "corename" , |
| 1053 | SYSCTL_DESCR("Core file name" ), |
| 1054 | sysctl_proc_corename, 0, NULL, MAXPATHLEN, |
| 1055 | CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); |
| 1056 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, |
| 1057 | CTLFLAG_PERMANENT, |
| 1058 | CTLTYPE_NODE, "rlimit" , |
| 1059 | SYSCTL_DESCR("Process limits" ), |
| 1060 | NULL, 0, NULL, 0, |
| 1061 | CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); |
| 1062 | |
| 1063 | #define create_proc_plimit(s, n) do { \ |
| 1064 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ |
| 1065 | CTLFLAG_PERMANENT, \ |
| 1066 | CTLTYPE_NODE, s, \ |
| 1067 | SYSCTL_DESCR("Process " s " limits"), \ |
| 1068 | NULL, 0, NULL, 0, \ |
| 1069 | CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ |
| 1070 | CTL_EOL); \ |
| 1071 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ |
| 1072 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ |
| 1073 | CTLTYPE_QUAD, "soft", \ |
| 1074 | SYSCTL_DESCR("Process soft " s " limit"), \ |
| 1075 | sysctl_proc_plimit, 0, NULL, 0, \ |
| 1076 | CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ |
| 1077 | PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ |
| 1078 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ |
| 1079 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ |
| 1080 | CTLTYPE_QUAD, "hard", \ |
| 1081 | SYSCTL_DESCR("Process hard " s " limit"), \ |
| 1082 | sysctl_proc_plimit, 0, NULL, 0, \ |
| 1083 | CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ |
| 1084 | PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ |
| 1085 | } while (0/*CONSTCOND*/) |
| 1086 | |
| 1087 | create_proc_plimit("cputime" , PROC_PID_LIMIT_CPU); |
| 1088 | create_proc_plimit("filesize" , PROC_PID_LIMIT_FSIZE); |
| 1089 | create_proc_plimit("datasize" , PROC_PID_LIMIT_DATA); |
| 1090 | create_proc_plimit("stacksize" , PROC_PID_LIMIT_STACK); |
| 1091 | create_proc_plimit("coredumpsize" , PROC_PID_LIMIT_CORE); |
| 1092 | create_proc_plimit("memoryuse" , PROC_PID_LIMIT_RSS); |
| 1093 | create_proc_plimit("memorylocked" , PROC_PID_LIMIT_MEMLOCK); |
| 1094 | create_proc_plimit("maxproc" , PROC_PID_LIMIT_NPROC); |
| 1095 | create_proc_plimit("descriptors" , PROC_PID_LIMIT_NOFILE); |
| 1096 | create_proc_plimit("sbsize" , PROC_PID_LIMIT_SBSIZE); |
| 1097 | create_proc_plimit("vmemoryuse" , PROC_PID_LIMIT_AS); |
| 1098 | create_proc_plimit("maxlwp" , PROC_PID_LIMIT_NTHR); |
| 1099 | |
| 1100 | #undef create_proc_plimit |
| 1101 | |
| 1102 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, |
| 1103 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, |
| 1104 | CTLTYPE_INT, "stopfork" , |
| 1105 | SYSCTL_DESCR("Stop process at fork(2)" ), |
| 1106 | sysctl_proc_stop, 0, NULL, 0, |
| 1107 | CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); |
| 1108 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, |
| 1109 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, |
| 1110 | CTLTYPE_INT, "stopexec" , |
| 1111 | SYSCTL_DESCR("Stop process at execve(2)" ), |
| 1112 | sysctl_proc_stop, 0, NULL, 0, |
| 1113 | CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); |
| 1114 | sysctl_createv(&proc_sysctllog, 0, NULL, NULL, |
| 1115 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, |
| 1116 | CTLTYPE_INT, "stopexit" , |
| 1117 | SYSCTL_DESCR("Stop process before completing exit" ), |
| 1118 | sysctl_proc_stop, 0, NULL, 0, |
| 1119 | CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); |
| 1120 | } |
| 1121 | |