| 1 | /* $NetBSD: pmap.c,v 1.227 2016/11/17 16:32:06 maxv Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 2008, 2010, 2016 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Andrew Doran, and by Maxime Villard. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 29 | * POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | |
| 32 | /* |
| 33 | * Copyright (c) 2007 Manuel Bouyer. |
| 34 | * |
| 35 | * Redistribution and use in source and binary forms, with or without |
| 36 | * modification, are permitted provided that the following conditions |
| 37 | * are met: |
| 38 | * 1. Redistributions of source code must retain the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer. |
| 40 | * 2. Redistributions in binary form must reproduce the above copyright |
| 41 | * notice, this list of conditions and the following disclaimer in the |
| 42 | * documentation and/or other materials provided with the distribution. |
| 43 | * |
| 44 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 45 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 46 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 47 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 48 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 49 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 50 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 51 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 52 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 53 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 54 | * |
| 55 | */ |
| 56 | |
| 57 | /* |
| 58 | * Copyright (c) 2006 Mathieu Ropert <mro@adviseo.fr> |
| 59 | * |
| 60 | * Permission to use, copy, modify, and distribute this software for any |
| 61 | * purpose with or without fee is hereby granted, provided that the above |
| 62 | * copyright notice and this permission notice appear in all copies. |
| 63 | * |
| 64 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 65 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 66 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 67 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 68 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 69 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 70 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 71 | */ |
| 72 | |
| 73 | /* |
| 74 | * Copyright (c) 1997 Charles D. Cranor and Washington University. |
| 75 | * All rights reserved. |
| 76 | * |
| 77 | * Redistribution and use in source and binary forms, with or without |
| 78 | * modification, are permitted provided that the following conditions |
| 79 | * are met: |
| 80 | * 1. Redistributions of source code must retain the above copyright |
| 81 | * notice, this list of conditions and the following disclaimer. |
| 82 | * 2. Redistributions in binary form must reproduce the above copyright |
| 83 | * notice, this list of conditions and the following disclaimer in the |
| 84 | * documentation and/or other materials provided with the distribution. |
| 85 | * |
| 86 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 87 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 88 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 89 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 90 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 91 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 92 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 93 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 94 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 95 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 96 | */ |
| 97 | |
| 98 | /* |
| 99 | * Copyright 2001 (c) Wasabi Systems, Inc. |
| 100 | * All rights reserved. |
| 101 | * |
| 102 | * Written by Frank van der Linden for Wasabi Systems, Inc. |
| 103 | * |
| 104 | * Redistribution and use in source and binary forms, with or without |
| 105 | * modification, are permitted provided that the following conditions |
| 106 | * are met: |
| 107 | * 1. Redistributions of source code must retain the above copyright |
| 108 | * notice, this list of conditions and the following disclaimer. |
| 109 | * 2. Redistributions in binary form must reproduce the above copyright |
| 110 | * notice, this list of conditions and the following disclaimer in the |
| 111 | * documentation and/or other materials provided with the distribution. |
| 112 | * 3. All advertising materials mentioning features or use of this software |
| 113 | * must display the following acknowledgement: |
| 114 | * This product includes software developed for the NetBSD Project by |
| 115 | * Wasabi Systems, Inc. |
| 116 | * 4. The name of Wasabi Systems, Inc. may not be used to endorse |
| 117 | * or promote products derived from this software without specific prior |
| 118 | * written permission. |
| 119 | * |
| 120 | * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND |
| 121 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 122 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 123 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC |
| 124 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 125 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 126 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 127 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 128 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 129 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 130 | * POSSIBILITY OF SUCH DAMAGE. |
| 131 | */ |
| 132 | |
| 133 | /* |
| 134 | * This is the i386 pmap modified and generalized to support x86-64 |
| 135 | * as well. The idea is to hide the upper N levels of the page tables |
| 136 | * inside pmap_get_ptp, pmap_free_ptp and pmap_growkernel. The rest |
| 137 | * is mostly untouched, except that it uses some more generalized |
| 138 | * macros and interfaces. |
| 139 | * |
| 140 | * This pmap has been tested on the i386 as well, and it can be easily |
| 141 | * adapted to PAE. |
| 142 | * |
| 143 | * fvdl@wasabisystems.com 18-Jun-2001 |
| 144 | */ |
| 145 | |
| 146 | /* |
| 147 | * pmap.c: i386 pmap module rewrite |
| 148 | * Chuck Cranor <chuck@netbsd> |
| 149 | * 11-Aug-97 |
| 150 | * |
| 151 | * history of this pmap module: in addition to my own input, i used |
| 152 | * the following references for this rewrite of the i386 pmap: |
| 153 | * |
| 154 | * [1] the NetBSD i386 pmap. this pmap appears to be based on the |
| 155 | * BSD hp300 pmap done by Mike Hibler at University of Utah. |
| 156 | * it was then ported to the i386 by William Jolitz of UUNET |
| 157 | * Technologies, Inc. Then Charles M. Hannum of the NetBSD |
| 158 | * project fixed some bugs and provided some speed ups. |
| 159 | * |
| 160 | * [2] the FreeBSD i386 pmap. this pmap seems to be the |
| 161 | * Hibler/Jolitz pmap, as modified for FreeBSD by John S. Dyson |
| 162 | * and David Greenman. |
| 163 | * |
| 164 | * [3] the Mach pmap. this pmap, from CMU, seems to have migrated |
| 165 | * between several processors. the VAX version was done by |
| 166 | * Avadis Tevanian, Jr., and Michael Wayne Young. the i386 |
| 167 | * version was done by Lance Berc, Mike Kupfer, Bob Baron, |
| 168 | * David Golub, and Richard Draves. the alpha version was |
| 169 | * done by Alessandro Forin (CMU/Mach) and Chris Demetriou |
| 170 | * (NetBSD/alpha). |
| 171 | */ |
| 172 | |
| 173 | #include <sys/cdefs.h> |
| 174 | __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.227 2016/11/17 16:32:06 maxv Exp $" ); |
| 175 | |
| 176 | #include "opt_user_ldt.h" |
| 177 | #include "opt_lockdebug.h" |
| 178 | #include "opt_multiprocessor.h" |
| 179 | #include "opt_xen.h" |
| 180 | #if !defined(__x86_64__) |
| 181 | #include "opt_kstack_dr0.h" |
| 182 | #endif /* !defined(__x86_64__) */ |
| 183 | |
| 184 | #include <sys/param.h> |
| 185 | #include <sys/systm.h> |
| 186 | #include <sys/proc.h> |
| 187 | #include <sys/pool.h> |
| 188 | #include <sys/kernel.h> |
| 189 | #include <sys/atomic.h> |
| 190 | #include <sys/cpu.h> |
| 191 | #include <sys/intr.h> |
| 192 | #include <sys/xcall.h> |
| 193 | #include <sys/kcore.h> |
| 194 | |
| 195 | #include <uvm/uvm.h> |
| 196 | #include <uvm/pmap/pmap_pvt.h> |
| 197 | |
| 198 | #include <dev/isa/isareg.h> |
| 199 | |
| 200 | #include <machine/specialreg.h> |
| 201 | #include <machine/gdt.h> |
| 202 | #include <machine/isa_machdep.h> |
| 203 | #include <machine/cpuvar.h> |
| 204 | #include <machine/cputypes.h> |
| 205 | |
| 206 | #include <x86/pmap.h> |
| 207 | #include <x86/pmap_pv.h> |
| 208 | |
| 209 | #include <x86/i82489reg.h> |
| 210 | #include <x86/i82489var.h> |
| 211 | |
| 212 | #ifdef XEN |
| 213 | #include <xen/xen-public/xen.h> |
| 214 | #include <xen/hypervisor.h> |
| 215 | #endif |
| 216 | |
| 217 | /* |
| 218 | * general info: |
| 219 | * |
| 220 | * - for an explanation of how the i386 MMU hardware works see |
| 221 | * the comments in <machine/pte.h>. |
| 222 | * |
| 223 | * - for an explanation of the general memory structure used by |
| 224 | * this pmap (including the recursive mapping), see the comments |
| 225 | * in <machine/pmap.h>. |
| 226 | * |
| 227 | * this file contains the code for the "pmap module." the module's |
| 228 | * job is to manage the hardware's virtual to physical address mappings. |
| 229 | * note that there are two levels of mapping in the VM system: |
| 230 | * |
| 231 | * [1] the upper layer of the VM system uses vm_map's and vm_map_entry's |
| 232 | * to map ranges of virtual address space to objects/files. for |
| 233 | * example, the vm_map may say: "map VA 0x1000 to 0x22000 read-only |
| 234 | * to the file /bin/ls starting at offset zero." note that |
| 235 | * the upper layer mapping is not concerned with how individual |
| 236 | * vm_pages are mapped. |
| 237 | * |
| 238 | * [2] the lower layer of the VM system (the pmap) maintains the mappings |
| 239 | * from virtual addresses. it is concerned with which vm_page is |
| 240 | * mapped where. for example, when you run /bin/ls and start |
| 241 | * at page 0x1000 the fault routine may lookup the correct page |
| 242 | * of the /bin/ls file and then ask the pmap layer to establish |
| 243 | * a mapping for it. |
| 244 | * |
| 245 | * note that information in the lower layer of the VM system can be |
| 246 | * thrown away since it can easily be reconstructed from the info |
| 247 | * in the upper layer. |
| 248 | * |
| 249 | * data structures we use include: |
| 250 | * |
| 251 | * - struct pmap: describes the address space of one thread |
| 252 | * - struct pmap_page: describes one pv-tracked page, without |
| 253 | * necessarily a corresponding vm_page |
| 254 | * - struct pv_entry: describes one <PMAP,VA> mapping of a PA |
| 255 | * - struct pv_head: there is one pv_head per pv-tracked page of |
| 256 | * physical memory. the pv_head points to a list of pv_entry |
| 257 | * structures which describe all the <PMAP,VA> pairs that this |
| 258 | * page is mapped in. this is critical for page based operations |
| 259 | * such as pmap_page_protect() [change protection on _all_ mappings |
| 260 | * of a page] |
| 261 | */ |
| 262 | |
| 263 | /* |
| 264 | * memory allocation |
| 265 | * |
| 266 | * - there are three data structures that we must dynamically allocate: |
| 267 | * |
| 268 | * [A] new process' page directory page (PDP) |
| 269 | * - plan 1: done at pmap_create() we use |
| 270 | * uvm_km_alloc(kernel_map, PAGE_SIZE) [fka kmem_alloc] to do this |
| 271 | * allocation. |
| 272 | * |
| 273 | * if we are low in free physical memory then we sleep in |
| 274 | * uvm_km_alloc -- in this case this is ok since we are creating |
| 275 | * a new pmap and should not be holding any locks. |
| 276 | * |
| 277 | * if the kernel is totally out of virtual space |
| 278 | * (i.e. uvm_km_alloc returns NULL), then we panic. |
| 279 | * |
| 280 | * [B] new page tables pages (PTP) |
| 281 | * - call uvm_pagealloc() |
| 282 | * => success: zero page, add to pm_pdir |
| 283 | * => failure: we are out of free vm_pages, let pmap_enter() |
| 284 | * tell UVM about it. |
| 285 | * |
| 286 | * note: for kernel PTPs, we start with NKPTP of them. as we map |
| 287 | * kernel memory (at uvm_map time) we check to see if we've grown |
| 288 | * the kernel pmap. if so, we call the optional function |
| 289 | * pmap_growkernel() to grow the kernel PTPs in advance. |
| 290 | * |
| 291 | * [C] pv_entry structures |
| 292 | */ |
| 293 | |
| 294 | /* |
| 295 | * locking |
| 296 | * |
| 297 | * we have the following locks that we must contend with: |
| 298 | * |
| 299 | * mutexes: |
| 300 | * |
| 301 | * - pmap lock (per pmap, part of uvm_object) |
| 302 | * this lock protects the fields in the pmap structure including |
| 303 | * the non-kernel PDEs in the PDP, and the PTEs. it also locks |
| 304 | * in the alternate PTE space (since that is determined by the |
| 305 | * entry in the PDP). |
| 306 | * |
| 307 | * - pvh_lock (per pv_head) |
| 308 | * this lock protects the pv_entry list which is chained off the |
| 309 | * pv_head structure for a specific pv-tracked PA. it is locked |
| 310 | * when traversing the list (e.g. adding/removing mappings, |
| 311 | * syncing R/M bits, etc.) |
| 312 | * |
| 313 | * - pmaps_lock |
| 314 | * this lock protects the list of active pmaps (headed by "pmaps"). |
| 315 | * we lock it when adding or removing pmaps from this list. |
| 316 | */ |
| 317 | |
| 318 | const vaddr_t ptp_masks[] = PTP_MASK_INITIALIZER; |
| 319 | const int ptp_shifts[] = PTP_SHIFT_INITIALIZER; |
| 320 | const long nkptpmax[] = NKPTPMAX_INITIALIZER; |
| 321 | const long nbpd[] = NBPD_INITIALIZER; |
| 322 | pd_entry_t * const normal_pdes[] = PDES_INITIALIZER; |
| 323 | |
| 324 | long nkptp[] = NKPTP_INITIALIZER; |
| 325 | |
| 326 | struct pmap_head pmaps; |
| 327 | kmutex_t pmaps_lock; |
| 328 | |
| 329 | static vaddr_t pmap_maxkvaddr; |
| 330 | |
| 331 | /* |
| 332 | * XXX kludge: dummy locking to make KASSERTs in uvm_page.c comfortable. |
| 333 | * actual locking is done by pm_lock. |
| 334 | */ |
| 335 | #if defined(DIAGNOSTIC) |
| 336 | #define PMAP_SUBOBJ_LOCK(pm, idx) \ |
| 337 | KASSERT(mutex_owned((pm)->pm_lock)); \ |
| 338 | if ((idx) != 0) \ |
| 339 | mutex_enter((pm)->pm_obj[(idx)].vmobjlock) |
| 340 | #define PMAP_SUBOBJ_UNLOCK(pm, idx) \ |
| 341 | KASSERT(mutex_owned((pm)->pm_lock)); \ |
| 342 | if ((idx) != 0) \ |
| 343 | mutex_exit((pm)->pm_obj[(idx)].vmobjlock) |
| 344 | #else /* defined(DIAGNOSTIC) */ |
| 345 | #define PMAP_SUBOBJ_LOCK(pm, idx) /* nothing */ |
| 346 | #define PMAP_SUBOBJ_UNLOCK(pm, idx) /* nothing */ |
| 347 | #endif /* defined(DIAGNOSTIC) */ |
| 348 | |
| 349 | /* |
| 350 | * Misc. event counters. |
| 351 | */ |
| 352 | struct evcnt pmap_iobmp_evcnt; |
| 353 | struct evcnt pmap_ldt_evcnt; |
| 354 | |
| 355 | /* |
| 356 | * PAT |
| 357 | */ |
| 358 | #define PATENTRY(n, type) (type << ((n) * 8)) |
| 359 | #define PAT_UC 0x0ULL |
| 360 | #define PAT_WC 0x1ULL |
| 361 | #define PAT_WT 0x4ULL |
| 362 | #define PAT_WP 0x5ULL |
| 363 | #define PAT_WB 0x6ULL |
| 364 | #define PAT_UCMINUS 0x7ULL |
| 365 | |
| 366 | static bool cpu_pat_enabled __read_mostly = false; |
| 367 | |
| 368 | /* |
| 369 | * Global data structures |
| 370 | */ |
| 371 | |
| 372 | static struct pmap kernel_pmap_store; /* the kernel's pmap (proc0) */ |
| 373 | struct pmap *const kernel_pmap_ptr = &kernel_pmap_store; |
| 374 | |
| 375 | /* |
| 376 | * pmap_pg_nx: if our processor supports PG_NX in the PTE then we |
| 377 | * set pmap_pg_nx to PG_NX (otherwise it is zero). |
| 378 | */ |
| 379 | pd_entry_t pmap_pg_nx __read_mostly = 0; |
| 380 | |
| 381 | /* |
| 382 | * pmap_pg_g: if our processor supports PG_G in the PTE then we |
| 383 | * set pmap_pg_g to PG_G (otherwise it is zero). |
| 384 | */ |
| 385 | pd_entry_t pmap_pg_g __read_mostly = 0; |
| 386 | |
| 387 | /* |
| 388 | * pmap_largepages: if our processor supports PG_PS and we are |
| 389 | * using it, this is set to true. |
| 390 | */ |
| 391 | int pmap_largepages __read_mostly = 0; |
| 392 | |
| 393 | /* |
| 394 | * i386 physical memory comes in a big contig chunk with a small |
| 395 | * hole toward the front of it... the following two paddr_t's |
| 396 | * (shared with machdep.c) describe the physical address space |
| 397 | * of this machine. |
| 398 | */ |
| 399 | paddr_t avail_start __read_mostly; /* PA of first available physical page */ |
| 400 | paddr_t avail_end __read_mostly; /* PA of last available physical page */ |
| 401 | |
| 402 | #ifdef XEN |
| 403 | #ifdef __x86_64__ |
| 404 | /* Dummy PGD for user cr3, used between pmap_deactivate() and pmap_activate() */ |
| 405 | static paddr_t xen_dummy_user_pgd; |
| 406 | #endif /* __x86_64__ */ |
| 407 | paddr_t pmap_pa_start; /* PA of first physical page for this domain */ |
| 408 | paddr_t pmap_pa_end; /* PA of last physical page for this domain */ |
| 409 | #endif /* XEN */ |
| 410 | |
| 411 | #define VM_PAGE_TO_PP(pg) (&(pg)->mdpage.mp_pp) |
| 412 | |
| 413 | #define PV_HASH_SIZE 32768 |
| 414 | #define PV_HASH_LOCK_CNT 32 |
| 415 | |
| 416 | struct pv_hash_lock { |
| 417 | kmutex_t lock; |
| 418 | } __aligned(CACHE_LINE_SIZE) pv_hash_locks[PV_HASH_LOCK_CNT] |
| 419 | __aligned(CACHE_LINE_SIZE); |
| 420 | |
| 421 | struct pv_hash_head { |
| 422 | SLIST_HEAD(, pv_entry) hh_list; |
| 423 | } pv_hash_heads[PV_HASH_SIZE]; |
| 424 | |
| 425 | static u_int |
| 426 | pvhash_hash(struct vm_page *ptp, vaddr_t va) |
| 427 | { |
| 428 | |
| 429 | return (uintptr_t)ptp / sizeof(*ptp) + (va >> PAGE_SHIFT); |
| 430 | } |
| 431 | |
| 432 | static struct pv_hash_head * |
| 433 | pvhash_head(u_int hash) |
| 434 | { |
| 435 | |
| 436 | return &pv_hash_heads[hash % PV_HASH_SIZE]; |
| 437 | } |
| 438 | |
| 439 | static kmutex_t * |
| 440 | pvhash_lock(u_int hash) |
| 441 | { |
| 442 | |
| 443 | return &pv_hash_locks[hash % PV_HASH_LOCK_CNT].lock; |
| 444 | } |
| 445 | |
| 446 | static struct pv_entry * |
| 447 | pvhash_remove(struct pv_hash_head *hh, struct vm_page *ptp, vaddr_t va) |
| 448 | { |
| 449 | struct pv_entry *pve; |
| 450 | struct pv_entry *prev; |
| 451 | |
| 452 | prev = NULL; |
| 453 | SLIST_FOREACH(pve, &hh->hh_list, pve_hash) { |
| 454 | if (pve->pve_pte.pte_ptp == ptp && |
| 455 | pve->pve_pte.pte_va == va) { |
| 456 | if (prev != NULL) { |
| 457 | SLIST_REMOVE_AFTER(prev, pve_hash); |
| 458 | } else { |
| 459 | SLIST_REMOVE_HEAD(&hh->hh_list, pve_hash); |
| 460 | } |
| 461 | break; |
| 462 | } |
| 463 | prev = pve; |
| 464 | } |
| 465 | return pve; |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Other data structures |
| 470 | */ |
| 471 | |
| 472 | static pt_entry_t protection_codes[8] __read_mostly; |
| 473 | |
| 474 | static bool pmap_initialized __read_mostly = false; /* pmap_init done yet? */ |
| 475 | |
| 476 | /* |
| 477 | * The following two vaddr_t's are used during system startup to keep track of |
| 478 | * how much of the kernel's VM space we have used. Once the system is started, |
| 479 | * the management of the remaining kernel VM space is turned over to the |
| 480 | * kernel_map vm_map. |
| 481 | */ |
| 482 | static vaddr_t virtual_avail __read_mostly; /* VA of first free KVA */ |
| 483 | static vaddr_t virtual_end __read_mostly; /* VA of last free KVA */ |
| 484 | |
| 485 | /* |
| 486 | * pool that pmap structures are allocated from |
| 487 | */ |
| 488 | static struct pool_cache pmap_cache; |
| 489 | |
| 490 | /* |
| 491 | * pv_entry cache |
| 492 | */ |
| 493 | static struct pool_cache pmap_pv_cache; |
| 494 | |
| 495 | #ifndef __HAVE_DIRECT_MAP |
| 496 | /* |
| 497 | * MULTIPROCESSOR: special VAs and PTEs are actually allocated inside a |
| 498 | * (maxcpus * NPTECL) array of PTE, to avoid cache line thrashing due to |
| 499 | * false sharing. |
| 500 | */ |
| 501 | #ifdef MULTIPROCESSOR |
| 502 | #define PTESLEW(pte, id) ((pte)+(id)*NPTECL) |
| 503 | #define VASLEW(va,id) ((va)+(id)*NPTECL*PAGE_SIZE) |
| 504 | #else |
| 505 | #define PTESLEW(pte, id) ((void)id, pte) |
| 506 | #define VASLEW(va,id) ((void)id, va) |
| 507 | #endif |
| 508 | |
| 509 | /* |
| 510 | * Special VAs and the PTEs that map them |
| 511 | */ |
| 512 | static pt_entry_t *csrc_pte, *cdst_pte, *zero_pte, *ptp_pte, *early_zero_pte; |
| 513 | static char *csrcp, *cdstp, *zerop, *ptpp; |
| 514 | #ifdef XEN |
| 515 | char *early_zerop; /* also referenced from xen_locore() */ |
| 516 | #else |
| 517 | static char *early_zerop; |
| 518 | #endif |
| 519 | |
| 520 | #endif |
| 521 | |
| 522 | int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int); |
| 523 | |
| 524 | /* PDP pool_cache(9) and its callbacks */ |
| 525 | struct pool_cache pmap_pdp_cache; |
| 526 | static int pmap_pdp_ctor(void *, void *, int); |
| 527 | static void pmap_pdp_dtor(void *, void *); |
| 528 | #ifdef PAE |
| 529 | /* need to allocate items of 4 pages */ |
| 530 | static void *pmap_pdp_alloc(struct pool *, int); |
| 531 | static void pmap_pdp_free(struct pool *, void *); |
| 532 | static struct pool_allocator pmap_pdp_allocator = { |
| 533 | .pa_alloc = pmap_pdp_alloc, |
| 534 | .pa_free = pmap_pdp_free, |
| 535 | .pa_pagesz = PAGE_SIZE * PDP_SIZE, |
| 536 | }; |
| 537 | #endif /* PAE */ |
| 538 | |
| 539 | extern vaddr_t idt_vaddr; |
| 540 | extern paddr_t idt_paddr; |
| 541 | extern vaddr_t gdt_vaddr; |
| 542 | extern paddr_t gdt_paddr; |
| 543 | extern vaddr_t ldt_vaddr; |
| 544 | extern paddr_t ldt_paddr; |
| 545 | |
| 546 | extern int end; |
| 547 | |
| 548 | #ifdef i386 |
| 549 | /* stuff to fix the pentium f00f bug */ |
| 550 | extern vaddr_t pentium_idt_vaddr; |
| 551 | #endif |
| 552 | |
| 553 | /* |
| 554 | * Local prototypes |
| 555 | */ |
| 556 | |
| 557 | #ifdef __HAVE_DIRECT_MAP |
| 558 | static void pmap_init_directmap(struct pmap *); |
| 559 | #endif |
| 560 | #ifndef XEN |
| 561 | static void pmap_remap_largepages(void); |
| 562 | #endif |
| 563 | |
| 564 | static struct vm_page *pmap_get_ptp(struct pmap *, vaddr_t, |
| 565 | pd_entry_t * const *); |
| 566 | static struct vm_page *pmap_find_ptp(struct pmap *, vaddr_t, paddr_t, int); |
| 567 | static void pmap_freepage(struct pmap *, struct vm_page *, int); |
| 568 | static void pmap_free_ptp(struct pmap *, struct vm_page *, vaddr_t, |
| 569 | pt_entry_t *, pd_entry_t * const *); |
| 570 | static bool pmap_remove_pte(struct pmap *, struct vm_page *, pt_entry_t *, |
| 571 | vaddr_t, struct pv_entry **); |
| 572 | static void pmap_remove_ptes(struct pmap *, struct vm_page *, vaddr_t, vaddr_t, |
| 573 | vaddr_t, struct pv_entry **); |
| 574 | |
| 575 | static paddr_t pmap_get_physpage(void); |
| 576 | static void pmap_alloc_level(vaddr_t, long *); |
| 577 | |
| 578 | static bool pmap_reactivate(struct pmap *); |
| 579 | |
| 580 | /* |
| 581 | * p m a p h e l p e r f u n c t i o n s |
| 582 | */ |
| 583 | |
| 584 | static inline void |
| 585 | pmap_stats_update(struct pmap *pmap, int resid_diff, int wired_diff) |
| 586 | { |
| 587 | |
| 588 | if (pmap == pmap_kernel()) { |
| 589 | atomic_add_long(&pmap->pm_stats.resident_count, resid_diff); |
| 590 | atomic_add_long(&pmap->pm_stats.wired_count, wired_diff); |
| 591 | } else { |
| 592 | KASSERT(mutex_owned(pmap->pm_lock)); |
| 593 | pmap->pm_stats.resident_count += resid_diff; |
| 594 | pmap->pm_stats.wired_count += wired_diff; |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | static inline void |
| 599 | pmap_stats_update_bypte(struct pmap *pmap, pt_entry_t npte, pt_entry_t opte) |
| 600 | { |
| 601 | int resid_diff = ((npte & PG_V) ? 1 : 0) - ((opte & PG_V) ? 1 : 0); |
| 602 | int wired_diff = ((npte & PG_W) ? 1 : 0) - ((opte & PG_W) ? 1 : 0); |
| 603 | |
| 604 | KASSERT((npte & (PG_V | PG_W)) != PG_W); |
| 605 | KASSERT((opte & (PG_V | PG_W)) != PG_W); |
| 606 | |
| 607 | pmap_stats_update(pmap, resid_diff, wired_diff); |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * ptp_to_pmap: lookup pmap by ptp |
| 612 | */ |
| 613 | |
| 614 | static struct pmap * |
| 615 | ptp_to_pmap(struct vm_page *ptp) |
| 616 | { |
| 617 | struct pmap *pmap; |
| 618 | |
| 619 | if (ptp == NULL) { |
| 620 | return pmap_kernel(); |
| 621 | } |
| 622 | pmap = (struct pmap *)ptp->uobject; |
| 623 | KASSERT(pmap != NULL); |
| 624 | KASSERT(&pmap->pm_obj[0] == ptp->uobject); |
| 625 | return pmap; |
| 626 | } |
| 627 | |
| 628 | static inline struct pv_pte * |
| 629 | pve_to_pvpte(struct pv_entry *pve) |
| 630 | { |
| 631 | |
| 632 | KASSERT((void *)&pve->pve_pte == (void *)pve); |
| 633 | return &pve->pve_pte; |
| 634 | } |
| 635 | |
| 636 | static inline struct pv_entry * |
| 637 | pvpte_to_pve(struct pv_pte *pvpte) |
| 638 | { |
| 639 | struct pv_entry *pve = (void *)pvpte; |
| 640 | |
| 641 | KASSERT(pve_to_pvpte(pve) == pvpte); |
| 642 | return pve; |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * pv_pte_first, pv_pte_next: PV list iterator. |
| 647 | */ |
| 648 | |
| 649 | static struct pv_pte * |
| 650 | pv_pte_first(struct pmap_page *pp) |
| 651 | { |
| 652 | |
| 653 | if ((pp->pp_flags & PP_EMBEDDED) != 0) { |
| 654 | return &pp->pp_pte; |
| 655 | } |
| 656 | return pve_to_pvpte(LIST_FIRST(&pp->pp_head.pvh_list)); |
| 657 | } |
| 658 | |
| 659 | static struct pv_pte * |
| 660 | pv_pte_next(struct pmap_page *pp, struct pv_pte *pvpte) |
| 661 | { |
| 662 | |
| 663 | KASSERT(pvpte != NULL); |
| 664 | if (pvpte == &pp->pp_pte) { |
| 665 | KASSERT((pp->pp_flags & PP_EMBEDDED) != 0); |
| 666 | return NULL; |
| 667 | } |
| 668 | KASSERT((pp->pp_flags & PP_EMBEDDED) == 0); |
| 669 | return pve_to_pvpte(LIST_NEXT(pvpte_to_pve(pvpte), pve_list)); |
| 670 | } |
| 671 | |
| 672 | /* |
| 673 | * pmap_is_curpmap: is this pmap the one currently loaded [in %cr3]? |
| 674 | * of course the kernel is always loaded |
| 675 | */ |
| 676 | |
| 677 | bool |
| 678 | pmap_is_curpmap(struct pmap *pmap) |
| 679 | { |
| 680 | return((pmap == pmap_kernel()) || |
| 681 | (pmap == curcpu()->ci_pmap)); |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * Add a reference to the specified pmap. |
| 686 | */ |
| 687 | |
| 688 | void |
| 689 | pmap_reference(struct pmap *pmap) |
| 690 | { |
| 691 | |
| 692 | atomic_inc_uint(&pmap->pm_obj[0].uo_refs); |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * pmap_map_ptes: map a pmap's PTEs into KVM and lock them in |
| 697 | * |
| 698 | * there are several pmaps involved. some or all of them might be same. |
| 699 | * |
| 700 | * - the pmap given by the first argument |
| 701 | * our caller wants to access this pmap's PTEs. |
| 702 | * |
| 703 | * - pmap_kernel() |
| 704 | * the kernel pmap. note that it only contains the kernel part |
| 705 | * of the address space which is shared by any pmap. ie. any |
| 706 | * pmap can be used instead of pmap_kernel() for our purpose. |
| 707 | * |
| 708 | * - ci->ci_pmap |
| 709 | * pmap currently loaded on the cpu. |
| 710 | * |
| 711 | * - vm_map_pmap(&curproc->p_vmspace->vm_map) |
| 712 | * current process' pmap. |
| 713 | * |
| 714 | * => we lock enough pmaps to keep things locked in |
| 715 | * => must be undone with pmap_unmap_ptes before returning |
| 716 | */ |
| 717 | |
| 718 | void |
| 719 | pmap_map_ptes(struct pmap *pmap, struct pmap **pmap2, |
| 720 | pd_entry_t **ptepp, pd_entry_t * const **pdeppp) |
| 721 | { |
| 722 | struct pmap *curpmap; |
| 723 | struct cpu_info *ci; |
| 724 | lwp_t *l; |
| 725 | |
| 726 | /* The kernel's pmap is always accessible. */ |
| 727 | if (pmap == pmap_kernel()) { |
| 728 | *pmap2 = NULL; |
| 729 | *ptepp = PTE_BASE; |
| 730 | *pdeppp = normal_pdes; |
| 731 | return; |
| 732 | } |
| 733 | KASSERT(kpreempt_disabled()); |
| 734 | |
| 735 | l = curlwp; |
| 736 | retry: |
| 737 | mutex_enter(pmap->pm_lock); |
| 738 | ci = curcpu(); |
| 739 | curpmap = ci->ci_pmap; |
| 740 | if (vm_map_pmap(&l->l_proc->p_vmspace->vm_map) == pmap) { |
| 741 | /* Our own pmap so just load it: easy. */ |
| 742 | if (__predict_false(ci->ci_want_pmapload)) { |
| 743 | mutex_exit(pmap->pm_lock); |
| 744 | pmap_load(); |
| 745 | goto retry; |
| 746 | } |
| 747 | KASSERT(pmap == curpmap); |
| 748 | } else if (pmap == curpmap) { |
| 749 | /* |
| 750 | * Already on the CPU: make it valid. This is very |
| 751 | * often the case during exit(), when we have switched |
| 752 | * to the kernel pmap in order to destroy a user pmap. |
| 753 | */ |
| 754 | if (!pmap_reactivate(pmap)) { |
| 755 | u_int gen = uvm_emap_gen_return(); |
| 756 | tlbflush(); |
| 757 | uvm_emap_update(gen); |
| 758 | } |
| 759 | } else { |
| 760 | /* |
| 761 | * Toss current pmap from CPU, but keep a reference to it. |
| 762 | * The reference will be dropped by pmap_unmap_ptes(). |
| 763 | * Can happen if we block during exit(). |
| 764 | */ |
| 765 | const cpuid_t cid = cpu_index(ci); |
| 766 | |
| 767 | kcpuset_atomic_clear(curpmap->pm_cpus, cid); |
| 768 | kcpuset_atomic_clear(curpmap->pm_kernel_cpus, cid); |
| 769 | ci->ci_pmap = pmap; |
| 770 | ci->ci_tlbstate = TLBSTATE_VALID; |
| 771 | kcpuset_atomic_set(pmap->pm_cpus, cid); |
| 772 | kcpuset_atomic_set(pmap->pm_kernel_cpus, cid); |
| 773 | cpu_load_pmap(pmap, curpmap); |
| 774 | } |
| 775 | pmap->pm_ncsw = l->l_ncsw; |
| 776 | *pmap2 = curpmap; |
| 777 | *ptepp = PTE_BASE; |
| 778 | #if defined(XEN) && defined(__x86_64__) |
| 779 | KASSERT(ci->ci_normal_pdes[PTP_LEVELS - 2] == L4_BASE); |
| 780 | ci->ci_normal_pdes[PTP_LEVELS - 2] = pmap->pm_pdir; |
| 781 | *pdeppp = ci->ci_normal_pdes; |
| 782 | #else /* XEN && __x86_64__ */ |
| 783 | *pdeppp = normal_pdes; |
| 784 | #endif /* XEN && __x86_64__ */ |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * pmap_unmap_ptes: unlock the PTE mapping of "pmap" |
| 789 | */ |
| 790 | |
| 791 | void |
| 792 | pmap_unmap_ptes(struct pmap *pmap, struct pmap *pmap2) |
| 793 | { |
| 794 | struct cpu_info *ci; |
| 795 | struct pmap *mypmap; |
| 796 | |
| 797 | KASSERT(kpreempt_disabled()); |
| 798 | |
| 799 | /* The kernel's pmap is always accessible. */ |
| 800 | if (pmap == pmap_kernel()) { |
| 801 | return; |
| 802 | } |
| 803 | |
| 804 | ci = curcpu(); |
| 805 | #if defined(XEN) && defined(__x86_64__) |
| 806 | /* Reset per-cpu normal_pdes */ |
| 807 | KASSERT(ci->ci_normal_pdes[PTP_LEVELS - 2] != L4_BASE); |
| 808 | ci->ci_normal_pdes[PTP_LEVELS - 2] = L4_BASE; |
| 809 | #endif /* XEN && __x86_64__ */ |
| 810 | /* |
| 811 | * We cannot tolerate context switches while mapped in. |
| 812 | * If it is our own pmap all we have to do is unlock. |
| 813 | */ |
| 814 | KASSERT(pmap->pm_ncsw == curlwp->l_ncsw); |
| 815 | mypmap = vm_map_pmap(&curproc->p_vmspace->vm_map); |
| 816 | if (pmap == mypmap) { |
| 817 | mutex_exit(pmap->pm_lock); |
| 818 | return; |
| 819 | } |
| 820 | |
| 821 | /* |
| 822 | * Mark whatever's on the CPU now as lazy and unlock. |
| 823 | * If the pmap was already installed, we are done. |
| 824 | */ |
| 825 | ci->ci_tlbstate = TLBSTATE_LAZY; |
| 826 | ci->ci_want_pmapload = (mypmap != pmap_kernel()); |
| 827 | mutex_exit(pmap->pm_lock); |
| 828 | if (pmap == pmap2) { |
| 829 | return; |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * We installed another pmap on the CPU. Grab a reference to |
| 834 | * it and leave in place. Toss the evicted pmap (can block). |
| 835 | */ |
| 836 | pmap_reference(pmap); |
| 837 | pmap_destroy(pmap2); |
| 838 | } |
| 839 | |
| 840 | |
| 841 | inline static void |
| 842 | pmap_exec_account(struct pmap *pm, vaddr_t va, pt_entry_t opte, pt_entry_t npte) |
| 843 | { |
| 844 | |
| 845 | #if !defined(__x86_64__) |
| 846 | if (curproc == NULL || curproc->p_vmspace == NULL || |
| 847 | pm != vm_map_pmap(&curproc->p_vmspace->vm_map)) |
| 848 | return; |
| 849 | |
| 850 | if ((opte ^ npte) & PG_X) |
| 851 | pmap_update_pg(va); |
| 852 | |
| 853 | /* |
| 854 | * Executability was removed on the last executable change. |
| 855 | * Reset the code segment to something conservative and |
| 856 | * let the trap handler deal with setting the right limit. |
| 857 | * We can't do that because of locking constraints on the vm map. |
| 858 | */ |
| 859 | |
| 860 | if ((opte & PG_X) && (npte & PG_X) == 0 && va == pm->pm_hiexec) { |
| 861 | struct trapframe *tf = curlwp->l_md.md_regs; |
| 862 | |
| 863 | tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL); |
| 864 | pm->pm_hiexec = I386_MAX_EXE_ADDR; |
| 865 | } |
| 866 | #endif /* !defined(__x86_64__) */ |
| 867 | } |
| 868 | |
| 869 | #if !defined(__x86_64__) |
| 870 | /* |
| 871 | * Fixup the code segment to cover all potential executable mappings. |
| 872 | * returns 0 if no changes to the code segment were made. |
| 873 | */ |
| 874 | |
| 875 | int |
| 876 | pmap_exec_fixup(struct vm_map *map, struct trapframe *tf, struct pcb *pcb) |
| 877 | { |
| 878 | struct vm_map_entry *ent; |
| 879 | struct pmap *pm = vm_map_pmap(map); |
| 880 | vaddr_t va = 0; |
| 881 | |
| 882 | vm_map_lock_read(map); |
| 883 | for (ent = (&map->header)->next; ent != &map->header; ent = ent->next) { |
| 884 | |
| 885 | /* |
| 886 | * This entry has greater va than the entries before. |
| 887 | * We need to make it point to the last page, not past it. |
| 888 | */ |
| 889 | |
| 890 | if (ent->protection & VM_PROT_EXECUTE) |
| 891 | va = trunc_page(ent->end) - PAGE_SIZE; |
| 892 | } |
| 893 | vm_map_unlock_read(map); |
| 894 | if (va == pm->pm_hiexec && tf->tf_cs == GSEL(GUCODEBIG_SEL, SEL_UPL)) |
| 895 | return (0); |
| 896 | |
| 897 | pm->pm_hiexec = va; |
| 898 | if (pm->pm_hiexec > I386_MAX_EXE_ADDR) { |
| 899 | tf->tf_cs = GSEL(GUCODEBIG_SEL, SEL_UPL); |
| 900 | } else { |
| 901 | tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL); |
| 902 | return (0); |
| 903 | } |
| 904 | return (1); |
| 905 | } |
| 906 | #endif /* !defined(__x86_64__) */ |
| 907 | |
| 908 | void |
| 909 | pat_init(struct cpu_info *ci) |
| 910 | { |
| 911 | uint64_t pat; |
| 912 | |
| 913 | if (!(ci->ci_feat_val[0] & CPUID_PAT)) |
| 914 | return; |
| 915 | |
| 916 | /* We change WT to WC. Leave all other entries the default values. */ |
| 917 | pat = PATENTRY(0, PAT_WB) | PATENTRY(1, PAT_WC) | |
| 918 | PATENTRY(2, PAT_UCMINUS) | PATENTRY(3, PAT_UC) | |
| 919 | PATENTRY(4, PAT_WB) | PATENTRY(5, PAT_WC) | |
| 920 | PATENTRY(6, PAT_UCMINUS) | PATENTRY(7, PAT_UC); |
| 921 | |
| 922 | wrmsr(MSR_CR_PAT, pat); |
| 923 | cpu_pat_enabled = true; |
| 924 | aprint_debug_dev(ci->ci_dev, "PAT enabled\n" ); |
| 925 | } |
| 926 | |
| 927 | static pt_entry_t |
| 928 | pmap_pat_flags(u_int flags) |
| 929 | { |
| 930 | u_int cacheflags = (flags & PMAP_CACHE_MASK); |
| 931 | |
| 932 | if (!cpu_pat_enabled) { |
| 933 | switch (cacheflags) { |
| 934 | case PMAP_NOCACHE: |
| 935 | case PMAP_NOCACHE_OVR: |
| 936 | /* results in PGC_UCMINUS on cpus which have |
| 937 | * the cpuid PAT but PAT "disabled" |
| 938 | */ |
| 939 | return PG_N; |
| 940 | default: |
| 941 | return 0; |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | switch (cacheflags) { |
| 946 | case PMAP_NOCACHE: |
| 947 | return PGC_UC; |
| 948 | case PMAP_WRITE_COMBINE: |
| 949 | return PGC_WC; |
| 950 | case PMAP_WRITE_BACK: |
| 951 | return PGC_WB; |
| 952 | case PMAP_NOCACHE_OVR: |
| 953 | return PGC_UCMINUS; |
| 954 | } |
| 955 | |
| 956 | return 0; |
| 957 | } |
| 958 | |
| 959 | /* |
| 960 | * p m a p k e n t e r f u n c t i o n s |
| 961 | * |
| 962 | * functions to quickly enter/remove pages from the kernel address |
| 963 | * space. pmap_kremove is exported to MI kernel. we make use of |
| 964 | * the recursive PTE mappings. |
| 965 | */ |
| 966 | |
| 967 | /* |
| 968 | * pmap_kenter_pa: enter a kernel mapping without R/M (pv_entry) tracking |
| 969 | * |
| 970 | * => no need to lock anything, assume va is already allocated |
| 971 | * => should be faster than normal pmap enter function |
| 972 | */ |
| 973 | |
| 974 | void |
| 975 | pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) |
| 976 | { |
| 977 | pt_entry_t *pte, opte, npte; |
| 978 | |
| 979 | KASSERT(!(prot & ~VM_PROT_ALL)); |
| 980 | |
| 981 | if (va < VM_MIN_KERNEL_ADDRESS) |
| 982 | pte = vtopte(va); |
| 983 | else |
| 984 | pte = kvtopte(va); |
| 985 | #ifdef DOM0OPS |
| 986 | if (pa < pmap_pa_start || pa >= pmap_pa_end) { |
| 987 | #ifdef DEBUG |
| 988 | printf_nolog("%s: pa 0x%" PRIx64 " for va 0x%" PRIx64 |
| 989 | " outside range\n" , __func__, (int64_t)pa, (int64_t)va); |
| 990 | #endif /* DEBUG */ |
| 991 | npte = pa; |
| 992 | } else |
| 993 | #endif /* DOM0OPS */ |
| 994 | npte = pmap_pa2pte(pa); |
| 995 | npte |= protection_codes[prot] | PG_k | PG_V | pmap_pg_g; |
| 996 | npte |= pmap_pat_flags(flags); |
| 997 | opte = pmap_pte_testset(pte, npte); /* zap! */ |
| 998 | #if defined(DIAGNOSTIC) |
| 999 | /* |
| 1000 | * XXX: make sure we are not dealing with a large page, since the only |
| 1001 | * large pages created are for the kernel image, and they should never |
| 1002 | * be kentered. |
| 1003 | */ |
| 1004 | if (opte & PG_PS) |
| 1005 | panic("%s: PG_PS" , __func__); |
| 1006 | #endif |
| 1007 | if ((opte & (PG_V | PG_U)) == (PG_V | PG_U)) { |
| 1008 | /* This should not happen. */ |
| 1009 | printf_nolog("%s: mapping already present\n" , __func__); |
| 1010 | kpreempt_disable(); |
| 1011 | pmap_tlb_shootdown(pmap_kernel(), va, opte, TLBSHOOT_KENTER); |
| 1012 | kpreempt_enable(); |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | void |
| 1017 | pmap_emap_enter(vaddr_t va, paddr_t pa, vm_prot_t prot) |
| 1018 | { |
| 1019 | pt_entry_t *pte, npte; |
| 1020 | |
| 1021 | KASSERT((prot & ~VM_PROT_ALL) == 0); |
| 1022 | pte = (va < VM_MIN_KERNEL_ADDRESS) ? vtopte(va) : kvtopte(va); |
| 1023 | |
| 1024 | #ifdef DOM0OPS |
| 1025 | if (pa < pmap_pa_start || pa >= pmap_pa_end) { |
| 1026 | npte = pa; |
| 1027 | } else |
| 1028 | #endif |
| 1029 | npte = pmap_pa2pte(pa); |
| 1030 | |
| 1031 | npte = pmap_pa2pte(pa); |
| 1032 | npte |= protection_codes[prot] | PG_k | PG_V; |
| 1033 | pmap_pte_set(pte, npte); |
| 1034 | } |
| 1035 | |
| 1036 | /* |
| 1037 | * pmap_emap_sync: perform TLB flush or pmap load, if it was deferred. |
| 1038 | */ |
| 1039 | void |
| 1040 | pmap_emap_sync(bool canload) |
| 1041 | { |
| 1042 | struct cpu_info *ci = curcpu(); |
| 1043 | struct pmap *pmap; |
| 1044 | |
| 1045 | KASSERT(kpreempt_disabled()); |
| 1046 | if (__predict_true(ci->ci_want_pmapload && canload)) { |
| 1047 | /* |
| 1048 | * XXX: Hint for pmap_reactivate(), which might suggest to |
| 1049 | * not perform TLB flush, if state has not changed. |
| 1050 | */ |
| 1051 | pmap = vm_map_pmap(&curlwp->l_proc->p_vmspace->vm_map); |
| 1052 | if (__predict_false(pmap == ci->ci_pmap)) { |
| 1053 | kcpuset_atomic_clear(pmap->pm_cpus, cpu_index(ci)); |
| 1054 | } |
| 1055 | pmap_load(); |
| 1056 | KASSERT(ci->ci_want_pmapload == 0); |
| 1057 | } else { |
| 1058 | tlbflush(); |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | void |
| 1063 | pmap_emap_remove(vaddr_t sva, vsize_t len) |
| 1064 | { |
| 1065 | pt_entry_t *pte; |
| 1066 | vaddr_t va, eva = sva + len; |
| 1067 | |
| 1068 | for (va = sva; va < eva; va += PAGE_SIZE) { |
| 1069 | pte = (va < VM_MIN_KERNEL_ADDRESS) ? vtopte(va) : kvtopte(va); |
| 1070 | pmap_pte_set(pte, 0); |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | __strict_weak_alias(pmap_kenter_ma, pmap_kenter_pa); |
| 1075 | |
| 1076 | #if defined(__x86_64__) |
| 1077 | /* |
| 1078 | * Change protection for a virtual address. Local for a CPU only, don't |
| 1079 | * care about TLB shootdowns. |
| 1080 | * |
| 1081 | * => must be called with preemption disabled |
| 1082 | */ |
| 1083 | void |
| 1084 | pmap_changeprot_local(vaddr_t va, vm_prot_t prot) |
| 1085 | { |
| 1086 | pt_entry_t *pte, opte, npte; |
| 1087 | |
| 1088 | KASSERT(kpreempt_disabled()); |
| 1089 | |
| 1090 | if (va < VM_MIN_KERNEL_ADDRESS) |
| 1091 | pte = vtopte(va); |
| 1092 | else |
| 1093 | pte = kvtopte(va); |
| 1094 | |
| 1095 | npte = opte = *pte; |
| 1096 | |
| 1097 | if ((prot & VM_PROT_WRITE) != 0) |
| 1098 | npte |= PG_RW; |
| 1099 | else |
| 1100 | npte &= ~PG_RW; |
| 1101 | |
| 1102 | if (opte != npte) { |
| 1103 | pmap_pte_set(pte, npte); |
| 1104 | pmap_pte_flush(); |
| 1105 | invlpg(va); |
| 1106 | } |
| 1107 | } |
| 1108 | #endif /* defined(__x86_64__) */ |
| 1109 | |
| 1110 | /* |
| 1111 | * pmap_kremove: remove a kernel mapping(s) without R/M (pv_entry) tracking |
| 1112 | * |
| 1113 | * => no need to lock anything |
| 1114 | * => caller must dispose of any vm_page mapped in the va range |
| 1115 | * => note: not an inline function |
| 1116 | * => we assume the va is page aligned and the len is a multiple of PAGE_SIZE |
| 1117 | * => we assume kernel only unmaps valid addresses and thus don't bother |
| 1118 | * checking the valid bit before doing TLB flushing |
| 1119 | * => must be followed by call to pmap_update() before reuse of page |
| 1120 | */ |
| 1121 | |
| 1122 | static inline void |
| 1123 | pmap_kremove1(vaddr_t sva, vsize_t len, bool localonly) |
| 1124 | { |
| 1125 | pt_entry_t *pte, opte; |
| 1126 | vaddr_t va, eva; |
| 1127 | |
| 1128 | eva = sva + len; |
| 1129 | |
| 1130 | kpreempt_disable(); |
| 1131 | for (va = sva; va < eva; va += PAGE_SIZE) { |
| 1132 | pte = kvtopte(va); |
| 1133 | opte = pmap_pte_testset(pte, 0); /* zap! */ |
| 1134 | if ((opte & (PG_V | PG_U)) == (PG_V | PG_U) && !localonly) { |
| 1135 | pmap_tlb_shootdown(pmap_kernel(), va, opte, |
| 1136 | TLBSHOOT_KREMOVE); |
| 1137 | } |
| 1138 | KASSERT((opte & PG_PS) == 0); |
| 1139 | KASSERT((opte & PG_PVLIST) == 0); |
| 1140 | } |
| 1141 | if (localonly) { |
| 1142 | tlbflushg(); |
| 1143 | } |
| 1144 | kpreempt_enable(); |
| 1145 | } |
| 1146 | |
| 1147 | void |
| 1148 | pmap_kremove(vaddr_t sva, vsize_t len) |
| 1149 | { |
| 1150 | |
| 1151 | pmap_kremove1(sva, len, false); |
| 1152 | } |
| 1153 | |
| 1154 | /* |
| 1155 | * pmap_kremove_local: like pmap_kremove(), but only worry about |
| 1156 | * TLB invalidations on the current CPU. this is only intended |
| 1157 | * for use while writing kernel crash dumps. |
| 1158 | */ |
| 1159 | |
| 1160 | void |
| 1161 | pmap_kremove_local(vaddr_t sva, vsize_t len) |
| 1162 | { |
| 1163 | |
| 1164 | KASSERT(panicstr != NULL); |
| 1165 | pmap_kremove1(sva, len, true); |
| 1166 | } |
| 1167 | |
| 1168 | /* |
| 1169 | * p m a p i n i t f u n c t i o n s |
| 1170 | * |
| 1171 | * pmap_bootstrap and pmap_init are called during system startup |
| 1172 | * to init the pmap module. pmap_bootstrap() does a low level |
| 1173 | * init just to get things rolling. pmap_init() finishes the job. |
| 1174 | */ |
| 1175 | |
| 1176 | /* |
| 1177 | * pmap_bootstrap_valloc: allocate a virtual address in the bootstrap area. |
| 1178 | * This function is to be used before any VM system has been set up. |
| 1179 | * |
| 1180 | * The va is taken from virtual_avail. |
| 1181 | */ |
| 1182 | static vaddr_t |
| 1183 | pmap_bootstrap_valloc(size_t npages) |
| 1184 | { |
| 1185 | vaddr_t va = virtual_avail; |
| 1186 | virtual_avail += npages * PAGE_SIZE; |
| 1187 | return va; |
| 1188 | } |
| 1189 | |
| 1190 | /* |
| 1191 | * pmap_bootstrap_palloc: allocate a physical address in the bootstrap area. |
| 1192 | * This function is to be used before any VM system has been set up. |
| 1193 | * |
| 1194 | * The pa is taken from avail_start. |
| 1195 | */ |
| 1196 | static paddr_t |
| 1197 | pmap_bootstrap_palloc(size_t npages) |
| 1198 | { |
| 1199 | paddr_t pa = avail_start; |
| 1200 | avail_start += npages * PAGE_SIZE; |
| 1201 | return pa; |
| 1202 | } |
| 1203 | |
| 1204 | /* |
| 1205 | * pmap_bootstrap: get the system in a state where it can run with VM properly |
| 1206 | * enabled (called before main()). The VM system is fully init'd later. |
| 1207 | * |
| 1208 | * => on i386, locore.S has already enabled the MMU by allocating a PDP for the |
| 1209 | * kernel, and nkpde PTP's for the kernel. |
| 1210 | * => kva_start is the first free virtual address in kernel space. |
| 1211 | */ |
| 1212 | void |
| 1213 | pmap_bootstrap(vaddr_t kva_start) |
| 1214 | { |
| 1215 | struct pmap *kpm; |
| 1216 | int i; |
| 1217 | vaddr_t kva; |
| 1218 | #ifndef XEN |
| 1219 | unsigned long p1i; |
| 1220 | vaddr_t kva_end; |
| 1221 | #endif |
| 1222 | |
| 1223 | pmap_pg_nx = (cpu_feature[2] & CPUID_NOX ? PG_NX : 0); |
| 1224 | |
| 1225 | /* |
| 1226 | * Set up our local static global vars that keep track of the usage of |
| 1227 | * KVM before kernel_map is set up. |
| 1228 | */ |
| 1229 | virtual_avail = kva_start; /* first free KVA */ |
| 1230 | virtual_end = VM_MAX_KERNEL_ADDRESS; /* last KVA */ |
| 1231 | |
| 1232 | /* |
| 1233 | * Set up protection_codes: we need to be able to convert from a MI |
| 1234 | * protection code (some combo of VM_PROT...) to something we can jam |
| 1235 | * into a x86 PTE. |
| 1236 | */ |
| 1237 | protection_codes[VM_PROT_NONE] = pmap_pg_nx; |
| 1238 | protection_codes[VM_PROT_EXECUTE] = PG_RO | PG_X; |
| 1239 | protection_codes[VM_PROT_READ] = PG_RO | pmap_pg_nx; |
| 1240 | protection_codes[VM_PROT_READ|VM_PROT_EXECUTE] = PG_RO | PG_X; |
| 1241 | protection_codes[VM_PROT_WRITE] = PG_RW | pmap_pg_nx; |
| 1242 | protection_codes[VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW | PG_X; |
| 1243 | protection_codes[VM_PROT_WRITE|VM_PROT_READ] = PG_RW | pmap_pg_nx; |
| 1244 | protection_codes[VM_PROT_ALL] = PG_RW | PG_X; |
| 1245 | |
| 1246 | /* |
| 1247 | * Now we init the kernel's pmap. |
| 1248 | * |
| 1249 | * The kernel pmap's pm_obj is not used for much. However, in user pmaps |
| 1250 | * the pm_obj contains the list of active PTPs. |
| 1251 | * |
| 1252 | * The pm_obj currently does not have a pager. It might be possible to |
| 1253 | * add a pager that would allow a process to read-only mmap its own page |
| 1254 | * tables (fast user-level vtophys?). This may or may not be useful. |
| 1255 | */ |
| 1256 | kpm = pmap_kernel(); |
| 1257 | for (i = 0; i < PTP_LEVELS - 1; i++) { |
| 1258 | mutex_init(&kpm->pm_obj_lock[i], MUTEX_DEFAULT, IPL_NONE); |
| 1259 | uvm_obj_init(&kpm->pm_obj[i], NULL, false, 1); |
| 1260 | uvm_obj_setlock(&kpm->pm_obj[i], &kpm->pm_obj_lock[i]); |
| 1261 | kpm->pm_ptphint[i] = NULL; |
| 1262 | } |
| 1263 | memset(&kpm->pm_list, 0, sizeof(kpm->pm_list)); /* pm_list not used */ |
| 1264 | |
| 1265 | kpm->pm_pdir = (pd_entry_t *)(PDPpaddr + KERNBASE); |
| 1266 | for (i = 0; i < PDP_SIZE; i++) |
| 1267 | kpm->pm_pdirpa[i] = PDPpaddr + PAGE_SIZE * i; |
| 1268 | |
| 1269 | kpm->pm_stats.wired_count = kpm->pm_stats.resident_count = |
| 1270 | x86_btop(kva_start - VM_MIN_KERNEL_ADDRESS); |
| 1271 | |
| 1272 | kcpuset_create(&kpm->pm_cpus, true); |
| 1273 | kcpuset_create(&kpm->pm_kernel_cpus, true); |
| 1274 | |
| 1275 | /* |
| 1276 | * the above is just a rough estimate and not critical to the proper |
| 1277 | * operation of the system. |
| 1278 | */ |
| 1279 | |
| 1280 | #ifndef XEN |
| 1281 | /* |
| 1282 | * Begin to enable global TLB entries if they are supported. |
| 1283 | * The G bit has no effect until the CR4_PGE bit is set in CR4, |
| 1284 | * which happens in cpu_init(), which is run on each cpu |
| 1285 | * (and happens later) |
| 1286 | */ |
| 1287 | if (cpu_feature[0] & CPUID_PGE) { |
| 1288 | pmap_pg_g = PG_G; /* enable software */ |
| 1289 | |
| 1290 | /* add PG_G attribute to already mapped kernel pages */ |
| 1291 | |
| 1292 | if (KERNBASE == VM_MIN_KERNEL_ADDRESS) { |
| 1293 | /* i386 only */ |
| 1294 | kva_end = virtual_avail; |
| 1295 | } else { |
| 1296 | /* amd64 only */ |
| 1297 | extern vaddr_t kern_end; |
| 1298 | kva_end = kern_end; |
| 1299 | } |
| 1300 | |
| 1301 | for (kva = KERNBASE; kva < kva_end; kva += PAGE_SIZE) { |
| 1302 | p1i = pl1_i(kva); |
| 1303 | if (pmap_valid_entry(PTE_BASE[p1i])) |
| 1304 | PTE_BASE[p1i] |= PG_G; |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * Enable large pages if they are supported. |
| 1310 | */ |
| 1311 | if (cpu_feature[0] & CPUID_PSE) { |
| 1312 | lcr4(rcr4() | CR4_PSE); /* enable hardware (via %cr4) */ |
| 1313 | pmap_largepages = 1; /* enable software */ |
| 1314 | |
| 1315 | /* |
| 1316 | * The TLB must be flushed after enabling large pages on Pentium |
| 1317 | * CPUs, according to section 3.6.2.2 of "Intel Architecture |
| 1318 | * Software Developer's Manual, Volume 3: System Programming". |
| 1319 | */ |
| 1320 | tlbflushg(); |
| 1321 | |
| 1322 | /* Remap the kernel. */ |
| 1323 | pmap_remap_largepages(); |
| 1324 | } |
| 1325 | #endif /* !XEN */ |
| 1326 | |
| 1327 | #ifdef __HAVE_DIRECT_MAP |
| 1328 | pmap_init_directmap(kpm); |
| 1329 | #else |
| 1330 | if (VM_MIN_KERNEL_ADDRESS != KERNBASE) { |
| 1331 | /* |
| 1332 | * zero_pte is stuck at the end of mapped space for the kernel |
| 1333 | * image (disjunct from kva space). This is done so that it |
| 1334 | * can safely be used in pmap_growkernel (pmap_get_physpage), |
| 1335 | * when it's called for the first time. |
| 1336 | * XXXfvdl fix this for MULTIPROCESSOR later. |
| 1337 | */ |
| 1338 | #ifdef XEN |
| 1339 | /* early_zerop initialized in xen_locore() */ |
| 1340 | #else |
| 1341 | early_zerop = (void *)(KERNBASE + NKL2_KIMG_ENTRIES * NBPD_L2); |
| 1342 | #endif |
| 1343 | early_zero_pte = PTE_BASE + pl1_i((vaddr_t)early_zerop); |
| 1344 | } |
| 1345 | |
| 1346 | /* |
| 1347 | * Now we allocate the "special" VAs which are used for tmp mappings |
| 1348 | * by the pmap (and other modules). We allocate the VAs by advancing |
| 1349 | * virtual_avail (note that there are no pages mapped at these VAs). |
| 1350 | * we find the PTE that maps the allocated VA via the linear PTE |
| 1351 | * mapping. |
| 1352 | */ |
| 1353 | |
| 1354 | pt_entry_t *pte = PTE_BASE + pl1_i(virtual_avail); |
| 1355 | |
| 1356 | #ifdef MULTIPROCESSOR |
| 1357 | /* |
| 1358 | * Waste some VA space to avoid false sharing of cache lines |
| 1359 | * for page table pages: Give each possible CPU a cache line |
| 1360 | * of PTE's (8) to play with, though we only need 4. We could |
| 1361 | * recycle some of this waste by putting the idle stacks here |
| 1362 | * as well; we could waste less space if we knew the largest |
| 1363 | * CPU ID beforehand. |
| 1364 | */ |
| 1365 | csrcp = (char *) virtual_avail; csrc_pte = pte; |
| 1366 | |
| 1367 | cdstp = (char *) virtual_avail+PAGE_SIZE; cdst_pte = pte+1; |
| 1368 | |
| 1369 | zerop = (char *) virtual_avail+PAGE_SIZE*2; zero_pte = pte+2; |
| 1370 | |
| 1371 | ptpp = (char *) virtual_avail+PAGE_SIZE*3; ptp_pte = pte+3; |
| 1372 | |
| 1373 | virtual_avail += PAGE_SIZE * maxcpus * NPTECL; |
| 1374 | pte += maxcpus * NPTECL; |
| 1375 | #else |
| 1376 | csrcp = (void *) virtual_avail; csrc_pte = pte; /* allocate */ |
| 1377 | virtual_avail += PAGE_SIZE; pte++; /* advance */ |
| 1378 | |
| 1379 | cdstp = (void *) virtual_avail; cdst_pte = pte; |
| 1380 | virtual_avail += PAGE_SIZE; pte++; |
| 1381 | |
| 1382 | zerop = (void *) virtual_avail; zero_pte = pte; |
| 1383 | virtual_avail += PAGE_SIZE; pte++; |
| 1384 | |
| 1385 | ptpp = (void *) virtual_avail; ptp_pte = pte; |
| 1386 | virtual_avail += PAGE_SIZE; pte++; |
| 1387 | #endif |
| 1388 | |
| 1389 | if (VM_MIN_KERNEL_ADDRESS == KERNBASE) { |
| 1390 | early_zerop = zerop; |
| 1391 | early_zero_pte = zero_pte; |
| 1392 | } |
| 1393 | #endif |
| 1394 | |
| 1395 | #if defined(XEN) && defined(__x86_64__) |
| 1396 | /* |
| 1397 | * We want a dummy page directory for Xen: when deactivating a pmap, Xen |
| 1398 | * will still consider it active. So we set user PGD to this one to lift |
| 1399 | * all protection on the now inactive page tables set. |
| 1400 | */ |
| 1401 | xen_dummy_user_pgd = pmap_bootstrap_palloc(1); |
| 1402 | |
| 1403 | /* Zero fill it, the less checks in Xen it requires the better */ |
| 1404 | memset((void *) (xen_dummy_user_pgd + KERNBASE), 0, PAGE_SIZE); |
| 1405 | /* Mark read-only */ |
| 1406 | HYPERVISOR_update_va_mapping(xen_dummy_user_pgd + KERNBASE, |
| 1407 | pmap_pa2pte(xen_dummy_user_pgd) | PG_u | PG_V, UVMF_INVLPG); |
| 1408 | /* Pin as L4 */ |
| 1409 | xpq_queue_pin_l4_table(xpmap_ptom_masked(xen_dummy_user_pgd)); |
| 1410 | #endif |
| 1411 | |
| 1412 | /* |
| 1413 | * Allocate space for the IDT, GDT and LDT. |
| 1414 | */ |
| 1415 | idt_vaddr = pmap_bootstrap_valloc(1); |
| 1416 | idt_paddr = pmap_bootstrap_palloc(1); |
| 1417 | |
| 1418 | gdt_vaddr = pmap_bootstrap_valloc(1); |
| 1419 | gdt_paddr = pmap_bootstrap_palloc(1); |
| 1420 | |
| 1421 | ldt_vaddr = pmap_bootstrap_valloc(1); |
| 1422 | ldt_paddr = pmap_bootstrap_palloc(1); |
| 1423 | |
| 1424 | #if !defined(__x86_64__) && !defined(XEN) |
| 1425 | /* pentium f00f bug stuff */ |
| 1426 | pentium_idt_vaddr = pmap_bootstrap_valloc(1); |
| 1427 | #endif |
| 1428 | |
| 1429 | /* |
| 1430 | * Now we reserve some VM for mapping pages when doing a crash dump. |
| 1431 | */ |
| 1432 | virtual_avail = reserve_dumppages(virtual_avail); |
| 1433 | |
| 1434 | /* |
| 1435 | * Init the static-global locks and global lists. |
| 1436 | * |
| 1437 | * => pventry::pvh_lock (initialized elsewhere) must also be |
| 1438 | * a spin lock, again at IPL_VM to prevent deadlock, and |
| 1439 | * again is never taken from interrupt context. |
| 1440 | */ |
| 1441 | mutex_init(&pmaps_lock, MUTEX_DEFAULT, IPL_NONE); |
| 1442 | LIST_INIT(&pmaps); |
| 1443 | |
| 1444 | /* |
| 1445 | * Ensure the TLB is sync'd with reality by flushing it... |
| 1446 | */ |
| 1447 | tlbflushg(); |
| 1448 | |
| 1449 | /* |
| 1450 | * Calculate pmap_maxkvaddr from nkptp[]. |
| 1451 | */ |
| 1452 | kva = VM_MIN_KERNEL_ADDRESS; |
| 1453 | for (i = PTP_LEVELS - 1; i >= 1; i--) { |
| 1454 | kva += nkptp[i] * nbpd[i]; |
| 1455 | } |
| 1456 | pmap_maxkvaddr = kva; |
| 1457 | } |
| 1458 | |
| 1459 | #ifdef __HAVE_DIRECT_MAP |
| 1460 | /* |
| 1461 | * Create the amd64 direct map. Called only once at boot time. |
| 1462 | */ |
| 1463 | static void |
| 1464 | pmap_init_directmap(struct pmap *kpm) |
| 1465 | { |
| 1466 | extern phys_ram_seg_t mem_clusters[]; |
| 1467 | extern int mem_cluster_cnt; |
| 1468 | |
| 1469 | paddr_t lastpa, dm_pd, dm_pdp, pdp; |
| 1470 | vaddr_t tmpva; |
| 1471 | pt_entry_t *pte; |
| 1472 | pd_entry_t *pde; |
| 1473 | phys_ram_seg_t *mc; |
| 1474 | long n_dm_pdp; |
| 1475 | int i; |
| 1476 | |
| 1477 | const pd_entry_t pteflags = PG_V | PG_KW | pmap_pg_nx; |
| 1478 | |
| 1479 | /* Get the last physical address available */ |
| 1480 | lastpa = 0; |
| 1481 | for (i = 0; i < mem_cluster_cnt; i++) { |
| 1482 | mc = &mem_clusters[i]; |
| 1483 | lastpa = MAX(lastpa, mc->start + mc->size); |
| 1484 | } |
| 1485 | |
| 1486 | /* |
| 1487 | * We allocate only one L4 entry for the direct map (PDIR_SLOT_DIRECT), |
| 1488 | * so we cannot map more than 512GB. |
| 1489 | */ |
| 1490 | if (lastpa > NBPD_L4) { |
| 1491 | panic("RAM limit reached: > 512GB not supported" ); |
| 1492 | } |
| 1493 | |
| 1494 | /* Allocate L3. */ |
| 1495 | dm_pdp = pmap_bootstrap_palloc(1); |
| 1496 | |
| 1497 | /* Number of L3 entries. */ |
| 1498 | n_dm_pdp = (lastpa + NBPD_L3 - 1) >> L3_SHIFT; |
| 1499 | |
| 1500 | /* In locore.S, we allocated a tmp va. Use it now. */ |
| 1501 | tmpva = (KERNBASE + NKL2_KIMG_ENTRIES * NBPD_L2); |
| 1502 | pte = PTE_BASE + pl1_i(tmpva); |
| 1503 | *pte = dm_pdp | pteflags; |
| 1504 | pmap_update_pg(tmpva); |
| 1505 | memset((void *)tmpva, 0, PAGE_SIZE); |
| 1506 | |
| 1507 | /* |
| 1508 | * Map the direct map RW. Use super pages (1GB) or large pages (2MB) if |
| 1509 | * they are supported. Note: PG_G is not allowed on non-leaf PTPs. |
| 1510 | */ |
| 1511 | if (cpu_feature[2] & CPUID_P1GB) { |
| 1512 | /* Super pages are supported. Just create L3. */ |
| 1513 | for (i = 0; i < n_dm_pdp; i++) { |
| 1514 | pdp = (paddr_t)&(((pd_entry_t *)dm_pdp)[i]); |
| 1515 | *pte = (pdp & PG_FRAME) | pteflags; |
| 1516 | pmap_update_pg(tmpva); |
| 1517 | |
| 1518 | pde = (pd_entry_t *)(tmpva + (pdp & ~PG_FRAME)); |
| 1519 | *pde = ((paddr_t)i << L3_SHIFT) | pteflags | PG_U | |
| 1520 | PG_PS | PG_G; |
| 1521 | } |
| 1522 | } else { |
| 1523 | /* Allocate L2. */ |
| 1524 | dm_pd = pmap_bootstrap_palloc(n_dm_pdp); |
| 1525 | |
| 1526 | /* Zero out the L2 pages. */ |
| 1527 | for (i = 0; i < n_dm_pdp; i++) { |
| 1528 | pdp = dm_pd + i * PAGE_SIZE; |
| 1529 | *pte = (pdp & PG_FRAME) | pteflags; |
| 1530 | pmap_update_pg(tmpva); |
| 1531 | |
| 1532 | memset((void *)tmpva, 0, PAGE_SIZE); |
| 1533 | } |
| 1534 | |
| 1535 | KASSERT(pmap_largepages != 0); |
| 1536 | |
| 1537 | /* Large pages are supported. Just create L2. */ |
| 1538 | for (i = 0; i < NPDPG * n_dm_pdp; i++) { |
| 1539 | pdp = (paddr_t)&(((pd_entry_t *)dm_pd)[i]); |
| 1540 | *pte = (pdp & PG_FRAME) | pteflags; |
| 1541 | pmap_update_pg(tmpva); |
| 1542 | |
| 1543 | pde = (pd_entry_t *)(tmpva + (pdp & ~PG_FRAME)); |
| 1544 | *pde = ((paddr_t)i << L2_SHIFT) | pteflags | |
| 1545 | PG_U | PG_PS | PG_G; |
| 1546 | } |
| 1547 | |
| 1548 | /* Fill in the L3 entries, linked to L2. */ |
| 1549 | for (i = 0; i < n_dm_pdp; i++) { |
| 1550 | pdp = (paddr_t)&(((pd_entry_t *)dm_pdp)[i]); |
| 1551 | *pte = (pdp & PG_FRAME) | pteflags; |
| 1552 | pmap_update_pg(tmpva); |
| 1553 | |
| 1554 | pde = (pd_entry_t *)(tmpva + (pdp & ~PG_FRAME)); |
| 1555 | *pde = (dm_pd + (i << PAGE_SHIFT)) | pteflags | PG_U; |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | kpm->pm_pdir[PDIR_SLOT_DIRECT] = dm_pdp | pteflags | PG_U; |
| 1560 | |
| 1561 | *pte = 0; |
| 1562 | pmap_update_pg(tmpva); |
| 1563 | |
| 1564 | tlbflush(); |
| 1565 | } |
| 1566 | #endif /* __HAVE_DIRECT_MAP */ |
| 1567 | |
| 1568 | #ifndef XEN |
| 1569 | /* |
| 1570 | * Remap several kernel segments with large pages. We cover as many pages as we |
| 1571 | * can. Called only once at boot time, if the CPU supports large pages. |
| 1572 | */ |
| 1573 | static void |
| 1574 | pmap_remap_largepages(void) |
| 1575 | { |
| 1576 | extern char __rodata_start; |
| 1577 | extern char __data_start; |
| 1578 | extern char __kernel_end; |
| 1579 | pd_entry_t *pde; |
| 1580 | vaddr_t kva, kva_end; |
| 1581 | paddr_t pa; |
| 1582 | |
| 1583 | /* Remap the kernel text using large pages. */ |
| 1584 | kva = KERNBASE; |
| 1585 | kva_end = rounddown((vaddr_t)&__rodata_start, NBPD_L1); |
| 1586 | pa = kva - KERNBASE; |
| 1587 | for (/* */; kva + NBPD_L2 <= kva_end; kva += NBPD_L2, pa += NBPD_L2) { |
| 1588 | pde = &L2_BASE[pl2_i(kva)]; |
| 1589 | *pde = pa | pmap_pg_g | PG_PS | PG_KR | PG_V; |
| 1590 | tlbflushg(); |
| 1591 | } |
| 1592 | #if defined(DEBUG) |
| 1593 | aprint_normal("kernel text is mapped with %" PRIuPSIZE " large " |
| 1594 | "pages and %" PRIuPSIZE " normal pages\n" , |
| 1595 | howmany(kva - KERNBASE, NBPD_L2), |
| 1596 | howmany((vaddr_t)&__rodata_start - kva, NBPD_L1)); |
| 1597 | #endif /* defined(DEBUG) */ |
| 1598 | |
| 1599 | /* Remap the kernel rodata using large pages. */ |
| 1600 | kva = roundup((vaddr_t)&__rodata_start, NBPD_L2); |
| 1601 | kva_end = rounddown((vaddr_t)&__data_start, NBPD_L1); |
| 1602 | pa = kva - KERNBASE; |
| 1603 | for (/* */; kva + NBPD_L2 <= kva_end; kva += NBPD_L2, pa += NBPD_L2) { |
| 1604 | pde = &L2_BASE[pl2_i(kva)]; |
| 1605 | *pde = pa | pmap_pg_g | PG_PS | pmap_pg_nx | PG_KR | PG_V; |
| 1606 | tlbflushg(); |
| 1607 | } |
| 1608 | |
| 1609 | /* Remap the kernel data+bss using large pages. */ |
| 1610 | /* |
| 1611 | * XXX: we need to make sure the first page (PAGE_SIZE) of .data is not |
| 1612 | * mapped with a large page. As bizarre as it might seem, this first |
| 1613 | * page is used as the VA for the LAPIC page. |
| 1614 | */ |
| 1615 | kva = roundup((vaddr_t)&__data_start+PAGE_SIZE, NBPD_L2); |
| 1616 | kva_end = rounddown((vaddr_t)&__kernel_end, NBPD_L1); |
| 1617 | pa = kva - KERNBASE; |
| 1618 | for (/* */; kva + NBPD_L2 <= kva_end; kva += NBPD_L2, pa += NBPD_L2) { |
| 1619 | pde = &L2_BASE[pl2_i(kva)]; |
| 1620 | *pde = pa | pmap_pg_g | PG_PS | pmap_pg_nx | PG_KW | PG_V; |
| 1621 | tlbflushg(); |
| 1622 | } |
| 1623 | } |
| 1624 | #endif /* !XEN */ |
| 1625 | |
| 1626 | /* |
| 1627 | * pmap_init: called from uvm_init, our job is to get the pmap |
| 1628 | * system ready to manage mappings... |
| 1629 | */ |
| 1630 | |
| 1631 | void |
| 1632 | pmap_init(void) |
| 1633 | { |
| 1634 | int i, flags; |
| 1635 | |
| 1636 | for (i = 0; i < PV_HASH_SIZE; i++) { |
| 1637 | SLIST_INIT(&pv_hash_heads[i].hh_list); |
| 1638 | } |
| 1639 | for (i = 0; i < PV_HASH_LOCK_CNT; i++) { |
| 1640 | mutex_init(&pv_hash_locks[i].lock, MUTEX_NODEBUG, IPL_VM); |
| 1641 | } |
| 1642 | |
| 1643 | /* |
| 1644 | * initialize caches. |
| 1645 | */ |
| 1646 | |
| 1647 | pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0, |
| 1648 | "pmappl" , NULL, IPL_NONE, NULL, NULL, NULL); |
| 1649 | |
| 1650 | #ifdef XEN |
| 1651 | /* |
| 1652 | * pool_cache(9) should not touch cached objects, since they |
| 1653 | * are pinned on xen and R/O for the domU |
| 1654 | */ |
| 1655 | flags = PR_NOTOUCH; |
| 1656 | #else /* XEN */ |
| 1657 | flags = 0; |
| 1658 | #endif /* XEN */ |
| 1659 | #ifdef PAE |
| 1660 | pool_cache_bootstrap(&pmap_pdp_cache, PAGE_SIZE * PDP_SIZE, 0, 0, flags, |
| 1661 | "pdppl" , &pmap_pdp_allocator, IPL_NONE, |
| 1662 | pmap_pdp_ctor, pmap_pdp_dtor, NULL); |
| 1663 | #else /* PAE */ |
| 1664 | pool_cache_bootstrap(&pmap_pdp_cache, PAGE_SIZE, 0, 0, flags, |
| 1665 | "pdppl" , NULL, IPL_NONE, pmap_pdp_ctor, pmap_pdp_dtor, NULL); |
| 1666 | #endif /* PAE */ |
| 1667 | pool_cache_bootstrap(&pmap_pv_cache, sizeof(struct pv_entry), 0, 0, |
| 1668 | PR_LARGECACHE, "pvpl" , &pool_allocator_kmem, IPL_NONE, NULL, |
| 1669 | NULL, NULL); |
| 1670 | |
| 1671 | pmap_tlb_init(); |
| 1672 | |
| 1673 | /* XXX: Since cpu_hatch() is only for secondary CPUs. */ |
| 1674 | pmap_tlb_cpu_init(curcpu()); |
| 1675 | |
| 1676 | evcnt_attach_dynamic(&pmap_iobmp_evcnt, EVCNT_TYPE_MISC, |
| 1677 | NULL, "x86" , "io bitmap copy" ); |
| 1678 | evcnt_attach_dynamic(&pmap_ldt_evcnt, EVCNT_TYPE_MISC, |
| 1679 | NULL, "x86" , "ldt sync" ); |
| 1680 | |
| 1681 | /* |
| 1682 | * done: pmap module is up (and ready for business) |
| 1683 | */ |
| 1684 | |
| 1685 | pmap_initialized = true; |
| 1686 | } |
| 1687 | |
| 1688 | /* |
| 1689 | * pmap_cpu_init_late: perform late per-CPU initialization. |
| 1690 | */ |
| 1691 | |
| 1692 | #ifndef XEN |
| 1693 | void |
| 1694 | pmap_cpu_init_late(struct cpu_info *ci) |
| 1695 | { |
| 1696 | /* |
| 1697 | * The BP has already its own PD page allocated during early |
| 1698 | * MD startup. |
| 1699 | */ |
| 1700 | if (ci == &cpu_info_primary) |
| 1701 | return; |
| 1702 | |
| 1703 | #ifdef PAE |
| 1704 | cpu_alloc_l3_page(ci); |
| 1705 | #endif |
| 1706 | } |
| 1707 | #endif |
| 1708 | |
| 1709 | /* |
| 1710 | * p v _ e n t r y f u n c t i o n s |
| 1711 | */ |
| 1712 | |
| 1713 | /* |
| 1714 | * pmap_free_pvs: free a list of pv_entrys |
| 1715 | */ |
| 1716 | |
| 1717 | static void |
| 1718 | pmap_free_pvs(struct pv_entry *pve) |
| 1719 | { |
| 1720 | struct pv_entry *next; |
| 1721 | |
| 1722 | for ( /* null */ ; pve != NULL ; pve = next) { |
| 1723 | next = pve->pve_next; |
| 1724 | pool_cache_put(&pmap_pv_cache, pve); |
| 1725 | } |
| 1726 | } |
| 1727 | |
| 1728 | /* |
| 1729 | * main pv_entry manipulation functions: |
| 1730 | * pmap_enter_pv: enter a mapping onto a pv_head list |
| 1731 | * pmap_remove_pv: remove a mapping from a pv_head list |
| 1732 | * |
| 1733 | * NOTE: Both pmap_enter_pv and pmap_remove_pv expect the caller to lock |
| 1734 | * the pvh before calling |
| 1735 | */ |
| 1736 | |
| 1737 | /* |
| 1738 | * insert_pv: a helper of pmap_enter_pv |
| 1739 | */ |
| 1740 | |
| 1741 | static void |
| 1742 | insert_pv(struct pmap_page *pp, struct pv_entry *pve) |
| 1743 | { |
| 1744 | struct pv_hash_head *hh; |
| 1745 | kmutex_t *lock; |
| 1746 | u_int hash; |
| 1747 | |
| 1748 | hash = pvhash_hash(pve->pve_pte.pte_ptp, pve->pve_pte.pte_va); |
| 1749 | lock = pvhash_lock(hash); |
| 1750 | hh = pvhash_head(hash); |
| 1751 | mutex_spin_enter(lock); |
| 1752 | SLIST_INSERT_HEAD(&hh->hh_list, pve, pve_hash); |
| 1753 | mutex_spin_exit(lock); |
| 1754 | |
| 1755 | LIST_INSERT_HEAD(&pp->pp_head.pvh_list, pve, pve_list); |
| 1756 | } |
| 1757 | |
| 1758 | /* |
| 1759 | * pmap_enter_pv: enter a mapping onto a pv_head lst |
| 1760 | * |
| 1761 | * => caller should adjust ptp's wire_count before calling |
| 1762 | * => caller has preallocated pve and *sparepve for us |
| 1763 | */ |
| 1764 | |
| 1765 | static struct pv_entry * |
| 1766 | pmap_enter_pv(struct pmap_page *pp, struct pv_entry *pve, |
| 1767 | struct pv_entry **sparepve, struct vm_page *ptp, vaddr_t va) |
| 1768 | { |
| 1769 | |
| 1770 | KASSERT(ptp == NULL || ptp->wire_count >= 2); |
| 1771 | KASSERT(ptp == NULL || ptp->uobject != NULL); |
| 1772 | KASSERT(ptp == NULL || ptp_va2o(va, 1) == ptp->offset); |
| 1773 | |
| 1774 | if ((pp->pp_flags & PP_EMBEDDED) == 0) { |
| 1775 | if (LIST_EMPTY(&pp->pp_head.pvh_list)) { |
| 1776 | pp->pp_flags |= PP_EMBEDDED; |
| 1777 | pp->pp_pte.pte_ptp = ptp; |
| 1778 | pp->pp_pte.pte_va = va; |
| 1779 | |
| 1780 | return pve; |
| 1781 | } |
| 1782 | } else { |
| 1783 | struct pv_entry *pve2; |
| 1784 | |
| 1785 | pve2 = *sparepve; |
| 1786 | *sparepve = NULL; |
| 1787 | |
| 1788 | pve2->pve_pte = pp->pp_pte; |
| 1789 | pp->pp_flags &= ~PP_EMBEDDED; |
| 1790 | LIST_INIT(&pp->pp_head.pvh_list); |
| 1791 | insert_pv(pp, pve2); |
| 1792 | } |
| 1793 | |
| 1794 | pve->pve_pte.pte_ptp = ptp; |
| 1795 | pve->pve_pte.pte_va = va; |
| 1796 | insert_pv(pp, pve); |
| 1797 | |
| 1798 | return NULL; |
| 1799 | } |
| 1800 | |
| 1801 | /* |
| 1802 | * pmap_remove_pv: try to remove a mapping from a pv_list |
| 1803 | * |
| 1804 | * => caller should adjust ptp's wire_count and free PTP if needed |
| 1805 | * => we return the removed pve |
| 1806 | */ |
| 1807 | |
| 1808 | static struct pv_entry * |
| 1809 | pmap_remove_pv(struct pmap_page *pp, struct vm_page *ptp, vaddr_t va) |
| 1810 | { |
| 1811 | struct pv_hash_head *hh; |
| 1812 | struct pv_entry *pve; |
| 1813 | kmutex_t *lock; |
| 1814 | u_int hash; |
| 1815 | |
| 1816 | KASSERT(ptp == NULL || ptp->uobject != NULL); |
| 1817 | KASSERT(ptp == NULL || ptp_va2o(va, 1) == ptp->offset); |
| 1818 | |
| 1819 | if ((pp->pp_flags & PP_EMBEDDED) != 0) { |
| 1820 | KASSERT(pp->pp_pte.pte_ptp == ptp); |
| 1821 | KASSERT(pp->pp_pte.pte_va == va); |
| 1822 | |
| 1823 | pp->pp_flags &= ~PP_EMBEDDED; |
| 1824 | LIST_INIT(&pp->pp_head.pvh_list); |
| 1825 | |
| 1826 | return NULL; |
| 1827 | } |
| 1828 | |
| 1829 | hash = pvhash_hash(ptp, va); |
| 1830 | lock = pvhash_lock(hash); |
| 1831 | hh = pvhash_head(hash); |
| 1832 | mutex_spin_enter(lock); |
| 1833 | pve = pvhash_remove(hh, ptp, va); |
| 1834 | mutex_spin_exit(lock); |
| 1835 | |
| 1836 | LIST_REMOVE(pve, pve_list); |
| 1837 | |
| 1838 | return pve; |
| 1839 | } |
| 1840 | |
| 1841 | /* |
| 1842 | * p t p f u n c t i o n s |
| 1843 | */ |
| 1844 | |
| 1845 | static inline struct vm_page * |
| 1846 | pmap_find_ptp(struct pmap *pmap, vaddr_t va, paddr_t pa, int level) |
| 1847 | { |
| 1848 | int lidx = level - 1; |
| 1849 | struct vm_page *pg; |
| 1850 | |
| 1851 | KASSERT(mutex_owned(pmap->pm_lock)); |
| 1852 | |
| 1853 | if (pa != (paddr_t)-1 && pmap->pm_ptphint[lidx] && |
| 1854 | pa == VM_PAGE_TO_PHYS(pmap->pm_ptphint[lidx])) { |
| 1855 | return (pmap->pm_ptphint[lidx]); |
| 1856 | } |
| 1857 | PMAP_SUBOBJ_LOCK(pmap, lidx); |
| 1858 | pg = uvm_pagelookup(&pmap->pm_obj[lidx], ptp_va2o(va, level)); |
| 1859 | PMAP_SUBOBJ_UNLOCK(pmap, lidx); |
| 1860 | |
| 1861 | KASSERT(pg == NULL || pg->wire_count >= 1); |
| 1862 | return pg; |
| 1863 | } |
| 1864 | |
| 1865 | static inline void |
| 1866 | pmap_freepage(struct pmap *pmap, struct vm_page *ptp, int level) |
| 1867 | { |
| 1868 | lwp_t *l; |
| 1869 | int lidx; |
| 1870 | struct uvm_object *obj; |
| 1871 | |
| 1872 | KASSERT(ptp->wire_count == 1); |
| 1873 | |
| 1874 | lidx = level - 1; |
| 1875 | |
| 1876 | obj = &pmap->pm_obj[lidx]; |
| 1877 | pmap_stats_update(pmap, -1, 0); |
| 1878 | if (lidx != 0) |
| 1879 | mutex_enter(obj->vmobjlock); |
| 1880 | if (pmap->pm_ptphint[lidx] == ptp) |
| 1881 | pmap->pm_ptphint[lidx] = TAILQ_FIRST(&obj->memq); |
| 1882 | ptp->wire_count = 0; |
| 1883 | uvm_pagerealloc(ptp, NULL, 0); |
| 1884 | l = curlwp; |
| 1885 | KASSERT((l->l_pflag & LP_INTR) == 0); |
| 1886 | VM_PAGE_TO_PP(ptp)->pp_link = l->l_md.md_gc_ptp; |
| 1887 | l->l_md.md_gc_ptp = ptp; |
| 1888 | if (lidx != 0) |
| 1889 | mutex_exit(obj->vmobjlock); |
| 1890 | } |
| 1891 | |
| 1892 | static void |
| 1893 | pmap_free_ptp(struct pmap *pmap, struct vm_page *ptp, vaddr_t va, |
| 1894 | pt_entry_t *ptes, pd_entry_t * const *pdes) |
| 1895 | { |
| 1896 | unsigned long index; |
| 1897 | int level; |
| 1898 | vaddr_t invaladdr; |
| 1899 | pd_entry_t opde; |
| 1900 | |
| 1901 | KASSERT(pmap != pmap_kernel()); |
| 1902 | KASSERT(mutex_owned(pmap->pm_lock)); |
| 1903 | KASSERT(kpreempt_disabled()); |
| 1904 | |
| 1905 | level = 1; |
| 1906 | do { |
| 1907 | index = pl_i(va, level + 1); |
| 1908 | opde = pmap_pte_testset(&pdes[level - 1][index], 0); |
| 1909 | #if defined(XEN) |
| 1910 | # if defined(__x86_64__) |
| 1911 | /* |
| 1912 | * If ptp is a L3 currently mapped in kernel space, |
| 1913 | * on any cpu, clear it before freeing |
| 1914 | */ |
| 1915 | if (level == PTP_LEVELS - 1) { |
| 1916 | /* |
| 1917 | * Update the per-cpu PD on all cpus the current |
| 1918 | * pmap is active on |
| 1919 | */ |
| 1920 | xen_kpm_sync(pmap, index); |
| 1921 | } |
| 1922 | # endif /*__x86_64__ */ |
| 1923 | invaladdr = level == 1 ? (vaddr_t)ptes : |
| 1924 | (vaddr_t)pdes[level - 2]; |
| 1925 | pmap_tlb_shootdown(pmap, invaladdr + index * PAGE_SIZE, |
| 1926 | opde, TLBSHOOT_FREE_PTP1); |
| 1927 | pmap_tlb_shootnow(); |
| 1928 | #else /* XEN */ |
| 1929 | invaladdr = level == 1 ? (vaddr_t)ptes : |
| 1930 | (vaddr_t)pdes[level - 2]; |
| 1931 | pmap_tlb_shootdown(pmap, invaladdr + index * PAGE_SIZE, |
| 1932 | opde, TLBSHOOT_FREE_PTP1); |
| 1933 | #endif /* XEN */ |
| 1934 | pmap_freepage(pmap, ptp, level); |
| 1935 | if (level < PTP_LEVELS - 1) { |
| 1936 | ptp = pmap_find_ptp(pmap, va, (paddr_t)-1, level + 1); |
| 1937 | ptp->wire_count--; |
| 1938 | if (ptp->wire_count > 1) |
| 1939 | break; |
| 1940 | } |
| 1941 | } while (++level < PTP_LEVELS); |
| 1942 | pmap_pte_flush(); |
| 1943 | } |
| 1944 | |
| 1945 | /* |
| 1946 | * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one) |
| 1947 | * |
| 1948 | * => pmap should NOT be pmap_kernel() |
| 1949 | * => pmap should be locked |
| 1950 | * => preemption should be disabled |
| 1951 | */ |
| 1952 | |
| 1953 | static struct vm_page * |
| 1954 | pmap_get_ptp(struct pmap *pmap, vaddr_t va, pd_entry_t * const *pdes) |
| 1955 | { |
| 1956 | struct vm_page *ptp, *pptp; |
| 1957 | int i; |
| 1958 | unsigned long index; |
| 1959 | pd_entry_t *pva; |
| 1960 | paddr_t ppa, pa; |
| 1961 | struct uvm_object *obj; |
| 1962 | |
| 1963 | KASSERT(pmap != pmap_kernel()); |
| 1964 | KASSERT(mutex_owned(pmap->pm_lock)); |
| 1965 | KASSERT(kpreempt_disabled()); |
| 1966 | |
| 1967 | ptp = NULL; |
| 1968 | pa = (paddr_t)-1; |
| 1969 | |
| 1970 | /* |
| 1971 | * Loop through all page table levels seeing if we need to |
| 1972 | * add a new page to that level. |
| 1973 | */ |
| 1974 | for (i = PTP_LEVELS; i > 1; i--) { |
| 1975 | /* |
| 1976 | * Save values from previous round. |
| 1977 | */ |
| 1978 | pptp = ptp; |
| 1979 | ppa = pa; |
| 1980 | |
| 1981 | index = pl_i(va, i); |
| 1982 | pva = pdes[i - 2]; |
| 1983 | |
| 1984 | if (pmap_valid_entry(pva[index])) { |
| 1985 | ppa = pmap_pte2pa(pva[index]); |
| 1986 | ptp = NULL; |
| 1987 | continue; |
| 1988 | } |
| 1989 | |
| 1990 | obj = &pmap->pm_obj[i-2]; |
| 1991 | PMAP_SUBOBJ_LOCK(pmap, i - 2); |
| 1992 | ptp = uvm_pagealloc(obj, ptp_va2o(va, i - 1), NULL, |
| 1993 | UVM_PGA_USERESERVE|UVM_PGA_ZERO); |
| 1994 | PMAP_SUBOBJ_UNLOCK(pmap, i - 2); |
| 1995 | |
| 1996 | if (ptp == NULL) |
| 1997 | return NULL; |
| 1998 | |
| 1999 | ptp->flags &= ~PG_BUSY; /* never busy */ |
| 2000 | ptp->wire_count = 1; |
| 2001 | pmap->pm_ptphint[i - 2] = ptp; |
| 2002 | pa = VM_PAGE_TO_PHYS(ptp); |
| 2003 | pmap_pte_set(&pva[index], (pd_entry_t) |
| 2004 | (pmap_pa2pte(pa) | PG_u | PG_RW | PG_V)); |
| 2005 | #if defined(XEN) && defined(__x86_64__) |
| 2006 | if(i == PTP_LEVELS) { |
| 2007 | /* |
| 2008 | * Update the per-cpu PD on all cpus the current |
| 2009 | * pmap is active on |
| 2010 | */ |
| 2011 | xen_kpm_sync(pmap, index); |
| 2012 | } |
| 2013 | #endif |
| 2014 | pmap_pte_flush(); |
| 2015 | pmap_stats_update(pmap, 1, 0); |
| 2016 | /* |
| 2017 | * If we're not in the top level, increase the |
| 2018 | * wire count of the parent page. |
| 2019 | */ |
| 2020 | if (i < PTP_LEVELS) { |
| 2021 | if (pptp == NULL) { |
| 2022 | pptp = pmap_find_ptp(pmap, va, ppa, i); |
| 2023 | KASSERT(pptp != NULL); |
| 2024 | } |
| 2025 | pptp->wire_count++; |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | /* |
| 2030 | * PTP is not NULL if we just allocated a new PTP. If it is |
| 2031 | * still NULL, we must look up the existing one. |
| 2032 | */ |
| 2033 | if (ptp == NULL) { |
| 2034 | ptp = pmap_find_ptp(pmap, va, ppa, 1); |
| 2035 | KASSERTMSG(ptp != NULL, "pmap_get_ptp: va %" PRIxVADDR |
| 2036 | "ppa %" PRIxPADDR "\n" , va, ppa); |
| 2037 | } |
| 2038 | |
| 2039 | pmap->pm_ptphint[0] = ptp; |
| 2040 | return ptp; |
| 2041 | } |
| 2042 | |
| 2043 | /* |
| 2044 | * p m a p l i f e c y c l e f u n c t i o n s |
| 2045 | */ |
| 2046 | |
| 2047 | /* |
| 2048 | * pmap_pdp_ctor: constructor for the PDP cache. |
| 2049 | */ |
| 2050 | static int |
| 2051 | pmap_pdp_ctor(void *arg, void *v, int flags) |
| 2052 | { |
| 2053 | pd_entry_t *pdir = v; |
| 2054 | paddr_t pdirpa = 0; |
| 2055 | vaddr_t object; |
| 2056 | int i; |
| 2057 | |
| 2058 | #if !defined(XEN) || !defined(__x86_64__) |
| 2059 | int npde; |
| 2060 | #endif |
| 2061 | #ifdef XEN |
| 2062 | int s; |
| 2063 | #endif |
| 2064 | |
| 2065 | /* |
| 2066 | * NOTE: The `pmaps_lock' is held when the PDP is allocated. |
| 2067 | */ |
| 2068 | |
| 2069 | #if defined(XEN) && defined(__x86_64__) |
| 2070 | /* Fetch the physical address of the page directory */ |
| 2071 | (void)pmap_extract(pmap_kernel(), (vaddr_t)pdir, &pdirpa); |
| 2072 | |
| 2073 | /* Zero the area */ |
| 2074 | memset(pdir, 0, PAGE_SIZE); /* Xen wants a clean page */ |
| 2075 | |
| 2076 | /* |
| 2077 | * This pdir will NEVER be active in kernel mode, so mark |
| 2078 | * recursive entry invalid. |
| 2079 | */ |
| 2080 | pdir[PDIR_SLOT_PTE] = pmap_pa2pte(pdirpa) | PG_u; |
| 2081 | |
| 2082 | /* |
| 2083 | * PDP constructed this way won't be for the kernel, hence we |
| 2084 | * don't put kernel mappings on Xen. |
| 2085 | * |
| 2086 | * But we need to make pmap_create() happy, so put a dummy |
| 2087 | * (without PG_V) value at the right place. |
| 2088 | */ |
| 2089 | pdir[PDIR_SLOT_KERN + nkptp[PTP_LEVELS - 1] - 1] = |
| 2090 | (pd_entry_t)-1 & PG_FRAME; |
| 2091 | #else /* XEN && __x86_64__*/ |
| 2092 | /* Zero the area */ |
| 2093 | memset(pdir, 0, PDIR_SLOT_PTE * sizeof(pd_entry_t)); |
| 2094 | |
| 2095 | object = (vaddr_t)v; |
| 2096 | for (i = 0; i < PDP_SIZE; i++, object += PAGE_SIZE) { |
| 2097 | /* Fetch the physical address of the page directory */ |
| 2098 | (void)pmap_extract(pmap_kernel(), object, &pdirpa); |
| 2099 | |
| 2100 | /* Put in recursive PDE to map the PTEs */ |
| 2101 | pdir[PDIR_SLOT_PTE + i] = pmap_pa2pte(pdirpa) | PG_V | |
| 2102 | pmap_pg_nx; |
| 2103 | #ifndef XEN |
| 2104 | pdir[PDIR_SLOT_PTE + i] |= PG_KW; |
| 2105 | #endif |
| 2106 | } |
| 2107 | |
| 2108 | /* Copy the kernel's top level PDE */ |
| 2109 | npde = nkptp[PTP_LEVELS - 1]; |
| 2110 | |
| 2111 | memcpy(&pdir[PDIR_SLOT_KERN], &PDP_BASE[PDIR_SLOT_KERN], |
| 2112 | npde * sizeof(pd_entry_t)); |
| 2113 | |
| 2114 | /* Zero the rest */ |
| 2115 | memset(&pdir[PDIR_SLOT_KERN + npde], 0, (PAGE_SIZE * PDP_SIZE) - |
| 2116 | (PDIR_SLOT_KERN + npde) * sizeof(pd_entry_t)); |
| 2117 | |
| 2118 | if (VM_MIN_KERNEL_ADDRESS != KERNBASE) { |
| 2119 | int idx = pl_i(KERNBASE, PTP_LEVELS); |
| 2120 | pdir[idx] = PDP_BASE[idx]; |
| 2121 | } |
| 2122 | |
| 2123 | #ifdef __HAVE_DIRECT_MAP |
| 2124 | pdir[PDIR_SLOT_DIRECT] = PDP_BASE[PDIR_SLOT_DIRECT]; |
| 2125 | #endif |
| 2126 | #endif /* XEN && __x86_64__*/ |
| 2127 | |
| 2128 | #ifdef XEN |
| 2129 | s = splvm(); |
| 2130 | object = (vaddr_t)v; |
| 2131 | pmap_protect(pmap_kernel(), object, object + (PAGE_SIZE * PDP_SIZE), |
| 2132 | VM_PROT_READ); |
| 2133 | pmap_update(pmap_kernel()); |
| 2134 | for (i = 0; i < PDP_SIZE; i++, object += PAGE_SIZE) { |
| 2135 | /* |
| 2136 | * pin as L2/L4 page, we have to do the page with the |
| 2137 | * PDIR_SLOT_PTE entries last |
| 2138 | */ |
| 2139 | #ifdef PAE |
| 2140 | if (i == l2tol3(PDIR_SLOT_PTE)) |
| 2141 | continue; |
| 2142 | #endif |
| 2143 | |
| 2144 | (void) pmap_extract(pmap_kernel(), object, &pdirpa); |
| 2145 | #ifdef __x86_64__ |
| 2146 | xpq_queue_pin_l4_table(xpmap_ptom_masked(pdirpa)); |
| 2147 | #else |
| 2148 | xpq_queue_pin_l2_table(xpmap_ptom_masked(pdirpa)); |
| 2149 | #endif |
| 2150 | } |
| 2151 | #ifdef PAE |
| 2152 | object = ((vaddr_t)pdir) + PAGE_SIZE * l2tol3(PDIR_SLOT_PTE); |
| 2153 | (void)pmap_extract(pmap_kernel(), object, &pdirpa); |
| 2154 | xpq_queue_pin_l2_table(xpmap_ptom_masked(pdirpa)); |
| 2155 | #endif |
| 2156 | splx(s); |
| 2157 | #endif /* XEN */ |
| 2158 | |
| 2159 | return (0); |
| 2160 | } |
| 2161 | |
| 2162 | /* |
| 2163 | * pmap_pdp_dtor: destructor for the PDP cache. |
| 2164 | */ |
| 2165 | |
| 2166 | static void |
| 2167 | pmap_pdp_dtor(void *arg, void *v) |
| 2168 | { |
| 2169 | #ifdef XEN |
| 2170 | paddr_t pdirpa = 0; /* XXX: GCC */ |
| 2171 | vaddr_t object = (vaddr_t)v; |
| 2172 | int i; |
| 2173 | int s = splvm(); |
| 2174 | pt_entry_t *pte; |
| 2175 | |
| 2176 | for (i = 0; i < PDP_SIZE; i++, object += PAGE_SIZE) { |
| 2177 | /* fetch the physical address of the page directory. */ |
| 2178 | (void) pmap_extract(pmap_kernel(), object, &pdirpa); |
| 2179 | /* unpin page table */ |
| 2180 | xpq_queue_unpin_table(xpmap_ptom_masked(pdirpa)); |
| 2181 | } |
| 2182 | object = (vaddr_t)v; |
| 2183 | for (i = 0; i < PDP_SIZE; i++, object += PAGE_SIZE) { |
| 2184 | /* Set page RW again */ |
| 2185 | pte = kvtopte(object); |
| 2186 | pmap_pte_set(pte, *pte | PG_RW); |
| 2187 | xen_bcast_invlpg((vaddr_t)object); |
| 2188 | } |
| 2189 | splx(s); |
| 2190 | #endif /* XEN */ |
| 2191 | } |
| 2192 | |
| 2193 | #ifdef PAE |
| 2194 | |
| 2195 | /* pmap_pdp_alloc: Allocate a page for the pdp memory pool. */ |
| 2196 | |
| 2197 | static void * |
| 2198 | pmap_pdp_alloc(struct pool *pp, int flags) |
| 2199 | { |
| 2200 | return (void *)uvm_km_alloc(kernel_map, |
| 2201 | PAGE_SIZE * PDP_SIZE, PAGE_SIZE * PDP_SIZE, |
| 2202 | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) |
| 2203 | | UVM_KMF_WIRED); |
| 2204 | } |
| 2205 | |
| 2206 | /* |
| 2207 | * pmap_pdp_free: free a PDP |
| 2208 | */ |
| 2209 | |
| 2210 | static void |
| 2211 | pmap_pdp_free(struct pool *pp, void *v) |
| 2212 | { |
| 2213 | uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * PDP_SIZE, |
| 2214 | UVM_KMF_WIRED); |
| 2215 | } |
| 2216 | #endif /* PAE */ |
| 2217 | |
| 2218 | /* |
| 2219 | * pmap_create: create a pmap object. |
| 2220 | */ |
| 2221 | struct pmap * |
| 2222 | pmap_create(void) |
| 2223 | { |
| 2224 | struct pmap *pmap; |
| 2225 | int i; |
| 2226 | |
| 2227 | pmap = pool_cache_get(&pmap_cache, PR_WAITOK); |
| 2228 | |
| 2229 | /* init uvm_object */ |
| 2230 | for (i = 0; i < PTP_LEVELS - 1; i++) { |
| 2231 | mutex_init(&pmap->pm_obj_lock[i], MUTEX_DEFAULT, IPL_NONE); |
| 2232 | uvm_obj_init(&pmap->pm_obj[i], NULL, false, 1); |
| 2233 | uvm_obj_setlock(&pmap->pm_obj[i], &pmap->pm_obj_lock[i]); |
| 2234 | pmap->pm_ptphint[i] = NULL; |
| 2235 | } |
| 2236 | pmap->pm_stats.wired_count = 0; |
| 2237 | /* count the PDP allocd below */ |
| 2238 | pmap->pm_stats.resident_count = PDP_SIZE; |
| 2239 | #if !defined(__x86_64__) |
| 2240 | pmap->pm_hiexec = 0; |
| 2241 | #endif /* !defined(__x86_64__) */ |
| 2242 | pmap->pm_flags = 0; |
| 2243 | pmap->pm_gc_ptp = NULL; |
| 2244 | |
| 2245 | kcpuset_create(&pmap->pm_cpus, true); |
| 2246 | kcpuset_create(&pmap->pm_kernel_cpus, true); |
| 2247 | #ifdef XEN |
| 2248 | kcpuset_create(&pmap->pm_xen_ptp_cpus, true); |
| 2249 | #endif |
| 2250 | /* init the LDT */ |
| 2251 | pmap->pm_ldt = NULL; |
| 2252 | pmap->pm_ldt_len = 0; |
| 2253 | pmap->pm_ldt_sel = GSYSSEL(GLDT_SEL, SEL_KPL); |
| 2254 | |
| 2255 | /* allocate PDP */ |
| 2256 | try_again: |
| 2257 | pmap->pm_pdir = pool_cache_get(&pmap_pdp_cache, PR_WAITOK); |
| 2258 | |
| 2259 | mutex_enter(&pmaps_lock); |
| 2260 | |
| 2261 | if (pmap->pm_pdir[PDIR_SLOT_KERN + nkptp[PTP_LEVELS - 1] - 1] == 0) { |
| 2262 | mutex_exit(&pmaps_lock); |
| 2263 | pool_cache_destruct_object(&pmap_pdp_cache, pmap->pm_pdir); |
| 2264 | goto try_again; |
| 2265 | } |
| 2266 | |
| 2267 | for (i = 0; i < PDP_SIZE; i++) |
| 2268 | pmap->pm_pdirpa[i] = |
| 2269 | pmap_pte2pa(pmap->pm_pdir[PDIR_SLOT_PTE + i]); |
| 2270 | |
| 2271 | LIST_INSERT_HEAD(&pmaps, pmap, pm_list); |
| 2272 | |
| 2273 | mutex_exit(&pmaps_lock); |
| 2274 | |
| 2275 | return (pmap); |
| 2276 | } |
| 2277 | |
| 2278 | /* |
| 2279 | * pmap_free_ptps: put a list of ptps back to the freelist. |
| 2280 | */ |
| 2281 | |
| 2282 | void |
| 2283 | pmap_free_ptps(struct vm_page *empty_ptps) |
| 2284 | { |
| 2285 | struct vm_page *ptp; |
| 2286 | struct pmap_page *pp; |
| 2287 | |
| 2288 | while ((ptp = empty_ptps) != NULL) { |
| 2289 | pp = VM_PAGE_TO_PP(ptp); |
| 2290 | empty_ptps = pp->pp_link; |
| 2291 | LIST_INIT(&pp->pp_head.pvh_list); |
| 2292 | uvm_pagefree(ptp); |
| 2293 | } |
| 2294 | } |
| 2295 | |
| 2296 | /* |
| 2297 | * pmap_destroy: drop reference count on pmap. free pmap if |
| 2298 | * reference count goes to zero. |
| 2299 | */ |
| 2300 | |
| 2301 | void |
| 2302 | pmap_destroy(struct pmap *pmap) |
| 2303 | { |
| 2304 | lwp_t *l; |
| 2305 | int i; |
| 2306 | |
| 2307 | /* |
| 2308 | * If we have torn down this pmap, process deferred frees and |
| 2309 | * invalidations. Free now if the system is low on memory. |
| 2310 | * Otherwise, free when the pmap is destroyed thus avoiding a |
| 2311 | * TLB shootdown. |
| 2312 | */ |
| 2313 | l = curlwp; |
| 2314 | if (__predict_false(l->l_md.md_gc_pmap == pmap)) { |
| 2315 | if (uvmexp.free < uvmexp.freetarg) { |
| 2316 | pmap_update(pmap); |
| 2317 | } else { |
| 2318 | KASSERT(pmap->pm_gc_ptp == NULL); |
| 2319 | pmap->pm_gc_ptp = l->l_md.md_gc_ptp; |
| 2320 | l->l_md.md_gc_ptp = NULL; |
| 2321 | l->l_md.md_gc_pmap = NULL; |
| 2322 | } |
| 2323 | } |
| 2324 | |
| 2325 | /* |
| 2326 | * drop reference count |
| 2327 | */ |
| 2328 | |
| 2329 | if (atomic_dec_uint_nv(&pmap->pm_obj[0].uo_refs) > 0) { |
| 2330 | return; |
| 2331 | } |
| 2332 | |
| 2333 | #ifdef DIAGNOSTIC |
| 2334 | CPU_INFO_ITERATOR cii; |
| 2335 | struct cpu_info *ci; |
| 2336 | |
| 2337 | for (CPU_INFO_FOREACH(cii, ci)) { |
| 2338 | if (ci->ci_pmap == pmap) |
| 2339 | panic("destroying pmap being used" ); |
| 2340 | #if defined(XEN) && defined(__x86_64__) |
| 2341 | for (i = 0; i < PDIR_SLOT_PTE; i++) { |
| 2342 | if (pmap->pm_pdir[i] != 0 && |
| 2343 | ci->ci_kpm_pdir[i] == pmap->pm_pdir[i]) { |
| 2344 | printf("pmap_destroy(%p) pmap_kernel %p " |
| 2345 | "curcpu %d cpu %d ci_pmap %p " |
| 2346 | "ci->ci_kpm_pdir[%d]=%" PRIx64 |
| 2347 | " pmap->pm_pdir[%d]=%" PRIx64 "\n" , |
| 2348 | pmap, pmap_kernel(), curcpu()->ci_index, |
| 2349 | ci->ci_index, ci->ci_pmap, |
| 2350 | i, ci->ci_kpm_pdir[i], |
| 2351 | i, pmap->pm_pdir[i]); |
| 2352 | panic("pmap_destroy: used pmap" ); |
| 2353 | } |
| 2354 | } |
| 2355 | #endif |
| 2356 | } |
| 2357 | #endif /* DIAGNOSTIC */ |
| 2358 | |
| 2359 | /* |
| 2360 | * Reference count is zero, free pmap resources and then free pmap. |
| 2361 | * First, remove it from global list of pmaps. |
| 2362 | */ |
| 2363 | |
| 2364 | mutex_enter(&pmaps_lock); |
| 2365 | LIST_REMOVE(pmap, pm_list); |
| 2366 | mutex_exit(&pmaps_lock); |
| 2367 | |
| 2368 | /* |
| 2369 | * Process deferred PTP frees. No TLB shootdown required, as the |
| 2370 | * PTP pages are no longer visible to any CPU. |
| 2371 | */ |
| 2372 | |
| 2373 | pmap_free_ptps(pmap->pm_gc_ptp); |
| 2374 | |
| 2375 | /* |
| 2376 | * destroyed pmap shouldn't have remaining PTPs |
| 2377 | */ |
| 2378 | |
| 2379 | for (i = 0; i < PTP_LEVELS - 1; i++) { |
| 2380 | KASSERT(pmap->pm_obj[i].uo_npages == 0); |
| 2381 | KASSERT(TAILQ_EMPTY(&pmap->pm_obj[i].memq)); |
| 2382 | } |
| 2383 | |
| 2384 | pool_cache_put(&pmap_pdp_cache, pmap->pm_pdir); |
| 2385 | |
| 2386 | #ifdef USER_LDT |
| 2387 | if (pmap->pm_ldt != NULL) { |
| 2388 | /* |
| 2389 | * no need to switch the LDT; this address space is gone, |
| 2390 | * nothing is using it. |
| 2391 | * |
| 2392 | * No need to lock the pmap for ldt_free (or anything else), |
| 2393 | * we're the last one to use it. |
| 2394 | */ |
| 2395 | mutex_enter(&cpu_lock); |
| 2396 | ldt_free(pmap->pm_ldt_sel); |
| 2397 | mutex_exit(&cpu_lock); |
| 2398 | uvm_km_free(kernel_map, (vaddr_t)pmap->pm_ldt, |
| 2399 | pmap->pm_ldt_len, UVM_KMF_WIRED); |
| 2400 | } |
| 2401 | #endif |
| 2402 | |
| 2403 | for (i = 0; i < PTP_LEVELS - 1; i++) { |
| 2404 | uvm_obj_destroy(&pmap->pm_obj[i], false); |
| 2405 | mutex_destroy(&pmap->pm_obj_lock[i]); |
| 2406 | } |
| 2407 | kcpuset_destroy(pmap->pm_cpus); |
| 2408 | kcpuset_destroy(pmap->pm_kernel_cpus); |
| 2409 | #ifdef XEN |
| 2410 | kcpuset_destroy(pmap->pm_xen_ptp_cpus); |
| 2411 | #endif |
| 2412 | pool_cache_put(&pmap_cache, pmap); |
| 2413 | } |
| 2414 | |
| 2415 | /* |
| 2416 | * pmap_remove_all: pmap is being torn down by the current thread. |
| 2417 | * avoid unnecessary invalidations. |
| 2418 | */ |
| 2419 | |
| 2420 | void |
| 2421 | pmap_remove_all(struct pmap *pmap) |
| 2422 | { |
| 2423 | lwp_t *l = curlwp; |
| 2424 | |
| 2425 | KASSERT(l->l_md.md_gc_pmap == NULL); |
| 2426 | |
| 2427 | l->l_md.md_gc_pmap = pmap; |
| 2428 | } |
| 2429 | |
| 2430 | #if defined(PMAP_FORK) |
| 2431 | /* |
| 2432 | * pmap_fork: perform any necessary data structure manipulation when |
| 2433 | * a VM space is forked. |
| 2434 | */ |
| 2435 | |
| 2436 | void |
| 2437 | pmap_fork(struct pmap *pmap1, struct pmap *pmap2) |
| 2438 | { |
| 2439 | #ifdef USER_LDT |
| 2440 | union descriptor *new_ldt; |
| 2441 | size_t len; |
| 2442 | int sel; |
| 2443 | |
| 2444 | if (__predict_true(pmap1->pm_ldt == NULL)) { |
| 2445 | return; |
| 2446 | } |
| 2447 | |
| 2448 | /* |
| 2449 | * Copy the LDT into the new process. |
| 2450 | * |
| 2451 | * Read pmap1's ldt pointer and length unlocked; if it changes |
| 2452 | * behind our back we'll retry. This will starve if there's a |
| 2453 | * stream of LDT changes in another thread but that should not |
| 2454 | * happen. |
| 2455 | */ |
| 2456 | |
| 2457 | retry: |
| 2458 | if (pmap1->pm_ldt != NULL) { |
| 2459 | len = pmap1->pm_ldt_len; |
| 2460 | /* Allocate space for the new process's LDT */ |
| 2461 | new_ldt = (union descriptor *)uvm_km_alloc(kernel_map, len, 0, |
| 2462 | UVM_KMF_WIRED); |
| 2463 | if (new_ldt == NULL) { |
| 2464 | printf("WARNING: pmap_fork: " |
| 2465 | "unable to allocate LDT space\n" ); |
| 2466 | return; |
| 2467 | } |
| 2468 | mutex_enter(&cpu_lock); |
| 2469 | /* Get a GDT slot for it */ |
| 2470 | sel = ldt_alloc(new_ldt, len); |
| 2471 | if (sel == -1) { |
| 2472 | mutex_exit(&cpu_lock); |
| 2473 | uvm_km_free(kernel_map, (vaddr_t)new_ldt, len, |
| 2474 | UVM_KMF_WIRED); |
| 2475 | printf("WARNING: pmap_fork: " |
| 2476 | "unable to allocate LDT selector\n" ); |
| 2477 | return; |
| 2478 | } |
| 2479 | } else { |
| 2480 | /* Wasn't anything there after all. */ |
| 2481 | len = -1; |
| 2482 | new_ldt = NULL; |
| 2483 | sel = -1; |
| 2484 | mutex_enter(&cpu_lock); |
| 2485 | } |
| 2486 | |
| 2487 | /* If there's still something there now that we have cpu_lock... */ |
| 2488 | if (pmap1->pm_ldt != NULL) { |
| 2489 | if (len != pmap1->pm_ldt_len) { |
| 2490 | /* Oops, it changed. Drop what we did and try again */ |
| 2491 | if (len != -1) { |
| 2492 | ldt_free(sel); |
| 2493 | uvm_km_free(kernel_map, (vaddr_t)new_ldt, |
| 2494 | len, UVM_KMF_WIRED); |
| 2495 | } |
| 2496 | mutex_exit(&cpu_lock); |
| 2497 | goto retry; |
| 2498 | } |
| 2499 | |
| 2500 | /* Copy the LDT data and install it in pmap2 */ |
| 2501 | memcpy(new_ldt, pmap1->pm_ldt, len); |
| 2502 | pmap2->pm_ldt = new_ldt; |
| 2503 | pmap2->pm_ldt_len = pmap1->pm_ldt_len; |
| 2504 | pmap2->pm_ldt_sel = sel; |
| 2505 | len = -1; |
| 2506 | } |
| 2507 | |
| 2508 | if (len != -1) { |
| 2509 | /* There wasn't still something there, so mop up */ |
| 2510 | ldt_free(sel); |
| 2511 | mutex_exit(&cpu_lock); |
| 2512 | uvm_km_free(kernel_map, (vaddr_t)new_ldt, len, |
| 2513 | UVM_KMF_WIRED); |
| 2514 | } else { |
| 2515 | mutex_exit(&cpu_lock); |
| 2516 | } |
| 2517 | #endif /* USER_LDT */ |
| 2518 | } |
| 2519 | #endif /* PMAP_FORK */ |
| 2520 | |
| 2521 | #ifdef USER_LDT |
| 2522 | |
| 2523 | /* |
| 2524 | * pmap_ldt_xcall: cross call used by pmap_ldt_sync. if the named pmap |
| 2525 | * is active, reload LDTR. |
| 2526 | */ |
| 2527 | static void |
| 2528 | pmap_ldt_xcall(void *arg1, void *arg2) |
| 2529 | { |
| 2530 | struct pmap *pm; |
| 2531 | |
| 2532 | kpreempt_disable(); |
| 2533 | pm = arg1; |
| 2534 | if (curcpu()->ci_pmap == pm) { |
| 2535 | lldt(pm->pm_ldt_sel); |
| 2536 | } |
| 2537 | kpreempt_enable(); |
| 2538 | } |
| 2539 | |
| 2540 | /* |
| 2541 | * pmap_ldt_sync: LDT selector for the named pmap is changing. swap |
| 2542 | * in the new selector on all CPUs. |
| 2543 | */ |
| 2544 | void |
| 2545 | pmap_ldt_sync(struct pmap *pm) |
| 2546 | { |
| 2547 | uint64_t where; |
| 2548 | |
| 2549 | KASSERT(mutex_owned(&cpu_lock)); |
| 2550 | |
| 2551 | pmap_ldt_evcnt.ev_count++; |
| 2552 | where = xc_broadcast(0, pmap_ldt_xcall, pm, NULL); |
| 2553 | xc_wait(where); |
| 2554 | } |
| 2555 | |
| 2556 | /* |
| 2557 | * pmap_ldt_cleanup: if the pmap has a local LDT, deallocate it, and |
| 2558 | * restore the default. |
| 2559 | */ |
| 2560 | |
| 2561 | void |
| 2562 | pmap_ldt_cleanup(struct lwp *l) |
| 2563 | { |
| 2564 | pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; |
| 2565 | union descriptor *dp = NULL; |
| 2566 | size_t len = 0; |
| 2567 | int sel = -1; |
| 2568 | |
| 2569 | if (__predict_true(pmap->pm_ldt == NULL)) { |
| 2570 | return; |
| 2571 | } |
| 2572 | |
| 2573 | mutex_enter(&cpu_lock); |
| 2574 | if (pmap->pm_ldt != NULL) { |
| 2575 | sel = pmap->pm_ldt_sel; |
| 2576 | dp = pmap->pm_ldt; |
| 2577 | len = pmap->pm_ldt_len; |
| 2578 | pmap->pm_ldt_sel = GSYSSEL(GLDT_SEL, SEL_KPL); |
| 2579 | pmap->pm_ldt = NULL; |
| 2580 | pmap->pm_ldt_len = 0; |
| 2581 | pmap_ldt_sync(pmap); |
| 2582 | ldt_free(sel); |
| 2583 | uvm_km_free(kernel_map, (vaddr_t)dp, len, UVM_KMF_WIRED); |
| 2584 | } |
| 2585 | mutex_exit(&cpu_lock); |
| 2586 | } |
| 2587 | #endif /* USER_LDT */ |
| 2588 | |
| 2589 | /* |
| 2590 | * pmap_activate: activate a process' pmap |
| 2591 | * |
| 2592 | * => must be called with kernel preemption disabled |
| 2593 | * => if lwp is the curlwp, then set ci_want_pmapload so that |
| 2594 | * actual MMU context switch will be done by pmap_load() later |
| 2595 | */ |
| 2596 | |
| 2597 | void |
| 2598 | pmap_activate(struct lwp *l) |
| 2599 | { |
| 2600 | struct cpu_info *ci; |
| 2601 | struct pmap *pmap = vm_map_pmap(&l->l_proc->p_vmspace->vm_map); |
| 2602 | |
| 2603 | KASSERT(kpreempt_disabled()); |
| 2604 | |
| 2605 | ci = curcpu(); |
| 2606 | |
| 2607 | if (l == ci->ci_curlwp) { |
| 2608 | KASSERT(ci->ci_want_pmapload == 0); |
| 2609 | KASSERT(ci->ci_tlbstate != TLBSTATE_VALID); |
| 2610 | #ifdef KSTACK_CHECK_DR0 |
| 2611 | /* |
| 2612 | * setup breakpoint on the top of stack |
| 2613 | */ |
| 2614 | if (l == &lwp0) |
| 2615 | dr0(0, 0, 0, 0); |
| 2616 | else |
| 2617 | dr0(KSTACK_LOWEST_ADDR(l), 1, 3, 1); |
| 2618 | #endif |
| 2619 | |
| 2620 | /* |
| 2621 | * no need to switch to kernel vmspace because |
| 2622 | * it's a subset of any vmspace. |
| 2623 | */ |
| 2624 | |
| 2625 | if (pmap == pmap_kernel()) { |
| 2626 | ci->ci_want_pmapload = 0; |
| 2627 | return; |
| 2628 | } |
| 2629 | |
| 2630 | ci->ci_want_pmapload = 1; |
| 2631 | } |
| 2632 | } |
| 2633 | |
| 2634 | /* |
| 2635 | * pmap_reactivate: try to regain reference to the pmap. |
| 2636 | * |
| 2637 | * => Must be called with kernel preemption disabled. |
| 2638 | */ |
| 2639 | |
| 2640 | static bool |
| 2641 | pmap_reactivate(struct pmap *pmap) |
| 2642 | { |
| 2643 | struct cpu_info * const ci = curcpu(); |
| 2644 | const cpuid_t cid = cpu_index(ci); |
| 2645 | bool result; |
| 2646 | |
| 2647 | KASSERT(kpreempt_disabled()); |
| 2648 | #if defined(XEN) && defined(__x86_64__) |
| 2649 | KASSERT(pmap_pdirpa(pmap, 0) == ci->ci_xen_current_user_pgd); |
| 2650 | #elif defined(PAE) |
| 2651 | KASSERT(pmap_pdirpa(pmap, 0) == pmap_pte2pa(ci->ci_pae_l3_pdir[0])); |
| 2652 | #elif !defined(XEN) |
| 2653 | KASSERT(pmap_pdirpa(pmap, 0) == pmap_pte2pa(rcr3())); |
| 2654 | #endif |
| 2655 | |
| 2656 | /* |
| 2657 | * If we still have a lazy reference to this pmap, we can assume |
| 2658 | * that there was no TLB shootdown for this pmap in the meantime. |
| 2659 | * |
| 2660 | * The order of events here is important as we must synchronize |
| 2661 | * with TLB shootdown interrupts. Declare interest in invalidations |
| 2662 | * (TLBSTATE_VALID) and then check the CPU set, which the IPIs can |
| 2663 | * change only when the state is TLBSTATE_LAZY. |
| 2664 | */ |
| 2665 | |
| 2666 | ci->ci_tlbstate = TLBSTATE_VALID; |
| 2667 | KASSERT(kcpuset_isset(pmap->pm_kernel_cpus, cid)); |
| 2668 | |
| 2669 | if (kcpuset_isset(pmap->pm_cpus, cid)) { |
| 2670 | /* We have the reference, state is valid. */ |
| 2671 | result = true; |
| 2672 | } else { |
| 2673 | /* Must reload the TLB. */ |
| 2674 | kcpuset_atomic_set(pmap->pm_cpus, cid); |
| 2675 | result = false; |
| 2676 | } |
| 2677 | return result; |
| 2678 | } |
| 2679 | |
| 2680 | /* |
| 2681 | * pmap_load: perform the actual pmap switch, i.e. fill in %cr3 register |
| 2682 | * and relevant LDT info. |
| 2683 | * |
| 2684 | * Ensures that the current process' pmap is loaded on the current CPU's |
| 2685 | * MMU and that there are no stale TLB entries. |
| 2686 | * |
| 2687 | * => The caller should disable kernel preemption or do check-and-retry |
| 2688 | * to prevent a preemption from undoing our efforts. |
| 2689 | * => This function may block. |
| 2690 | */ |
| 2691 | void |
| 2692 | pmap_load(void) |
| 2693 | { |
| 2694 | struct cpu_info *ci; |
| 2695 | struct pmap *pmap, *oldpmap; |
| 2696 | struct lwp *l; |
| 2697 | struct pcb *pcb; |
| 2698 | cpuid_t cid; |
| 2699 | uint64_t ncsw; |
| 2700 | |
| 2701 | kpreempt_disable(); |
| 2702 | retry: |
| 2703 | ci = curcpu(); |
| 2704 | if (!ci->ci_want_pmapload) { |
| 2705 | kpreempt_enable(); |
| 2706 | return; |
| 2707 | } |
| 2708 | l = ci->ci_curlwp; |
| 2709 | ncsw = l->l_ncsw; |
| 2710 | |
| 2711 | /* should be able to take ipis. */ |
| 2712 | KASSERT(ci->ci_ilevel < IPL_HIGH); |
| 2713 | #ifdef XEN |
| 2714 | /* Check to see if interrupts are enabled (ie; no events are masked) */ |
| 2715 | KASSERT(x86_read_psl() == 0); |
| 2716 | #else |
| 2717 | KASSERT((x86_read_psl() & PSL_I) != 0); |
| 2718 | #endif |
| 2719 | |
| 2720 | KASSERT(l != NULL); |
| 2721 | pmap = vm_map_pmap(&l->l_proc->p_vmspace->vm_map); |
| 2722 | KASSERT(pmap != pmap_kernel()); |
| 2723 | oldpmap = ci->ci_pmap; |
| 2724 | pcb = lwp_getpcb(l); |
| 2725 | |
| 2726 | if (pmap == oldpmap) { |
| 2727 | if (!pmap_reactivate(pmap)) { |
| 2728 | u_int gen = uvm_emap_gen_return(); |
| 2729 | |
| 2730 | /* |
| 2731 | * pmap has been changed during deactivated. |
| 2732 | * our tlb may be stale. |
| 2733 | */ |
| 2734 | |
| 2735 | tlbflush(); |
| 2736 | uvm_emap_update(gen); |
| 2737 | } |
| 2738 | |
| 2739 | ci->ci_want_pmapload = 0; |
| 2740 | kpreempt_enable(); |
| 2741 | return; |
| 2742 | } |
| 2743 | |
| 2744 | /* |
| 2745 | * Acquire a reference to the new pmap and perform the switch. |
| 2746 | */ |
| 2747 | |
| 2748 | pmap_reference(pmap); |
| 2749 | |
| 2750 | cid = cpu_index(ci); |
| 2751 | kcpuset_atomic_clear(oldpmap->pm_cpus, cid); |
| 2752 | kcpuset_atomic_clear(oldpmap->pm_kernel_cpus, cid); |
| 2753 | |
| 2754 | #if defined(XEN) && defined(__x86_64__) |
| 2755 | KASSERT(pmap_pdirpa(oldpmap, 0) == ci->ci_xen_current_user_pgd || |
| 2756 | oldpmap == pmap_kernel()); |
| 2757 | #elif defined(PAE) |
| 2758 | KASSERT(pmap_pdirpa(oldpmap, 0) == pmap_pte2pa(ci->ci_pae_l3_pdir[0])); |
| 2759 | #elif !defined(XEN) |
| 2760 | KASSERT(pmap_pdirpa(oldpmap, 0) == pmap_pte2pa(rcr3())); |
| 2761 | #endif |
| 2762 | KASSERT(!kcpuset_isset(pmap->pm_cpus, cid)); |
| 2763 | KASSERT(!kcpuset_isset(pmap->pm_kernel_cpus, cid)); |
| 2764 | |
| 2765 | /* |
| 2766 | * Mark the pmap in use by this CPU. Again, we must synchronize |
| 2767 | * with TLB shootdown interrupts, so set the state VALID first, |
| 2768 | * then register us for shootdown events on this pmap. |
| 2769 | */ |
| 2770 | ci->ci_tlbstate = TLBSTATE_VALID; |
| 2771 | kcpuset_atomic_set(pmap->pm_cpus, cid); |
| 2772 | kcpuset_atomic_set(pmap->pm_kernel_cpus, cid); |
| 2773 | ci->ci_pmap = pmap; |
| 2774 | |
| 2775 | /* |
| 2776 | * update tss. now that we have registered for invalidations |
| 2777 | * from other CPUs, we're good to load the page tables. |
| 2778 | */ |
| 2779 | #ifdef PAE |
| 2780 | pcb->pcb_cr3 = ci->ci_pae_l3_pdirpa; |
| 2781 | #else |
| 2782 | pcb->pcb_cr3 = pmap_pdirpa(pmap, 0); |
| 2783 | #endif |
| 2784 | |
| 2785 | #ifdef i386 |
| 2786 | #ifndef XEN |
| 2787 | ci->ci_tss.tss_ldt = pmap->pm_ldt_sel; |
| 2788 | ci->ci_tss.tss_cr3 = pcb->pcb_cr3; |
| 2789 | #endif /* !XEN */ |
| 2790 | #endif /* i386 */ |
| 2791 | |
| 2792 | lldt(pmap->pm_ldt_sel); |
| 2793 | |
| 2794 | u_int gen = uvm_emap_gen_return(); |
| 2795 | cpu_load_pmap(pmap, oldpmap); |
| 2796 | uvm_emap_update(gen); |
| 2797 | |
| 2798 | ci->ci_want_pmapload = 0; |
| 2799 | |
| 2800 | /* |
| 2801 | * we're now running with the new pmap. drop the reference |
| 2802 | * to the old pmap. if we block, we need to go around again. |
| 2803 | */ |
| 2804 | |
| 2805 | pmap_destroy(oldpmap); |
| 2806 | if (l->l_ncsw != ncsw) { |
| 2807 | goto retry; |
| 2808 | } |
| 2809 | |
| 2810 | kpreempt_enable(); |
| 2811 | } |
| 2812 | |
| 2813 | /* |
| 2814 | * pmap_deactivate: deactivate a process' pmap. |
| 2815 | * |
| 2816 | * => Must be called with kernel preemption disabled (high IPL is enough). |
| 2817 | */ |
| 2818 | void |
| 2819 | pmap_deactivate(struct lwp *l) |
| 2820 | { |
| 2821 | struct pmap *pmap; |
| 2822 | struct cpu_info *ci; |
| 2823 | |
| 2824 | KASSERT(kpreempt_disabled()); |
| 2825 | |
| 2826 | if (l != curlwp) { |
| 2827 | return; |
| 2828 | } |
| 2829 | |
| 2830 | /* |
| 2831 | * Wait for pending TLB shootdowns to complete. Necessary because |
| 2832 | * TLB shootdown state is per-CPU, and the LWP may be coming off |
| 2833 | * the CPU before it has a chance to call pmap_update(), e.g. due |
| 2834 | * to kernel preemption or blocking routine in between. |
| 2835 | */ |
| 2836 | pmap_tlb_shootnow(); |
| 2837 | |
| 2838 | ci = curcpu(); |
| 2839 | |
| 2840 | if (ci->ci_want_pmapload) { |
| 2841 | /* |
| 2842 | * ci_want_pmapload means that our pmap is not loaded on |
| 2843 | * the CPU or TLB might be stale. note that pmap_kernel() |
| 2844 | * is always considered loaded. |
| 2845 | */ |
| 2846 | KASSERT(vm_map_pmap(&l->l_proc->p_vmspace->vm_map) |
| 2847 | != pmap_kernel()); |
| 2848 | KASSERT(vm_map_pmap(&l->l_proc->p_vmspace->vm_map) |
| 2849 | != ci->ci_pmap || ci->ci_tlbstate != TLBSTATE_VALID); |
| 2850 | |
| 2851 | /* |
| 2852 | * userspace has not been touched. |
| 2853 | * nothing to do here. |
| 2854 | */ |
| 2855 | |
| 2856 | ci->ci_want_pmapload = 0; |
| 2857 | return; |
| 2858 | } |
| 2859 | |
| 2860 | pmap = vm_map_pmap(&l->l_proc->p_vmspace->vm_map); |
| 2861 | |
| 2862 | if (pmap == pmap_kernel()) { |
| 2863 | return; |
| 2864 | } |
| 2865 | |
| 2866 | #if defined(XEN) && defined(__x86_64__) |
| 2867 | KASSERT(pmap_pdirpa(pmap, 0) == ci->ci_xen_current_user_pgd); |
| 2868 | #elif defined(PAE) |
| 2869 | KASSERT(pmap_pdirpa(pmap, 0) == pmap_pte2pa(ci->ci_pae_l3_pdir[0])); |
| 2870 | #elif !defined(XEN) |
| 2871 | KASSERT(pmap_pdirpa(pmap, 0) == pmap_pte2pa(rcr3())); |
| 2872 | #endif |
| 2873 | KASSERT(ci->ci_pmap == pmap); |
| 2874 | |
| 2875 | /* |
| 2876 | * we aren't interested in TLB invalidations for this pmap, |
| 2877 | * at least for the time being. |
| 2878 | */ |
| 2879 | |
| 2880 | KASSERT(ci->ci_tlbstate == TLBSTATE_VALID); |
| 2881 | ci->ci_tlbstate = TLBSTATE_LAZY; |
| 2882 | } |
| 2883 | |
| 2884 | /* |
| 2885 | * end of lifecycle functions |
| 2886 | */ |
| 2887 | |
| 2888 | /* |
| 2889 | * some misc. functions |
| 2890 | */ |
| 2891 | |
| 2892 | int |
| 2893 | pmap_pdes_invalid(vaddr_t va, pd_entry_t * const *pdes, pd_entry_t *lastpde) |
| 2894 | { |
| 2895 | int i; |
| 2896 | unsigned long index; |
| 2897 | pd_entry_t pde; |
| 2898 | |
| 2899 | for (i = PTP_LEVELS; i > 1; i--) { |
| 2900 | index = pl_i(va, i); |
| 2901 | pde = pdes[i - 2][index]; |
| 2902 | if ((pde & PG_V) == 0) |
| 2903 | return i; |
| 2904 | } |
| 2905 | if (lastpde != NULL) |
| 2906 | *lastpde = pde; |
| 2907 | return 0; |
| 2908 | } |
| 2909 | |
| 2910 | /* |
| 2911 | * pmap_extract: extract a PA for the given VA |
| 2912 | */ |
| 2913 | |
| 2914 | bool |
| 2915 | (struct pmap *pmap, vaddr_t va, paddr_t *pap) |
| 2916 | { |
| 2917 | pt_entry_t *ptes, pte; |
| 2918 | pd_entry_t pde; |
| 2919 | pd_entry_t * const *pdes; |
| 2920 | struct pmap *pmap2; |
| 2921 | struct cpu_info *ci; |
| 2922 | paddr_t pa; |
| 2923 | lwp_t *l; |
| 2924 | bool hard, rv; |
| 2925 | |
| 2926 | #ifdef __HAVE_DIRECT_MAP |
| 2927 | if (va >= PMAP_DIRECT_BASE && va < PMAP_DIRECT_END) { |
| 2928 | if (pap != NULL) { |
| 2929 | *pap = va - PMAP_DIRECT_BASE; |
| 2930 | } |
| 2931 | return true; |
| 2932 | } |
| 2933 | #endif |
| 2934 | |
| 2935 | rv = false; |
| 2936 | pa = 0; |
| 2937 | l = curlwp; |
| 2938 | |
| 2939 | kpreempt_disable(); |
| 2940 | ci = l->l_cpu; |
| 2941 | if (__predict_true(!ci->ci_want_pmapload && ci->ci_pmap == pmap) || |
| 2942 | pmap == pmap_kernel()) { |
| 2943 | /* |
| 2944 | * no need to lock, because it's pmap_kernel() or our |
| 2945 | * own pmap and is active. if a user pmap, the caller |
| 2946 | * will hold the vm_map write/read locked and so prevent |
| 2947 | * entries from disappearing while we are here. ptps |
| 2948 | * can disappear via pmap_remove() and pmap_protect(), |
| 2949 | * but they are called with the vm_map write locked. |
| 2950 | */ |
| 2951 | hard = false; |
| 2952 | ptes = PTE_BASE; |
| 2953 | pdes = normal_pdes; |
| 2954 | } else { |
| 2955 | /* we lose, do it the hard way. */ |
| 2956 | hard = true; |
| 2957 | pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); |
| 2958 | } |
| 2959 | if (pmap_pdes_valid(va, pdes, &pde)) { |
| 2960 | pte = ptes[pl1_i(va)]; |
| 2961 | if (pde & PG_PS) { |
| 2962 | pa = (pde & PG_LGFRAME) | (va & (NBPD_L2 - 1)); |
| 2963 | rv = true; |
| 2964 | } else if (__predict_true((pte & PG_V) != 0)) { |
| 2965 | pa = pmap_pte2pa(pte) | (va & (NBPD_L1 - 1)); |
| 2966 | rv = true; |
| 2967 | } |
| 2968 | } |
| 2969 | if (__predict_false(hard)) { |
| 2970 | pmap_unmap_ptes(pmap, pmap2); |
| 2971 | } |
| 2972 | kpreempt_enable(); |
| 2973 | if (pap != NULL) { |
| 2974 | *pap = pa; |
| 2975 | } |
| 2976 | return rv; |
| 2977 | } |
| 2978 | |
| 2979 | |
| 2980 | /* |
| 2981 | * vtophys: virtual address to physical address. For use by |
| 2982 | * machine-dependent code only. |
| 2983 | */ |
| 2984 | |
| 2985 | paddr_t |
| 2986 | vtophys(vaddr_t va) |
| 2987 | { |
| 2988 | paddr_t pa; |
| 2989 | |
| 2990 | if (pmap_extract(pmap_kernel(), va, &pa) == true) |
| 2991 | return (pa); |
| 2992 | return (0); |
| 2993 | } |
| 2994 | |
| 2995 | __strict_weak_alias(pmap_extract_ma, pmap_extract); |
| 2996 | |
| 2997 | #ifdef XEN |
| 2998 | |
| 2999 | /* |
| 3000 | * vtomach: virtual address to machine address. For use by |
| 3001 | * machine-dependent code only. |
| 3002 | */ |
| 3003 | |
| 3004 | paddr_t |
| 3005 | vtomach(vaddr_t va) |
| 3006 | { |
| 3007 | paddr_t pa; |
| 3008 | |
| 3009 | if (pmap_extract_ma(pmap_kernel(), va, &pa) == true) |
| 3010 | return (pa); |
| 3011 | return (0); |
| 3012 | } |
| 3013 | |
| 3014 | #endif /* XEN */ |
| 3015 | |
| 3016 | /* |
| 3017 | * pmap_virtual_space: used during bootup [pmap_steal_memory] to |
| 3018 | * determine the bounds of the kernel virtual addess space. |
| 3019 | */ |
| 3020 | |
| 3021 | void |
| 3022 | pmap_virtual_space(vaddr_t *startp, vaddr_t *endp) |
| 3023 | { |
| 3024 | *startp = virtual_avail; |
| 3025 | *endp = virtual_end; |
| 3026 | } |
| 3027 | |
| 3028 | /* |
| 3029 | * pmap_zero_page: zero a page |
| 3030 | */ |
| 3031 | |
| 3032 | void |
| 3033 | pmap_zero_page(paddr_t pa) |
| 3034 | { |
| 3035 | #if defined(__HAVE_DIRECT_MAP) |
| 3036 | pagezero(PMAP_DIRECT_MAP(pa)); |
| 3037 | #else |
| 3038 | #if defined(XEN) |
| 3039 | if (XEN_VERSION_SUPPORTED(3, 4)) |
| 3040 | xen_pagezero(pa); |
| 3041 | #endif |
| 3042 | pt_entry_t *zpte; |
| 3043 | void *zerova; |
| 3044 | int id; |
| 3045 | |
| 3046 | const pd_entry_t pteflags = PG_V | PG_RW | pmap_pg_nx | PG_M | PG_U | |
| 3047 | PG_k; |
| 3048 | |
| 3049 | kpreempt_disable(); |
| 3050 | id = cpu_number(); |
| 3051 | zpte = PTESLEW(zero_pte, id); |
| 3052 | zerova = VASLEW(zerop, id); |
| 3053 | |
| 3054 | #ifdef DIAGNOSTIC |
| 3055 | if (*zpte) |
| 3056 | panic("pmap_zero_page: lock botch" ); |
| 3057 | #endif |
| 3058 | |
| 3059 | pmap_pte_set(zpte, pmap_pa2pte(pa) | pteflags); |
| 3060 | pmap_pte_flush(); |
| 3061 | pmap_update_pg((vaddr_t)zerova); /* flush TLB */ |
| 3062 | |
| 3063 | memset(zerova, 0, PAGE_SIZE); |
| 3064 | |
| 3065 | #if defined(DIAGNOSTIC) || defined(XEN) |
| 3066 | pmap_pte_set(zpte, 0); /* zap ! */ |
| 3067 | pmap_pte_flush(); |
| 3068 | #endif |
| 3069 | |
| 3070 | kpreempt_enable(); |
| 3071 | #endif /* defined(__HAVE_DIRECT_MAP) */ |
| 3072 | } |
| 3073 | |
| 3074 | /* |
| 3075 | * pmap_pagezeroidle: the same, for the idle loop page zero'er. |
| 3076 | * Returns true if the page was zero'd, false if we aborted for |
| 3077 | * some reason. |
| 3078 | */ |
| 3079 | |
| 3080 | bool |
| 3081 | pmap_pageidlezero(paddr_t pa) |
| 3082 | { |
| 3083 | #ifdef __HAVE_DIRECT_MAP |
| 3084 | KASSERT(cpu_feature[0] & CPUID_SSE2); |
| 3085 | return sse2_idlezero_page((void *)PMAP_DIRECT_MAP(pa)); |
| 3086 | #else |
| 3087 | pt_entry_t *zpte; |
| 3088 | void *zerova; |
| 3089 | bool rv; |
| 3090 | int id; |
| 3091 | |
| 3092 | const pd_entry_t pteflags = PG_V | PG_RW | pmap_pg_nx | PG_M | PG_U | |
| 3093 | PG_k; |
| 3094 | |
| 3095 | id = cpu_number(); |
| 3096 | zpte = PTESLEW(zero_pte, id); |
| 3097 | zerova = VASLEW(zerop, id); |
| 3098 | |
| 3099 | KASSERT(cpu_feature[0] & CPUID_SSE2); |
| 3100 | KASSERT(*zpte == 0); |
| 3101 | |
| 3102 | pmap_pte_set(zpte, pmap_pa2pte(pa) | pteflags); |
| 3103 | pmap_pte_flush(); |
| 3104 | pmap_update_pg((vaddr_t)zerova); /* flush TLB */ |
| 3105 | |
| 3106 | rv = sse2_idlezero_page(zerova); |
| 3107 | |
| 3108 | #if defined(DIAGNOSTIC) || defined(XEN) |
| 3109 | pmap_pte_set(zpte, 0); /* zap ! */ |
| 3110 | pmap_pte_flush(); |
| 3111 | #endif |
| 3112 | |
| 3113 | return rv; |
| 3114 | #endif |
| 3115 | } |
| 3116 | |
| 3117 | /* |
| 3118 | * pmap_copy_page: copy a page |
| 3119 | */ |
| 3120 | |
| 3121 | void |
| 3122 | pmap_copy_page(paddr_t srcpa, paddr_t dstpa) |
| 3123 | { |
| 3124 | #if defined(__HAVE_DIRECT_MAP) |
| 3125 | vaddr_t srcva = PMAP_DIRECT_MAP(srcpa); |
| 3126 | vaddr_t dstva = PMAP_DIRECT_MAP(dstpa); |
| 3127 | |
| 3128 | memcpy((void *)dstva, (void *)srcva, PAGE_SIZE); |
| 3129 | #else |
| 3130 | #if defined(XEN) |
| 3131 | if (XEN_VERSION_SUPPORTED(3, 4)) { |
| 3132 | xen_copy_page(srcpa, dstpa); |
| 3133 | return; |
| 3134 | } |
| 3135 | #endif |
| 3136 | pt_entry_t *spte; |
| 3137 | pt_entry_t *dpte; |
| 3138 | void *csrcva; |
| 3139 | void *cdstva; |
| 3140 | int id; |
| 3141 | |
| 3142 | const pd_entry_t pteflags = PG_V | PG_RW | pmap_pg_nx | PG_U | PG_k; |
| 3143 | |
| 3144 | kpreempt_disable(); |
| 3145 | id = cpu_number(); |
| 3146 | spte = PTESLEW(csrc_pte,id); |
| 3147 | dpte = PTESLEW(cdst_pte,id); |
| 3148 | csrcva = VASLEW(csrcp, id); |
| 3149 | cdstva = VASLEW(cdstp, id); |
| 3150 | |
| 3151 | KASSERT(*spte == 0 && *dpte == 0); |
| 3152 | |
| 3153 | pmap_pte_set(spte, pmap_pa2pte(srcpa) | pteflags); |
| 3154 | pmap_pte_set(dpte, pmap_pa2pte(dstpa) | pteflags | PG_M); |
| 3155 | pmap_pte_flush(); |
| 3156 | pmap_update_2pg((vaddr_t)csrcva, (vaddr_t)cdstva); |
| 3157 | |
| 3158 | memcpy(cdstva, csrcva, PAGE_SIZE); |
| 3159 | |
| 3160 | #if defined(DIAGNOSTIC) || defined(XEN) |
| 3161 | pmap_pte_set(spte, 0); |
| 3162 | pmap_pte_set(dpte, 0); |
| 3163 | pmap_pte_flush(); |
| 3164 | #endif |
| 3165 | |
| 3166 | kpreempt_enable(); |
| 3167 | #endif /* defined(__HAVE_DIRECT_MAP) */ |
| 3168 | } |
| 3169 | |
| 3170 | static pt_entry_t * |
| 3171 | pmap_map_ptp(struct vm_page *ptp) |
| 3172 | { |
| 3173 | #ifdef __HAVE_DIRECT_MAP |
| 3174 | return (void *)PMAP_DIRECT_MAP(VM_PAGE_TO_PHYS(ptp)); |
| 3175 | #else |
| 3176 | pt_entry_t *ptppte; |
| 3177 | void *ptpva; |
| 3178 | int id; |
| 3179 | |
| 3180 | KASSERT(kpreempt_disabled()); |
| 3181 | |
| 3182 | #ifndef XEN |
| 3183 | const pd_entry_t pteflags = PG_V | PG_RW | pmap_pg_nx | PG_U | PG_M | |
| 3184 | PG_k; |
| 3185 | #else |
| 3186 | const pd_entry_t pteflags = PG_V | pmap_pg_nx | PG_U | PG_M | PG_k; |
| 3187 | #endif |
| 3188 | |
| 3189 | id = cpu_number(); |
| 3190 | ptppte = PTESLEW(ptp_pte, id); |
| 3191 | ptpva = VASLEW(ptpp, id); |
| 3192 | pmap_pte_set(ptppte, pmap_pa2pte(VM_PAGE_TO_PHYS(ptp)) | pteflags); |
| 3193 | |
| 3194 | pmap_pte_flush(); |
| 3195 | pmap_update_pg((vaddr_t)ptpva); |
| 3196 | |
| 3197 | return (pt_entry_t *)ptpva; |
| 3198 | #endif |
| 3199 | } |
| 3200 | |
| 3201 | static void |
| 3202 | pmap_unmap_ptp(void) |
| 3203 | { |
| 3204 | #ifndef __HAVE_DIRECT_MAP |
| 3205 | #if defined(DIAGNOSTIC) || defined(XEN) |
| 3206 | pt_entry_t *pte; |
| 3207 | |
| 3208 | KASSERT(kpreempt_disabled()); |
| 3209 | |
| 3210 | pte = PTESLEW(ptp_pte, cpu_number()); |
| 3211 | if (*pte != 0) { |
| 3212 | pmap_pte_set(pte, 0); |
| 3213 | pmap_pte_flush(); |
| 3214 | } |
| 3215 | #endif |
| 3216 | #endif |
| 3217 | } |
| 3218 | |
| 3219 | static pt_entry_t * |
| 3220 | pmap_map_pte(struct pmap *pmap, struct vm_page *ptp, vaddr_t va) |
| 3221 | { |
| 3222 | |
| 3223 | KASSERT(kpreempt_disabled()); |
| 3224 | if (pmap_is_curpmap(pmap)) { |
| 3225 | return &PTE_BASE[pl1_i(va)]; /* (k)vtopte */ |
| 3226 | } |
| 3227 | KASSERT(ptp != NULL); |
| 3228 | return pmap_map_ptp(ptp) + pl1_pi(va); |
| 3229 | } |
| 3230 | |
| 3231 | static void |
| 3232 | pmap_unmap_pte(void) |
| 3233 | { |
| 3234 | |
| 3235 | KASSERT(kpreempt_disabled()); |
| 3236 | |
| 3237 | pmap_unmap_ptp(); |
| 3238 | } |
| 3239 | |
| 3240 | /* |
| 3241 | * p m a p r e m o v e f u n c t i o n s |
| 3242 | * |
| 3243 | * functions that remove mappings |
| 3244 | */ |
| 3245 | |
| 3246 | /* |
| 3247 | * pmap_remove_ptes: remove PTEs from a PTP |
| 3248 | * |
| 3249 | * => caller must hold pmap's lock |
| 3250 | * => PTP must be mapped into KVA |
| 3251 | * => PTP should be null if pmap == pmap_kernel() |
| 3252 | * => must be called with kernel preemption disabled |
| 3253 | * => returns composite pte if at least one page should be shot down |
| 3254 | */ |
| 3255 | |
| 3256 | static void |
| 3257 | pmap_remove_ptes(struct pmap *pmap, struct vm_page *ptp, vaddr_t ptpva, |
| 3258 | vaddr_t startva, vaddr_t endva, struct pv_entry **pv_tofree) |
| 3259 | { |
| 3260 | pt_entry_t *pte = (pt_entry_t *)ptpva; |
| 3261 | |
| 3262 | KASSERT(pmap == pmap_kernel() || mutex_owned(pmap->pm_lock)); |
| 3263 | KASSERT(kpreempt_disabled()); |
| 3264 | |
| 3265 | /* |
| 3266 | * note that ptpva points to the PTE that maps startva. this may |
| 3267 | * or may not be the first PTE in the PTP. |
| 3268 | * |
| 3269 | * we loop through the PTP while there are still PTEs to look at |
| 3270 | * and the wire_count is greater than 1 (because we use the wire_count |
| 3271 | * to keep track of the number of real PTEs in the PTP). |
| 3272 | */ |
| 3273 | while (startva < endva && (ptp == NULL || ptp->wire_count > 1)) { |
| 3274 | (void)pmap_remove_pte(pmap, ptp, pte, startva, pv_tofree); |
| 3275 | startva += PAGE_SIZE; |
| 3276 | pte++; |
| 3277 | } |
| 3278 | } |
| 3279 | |
| 3280 | |
| 3281 | /* |
| 3282 | * pmap_remove_pte: remove a single PTE from a PTP. |
| 3283 | * |
| 3284 | * => caller must hold pmap's lock |
| 3285 | * => PTP must be mapped into KVA |
| 3286 | * => PTP should be null if pmap == pmap_kernel() |
| 3287 | * => returns true if we removed a mapping |
| 3288 | * => must be called with kernel preemption disabled |
| 3289 | */ |
| 3290 | static bool |
| 3291 | pmap_remove_pte(struct pmap *pmap, struct vm_page *ptp, pt_entry_t *pte, |
| 3292 | vaddr_t va, struct pv_entry **pv_tofree) |
| 3293 | { |
| 3294 | struct pv_entry *pve; |
| 3295 | struct vm_page *pg; |
| 3296 | struct pmap_page *pp; |
| 3297 | pt_entry_t opte; |
| 3298 | |
| 3299 | KASSERT(pmap == pmap_kernel() || mutex_owned(pmap->pm_lock)); |
| 3300 | KASSERT(kpreempt_disabled()); |
| 3301 | |
| 3302 | if (!pmap_valid_entry(*pte)) { |
| 3303 | /* VA not mapped. */ |
| 3304 | return false; |
| 3305 | } |
| 3306 | |
| 3307 | /* Atomically save the old PTE and zap it. */ |
| 3308 | opte = pmap_pte_testset(pte, 0); |
| 3309 | if (!pmap_valid_entry(opte)) { |
| 3310 | return false; |
| 3311 | } |
| 3312 | |
| 3313 | pmap_exec_account(pmap, va, opte, 0); |
| 3314 | pmap_stats_update_bypte(pmap, 0, opte); |
| 3315 | |
| 3316 | if (ptp) { |
| 3317 | /* |
| 3318 | * Dropping a PTE. Make sure that the PDE is flushed. |
| 3319 | */ |
| 3320 | ptp->wire_count--; |
| 3321 | if (ptp->wire_count <= 1) { |
| 3322 | opte |= PG_U; |
| 3323 | } |
| 3324 | } |
| 3325 | |
| 3326 | if ((opte & PG_U) != 0) { |
| 3327 | pmap_tlb_shootdown(pmap, va, opte, TLBSHOOT_REMOVE_PTE); |
| 3328 | } |
| 3329 | |
| 3330 | /* |
| 3331 | * If we are not on a pv_head list - we are done. |
| 3332 | */ |
| 3333 | if ((opte & PG_PVLIST) == 0) { |
| 3334 | #if defined(DIAGNOSTIC) && !defined(DOM0OPS) |
| 3335 | if (PHYS_TO_VM_PAGE(pmap_pte2pa(opte)) != NULL || |
| 3336 | pmap_pv_tracked(pmap_pte2pa(opte)) != NULL) |
| 3337 | panic("pmap_remove_pte: managed or pv-tracked page" |
| 3338 | " without PG_PVLIST for %#" PRIxVADDR, va); |
| 3339 | #endif |
| 3340 | return true; |
| 3341 | } |
| 3342 | |
| 3343 | if ((pg = PHYS_TO_VM_PAGE(pmap_pte2pa(opte))) != NULL) { |
| 3344 | KASSERT(uvm_page_locked_p(pg)); |
| 3345 | pp = VM_PAGE_TO_PP(pg); |
| 3346 | } else if ((pp = pmap_pv_tracked(pmap_pte2pa(opte))) == NULL) { |
| 3347 | paddr_t pa = pmap_pte2pa(opte); |
| 3348 | panic("pmap_remove_pte: PG_PVLIST with pv-untracked page" |
| 3349 | " va = 0x%" PRIxVADDR |
| 3350 | " pa = 0x%" PRIxPADDR" (0x%" PRIxPADDR")" , |
| 3351 | va, pa, atop(pa)); |
| 3352 | } |
| 3353 | |
| 3354 | /* Sync R/M bits. */ |
| 3355 | pp->pp_attrs |= opte; |
| 3356 | pve = pmap_remove_pv(pp, ptp, va); |
| 3357 | |
| 3358 | if (pve) { |
| 3359 | pve->pve_next = *pv_tofree; |
| 3360 | *pv_tofree = pve; |
| 3361 | } |
| 3362 | return true; |
| 3363 | } |
| 3364 | |
| 3365 | /* |
| 3366 | * pmap_remove: mapping removal function. |
| 3367 | * |
| 3368 | * => caller should not be holding any pmap locks |
| 3369 | */ |
| 3370 | |
| 3371 | void |
| 3372 | pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva) |
| 3373 | { |
| 3374 | pt_entry_t *ptes; |
| 3375 | pd_entry_t pde; |
| 3376 | pd_entry_t * const *pdes; |
| 3377 | struct pv_entry *pv_tofree = NULL; |
| 3378 | bool result; |
| 3379 | int i; |
| 3380 | paddr_t ptppa; |
| 3381 | vaddr_t blkendva, va = sva; |
| 3382 | struct vm_page *ptp; |
| 3383 | struct pmap *pmap2; |
| 3384 | |
| 3385 | kpreempt_disable(); |
| 3386 | pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); /* locks pmap */ |
| 3387 | |
| 3388 | /* |
| 3389 | * removing one page? take shortcut function. |
| 3390 | */ |
| 3391 | |
| 3392 | if (va + PAGE_SIZE == eva) { |
| 3393 | if (pmap_pdes_valid(va, pdes, &pde)) { |
| 3394 | |
| 3395 | /* PA of the PTP */ |
| 3396 | ptppa = pmap_pte2pa(pde); |
| 3397 | |
| 3398 | /* Get PTP if non-kernel mapping. */ |
| 3399 | if (pmap != pmap_kernel()) { |
| 3400 | ptp = pmap_find_ptp(pmap, va, ptppa, 1); |
| 3401 | KASSERTMSG(ptp != NULL, |
| 3402 | "pmap_remove: unmanaged PTP detected" ); |
| 3403 | } else { |
| 3404 | /* Never free kernel PTPs. */ |
| 3405 | ptp = NULL; |
| 3406 | } |
| 3407 | |
| 3408 | result = pmap_remove_pte(pmap, ptp, |
| 3409 | &ptes[pl1_i(va)], va, &pv_tofree); |
| 3410 | |
| 3411 | /* |
| 3412 | * if mapping removed and the PTP is no longer |
| 3413 | * being used, free it! |
| 3414 | */ |
| 3415 | |
| 3416 | if (result && ptp && ptp->wire_count <= 1) |
| 3417 | pmap_free_ptp(pmap, ptp, va, ptes, pdes); |
| 3418 | } |
| 3419 | } else for (/* null */ ; va < eva ; va = blkendva) { |
| 3420 | int lvl; |
| 3421 | |
| 3422 | /* determine range of block */ |
| 3423 | blkendva = x86_round_pdr(va+1); |
| 3424 | if (blkendva > eva) |
| 3425 | blkendva = eva; |
| 3426 | |
| 3427 | /* |
| 3428 | * Our PTE mappings should never be removed with pmap_remove. |
| 3429 | * |
| 3430 | * XXXmaxv: still needed? |
| 3431 | * |
| 3432 | * A long term solution is to move the PTEs out of user address |
| 3433 | * space, and into kernel address space. Then we can set |
| 3434 | * VM_MAXUSER_ADDRESS to be VM_MAX_ADDRESS. |
| 3435 | */ |
| 3436 | for (i = 0; i < PDP_SIZE; i++) { |
| 3437 | if (pl_i(va, PTP_LEVELS) == PDIR_SLOT_PTE+i) |
| 3438 | panic("PTE space accessed" ); |
| 3439 | } |
| 3440 | |
| 3441 | lvl = pmap_pdes_invalid(va, pdes, &pde); |
| 3442 | if (lvl != 0) { |
| 3443 | /* |
| 3444 | * skip a range corresponding to an invalid pde. |
| 3445 | */ |
| 3446 | blkendva = (va & ptp_masks[lvl - 1]) + nbpd[lvl - 1]; |
| 3447 | continue; |
| 3448 | } |
| 3449 | |
| 3450 | /* PA of the PTP */ |
| 3451 | ptppa = pmap_pte2pa(pde); |
| 3452 | |
| 3453 | /* Get PTP if non-kernel mapping. */ |
| 3454 | if (pmap != pmap_kernel()) { |
| 3455 | ptp = pmap_find_ptp(pmap, va, ptppa, 1); |
| 3456 | KASSERTMSG(ptp != NULL, |
| 3457 | "pmap_remove: unmanaged PTP detected" ); |
| 3458 | } else { |
| 3459 | /* Never free kernel PTPs. */ |
| 3460 | ptp = NULL; |
| 3461 | } |
| 3462 | |
| 3463 | pmap_remove_ptes(pmap, ptp, (vaddr_t)&ptes[pl1_i(va)], va, |
| 3464 | blkendva, &pv_tofree); |
| 3465 | |
| 3466 | /* if PTP is no longer being used, free it! */ |
| 3467 | if (ptp && ptp->wire_count <= 1) { |
| 3468 | pmap_free_ptp(pmap, ptp, va, ptes, pdes); |
| 3469 | } |
| 3470 | } |
| 3471 | pmap_unmap_ptes(pmap, pmap2); /* unlock pmap */ |
| 3472 | kpreempt_enable(); |
| 3473 | |
| 3474 | /* Now we free unused PVs */ |
| 3475 | if (pv_tofree) |
| 3476 | pmap_free_pvs(pv_tofree); |
| 3477 | } |
| 3478 | |
| 3479 | /* |
| 3480 | * pmap_sync_pv: clear pte bits and return the old value of the pte. |
| 3481 | * |
| 3482 | * => Caller should disable kernel preemption. |
| 3483 | * => issues tlb shootdowns if necessary. |
| 3484 | */ |
| 3485 | |
| 3486 | static int |
| 3487 | pmap_sync_pv(struct pv_pte *pvpte, pt_entry_t expect, int clearbits, |
| 3488 | pt_entry_t *optep) |
| 3489 | { |
| 3490 | struct pmap *pmap; |
| 3491 | struct vm_page *ptp; |
| 3492 | vaddr_t va; |
| 3493 | pt_entry_t *ptep; |
| 3494 | pt_entry_t opte; |
| 3495 | pt_entry_t npte; |
| 3496 | bool need_shootdown; |
| 3497 | |
| 3498 | ptp = pvpte->pte_ptp; |
| 3499 | va = pvpte->pte_va; |
| 3500 | KASSERT(ptp == NULL || ptp->uobject != NULL); |
| 3501 | KASSERT(ptp == NULL || ptp_va2o(va, 1) == ptp->offset); |
| 3502 | pmap = ptp_to_pmap(ptp); |
| 3503 | |
| 3504 | KASSERT((expect & ~(PG_FRAME | PG_V)) == 0); |
| 3505 | KASSERT((expect & PG_V) != 0); |
| 3506 | KASSERT(clearbits == ~0 || (clearbits & ~(PG_M | PG_U | PG_RW)) == 0); |
| 3507 | KASSERT(kpreempt_disabled()); |
| 3508 | |
| 3509 | ptep = pmap_map_pte(pmap, ptp, va); |
| 3510 | do { |
| 3511 | opte = *ptep; |
| 3512 | KASSERT((opte & (PG_M | PG_U)) != PG_M); |
| 3513 | KASSERT((opte & (PG_U | PG_V)) != PG_U); |
| 3514 | KASSERT(opte == 0 || (opte & PG_V) != 0); |
| 3515 | if ((opte & (PG_FRAME | PG_V)) != expect) { |
| 3516 | |
| 3517 | /* |
| 3518 | * we lost a race with a V->P operation like |
| 3519 | * pmap_remove(). wait for the competitor |
| 3520 | * reflecting pte bits into mp_attrs. |
| 3521 | * |
| 3522 | * issue a redundant TLB shootdown so that |
| 3523 | * we can wait for its completion. |
| 3524 | */ |
| 3525 | |
| 3526 | pmap_unmap_pte(); |
| 3527 | if (clearbits != 0) { |
| 3528 | pmap_tlb_shootdown(pmap, va, |
| 3529 | (pmap == pmap_kernel() ? PG_G : 0), |
| 3530 | TLBSHOOT_SYNC_PV1); |
| 3531 | } |
| 3532 | return EAGAIN; |
| 3533 | } |
| 3534 | |
| 3535 | /* |
| 3536 | * check if there's anything to do on this pte. |
| 3537 | */ |
| 3538 | |
| 3539 | if ((opte & clearbits) == 0) { |
| 3540 | need_shootdown = false; |
| 3541 | break; |
| 3542 | } |
| 3543 | |
| 3544 | /* |
| 3545 | * we need a shootdown if the pte is cached. (PG_U) |
| 3546 | * |
| 3547 | * ...unless we are clearing only the PG_RW bit and |
| 3548 | * it isn't cached as RW. (PG_M) |
| 3549 | */ |
| 3550 | |
| 3551 | need_shootdown = (opte & PG_U) != 0 && |
| 3552 | !(clearbits == PG_RW && (opte & PG_M) == 0); |
| 3553 | |
| 3554 | npte = opte & ~clearbits; |
| 3555 | |
| 3556 | /* |
| 3557 | * if we need a shootdown anyway, clear PG_U and PG_M. |
| 3558 | */ |
| 3559 | |
| 3560 | if (need_shootdown) { |
| 3561 | npte &= ~(PG_U | PG_M); |
| 3562 | } |
| 3563 | KASSERT((npte & (PG_M | PG_U)) != PG_M); |
| 3564 | KASSERT((npte & (PG_U | PG_V)) != PG_U); |
| 3565 | KASSERT(npte == 0 || (opte & PG_V) != 0); |
| 3566 | } while (pmap_pte_cas(ptep, opte, npte) != opte); |
| 3567 | |
| 3568 | if (need_shootdown) { |
| 3569 | pmap_tlb_shootdown(pmap, va, opte, TLBSHOOT_SYNC_PV2); |
| 3570 | } |
| 3571 | pmap_unmap_pte(); |
| 3572 | |
| 3573 | *optep = opte; |
| 3574 | return 0; |
| 3575 | } |
| 3576 | |
| 3577 | static void |
| 3578 | pmap_pp_remove(struct pmap_page *pp, paddr_t pa) |
| 3579 | { |
| 3580 | struct pv_pte *pvpte; |
| 3581 | struct pv_entry *killlist = NULL; |
| 3582 | struct vm_page *ptp; |
| 3583 | pt_entry_t expect; |
| 3584 | int count; |
| 3585 | |
| 3586 | expect = pmap_pa2pte(pa) | PG_V; |
| 3587 | count = SPINLOCK_BACKOFF_MIN; |
| 3588 | kpreempt_disable(); |
| 3589 | startover: |
| 3590 | while ((pvpte = pv_pte_first(pp)) != NULL) { |
| 3591 | struct pmap *pmap; |
| 3592 | struct pv_entry *pve; |
| 3593 | pt_entry_t opte; |
| 3594 | vaddr_t va; |
| 3595 | int error; |
| 3596 | |
| 3597 | /* |
| 3598 | * add a reference to the pmap before clearing the pte. |
| 3599 | * otherwise the pmap can disappear behind us. |
| 3600 | */ |
| 3601 | |
| 3602 | ptp = pvpte->pte_ptp; |
| 3603 | pmap = ptp_to_pmap(ptp); |
| 3604 | if (ptp != NULL) { |
| 3605 | pmap_reference(pmap); |
| 3606 | } |
| 3607 | |
| 3608 | error = pmap_sync_pv(pvpte, expect, ~0, &opte); |
| 3609 | if (error == EAGAIN) { |
| 3610 | int hold_count; |
| 3611 | KERNEL_UNLOCK_ALL(curlwp, &hold_count); |
| 3612 | if (ptp != NULL) { |
| 3613 | pmap_destroy(pmap); |
| 3614 | } |
| 3615 | SPINLOCK_BACKOFF(count); |
| 3616 | KERNEL_LOCK(hold_count, curlwp); |
| 3617 | goto startover; |
| 3618 | } |
| 3619 | |
| 3620 | pp->pp_attrs |= opte; |
| 3621 | va = pvpte->pte_va; |
| 3622 | pve = pmap_remove_pv(pp, ptp, va); |
| 3623 | |
| 3624 | /* update the PTP reference count. free if last reference. */ |
| 3625 | if (ptp != NULL) { |
| 3626 | struct pmap *pmap2; |
| 3627 | pt_entry_t *ptes; |
| 3628 | pd_entry_t * const *pdes; |
| 3629 | |
| 3630 | KASSERT(pmap != pmap_kernel()); |
| 3631 | |
| 3632 | pmap_tlb_shootnow(); |
| 3633 | pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); |
| 3634 | pmap_stats_update_bypte(pmap, 0, opte); |
| 3635 | ptp->wire_count--; |
| 3636 | if (ptp->wire_count <= 1) { |
| 3637 | pmap_free_ptp(pmap, ptp, va, ptes, pdes); |
| 3638 | } |
| 3639 | pmap_unmap_ptes(pmap, pmap2); |
| 3640 | pmap_destroy(pmap); |
| 3641 | } else { |
| 3642 | KASSERT(pmap == pmap_kernel()); |
| 3643 | pmap_stats_update_bypte(pmap, 0, opte); |
| 3644 | } |
| 3645 | |
| 3646 | if (pve != NULL) { |
| 3647 | pve->pve_next = killlist; /* mark it for death */ |
| 3648 | killlist = pve; |
| 3649 | } |
| 3650 | } |
| 3651 | pmap_tlb_shootnow(); |
| 3652 | kpreempt_enable(); |
| 3653 | |
| 3654 | /* Now free unused pvs. */ |
| 3655 | pmap_free_pvs(killlist); |
| 3656 | } |
| 3657 | |
| 3658 | /* |
| 3659 | * pmap_page_remove: remove a managed vm_page from all pmaps that map it |
| 3660 | * |
| 3661 | * => R/M bits are sync'd back to attrs |
| 3662 | */ |
| 3663 | |
| 3664 | void |
| 3665 | pmap_page_remove(struct vm_page *pg) |
| 3666 | { |
| 3667 | struct pmap_page *pp; |
| 3668 | paddr_t pa; |
| 3669 | |
| 3670 | KASSERT(uvm_page_locked_p(pg)); |
| 3671 | |
| 3672 | pp = VM_PAGE_TO_PP(pg); |
| 3673 | pa = VM_PAGE_TO_PHYS(pg); |
| 3674 | pmap_pp_remove(pp, pa); |
| 3675 | } |
| 3676 | |
| 3677 | /* |
| 3678 | * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps |
| 3679 | * that map it |
| 3680 | */ |
| 3681 | |
| 3682 | void |
| 3683 | pmap_pv_remove(paddr_t pa) |
| 3684 | { |
| 3685 | struct pmap_page *pp; |
| 3686 | |
| 3687 | pp = pmap_pv_tracked(pa); |
| 3688 | if (pp == NULL) |
| 3689 | panic("pmap_pv_protect: page not pv-tracked: 0x%" PRIxPADDR, |
| 3690 | pa); |
| 3691 | pmap_pp_remove(pp, pa); |
| 3692 | } |
| 3693 | |
| 3694 | /* |
| 3695 | * p m a p a t t r i b u t e f u n c t i o n s |
| 3696 | * functions that test/change managed page's attributes |
| 3697 | * since a page can be mapped multiple times we must check each PTE that |
| 3698 | * maps it by going down the pv lists. |
| 3699 | */ |
| 3700 | |
| 3701 | /* |
| 3702 | * pmap_test_attrs: test a page's attributes |
| 3703 | */ |
| 3704 | |
| 3705 | bool |
| 3706 | pmap_test_attrs(struct vm_page *pg, unsigned testbits) |
| 3707 | { |
| 3708 | struct pmap_page *pp; |
| 3709 | struct pv_pte *pvpte; |
| 3710 | pt_entry_t expect; |
| 3711 | u_int result; |
| 3712 | |
| 3713 | KASSERT(uvm_page_locked_p(pg)); |
| 3714 | |
| 3715 | pp = VM_PAGE_TO_PP(pg); |
| 3716 | if ((pp->pp_attrs & testbits) != 0) { |
| 3717 | return true; |
| 3718 | } |
| 3719 | expect = pmap_pa2pte(VM_PAGE_TO_PHYS(pg)) | PG_V; |
| 3720 | kpreempt_disable(); |
| 3721 | for (pvpte = pv_pte_first(pp); pvpte; pvpte = pv_pte_next(pp, pvpte)) { |
| 3722 | pt_entry_t opte; |
| 3723 | int error; |
| 3724 | |
| 3725 | if ((pp->pp_attrs & testbits) != 0) { |
| 3726 | break; |
| 3727 | } |
| 3728 | error = pmap_sync_pv(pvpte, expect, 0, &opte); |
| 3729 | if (error == 0) { |
| 3730 | pp->pp_attrs |= opte; |
| 3731 | } |
| 3732 | } |
| 3733 | result = pp->pp_attrs & testbits; |
| 3734 | kpreempt_enable(); |
| 3735 | |
| 3736 | /* |
| 3737 | * note that we will exit the for loop with a non-null pve if |
| 3738 | * we have found the bits we are testing for. |
| 3739 | */ |
| 3740 | |
| 3741 | return result != 0; |
| 3742 | } |
| 3743 | |
| 3744 | static bool |
| 3745 | pmap_pp_clear_attrs(struct pmap_page *pp, paddr_t pa, unsigned clearbits) |
| 3746 | { |
| 3747 | struct pv_pte *pvpte; |
| 3748 | u_int result; |
| 3749 | pt_entry_t expect; |
| 3750 | int count; |
| 3751 | |
| 3752 | expect = pmap_pa2pte(pa) | PG_V; |
| 3753 | count = SPINLOCK_BACKOFF_MIN; |
| 3754 | kpreempt_disable(); |
| 3755 | startover: |
| 3756 | for (pvpte = pv_pte_first(pp); pvpte; pvpte = pv_pte_next(pp, pvpte)) { |
| 3757 | pt_entry_t opte; |
| 3758 | int error; |
| 3759 | |
| 3760 | error = pmap_sync_pv(pvpte, expect, clearbits, &opte); |
| 3761 | if (error == EAGAIN) { |
| 3762 | int hold_count; |
| 3763 | KERNEL_UNLOCK_ALL(curlwp, &hold_count); |
| 3764 | SPINLOCK_BACKOFF(count); |
| 3765 | KERNEL_LOCK(hold_count, curlwp); |
| 3766 | goto startover; |
| 3767 | } |
| 3768 | pp->pp_attrs |= opte; |
| 3769 | } |
| 3770 | result = pp->pp_attrs & clearbits; |
| 3771 | pp->pp_attrs &= ~clearbits; |
| 3772 | pmap_tlb_shootnow(); |
| 3773 | kpreempt_enable(); |
| 3774 | |
| 3775 | return result != 0; |
| 3776 | } |
| 3777 | |
| 3778 | /* |
| 3779 | * pmap_clear_attrs: clear the specified attribute for a page. |
| 3780 | * |
| 3781 | * => we return true if we cleared one of the bits we were asked to |
| 3782 | */ |
| 3783 | |
| 3784 | bool |
| 3785 | pmap_clear_attrs(struct vm_page *pg, unsigned clearbits) |
| 3786 | { |
| 3787 | struct pmap_page *pp; |
| 3788 | paddr_t pa; |
| 3789 | |
| 3790 | KASSERT(uvm_page_locked_p(pg)); |
| 3791 | |
| 3792 | pp = VM_PAGE_TO_PP(pg); |
| 3793 | pa = VM_PAGE_TO_PHYS(pg); |
| 3794 | |
| 3795 | return pmap_pp_clear_attrs(pp, pa, clearbits); |
| 3796 | } |
| 3797 | |
| 3798 | /* |
| 3799 | * pmap_pv_clear_attrs: clear the specified attributes for an unmanaged |
| 3800 | * pv-tracked page. |
| 3801 | */ |
| 3802 | |
| 3803 | bool |
| 3804 | pmap_pv_clear_attrs(paddr_t pa, unsigned clearbits) |
| 3805 | { |
| 3806 | struct pmap_page *pp; |
| 3807 | |
| 3808 | pp = pmap_pv_tracked(pa); |
| 3809 | if (pp == NULL) |
| 3810 | panic("pmap_pv_protect: page not pv-tracked: 0x%" PRIxPADDR, |
| 3811 | pa); |
| 3812 | |
| 3813 | return pmap_pp_clear_attrs(pp, pa, clearbits); |
| 3814 | } |
| 3815 | |
| 3816 | /* |
| 3817 | * p m a p p r o t e c t i o n f u n c t i o n s |
| 3818 | */ |
| 3819 | |
| 3820 | /* |
| 3821 | * pmap_page_protect: change the protection of all recorded mappings |
| 3822 | * of a managed page |
| 3823 | * |
| 3824 | * => NOTE: this is an inline function in pmap.h |
| 3825 | */ |
| 3826 | |
| 3827 | /* see pmap.h */ |
| 3828 | |
| 3829 | /* |
| 3830 | * pmap_pv_protect: change the protection of all recorded mappings |
| 3831 | * of an unmanaged pv-tracked page |
| 3832 | * |
| 3833 | * => NOTE: this is an inline function in pmap.h |
| 3834 | */ |
| 3835 | |
| 3836 | /* see pmap.h */ |
| 3837 | |
| 3838 | /* |
| 3839 | * pmap_protect: set the protection in of the pages in a pmap |
| 3840 | * |
| 3841 | * => NOTE: this is an inline function in pmap.h |
| 3842 | */ |
| 3843 | |
| 3844 | /* see pmap.h */ |
| 3845 | |
| 3846 | /* |
| 3847 | * pmap_write_protect: write-protect pages in a pmap. |
| 3848 | */ |
| 3849 | void |
| 3850 | pmap_write_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot) |
| 3851 | { |
| 3852 | pt_entry_t bit_rem, bit_put; |
| 3853 | pt_entry_t *ptes; |
| 3854 | pt_entry_t * const *pdes; |
| 3855 | struct pmap *pmap2; |
| 3856 | vaddr_t blockend, va; |
| 3857 | |
| 3858 | KASSERT(curlwp->l_md.md_gc_pmap != pmap); |
| 3859 | |
| 3860 | bit_rem = 0; |
| 3861 | if (!(prot & VM_PROT_WRITE)) |
| 3862 | bit_rem = PG_RW; |
| 3863 | |
| 3864 | bit_put = 0; |
| 3865 | if (!(prot & VM_PROT_EXECUTE)) |
| 3866 | bit_put = pmap_pg_nx; |
| 3867 | |
| 3868 | sva &= PG_FRAME; |
| 3869 | eva &= PG_FRAME; |
| 3870 | |
| 3871 | /* Acquire pmap. */ |
| 3872 | kpreempt_disable(); |
| 3873 | pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); |
| 3874 | |
| 3875 | for (va = sva ; va < eva; va = blockend) { |
| 3876 | pt_entry_t *spte, *epte; |
| 3877 | int i; |
| 3878 | |
| 3879 | blockend = x86_round_pdr(va + 1); |
| 3880 | if (blockend > eva) |
| 3881 | blockend = eva; |
| 3882 | |
| 3883 | /* |
| 3884 | * Our PTE mappings should never be write-protected. |
| 3885 | * |
| 3886 | * XXXmaxv: still needed? |
| 3887 | * |
| 3888 | * A long term solution is to move the PTEs out of user address |
| 3889 | * space, and into kernel address space. Then we can set |
| 3890 | * VM_MAXUSER_ADDRESS to be VM_MAX_ADDRESS. |
| 3891 | */ |
| 3892 | for (i = 0; i < PDP_SIZE; i++) { |
| 3893 | if (pl_i(va, PTP_LEVELS) == PDIR_SLOT_PTE+i) |
| 3894 | panic("PTE space accessed" ); |
| 3895 | } |
| 3896 | |
| 3897 | /* Is it a valid block? */ |
| 3898 | if (!pmap_pdes_valid(va, pdes, NULL)) { |
| 3899 | continue; |
| 3900 | } |
| 3901 | KASSERT(va < VM_MAXUSER_ADDRESS || va >= VM_MAX_ADDRESS); |
| 3902 | |
| 3903 | spte = &ptes[pl1_i(va)]; |
| 3904 | epte = &ptes[pl1_i(blockend)]; |
| 3905 | |
| 3906 | for (/* */; spte < epte; spte++) { |
| 3907 | pt_entry_t opte, npte; |
| 3908 | |
| 3909 | do { |
| 3910 | opte = *spte; |
| 3911 | if (!pmap_valid_entry(opte)) { |
| 3912 | goto next; |
| 3913 | } |
| 3914 | npte = (opte & ~bit_rem) | bit_put; |
| 3915 | } while (pmap_pte_cas(spte, opte, npte) != opte); |
| 3916 | |
| 3917 | if ((opte & PG_M) != 0) { |
| 3918 | vaddr_t tva = x86_ptob(spte - ptes); |
| 3919 | pmap_tlb_shootdown(pmap, tva, opte, |
| 3920 | TLBSHOOT_WRITE_PROTECT); |
| 3921 | } |
| 3922 | next:; |
| 3923 | } |
| 3924 | } |
| 3925 | |
| 3926 | /* Release pmap. */ |
| 3927 | pmap_unmap_ptes(pmap, pmap2); |
| 3928 | kpreempt_enable(); |
| 3929 | } |
| 3930 | |
| 3931 | /* |
| 3932 | * pmap_unwire: clear the wired bit in the PTE. |
| 3933 | * |
| 3934 | * => Mapping should already be present. |
| 3935 | */ |
| 3936 | void |
| 3937 | pmap_unwire(struct pmap *pmap, vaddr_t va) |
| 3938 | { |
| 3939 | pt_entry_t *ptes, *ptep, opte; |
| 3940 | pd_entry_t * const *pdes; |
| 3941 | struct pmap *pmap2; |
| 3942 | |
| 3943 | /* Acquire pmap. */ |
| 3944 | kpreempt_disable(); |
| 3945 | pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); |
| 3946 | |
| 3947 | if (!pmap_pdes_valid(va, pdes, NULL)) { |
| 3948 | panic("pmap_unwire: invalid PDE" ); |
| 3949 | } |
| 3950 | |
| 3951 | ptep = &ptes[pl1_i(va)]; |
| 3952 | opte = *ptep; |
| 3953 | KASSERT(pmap_valid_entry(opte)); |
| 3954 | |
| 3955 | if (opte & PG_W) { |
| 3956 | pt_entry_t npte = opte & ~PG_W; |
| 3957 | |
| 3958 | opte = pmap_pte_testset(ptep, npte); |
| 3959 | pmap_stats_update_bypte(pmap, npte, opte); |
| 3960 | } else { |
| 3961 | printf("pmap_unwire: wiring for pmap %p va 0x%lx " |
| 3962 | "did not change!\n" , pmap, va); |
| 3963 | } |
| 3964 | |
| 3965 | /* Release pmap. */ |
| 3966 | pmap_unmap_ptes(pmap, pmap2); |
| 3967 | kpreempt_enable(); |
| 3968 | } |
| 3969 | |
| 3970 | /* |
| 3971 | * pmap_copy: copy mappings from one pmap to another |
| 3972 | * |
| 3973 | * => optional function |
| 3974 | * void pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr) |
| 3975 | */ |
| 3976 | |
| 3977 | /* |
| 3978 | * defined as macro in pmap.h |
| 3979 | */ |
| 3980 | |
| 3981 | __strict_weak_alias(pmap_enter, pmap_enter_default); |
| 3982 | |
| 3983 | int |
| 3984 | pmap_enter_default(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, |
| 3985 | u_int flags) |
| 3986 | { |
| 3987 | return pmap_enter_ma(pmap, va, pa, pa, prot, flags, 0); |
| 3988 | } |
| 3989 | |
| 3990 | /* |
| 3991 | * pmap_enter: enter a mapping into a pmap |
| 3992 | * |
| 3993 | * => must be done "now" ... no lazy-evaluation |
| 3994 | * => we set pmap => pv_head locking |
| 3995 | */ |
| 3996 | int |
| 3997 | pmap_enter_ma(struct pmap *pmap, vaddr_t va, paddr_t ma, paddr_t pa, |
| 3998 | vm_prot_t prot, u_int flags, int domid) |
| 3999 | { |
| 4000 | pt_entry_t *ptes, opte, npte; |
| 4001 | pt_entry_t *ptep; |
| 4002 | pd_entry_t * const *pdes; |
| 4003 | struct vm_page *ptp; |
| 4004 | struct vm_page *new_pg, *old_pg; |
| 4005 | struct pmap_page *new_pp, *old_pp; |
| 4006 | struct pv_entry *old_pve = NULL; |
| 4007 | struct pv_entry *new_pve; |
| 4008 | struct pv_entry *new_sparepve; |
| 4009 | int error; |
| 4010 | bool wired = (flags & PMAP_WIRED) != 0; |
| 4011 | struct pmap *pmap2; |
| 4012 | |
| 4013 | KASSERT(pmap_initialized); |
| 4014 | KASSERT(curlwp->l_md.md_gc_pmap != pmap); |
| 4015 | KASSERT(va < VM_MAX_KERNEL_ADDRESS); |
| 4016 | KASSERTMSG(va != (vaddr_t)PDP_BASE, |
| 4017 | "pmap_enter: trying to map over PDP!" ); |
| 4018 | KASSERTMSG(va < VM_MIN_KERNEL_ADDRESS || |
| 4019 | pmap_valid_entry(pmap->pm_pdir[pl_i(va, PTP_LEVELS)]), |
| 4020 | "pmap_enter: missing kernel PTP for VA %lx!" , va); |
| 4021 | |
| 4022 | #ifdef XEN |
| 4023 | KASSERT(domid == DOMID_SELF || pa == 0); |
| 4024 | #endif /* XEN */ |
| 4025 | |
| 4026 | npte = ma | protection_codes[prot] | PG_V; |
| 4027 | npte |= pmap_pat_flags(flags); |
| 4028 | if (wired) |
| 4029 | npte |= PG_W; |
| 4030 | if (va < VM_MAXUSER_ADDRESS) |
| 4031 | npte |= PG_u; |
| 4032 | else if (va < VM_MAX_ADDRESS) |
| 4033 | panic("PTE space accessed" ); /* XXXmaxv: no longer needed? */ |
| 4034 | else |
| 4035 | npte |= PG_k; |
| 4036 | if (pmap == pmap_kernel()) |
| 4037 | npte |= pmap_pg_g; |
| 4038 | if (flags & VM_PROT_ALL) { |
| 4039 | npte |= PG_U; |
| 4040 | if (flags & VM_PROT_WRITE) { |
| 4041 | KASSERT((npte & PG_RW) != 0); |
| 4042 | npte |= PG_M; |
| 4043 | } |
| 4044 | } |
| 4045 | |
| 4046 | #ifdef XEN |
| 4047 | if (domid != DOMID_SELF) |
| 4048 | new_pg = NULL; |
| 4049 | else |
| 4050 | #endif |
| 4051 | new_pg = PHYS_TO_VM_PAGE(pa); |
| 4052 | if (new_pg != NULL) { |
| 4053 | /* This is a managed page */ |
| 4054 | npte |= PG_PVLIST; |
| 4055 | new_pp = VM_PAGE_TO_PP(new_pg); |
| 4056 | } else if ((new_pp = pmap_pv_tracked(pa)) != NULL) { |
| 4057 | /* This is an unmanaged pv-tracked page */ |
| 4058 | npte |= PG_PVLIST; |
| 4059 | } else { |
| 4060 | new_pp = NULL; |
| 4061 | } |
| 4062 | |
| 4063 | /* get pves. */ |
| 4064 | new_pve = pool_cache_get(&pmap_pv_cache, PR_NOWAIT); |
| 4065 | new_sparepve = pool_cache_get(&pmap_pv_cache, PR_NOWAIT); |
| 4066 | if (new_pve == NULL || new_sparepve == NULL) { |
| 4067 | if (flags & PMAP_CANFAIL) { |
| 4068 | error = ENOMEM; |
| 4069 | goto out2; |
| 4070 | } |
| 4071 | panic("pmap_enter: pve allocation failed" ); |
| 4072 | } |
| 4073 | |
| 4074 | kpreempt_disable(); |
| 4075 | pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); /* locks pmap */ |
| 4076 | if (pmap == pmap_kernel()) { |
| 4077 | ptp = NULL; |
| 4078 | } else { |
| 4079 | ptp = pmap_get_ptp(pmap, va, pdes); |
| 4080 | if (ptp == NULL) { |
| 4081 | pmap_unmap_ptes(pmap, pmap2); |
| 4082 | if (flags & PMAP_CANFAIL) { |
| 4083 | error = ENOMEM; |
| 4084 | goto out; |
| 4085 | } |
| 4086 | panic("pmap_enter: get ptp failed" ); |
| 4087 | } |
| 4088 | } |
| 4089 | |
| 4090 | /* |
| 4091 | * update the pte. |
| 4092 | */ |
| 4093 | |
| 4094 | ptep = &ptes[pl1_i(va)]; |
| 4095 | do { |
| 4096 | opte = *ptep; |
| 4097 | |
| 4098 | /* |
| 4099 | * if the same page, inherit PG_U and PG_M. |
| 4100 | */ |
| 4101 | if (((opte ^ npte) & (PG_FRAME | PG_V)) == 0) { |
| 4102 | npte |= opte & (PG_U | PG_M); |
| 4103 | } |
| 4104 | #if defined(XEN) |
| 4105 | if (domid != DOMID_SELF) { |
| 4106 | /* pmap_pte_cas with error handling */ |
| 4107 | int s = splvm(); |
| 4108 | if (opte != *ptep) { |
| 4109 | splx(s); |
| 4110 | continue; |
| 4111 | } |
| 4112 | error = xpq_update_foreign( |
| 4113 | vtomach((vaddr_t)ptep), npte, domid); |
| 4114 | splx(s); |
| 4115 | if (error) { |
| 4116 | if (ptp != NULL && ptp->wire_count <= 1) { |
| 4117 | pmap_free_ptp(pmap, ptp, va, ptes, pdes); |
| 4118 | } |
| 4119 | pmap_unmap_ptes(pmap, pmap2); |
| 4120 | goto out; |
| 4121 | } |
| 4122 | break; |
| 4123 | } |
| 4124 | #endif /* defined(XEN) */ |
| 4125 | } while (pmap_pte_cas(ptep, opte, npte) != opte); |
| 4126 | |
| 4127 | /* |
| 4128 | * update statistics and PTP's reference count. |
| 4129 | */ |
| 4130 | |
| 4131 | pmap_stats_update_bypte(pmap, npte, opte); |
| 4132 | if (ptp != NULL && !pmap_valid_entry(opte)) { |
| 4133 | ptp->wire_count++; |
| 4134 | } |
| 4135 | KASSERT(ptp == NULL || ptp->wire_count > 1); |
| 4136 | |
| 4137 | /* |
| 4138 | * if the same page, we can skip pv_entry handling. |
| 4139 | */ |
| 4140 | |
| 4141 | if (((opte ^ npte) & (PG_FRAME | PG_V)) == 0) { |
| 4142 | KASSERT(((opte ^ npte) & PG_PVLIST) == 0); |
| 4143 | goto same_pa; |
| 4144 | } |
| 4145 | |
| 4146 | /* |
| 4147 | * if old page is pv-tracked, remove pv_entry from its list. |
| 4148 | */ |
| 4149 | |
| 4150 | if ((~opte & (PG_V | PG_PVLIST)) == 0) { |
| 4151 | if ((old_pg = PHYS_TO_VM_PAGE(pmap_pte2pa(opte))) != NULL) { |
| 4152 | KASSERT(uvm_page_locked_p(old_pg)); |
| 4153 | old_pp = VM_PAGE_TO_PP(old_pg); |
| 4154 | } else if ((old_pp = pmap_pv_tracked(pmap_pte2pa(opte))) |
| 4155 | == NULL) { |
| 4156 | pa = pmap_pte2pa(opte); |
| 4157 | panic("pmap_enter: PG_PVLIST with pv-untracked page" |
| 4158 | " va = 0x%" PRIxVADDR |
| 4159 | " pa = 0x%" PRIxPADDR " (0x%" PRIxPADDR ")" , |
| 4160 | va, pa, atop(pa)); |
| 4161 | } |
| 4162 | |
| 4163 | old_pve = pmap_remove_pv(old_pp, ptp, va); |
| 4164 | old_pp->pp_attrs |= opte; |
| 4165 | } |
| 4166 | |
| 4167 | /* |
| 4168 | * if new page is pv-tracked, insert pv_entry into its list. |
| 4169 | */ |
| 4170 | |
| 4171 | if (new_pp) { |
| 4172 | new_pve = pmap_enter_pv(new_pp, new_pve, &new_sparepve, ptp, va); |
| 4173 | } |
| 4174 | |
| 4175 | same_pa: |
| 4176 | pmap_unmap_ptes(pmap, pmap2); |
| 4177 | |
| 4178 | /* |
| 4179 | * shootdown tlb if necessary. |
| 4180 | */ |
| 4181 | |
| 4182 | if ((~opte & (PG_V | PG_U)) == 0 && |
| 4183 | ((opte ^ npte) & (PG_FRAME | PG_RW)) != 0) { |
| 4184 | pmap_tlb_shootdown(pmap, va, opte, TLBSHOOT_ENTER); |
| 4185 | } |
| 4186 | |
| 4187 | error = 0; |
| 4188 | out: |
| 4189 | kpreempt_enable(); |
| 4190 | out2: |
| 4191 | if (old_pve != NULL) { |
| 4192 | pool_cache_put(&pmap_pv_cache, old_pve); |
| 4193 | } |
| 4194 | if (new_pve != NULL) { |
| 4195 | pool_cache_put(&pmap_pv_cache, new_pve); |
| 4196 | } |
| 4197 | if (new_sparepve != NULL) { |
| 4198 | pool_cache_put(&pmap_pv_cache, new_sparepve); |
| 4199 | } |
| 4200 | |
| 4201 | return error; |
| 4202 | } |
| 4203 | |
| 4204 | static paddr_t |
| 4205 | pmap_get_physpage(void) |
| 4206 | { |
| 4207 | struct vm_page *ptp; |
| 4208 | struct pmap *kpm = pmap_kernel(); |
| 4209 | paddr_t pa; |
| 4210 | |
| 4211 | if (!uvm.page_init_done) { |
| 4212 | /* |
| 4213 | * We're growing the kernel pmap early (from |
| 4214 | * uvm_pageboot_alloc()). This case must be |
| 4215 | * handled a little differently. |
| 4216 | */ |
| 4217 | |
| 4218 | if (!uvm_page_physget(&pa)) |
| 4219 | panic("pmap_get_physpage: out of memory" ); |
| 4220 | #if defined(__HAVE_DIRECT_MAP) |
| 4221 | pagezero(PMAP_DIRECT_MAP(pa)); |
| 4222 | #else |
| 4223 | #if defined(XEN) |
| 4224 | if (XEN_VERSION_SUPPORTED(3, 4)) { |
| 4225 | xen_pagezero(pa); |
| 4226 | return pa; |
| 4227 | } |
| 4228 | #endif |
| 4229 | kpreempt_disable(); |
| 4230 | pmap_pte_set(early_zero_pte, pmap_pa2pte(pa) | PG_V | |
| 4231 | PG_RW | pmap_pg_nx | PG_k); |
| 4232 | pmap_pte_flush(); |
| 4233 | pmap_update_pg((vaddr_t)early_zerop); |
| 4234 | memset(early_zerop, 0, PAGE_SIZE); |
| 4235 | #if defined(DIAGNOSTIC) || defined(XEN) |
| 4236 | pmap_pte_set(early_zero_pte, 0); |
| 4237 | pmap_pte_flush(); |
| 4238 | #endif /* defined(DIAGNOSTIC) */ |
| 4239 | kpreempt_enable(); |
| 4240 | #endif /* defined(__HAVE_DIRECT_MAP) */ |
| 4241 | } else { |
| 4242 | /* XXX */ |
| 4243 | ptp = uvm_pagealloc(NULL, 0, NULL, |
| 4244 | UVM_PGA_USERESERVE|UVM_PGA_ZERO); |
| 4245 | if (ptp == NULL) |
| 4246 | panic("pmap_get_physpage: out of memory" ); |
| 4247 | ptp->flags &= ~PG_BUSY; |
| 4248 | ptp->wire_count = 1; |
| 4249 | pa = VM_PAGE_TO_PHYS(ptp); |
| 4250 | } |
| 4251 | pmap_stats_update(kpm, 1, 0); |
| 4252 | |
| 4253 | return pa; |
| 4254 | } |
| 4255 | |
| 4256 | /* |
| 4257 | * Expand the page tree with the specified amount of PTPs, mapping virtual |
| 4258 | * addresses starting at kva. We populate all the levels but the last one |
| 4259 | * (L1). The nodes of the tree are created as RWX, but the pages covered |
| 4260 | * will be kentered in L1, with proper permissions. |
| 4261 | * |
| 4262 | * Used only by pmap_growkernel. |
| 4263 | */ |
| 4264 | static void |
| 4265 | pmap_alloc_level(vaddr_t kva, long *needed_ptps) |
| 4266 | { |
| 4267 | unsigned long i; |
| 4268 | paddr_t pa; |
| 4269 | unsigned long index, endindex; |
| 4270 | int level; |
| 4271 | pd_entry_t *pdep; |
| 4272 | #ifdef XEN |
| 4273 | int s = splvm(); /* protect xpq_* */ |
| 4274 | #endif |
| 4275 | |
| 4276 | for (level = PTP_LEVELS; level > 1; level--) { |
| 4277 | if (level == PTP_LEVELS) |
| 4278 | pdep = pmap_kernel()->pm_pdir; |
| 4279 | else |
| 4280 | pdep = normal_pdes[level - 2]; |
| 4281 | index = pl_i_roundup(kva, level); |
| 4282 | endindex = index + needed_ptps[level - 1] - 1; |
| 4283 | |
| 4284 | for (i = index; i <= endindex; i++) { |
| 4285 | pt_entry_t pte; |
| 4286 | |
| 4287 | KASSERT(!pmap_valid_entry(pdep[i])); |
| 4288 | pa = pmap_get_physpage(); |
| 4289 | pte = pmap_pa2pte(pa) | PG_k | PG_V | PG_RW; |
| 4290 | pmap_pte_set(&pdep[i], pte); |
| 4291 | |
| 4292 | #if defined(XEN) && (defined(PAE) || defined(__x86_64__)) |
| 4293 | if (level == PTP_LEVELS && i >= PDIR_SLOT_KERN) { |
| 4294 | if (__predict_true( |
| 4295 | cpu_info_primary.ci_flags & CPUF_PRESENT)) { |
| 4296 | /* update per-cpu PMDs on all cpus */ |
| 4297 | xen_kpm_sync(pmap_kernel(), i); |
| 4298 | } else { |
| 4299 | /* |
| 4300 | * too early; update primary CPU |
| 4301 | * PMD only (without locks) |
| 4302 | */ |
| 4303 | #ifdef PAE |
| 4304 | pd_entry_t *cpu_pdep = |
| 4305 | &cpu_info_primary.ci_kpm_pdir[l2tol2(i)]; |
| 4306 | #endif |
| 4307 | #ifdef __x86_64__ |
| 4308 | pd_entry_t *cpu_pdep = |
| 4309 | &cpu_info_primary.ci_kpm_pdir[i]; |
| 4310 | #endif |
| 4311 | pmap_pte_set(cpu_pdep, pte); |
| 4312 | } |
| 4313 | } |
| 4314 | #endif /* XEN && (PAE || __x86_64__) */ |
| 4315 | |
| 4316 | KASSERT(level != PTP_LEVELS || nkptp[level - 1] + |
| 4317 | pl_i(VM_MIN_KERNEL_ADDRESS, level) == i); |
| 4318 | nkptp[level - 1]++; |
| 4319 | } |
| 4320 | pmap_pte_flush(); |
| 4321 | } |
| 4322 | #ifdef XEN |
| 4323 | splx(s); |
| 4324 | #endif |
| 4325 | } |
| 4326 | |
| 4327 | /* |
| 4328 | * pmap_growkernel: increase usage of KVM space. |
| 4329 | * |
| 4330 | * => we allocate new PTPs for the kernel and install them in all |
| 4331 | * the pmaps on the system. |
| 4332 | */ |
| 4333 | |
| 4334 | vaddr_t |
| 4335 | pmap_growkernel(vaddr_t maxkvaddr) |
| 4336 | { |
| 4337 | struct pmap *kpm = pmap_kernel(); |
| 4338 | #if !defined(XEN) || !defined(__x86_64__) |
| 4339 | struct pmap *pm; |
| 4340 | long old; |
| 4341 | #endif |
| 4342 | int s, i; |
| 4343 | long needed_kptp[PTP_LEVELS], target_nptp; |
| 4344 | bool invalidate = false; |
| 4345 | |
| 4346 | s = splvm(); /* to be safe */ |
| 4347 | mutex_enter(kpm->pm_lock); |
| 4348 | |
| 4349 | if (maxkvaddr <= pmap_maxkvaddr) { |
| 4350 | mutex_exit(kpm->pm_lock); |
| 4351 | splx(s); |
| 4352 | return pmap_maxkvaddr; |
| 4353 | } |
| 4354 | |
| 4355 | maxkvaddr = x86_round_pdr(maxkvaddr); |
| 4356 | #if !defined(XEN) || !defined(__x86_64__) |
| 4357 | old = nkptp[PTP_LEVELS - 1]; |
| 4358 | #endif |
| 4359 | |
| 4360 | /* Initialize needed_kptp. */ |
| 4361 | for (i = PTP_LEVELS - 1; i >= 1; i--) { |
| 4362 | target_nptp = pl_i_roundup(maxkvaddr, i + 1) - |
| 4363 | pl_i_roundup(VM_MIN_KERNEL_ADDRESS, i + 1); |
| 4364 | |
| 4365 | if (target_nptp > nkptpmax[i]) |
| 4366 | panic("out of KVA space" ); |
| 4367 | KASSERT(target_nptp >= nkptp[i]); |
| 4368 | needed_kptp[i] = target_nptp - nkptp[i]; |
| 4369 | } |
| 4370 | |
| 4371 | pmap_alloc_level(pmap_maxkvaddr, needed_kptp); |
| 4372 | |
| 4373 | /* |
| 4374 | * If the number of top level entries changed, update all pmaps. |
| 4375 | */ |
| 4376 | if (needed_kptp[PTP_LEVELS - 1] != 0) { |
| 4377 | #ifdef XEN |
| 4378 | #ifdef __x86_64__ |
| 4379 | /* nothing, kernel entries are never entered in user pmap */ |
| 4380 | #else /* __x86_64__ */ |
| 4381 | mutex_enter(&pmaps_lock); |
| 4382 | LIST_FOREACH(pm, &pmaps, pm_list) { |
| 4383 | int pdkidx; |
| 4384 | for (pdkidx = PDIR_SLOT_KERN + old; |
| 4385 | pdkidx < PDIR_SLOT_KERN + nkptp[PTP_LEVELS - 1]; |
| 4386 | pdkidx++) { |
| 4387 | pmap_pte_set(&pm->pm_pdir[pdkidx], |
| 4388 | kpm->pm_pdir[pdkidx]); |
| 4389 | } |
| 4390 | pmap_pte_flush(); |
| 4391 | } |
| 4392 | mutex_exit(&pmaps_lock); |
| 4393 | #endif /* __x86_64__ */ |
| 4394 | #else /* XEN */ |
| 4395 | unsigned newpdes; |
| 4396 | newpdes = nkptp[PTP_LEVELS - 1] - old; |
| 4397 | mutex_enter(&pmaps_lock); |
| 4398 | LIST_FOREACH(pm, &pmaps, pm_list) { |
| 4399 | memcpy(&pm->pm_pdir[PDIR_SLOT_KERN + old], |
| 4400 | &kpm->pm_pdir[PDIR_SLOT_KERN + old], |
| 4401 | newpdes * sizeof (pd_entry_t)); |
| 4402 | } |
| 4403 | mutex_exit(&pmaps_lock); |
| 4404 | #endif |
| 4405 | invalidate = true; |
| 4406 | } |
| 4407 | pmap_maxkvaddr = maxkvaddr; |
| 4408 | mutex_exit(kpm->pm_lock); |
| 4409 | splx(s); |
| 4410 | |
| 4411 | if (invalidate && pmap_initialized) { |
| 4412 | /* Invalidate the PDP cache. */ |
| 4413 | pool_cache_invalidate(&pmap_pdp_cache); |
| 4414 | } |
| 4415 | |
| 4416 | return maxkvaddr; |
| 4417 | } |
| 4418 | |
| 4419 | #ifdef DEBUG |
| 4420 | void pmap_dump(struct pmap *, vaddr_t, vaddr_t); |
| 4421 | |
| 4422 | /* |
| 4423 | * pmap_dump: dump all the mappings from a pmap |
| 4424 | * |
| 4425 | * => caller should not be holding any pmap locks |
| 4426 | */ |
| 4427 | |
| 4428 | void |
| 4429 | pmap_dump(struct pmap *pmap, vaddr_t sva, vaddr_t eva) |
| 4430 | { |
| 4431 | pt_entry_t *ptes, *pte; |
| 4432 | pd_entry_t * const *pdes; |
| 4433 | struct pmap *pmap2; |
| 4434 | vaddr_t blkendva; |
| 4435 | |
| 4436 | /* |
| 4437 | * if end is out of range truncate. |
| 4438 | * if (end == start) update to max. |
| 4439 | */ |
| 4440 | |
| 4441 | if (eva > VM_MAXUSER_ADDRESS || eva <= sva) |
| 4442 | eva = VM_MAXUSER_ADDRESS; |
| 4443 | |
| 4444 | /* |
| 4445 | * we lock in the pmap => pv_head direction |
| 4446 | */ |
| 4447 | |
| 4448 | kpreempt_disable(); |
| 4449 | pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); /* locks pmap */ |
| 4450 | |
| 4451 | /* |
| 4452 | * dumping a range of pages: we dump in PTP sized blocks (4MB) |
| 4453 | */ |
| 4454 | |
| 4455 | for (/* null */ ; sva < eva ; sva = blkendva) { |
| 4456 | |
| 4457 | /* determine range of block */ |
| 4458 | blkendva = x86_round_pdr(sva+1); |
| 4459 | if (blkendva > eva) |
| 4460 | blkendva = eva; |
| 4461 | |
| 4462 | /* valid block? */ |
| 4463 | if (!pmap_pdes_valid(sva, pdes, NULL)) |
| 4464 | continue; |
| 4465 | |
| 4466 | pte = &ptes[pl1_i(sva)]; |
| 4467 | for (/* null */; sva < blkendva ; sva += PAGE_SIZE, pte++) { |
| 4468 | if (!pmap_valid_entry(*pte)) |
| 4469 | continue; |
| 4470 | printf("va %#" PRIxVADDR " -> pa %#" PRIxPADDR |
| 4471 | " (pte=%#" PRIxPADDR ")\n" , |
| 4472 | sva, (paddr_t)pmap_pte2pa(*pte), (paddr_t)*pte); |
| 4473 | } |
| 4474 | } |
| 4475 | pmap_unmap_ptes(pmap, pmap2); |
| 4476 | kpreempt_enable(); |
| 4477 | } |
| 4478 | #endif |
| 4479 | |
| 4480 | /* |
| 4481 | * pmap_update: process deferred invalidations and frees. |
| 4482 | */ |
| 4483 | |
| 4484 | void |
| 4485 | pmap_update(struct pmap *pmap) |
| 4486 | { |
| 4487 | struct vm_page *empty_ptps; |
| 4488 | lwp_t *l = curlwp; |
| 4489 | |
| 4490 | /* |
| 4491 | * If we have torn down this pmap, invalidate non-global TLB |
| 4492 | * entries on any processors using it. |
| 4493 | */ |
| 4494 | kpreempt_disable(); |
| 4495 | if (__predict_false(l->l_md.md_gc_pmap == pmap)) { |
| 4496 | l->l_md.md_gc_pmap = NULL; |
| 4497 | pmap_tlb_shootdown(pmap, (vaddr_t)-1LL, 0, TLBSHOOT_UPDATE); |
| 4498 | } |
| 4499 | /* |
| 4500 | * Initiate any pending TLB shootdowns. Wait for them to |
| 4501 | * complete before returning control to the caller. |
| 4502 | */ |
| 4503 | pmap_tlb_shootnow(); |
| 4504 | kpreempt_enable(); |
| 4505 | |
| 4506 | /* |
| 4507 | * Now that shootdowns are complete, process deferred frees, |
| 4508 | * but not from interrupt context. |
| 4509 | */ |
| 4510 | if (l->l_md.md_gc_ptp != NULL) { |
| 4511 | KASSERT((l->l_pflag & LP_INTR) == 0); |
| 4512 | if (cpu_intr_p()) { |
| 4513 | return; |
| 4514 | } |
| 4515 | empty_ptps = l->l_md.md_gc_ptp; |
| 4516 | l->l_md.md_gc_ptp = NULL; |
| 4517 | pmap_free_ptps(empty_ptps); |
| 4518 | } |
| 4519 | } |
| 4520 | |
| 4521 | #if PTP_LEVELS > 4 |
| 4522 | #error "Unsupported number of page table mappings" |
| 4523 | #endif |
| 4524 | |
| 4525 | paddr_t |
| 4526 | pmap_init_tmp_pgtbl(paddr_t pg) |
| 4527 | { |
| 4528 | static bool maps_loaded; |
| 4529 | static const paddr_t x86_tmp_pml_paddr[] = { |
| 4530 | 4 * PAGE_SIZE, /* L1 */ |
| 4531 | 5 * PAGE_SIZE, /* L2 */ |
| 4532 | 6 * PAGE_SIZE, /* L3 */ |
| 4533 | 7 * PAGE_SIZE /* L4 */ |
| 4534 | }; |
| 4535 | static vaddr_t x86_tmp_pml_vaddr[] = { 0, 0, 0, 0 }; |
| 4536 | |
| 4537 | pd_entry_t *tmp_pml, *kernel_pml; |
| 4538 | |
| 4539 | int level; |
| 4540 | |
| 4541 | if (!maps_loaded) { |
| 4542 | for (level = 0; level < PTP_LEVELS; ++level) { |
| 4543 | x86_tmp_pml_vaddr[level] = |
| 4544 | uvm_km_alloc(kernel_map, PAGE_SIZE, 0, |
| 4545 | UVM_KMF_VAONLY); |
| 4546 | |
| 4547 | if (x86_tmp_pml_vaddr[level] == 0) |
| 4548 | panic("mapping of real mode PML failed\n" ); |
| 4549 | pmap_kenter_pa(x86_tmp_pml_vaddr[level], |
| 4550 | x86_tmp_pml_paddr[level], |
| 4551 | VM_PROT_READ | VM_PROT_WRITE, 0); |
| 4552 | } |
| 4553 | pmap_update(pmap_kernel()); |
| 4554 | maps_loaded = true; |
| 4555 | } |
| 4556 | |
| 4557 | /* Zero levels 1-3 */ |
| 4558 | for (level = 0; level < PTP_LEVELS - 1; ++level) { |
| 4559 | tmp_pml = (void *)x86_tmp_pml_vaddr[level]; |
| 4560 | memset(tmp_pml, 0, PAGE_SIZE); |
| 4561 | } |
| 4562 | |
| 4563 | /* Copy PML4 */ |
| 4564 | kernel_pml = pmap_kernel()->pm_pdir; |
| 4565 | tmp_pml = (void *)x86_tmp_pml_vaddr[PTP_LEVELS - 1]; |
| 4566 | memcpy(tmp_pml, kernel_pml, PAGE_SIZE); |
| 4567 | |
| 4568 | #ifdef PAE |
| 4569 | /* |
| 4570 | * Use the last 4 entries of the L2 page as L3 PD entries. These |
| 4571 | * last entries are unlikely to be used for temporary mappings. |
| 4572 | * 508: maps 0->1GB (userland) |
| 4573 | * 509: unused |
| 4574 | * 510: unused |
| 4575 | * 511: maps 3->4GB (kernel) |
| 4576 | */ |
| 4577 | tmp_pml[508] = x86_tmp_pml_paddr[PTP_LEVELS - 1] | PG_V; |
| 4578 | tmp_pml[509] = 0; |
| 4579 | tmp_pml[510] = 0; |
| 4580 | tmp_pml[511] = pmap_pdirpa(pmap_kernel(), PDIR_SLOT_KERN) | PG_V; |
| 4581 | #endif |
| 4582 | |
| 4583 | for (level = PTP_LEVELS - 1; level > 0; --level) { |
| 4584 | tmp_pml = (void *)x86_tmp_pml_vaddr[level]; |
| 4585 | |
| 4586 | tmp_pml[pl_i(pg, level + 1)] = |
| 4587 | (x86_tmp_pml_paddr[level - 1] & PG_FRAME) | PG_RW | PG_V; |
| 4588 | } |
| 4589 | |
| 4590 | tmp_pml = (void *)x86_tmp_pml_vaddr[0]; |
| 4591 | tmp_pml[pl_i(pg, 1)] = (pg & PG_FRAME) | PG_RW | PG_V; |
| 4592 | |
| 4593 | #ifdef PAE |
| 4594 | /* Return the PA of the L3 page (entry 508 of the L2 page) */ |
| 4595 | return x86_tmp_pml_paddr[PTP_LEVELS - 1] + 508 * sizeof(pd_entry_t); |
| 4596 | #endif |
| 4597 | |
| 4598 | return x86_tmp_pml_paddr[PTP_LEVELS - 1]; |
| 4599 | } |
| 4600 | |
| 4601 | u_int |
| 4602 | x86_mmap_flags(paddr_t mdpgno) |
| 4603 | { |
| 4604 | u_int nflag = (mdpgno >> X86_MMAP_FLAG_SHIFT) & X86_MMAP_FLAG_MASK; |
| 4605 | u_int pflag = 0; |
| 4606 | |
| 4607 | if (nflag & X86_MMAP_FLAG_PREFETCH) |
| 4608 | pflag |= PMAP_WRITE_COMBINE; |
| 4609 | |
| 4610 | return pflag; |
| 4611 | } |
| 4612 | |