| 1 | /* $NetBSD: lfs_segment.c,v 1.263 2015/10/19 04:21:48 dholland Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Konrad E. Schroder <perseant@hhhh.org>. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 29 | * POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | /* |
| 32 | * Copyright (c) 1991, 1993 |
| 33 | * The Regents of the University of California. All rights reserved. |
| 34 | * |
| 35 | * Redistribution and use in source and binary forms, with or without |
| 36 | * modification, are permitted provided that the following conditions |
| 37 | * are met: |
| 38 | * 1. Redistributions of source code must retain the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer. |
| 40 | * 2. Redistributions in binary form must reproduce the above copyright |
| 41 | * notice, this list of conditions and the following disclaimer in the |
| 42 | * documentation and/or other materials provided with the distribution. |
| 43 | * 3. Neither the name of the University nor the names of its contributors |
| 44 | * may be used to endorse or promote products derived from this software |
| 45 | * without specific prior written permission. |
| 46 | * |
| 47 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 48 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 49 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 50 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 51 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 52 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 53 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 54 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 55 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 56 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 57 | * SUCH DAMAGE. |
| 58 | * |
| 59 | * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 |
| 60 | */ |
| 61 | |
| 62 | #include <sys/cdefs.h> |
| 63 | __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.263 2015/10/19 04:21:48 dholland Exp $" ); |
| 64 | |
| 65 | #ifdef DEBUG |
| 66 | # define vndebug(vp, str) do { \ |
| 67 | if (VTOI(vp)->i_flag & IN_CLEANING) \ |
| 68 | DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ |
| 69 | VTOI(vp)->i_number, (str), op)); \ |
| 70 | } while(0) |
| 71 | #else |
| 72 | # define vndebug(vp, str) |
| 73 | #endif |
| 74 | #define ivndebug(vp, str) \ |
| 75 | DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) |
| 76 | |
| 77 | #if defined(_KERNEL_OPT) |
| 78 | #include "opt_ddb.h" |
| 79 | #endif |
| 80 | |
| 81 | #include <sys/param.h> |
| 82 | #include <sys/systm.h> |
| 83 | #include <sys/namei.h> |
| 84 | #include <sys/kernel.h> |
| 85 | #include <sys/resourcevar.h> |
| 86 | #include <sys/file.h> |
| 87 | #include <sys/stat.h> |
| 88 | #include <sys/buf.h> |
| 89 | #include <sys/proc.h> |
| 90 | #include <sys/vnode.h> |
| 91 | #include <sys/mount.h> |
| 92 | #include <sys/kauth.h> |
| 93 | #include <sys/syslog.h> |
| 94 | |
| 95 | #include <miscfs/specfs/specdev.h> |
| 96 | #include <miscfs/fifofs/fifo.h> |
| 97 | |
| 98 | #include <ufs/lfs/ulfs_inode.h> |
| 99 | #include <ufs/lfs/ulfsmount.h> |
| 100 | #include <ufs/lfs/ulfs_extern.h> |
| 101 | |
| 102 | #include <ufs/lfs/lfs.h> |
| 103 | #include <ufs/lfs/lfs_accessors.h> |
| 104 | #include <ufs/lfs/lfs_kernel.h> |
| 105 | #include <ufs/lfs/lfs_extern.h> |
| 106 | |
| 107 | #include <uvm/uvm.h> |
| 108 | #include <uvm/uvm_extern.h> |
| 109 | |
| 110 | MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment" , "Segment for LFS" ); |
| 111 | |
| 112 | static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); |
| 113 | static void lfs_free_aiodone(struct buf *); |
| 114 | static void lfs_super_aiodone(struct buf *); |
| 115 | static void lfs_cluster_aiodone(struct buf *); |
| 116 | static void lfs_cluster_callback(struct buf *); |
| 117 | |
| 118 | /* |
| 119 | * Determine if it's OK to start a partial in this segment, or if we need |
| 120 | * to go on to a new segment. |
| 121 | */ |
| 122 | #define LFS_PARTIAL_FITS(fs) \ |
| 123 | (lfs_sb_getfsbpseg(fs) - \ |
| 124 | (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \ |
| 125 | lfs_sb_getfrag(fs)) |
| 126 | |
| 127 | /* |
| 128 | * Figure out whether we should do a checkpoint write or go ahead with |
| 129 | * an ordinary write. |
| 130 | */ |
| 131 | #define LFS_SHOULD_CHECKPOINT(fs, flags) \ |
| 132 | ((flags & SEGM_CLEAN) == 0 && \ |
| 133 | ((fs->lfs_nactive > LFS_MAX_ACTIVE || \ |
| 134 | (flags & SEGM_CKP) || \ |
| 135 | lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE))) |
| 136 | |
| 137 | int lfs_match_fake(struct lfs *, struct buf *); |
| 138 | void lfs_newseg(struct lfs *); |
| 139 | void lfs_supercallback(struct buf *); |
| 140 | void lfs_updatemeta(struct segment *); |
| 141 | void lfs_writesuper(struct lfs *, daddr_t); |
| 142 | int lfs_writevnodes(struct lfs *fs, struct mount *mp, |
| 143 | struct segment *sp, int dirops); |
| 144 | |
| 145 | static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *, |
| 146 | int, int); |
| 147 | |
| 148 | int lfs_allclean_wakeup; /* Cleaner wakeup address. */ |
| 149 | int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ |
| 150 | int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ |
| 151 | int lfs_dirvcount = 0; /* # active dirops */ |
| 152 | |
| 153 | /* Statistics Counters */ |
| 154 | int lfs_dostats = 1; |
| 155 | struct lfs_stats lfs_stats; |
| 156 | |
| 157 | /* op values to lfs_writevnodes */ |
| 158 | #define VN_REG 0 |
| 159 | #define VN_DIROP 1 |
| 160 | #define VN_EMPTY 2 |
| 161 | #define VN_CLEAN 3 |
| 162 | |
| 163 | /* |
| 164 | * XXX KS - Set modification time on the Ifile, so the cleaner can |
| 165 | * read the fs mod time off of it. We don't set IN_UPDATE here, |
| 166 | * since we don't really need this to be flushed to disk (and in any |
| 167 | * case that wouldn't happen to the Ifile until we checkpoint). |
| 168 | */ |
| 169 | void |
| 170 | lfs_imtime(struct lfs *fs) |
| 171 | { |
| 172 | struct timespec ts; |
| 173 | struct inode *ip; |
| 174 | |
| 175 | ASSERT_MAYBE_SEGLOCK(fs); |
| 176 | vfs_timestamp(&ts); |
| 177 | ip = VTOI(fs->lfs_ivnode); |
| 178 | lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec); |
| 179 | lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec); |
| 180 | } |
| 181 | |
| 182 | /* |
| 183 | * Ifile and meta data blocks are not marked busy, so segment writes MUST be |
| 184 | * single threaded. Currently, there are two paths into lfs_segwrite, sync() |
| 185 | * and getnewbuf(). They both mark the file system busy. Lfs_vflush() |
| 186 | * explicitly marks the file system busy. So lfs_segwrite is safe. I think. |
| 187 | */ |
| 188 | |
| 189 | #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) |
| 190 | |
| 191 | int |
| 192 | lfs_vflush(struct vnode *vp) |
| 193 | { |
| 194 | struct inode *ip; |
| 195 | struct lfs *fs; |
| 196 | struct segment *sp; |
| 197 | struct buf *bp, *nbp, *tbp, *tnbp; |
| 198 | int error; |
| 199 | int flushed; |
| 200 | int relock; |
| 201 | |
| 202 | ip = VTOI(vp); |
| 203 | fs = VFSTOULFS(vp->v_mount)->um_lfs; |
| 204 | relock = 0; |
| 205 | |
| 206 | top: |
| 207 | KASSERT(mutex_owned(vp->v_interlock) == false); |
| 208 | KASSERT(mutex_owned(&lfs_lock) == false); |
| 209 | KASSERT(mutex_owned(&bufcache_lock) == false); |
| 210 | ASSERT_NO_SEGLOCK(fs); |
| 211 | if (ip->i_flag & IN_CLEANING) { |
| 212 | ivndebug(vp,"vflush/in_cleaning" ); |
| 213 | mutex_enter(&lfs_lock); |
| 214 | LFS_CLR_UINO(ip, IN_CLEANING); |
| 215 | LFS_SET_UINO(ip, IN_MODIFIED); |
| 216 | mutex_exit(&lfs_lock); |
| 217 | |
| 218 | /* |
| 219 | * Toss any cleaning buffers that have real counterparts |
| 220 | * to avoid losing new data. |
| 221 | */ |
| 222 | mutex_enter(vp->v_interlock); |
| 223 | for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { |
| 224 | nbp = LIST_NEXT(bp, b_vnbufs); |
| 225 | if (!LFS_IS_MALLOC_BUF(bp)) |
| 226 | continue; |
| 227 | /* |
| 228 | * Look for pages matching the range covered |
| 229 | * by cleaning blocks. It's okay if more dirty |
| 230 | * pages appear, so long as none disappear out |
| 231 | * from under us. |
| 232 | */ |
| 233 | if (bp->b_lblkno > 0 && vp->v_type == VREG && |
| 234 | vp != fs->lfs_ivnode) { |
| 235 | struct vm_page *pg; |
| 236 | voff_t off; |
| 237 | |
| 238 | for (off = lfs_lblktosize(fs, bp->b_lblkno); |
| 239 | off < lfs_lblktosize(fs, bp->b_lblkno + 1); |
| 240 | off += PAGE_SIZE) { |
| 241 | pg = uvm_pagelookup(&vp->v_uobj, off); |
| 242 | if (pg == NULL) |
| 243 | continue; |
| 244 | if ((pg->flags & PG_CLEAN) == 0 || |
| 245 | pmap_is_modified(pg)) { |
| 246 | lfs_sb_addavail(fs, |
| 247 | lfs_btofsb(fs, |
| 248 | bp->b_bcount)); |
| 249 | wakeup(&fs->lfs_availsleep); |
| 250 | mutex_exit(vp->v_interlock); |
| 251 | lfs_freebuf(fs, bp); |
| 252 | mutex_enter(vp->v_interlock); |
| 253 | bp = NULL; |
| 254 | break; |
| 255 | } |
| 256 | } |
| 257 | } |
| 258 | for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; |
| 259 | tbp = tnbp) |
| 260 | { |
| 261 | tnbp = LIST_NEXT(tbp, b_vnbufs); |
| 262 | if (tbp->b_vp == bp->b_vp |
| 263 | && tbp->b_lblkno == bp->b_lblkno |
| 264 | && tbp != bp) |
| 265 | { |
| 266 | lfs_sb_addavail(fs, lfs_btofsb(fs, |
| 267 | bp->b_bcount)); |
| 268 | wakeup(&fs->lfs_availsleep); |
| 269 | mutex_exit(vp->v_interlock); |
| 270 | lfs_freebuf(fs, bp); |
| 271 | mutex_enter(vp->v_interlock); |
| 272 | bp = NULL; |
| 273 | break; |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | } else { |
| 278 | mutex_enter(vp->v_interlock); |
| 279 | } |
| 280 | |
| 281 | /* If the node is being written, wait until that is done */ |
| 282 | while (WRITEINPROG(vp)) { |
| 283 | ivndebug(vp,"vflush/writeinprog" ); |
| 284 | cv_wait(&vp->v_cv, vp->v_interlock); |
| 285 | } |
| 286 | error = vdead_check(vp, VDEAD_NOWAIT); |
| 287 | mutex_exit(vp->v_interlock); |
| 288 | |
| 289 | /* Protect against deadlock in vinvalbuf() */ |
| 290 | lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0)); |
| 291 | if (error != 0) { |
| 292 | fs->lfs_reclino = ip->i_number; |
| 293 | } |
| 294 | |
| 295 | /* If we're supposed to flush a freed inode, just toss it */ |
| 296 | if (ip->i_lfs_iflags & LFSI_DELETED) { |
| 297 | DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n" , |
| 298 | ip->i_number)); |
| 299 | /* Drain v_numoutput */ |
| 300 | mutex_enter(vp->v_interlock); |
| 301 | while (vp->v_numoutput > 0) { |
| 302 | cv_wait(&vp->v_cv, vp->v_interlock); |
| 303 | } |
| 304 | KASSERT(vp->v_numoutput == 0); |
| 305 | mutex_exit(vp->v_interlock); |
| 306 | |
| 307 | mutex_enter(&bufcache_lock); |
| 308 | for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { |
| 309 | nbp = LIST_NEXT(bp, b_vnbufs); |
| 310 | |
| 311 | KASSERT((bp->b_flags & B_GATHERED) == 0); |
| 312 | if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */ |
| 313 | lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount)); |
| 314 | wakeup(&fs->lfs_availsleep); |
| 315 | } |
| 316 | /* Copied from lfs_writeseg */ |
| 317 | if (bp->b_iodone != NULL) { |
| 318 | mutex_exit(&bufcache_lock); |
| 319 | biodone(bp); |
| 320 | mutex_enter(&bufcache_lock); |
| 321 | } else { |
| 322 | bremfree(bp); |
| 323 | LFS_UNLOCK_BUF(bp); |
| 324 | mutex_enter(vp->v_interlock); |
| 325 | bp->b_flags &= ~(B_READ | B_GATHERED); |
| 326 | bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE; |
| 327 | bp->b_error = 0; |
| 328 | reassignbuf(bp, vp); |
| 329 | mutex_exit(vp->v_interlock); |
| 330 | brelse(bp, 0); |
| 331 | } |
| 332 | } |
| 333 | mutex_exit(&bufcache_lock); |
| 334 | LFS_CLR_UINO(ip, IN_CLEANING); |
| 335 | LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); |
| 336 | ip->i_flag &= ~IN_ALLMOD; |
| 337 | DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n" , |
| 338 | ip->i_number)); |
| 339 | lfs_segunlock(fs); |
| 340 | |
| 341 | KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); |
| 342 | |
| 343 | return 0; |
| 344 | } |
| 345 | |
| 346 | fs->lfs_flushvp = vp; |
| 347 | if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) { |
| 348 | error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); |
| 349 | fs->lfs_flushvp = NULL; |
| 350 | KASSERT(fs->lfs_flushvp_fakevref == 0); |
| 351 | lfs_segunlock(fs); |
| 352 | |
| 353 | /* Make sure that any pending buffers get written */ |
| 354 | mutex_enter(vp->v_interlock); |
| 355 | while (vp->v_numoutput > 0) { |
| 356 | cv_wait(&vp->v_cv, vp->v_interlock); |
| 357 | } |
| 358 | KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); |
| 359 | KASSERT(vp->v_numoutput == 0); |
| 360 | mutex_exit(vp->v_interlock); |
| 361 | |
| 362 | return error; |
| 363 | } |
| 364 | sp = fs->lfs_sp; |
| 365 | |
| 366 | flushed = 0; |
| 367 | if (VPISEMPTY(vp)) { |
| 368 | lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); |
| 369 | ++flushed; |
| 370 | } else if ((ip->i_flag & IN_CLEANING) && |
| 371 | (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { |
| 372 | ivndebug(vp,"vflush/clean" ); |
| 373 | lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); |
| 374 | ++flushed; |
| 375 | } else if (lfs_dostats) { |
| 376 | if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) |
| 377 | ++lfs_stats.vflush_invoked; |
| 378 | ivndebug(vp,"vflush" ); |
| 379 | } |
| 380 | |
| 381 | #ifdef DIAGNOSTIC |
| 382 | if (vp->v_uflag & VU_DIROP) { |
| 383 | DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n" )); |
| 384 | /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */ |
| 385 | } |
| 386 | #endif |
| 387 | |
| 388 | do { |
| 389 | #ifdef DEBUG |
| 390 | int loopcount = 0; |
| 391 | #endif |
| 392 | do { |
| 393 | if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { |
| 394 | relock = lfs_writefile(fs, sp, vp); |
| 395 | if (relock && vp != fs->lfs_ivnode) { |
| 396 | /* |
| 397 | * Might have to wait for the |
| 398 | * cleaner to run; but we're |
| 399 | * still not done with this vnode. |
| 400 | * XXX we can do better than this. |
| 401 | */ |
| 402 | KDASSERT(ip->i_number != LFS_IFILE_INUM); |
| 403 | lfs_writeinode(fs, sp, ip); |
| 404 | mutex_enter(&lfs_lock); |
| 405 | LFS_SET_UINO(ip, IN_MODIFIED); |
| 406 | mutex_exit(&lfs_lock); |
| 407 | lfs_writeseg(fs, sp); |
| 408 | lfs_segunlock(fs); |
| 409 | lfs_segunlock_relock(fs); |
| 410 | goto top; |
| 411 | } |
| 412 | } |
| 413 | /* |
| 414 | * If we begin a new segment in the middle of writing |
| 415 | * the Ifile, it creates an inconsistent checkpoint, |
| 416 | * since the Ifile information for the new segment |
| 417 | * is not up-to-date. Take care of this here by |
| 418 | * sending the Ifile through again in case there |
| 419 | * are newly dirtied blocks. But wait, there's more! |
| 420 | * This second Ifile write could *also* cross a segment |
| 421 | * boundary, if the first one was large. The second |
| 422 | * one is guaranteed to be no more than 8 blocks, |
| 423 | * though (two segment blocks and supporting indirects) |
| 424 | * so the third write *will not* cross the boundary. |
| 425 | */ |
| 426 | if (vp == fs->lfs_ivnode) { |
| 427 | lfs_writefile(fs, sp, vp); |
| 428 | lfs_writefile(fs, sp, vp); |
| 429 | } |
| 430 | #ifdef DEBUG |
| 431 | if (++loopcount > 2) |
| 432 | log(LOG_NOTICE, "lfs_vflush: looping count=%d\n" , loopcount); |
| 433 | #endif |
| 434 | } while (lfs_writeinode(fs, sp, ip)); |
| 435 | } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); |
| 436 | |
| 437 | if (lfs_dostats) { |
| 438 | ++lfs_stats.nwrites; |
| 439 | if (sp->seg_flags & SEGM_SYNC) |
| 440 | ++lfs_stats.nsync_writes; |
| 441 | if (sp->seg_flags & SEGM_CKP) |
| 442 | ++lfs_stats.ncheckpoints; |
| 443 | } |
| 444 | /* |
| 445 | * If we were called from somewhere that has already held the seglock |
| 446 | * (e.g., lfs_markv()), the lfs_segunlock will not wait for |
| 447 | * the write to complete because we are still locked. |
| 448 | * Since lfs_vflush() must return the vnode with no dirty buffers, |
| 449 | * we must explicitly wait, if that is the case. |
| 450 | * |
| 451 | * We compare the iocount against 1, not 0, because it is |
| 452 | * artificially incremented by lfs_seglock(). |
| 453 | */ |
| 454 | mutex_enter(&lfs_lock); |
| 455 | if (fs->lfs_seglock > 1) { |
| 456 | while (fs->lfs_iocount > 1) |
| 457 | (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, |
| 458 | "lfs_vflush" , 0, &lfs_lock); |
| 459 | } |
| 460 | mutex_exit(&lfs_lock); |
| 461 | |
| 462 | lfs_segunlock(fs); |
| 463 | |
| 464 | /* Wait for these buffers to be recovered by aiodoned */ |
| 465 | mutex_enter(vp->v_interlock); |
| 466 | while (vp->v_numoutput > 0) { |
| 467 | cv_wait(&vp->v_cv, vp->v_interlock); |
| 468 | } |
| 469 | KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); |
| 470 | KASSERT(vp->v_numoutput == 0); |
| 471 | mutex_exit(vp->v_interlock); |
| 472 | |
| 473 | fs->lfs_flushvp = NULL; |
| 474 | KASSERT(fs->lfs_flushvp_fakevref == 0); |
| 475 | |
| 476 | return (0); |
| 477 | } |
| 478 | |
| 479 | struct lfs_writevnodes_ctx { |
| 480 | int op; |
| 481 | struct lfs *fs; |
| 482 | }; |
| 483 | static bool |
| 484 | lfs_writevnodes_selector(void *cl, struct vnode *vp) |
| 485 | { |
| 486 | struct lfs_writevnodes_ctx *c = cl; |
| 487 | struct inode *ip = VTOI(vp); |
| 488 | int op = c->op; |
| 489 | |
| 490 | if (ip == NULL || vp->v_type == VNON) |
| 491 | return false; |
| 492 | if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) || |
| 493 | (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) { |
| 494 | vndebug(vp, "dirop" ); |
| 495 | return false; |
| 496 | } |
| 497 | if (op == VN_EMPTY && !VPISEMPTY(vp)) { |
| 498 | vndebug(vp,"empty" ); |
| 499 | return false;; |
| 500 | } |
| 501 | if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM && |
| 502 | vp != c->fs->lfs_flushvp && !(ip->i_flag & IN_CLEANING)) { |
| 503 | vndebug(vp,"cleaning" ); |
| 504 | return false; |
| 505 | } |
| 506 | mutex_enter(&lfs_lock); |
| 507 | if (vp == c->fs->lfs_unlockvp) { |
| 508 | mutex_exit(&lfs_lock); |
| 509 | return false; |
| 510 | } |
| 511 | mutex_exit(&lfs_lock); |
| 512 | |
| 513 | return true; |
| 514 | } |
| 515 | |
| 516 | int |
| 517 | lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) |
| 518 | { |
| 519 | struct inode *ip; |
| 520 | struct vnode *vp; |
| 521 | struct vnode_iterator *marker; |
| 522 | struct lfs_writevnodes_ctx ctx; |
| 523 | int inodes_written = 0; |
| 524 | int error = 0; |
| 525 | |
| 526 | /* |
| 527 | * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist. |
| 528 | * XXX The rationale is unclear, the initial commit had no information. |
| 529 | * XXX If the order really matters we have to sort the vnodes first. |
| 530 | */ |
| 531 | |
| 532 | ASSERT_SEGLOCK(fs); |
| 533 | vfs_vnode_iterator_init(mp, &marker); |
| 534 | ctx.op = op; |
| 535 | ctx.fs = fs; |
| 536 | while ((vp = vfs_vnode_iterator_next(marker, |
| 537 | lfs_writevnodes_selector, &ctx)) != NULL) { |
| 538 | ip = VTOI(vp); |
| 539 | |
| 540 | /* |
| 541 | * Write the inode/file if dirty and it's not the IFILE. |
| 542 | */ |
| 543 | if (((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) && |
| 544 | ip->i_number != LFS_IFILE_INUM) { |
| 545 | error = lfs_writefile(fs, sp, vp); |
| 546 | if (error) { |
| 547 | vrele(vp); |
| 548 | if (error == EAGAIN) { |
| 549 | /* |
| 550 | * This error from lfs_putpages |
| 551 | * indicates we need to drop |
| 552 | * the segment lock and start |
| 553 | * over after the cleaner has |
| 554 | * had a chance to run. |
| 555 | */ |
| 556 | lfs_writeinode(fs, sp, ip); |
| 557 | lfs_writeseg(fs, sp); |
| 558 | if (!VPISEMPTY(vp) && |
| 559 | !WRITEINPROG(vp) && |
| 560 | !(ip->i_flag & IN_ALLMOD)) { |
| 561 | mutex_enter(&lfs_lock); |
| 562 | LFS_SET_UINO(ip, IN_MODIFIED); |
| 563 | mutex_exit(&lfs_lock); |
| 564 | } |
| 565 | break; |
| 566 | } |
| 567 | error = 0; /* XXX not quite right */ |
| 568 | continue; |
| 569 | } |
| 570 | |
| 571 | if (!VPISEMPTY(vp)) { |
| 572 | if (WRITEINPROG(vp)) { |
| 573 | ivndebug(vp,"writevnodes/write2" ); |
| 574 | } else if (!(ip->i_flag & IN_ALLMOD)) { |
| 575 | mutex_enter(&lfs_lock); |
| 576 | LFS_SET_UINO(ip, IN_MODIFIED); |
| 577 | mutex_exit(&lfs_lock); |
| 578 | } |
| 579 | } |
| 580 | (void) lfs_writeinode(fs, sp, ip); |
| 581 | inodes_written++; |
| 582 | } |
| 583 | vrele(vp); |
| 584 | } |
| 585 | vfs_vnode_iterator_destroy(marker); |
| 586 | return error; |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * Do a checkpoint. |
| 591 | */ |
| 592 | int |
| 593 | lfs_segwrite(struct mount *mp, int flags) |
| 594 | { |
| 595 | struct buf *bp; |
| 596 | struct inode *ip; |
| 597 | struct lfs *fs; |
| 598 | struct segment *sp; |
| 599 | struct vnode *vp; |
| 600 | SEGUSE *segusep; |
| 601 | int do_ckp, did_ckp, error; |
| 602 | unsigned n, segleft, maxseg, sn, i, curseg; |
| 603 | int writer_set = 0; |
| 604 | int dirty; |
| 605 | int redo; |
| 606 | SEGSUM *ssp; |
| 607 | int um_error; |
| 608 | |
| 609 | fs = VFSTOULFS(mp)->um_lfs; |
| 610 | ASSERT_MAYBE_SEGLOCK(fs); |
| 611 | |
| 612 | if (fs->lfs_ronly) |
| 613 | return EROFS; |
| 614 | |
| 615 | lfs_imtime(fs); |
| 616 | |
| 617 | /* |
| 618 | * Allocate a segment structure and enough space to hold pointers to |
| 619 | * the maximum possible number of buffers which can be described in a |
| 620 | * single summary block. |
| 621 | */ |
| 622 | do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags); |
| 623 | |
| 624 | /* We can't do a partial write and checkpoint at the same time. */ |
| 625 | if (do_ckp) |
| 626 | flags &= ~SEGM_SINGLE; |
| 627 | |
| 628 | lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); |
| 629 | sp = fs->lfs_sp; |
| 630 | if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP)) |
| 631 | do_ckp = 1; |
| 632 | |
| 633 | /* |
| 634 | * If lfs_flushvp is non-NULL, we are called from lfs_vflush, |
| 635 | * in which case we have to flush *all* buffers off of this vnode. |
| 636 | * We don't care about other nodes, but write any non-dirop nodes |
| 637 | * anyway in anticipation of another getnewvnode(). |
| 638 | * |
| 639 | * If we're cleaning we only write cleaning and ifile blocks, and |
| 640 | * no dirops, since otherwise we'd risk corruption in a crash. |
| 641 | */ |
| 642 | if (sp->seg_flags & SEGM_CLEAN) |
| 643 | lfs_writevnodes(fs, mp, sp, VN_CLEAN); |
| 644 | else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { |
| 645 | do { |
| 646 | um_error = lfs_writevnodes(fs, mp, sp, VN_REG); |
| 647 | if ((sp->seg_flags & SEGM_SINGLE) && |
| 648 | lfs_sb_getcurseg(fs) != fs->lfs_startseg) { |
| 649 | DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n" , (uintmax_t)lfs_sb_getoffset(fs))); |
| 650 | break; |
| 651 | } |
| 652 | |
| 653 | if (do_ckp || fs->lfs_dirops == 0) { |
| 654 | if (!writer_set) { |
| 655 | lfs_writer_enter(fs, "lfs writer" ); |
| 656 | writer_set = 1; |
| 657 | } |
| 658 | error = lfs_writevnodes(fs, mp, sp, VN_DIROP); |
| 659 | if (um_error == 0) |
| 660 | um_error = error; |
| 661 | /* In case writevnodes errored out */ |
| 662 | lfs_flush_dirops(fs); |
| 663 | ssp = (SEGSUM *)(sp->segsum); |
| 664 | lfs_ss_setflags(fs, ssp, |
| 665 | lfs_ss_getflags(fs, ssp) & ~(SS_CONT)); |
| 666 | lfs_finalize_fs_seguse(fs); |
| 667 | } |
| 668 | if (do_ckp && um_error) { |
| 669 | lfs_segunlock_relock(fs); |
| 670 | sp = fs->lfs_sp; |
| 671 | } |
| 672 | } while (do_ckp && um_error != 0); |
| 673 | } |
| 674 | |
| 675 | /* |
| 676 | * If we are doing a checkpoint, mark everything since the |
| 677 | * last checkpoint as no longer ACTIVE. |
| 678 | */ |
| 679 | if (do_ckp || fs->lfs_doifile) { |
| 680 | segleft = lfs_sb_getnseg(fs); |
| 681 | curseg = 0; |
| 682 | for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) { |
| 683 | int bread_error; |
| 684 | |
| 685 | dirty = 0; |
| 686 | bread_error = bread(fs->lfs_ivnode, |
| 687 | lfs_sb_getcleansz(fs) + n, |
| 688 | lfs_sb_getbsize(fs), B_MODIFY, &bp); |
| 689 | if (bread_error) |
| 690 | panic("lfs_segwrite: ifile read: " |
| 691 | "seguse %u: error %d\n" , |
| 692 | n, bread_error); |
| 693 | segusep = (SEGUSE *)bp->b_data; |
| 694 | maxseg = min(segleft, lfs_sb_getsepb(fs)); |
| 695 | for (i = 0; i < maxseg; i++) { |
| 696 | sn = curseg + i; |
| 697 | if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) && |
| 698 | segusep->su_flags & SEGUSE_ACTIVE) { |
| 699 | segusep->su_flags &= ~SEGUSE_ACTIVE; |
| 700 | --fs->lfs_nactive; |
| 701 | ++dirty; |
| 702 | } |
| 703 | fs->lfs_suflags[fs->lfs_activesb][sn] = |
| 704 | segusep->su_flags; |
| 705 | if (lfs_sb_getversion(fs) > 1) |
| 706 | ++segusep; |
| 707 | else |
| 708 | segusep = (SEGUSE *) |
| 709 | ((SEGUSE_V1 *)segusep + 1); |
| 710 | } |
| 711 | |
| 712 | if (dirty) |
| 713 | error = LFS_BWRITE_LOG(bp); /* Ifile */ |
| 714 | else |
| 715 | brelse(bp, 0); |
| 716 | segleft -= lfs_sb_getsepb(fs); |
| 717 | curseg += lfs_sb_getsepb(fs); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | KASSERT(LFS_SEGLOCK_HELD(fs)); |
| 722 | |
| 723 | did_ckp = 0; |
| 724 | if (do_ckp || fs->lfs_doifile) { |
| 725 | vp = fs->lfs_ivnode; |
| 726 | #ifdef DEBUG |
| 727 | int loopcount = 0; |
| 728 | #endif |
| 729 | do { |
| 730 | #ifdef DEBUG |
| 731 | LFS_ENTER_LOG("pretend" , __FILE__, __LINE__, 0, 0, curproc->p_pid); |
| 732 | #endif |
| 733 | mutex_enter(&lfs_lock); |
| 734 | fs->lfs_flags &= ~LFS_IFDIRTY; |
| 735 | mutex_exit(&lfs_lock); |
| 736 | |
| 737 | ip = VTOI(vp); |
| 738 | |
| 739 | if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { |
| 740 | /* |
| 741 | * Ifile has no pages, so we don't need |
| 742 | * to check error return here. |
| 743 | */ |
| 744 | lfs_writefile(fs, sp, vp); |
| 745 | /* |
| 746 | * Ensure the Ifile takes the current segment |
| 747 | * into account. See comment in lfs_vflush. |
| 748 | */ |
| 749 | lfs_writefile(fs, sp, vp); |
| 750 | lfs_writefile(fs, sp, vp); |
| 751 | } |
| 752 | |
| 753 | if (ip->i_flag & IN_ALLMOD) |
| 754 | ++did_ckp; |
| 755 | #if 0 |
| 756 | redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0); |
| 757 | #else |
| 758 | redo = lfs_writeinode(fs, sp, ip); |
| 759 | #endif |
| 760 | redo += lfs_writeseg(fs, sp); |
| 761 | mutex_enter(&lfs_lock); |
| 762 | redo += (fs->lfs_flags & LFS_IFDIRTY); |
| 763 | mutex_exit(&lfs_lock); |
| 764 | #ifdef DEBUG |
| 765 | if (++loopcount > 2) |
| 766 | log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n" , |
| 767 | loopcount); |
| 768 | #endif |
| 769 | } while (redo && do_ckp); |
| 770 | |
| 771 | /* |
| 772 | * Unless we are unmounting, the Ifile may continue to have |
| 773 | * dirty blocks even after a checkpoint, due to changes to |
| 774 | * inodes' atime. If we're checkpointing, it's "impossible" |
| 775 | * for other parts of the Ifile to be dirty after the loop |
| 776 | * above, since we hold the segment lock. |
| 777 | */ |
| 778 | mutex_enter(vp->v_interlock); |
| 779 | if (LIST_EMPTY(&vp->v_dirtyblkhd)) { |
| 780 | LFS_CLR_UINO(ip, IN_ALLMOD); |
| 781 | } |
| 782 | #ifdef DIAGNOSTIC |
| 783 | else if (do_ckp) { |
| 784 | int do_panic = 0; |
| 785 | LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { |
| 786 | if (bp->b_lblkno < lfs_sb_getcleansz(fs) + |
| 787 | lfs_sb_getsegtabsz(fs) && |
| 788 | !(bp->b_flags & B_GATHERED)) { |
| 789 | printf("ifile lbn %ld still dirty (flags %lx)\n" , |
| 790 | (long)bp->b_lblkno, |
| 791 | (long)bp->b_flags); |
| 792 | ++do_panic; |
| 793 | } |
| 794 | } |
| 795 | if (do_panic) |
| 796 | panic("dirty blocks" ); |
| 797 | } |
| 798 | #endif |
| 799 | mutex_exit(vp->v_interlock); |
| 800 | } else { |
| 801 | (void) lfs_writeseg(fs, sp); |
| 802 | } |
| 803 | |
| 804 | /* Note Ifile no longer needs to be written */ |
| 805 | fs->lfs_doifile = 0; |
| 806 | if (writer_set) |
| 807 | lfs_writer_leave(fs); |
| 808 | |
| 809 | /* |
| 810 | * If we didn't write the Ifile, we didn't really do anything. |
| 811 | * That means that (1) there is a checkpoint on disk and (2) |
| 812 | * nothing has changed since it was written. |
| 813 | * |
| 814 | * Take the flags off of the segment so that lfs_segunlock |
| 815 | * doesn't have to write the superblock either. |
| 816 | */ |
| 817 | if (do_ckp && !did_ckp) { |
| 818 | sp->seg_flags &= ~SEGM_CKP; |
| 819 | } |
| 820 | |
| 821 | if (lfs_dostats) { |
| 822 | ++lfs_stats.nwrites; |
| 823 | if (sp->seg_flags & SEGM_SYNC) |
| 824 | ++lfs_stats.nsync_writes; |
| 825 | if (sp->seg_flags & SEGM_CKP) |
| 826 | ++lfs_stats.ncheckpoints; |
| 827 | } |
| 828 | lfs_segunlock(fs); |
| 829 | return (0); |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * Write the dirty blocks associated with a vnode. |
| 834 | */ |
| 835 | int |
| 836 | lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) |
| 837 | { |
| 838 | struct inode *ip; |
| 839 | int i, frag; |
| 840 | SEGSUM *ssp; |
| 841 | int error; |
| 842 | |
| 843 | ASSERT_SEGLOCK(fs); |
| 844 | error = 0; |
| 845 | ip = VTOI(vp); |
| 846 | |
| 847 | lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); |
| 848 | |
| 849 | if (vp->v_uflag & VU_DIROP) { |
| 850 | ssp = (SEGSUM *)sp->segsum; |
| 851 | lfs_ss_setflags(fs, ssp, |
| 852 | lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT)); |
| 853 | } |
| 854 | |
| 855 | if (sp->seg_flags & SEGM_CLEAN) { |
| 856 | lfs_gather(fs, sp, vp, lfs_match_fake); |
| 857 | /* |
| 858 | * For a file being flushed, we need to write *all* blocks. |
| 859 | * This means writing the cleaning blocks first, and then |
| 860 | * immediately following with any non-cleaning blocks. |
| 861 | * The same is true of the Ifile since checkpoints assume |
| 862 | * that all valid Ifile blocks are written. |
| 863 | */ |
| 864 | if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) { |
| 865 | lfs_gather(fs, sp, vp, lfs_match_data); |
| 866 | /* |
| 867 | * Don't call VOP_PUTPAGES: if we're flushing, |
| 868 | * we've already done it, and the Ifile doesn't |
| 869 | * use the page cache. |
| 870 | */ |
| 871 | } |
| 872 | } else { |
| 873 | lfs_gather(fs, sp, vp, lfs_match_data); |
| 874 | /* |
| 875 | * If we're flushing, we've already called VOP_PUTPAGES |
| 876 | * so don't do it again. Otherwise, we want to write |
| 877 | * everything we've got. |
| 878 | */ |
| 879 | if (!IS_FLUSHING(fs, vp)) { |
| 880 | mutex_enter(vp->v_interlock); |
| 881 | error = VOP_PUTPAGES(vp, 0, 0, |
| 882 | PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | /* |
| 887 | * It may not be necessary to write the meta-data blocks at this point, |
| 888 | * as the roll-forward recovery code should be able to reconstruct the |
| 889 | * list. |
| 890 | * |
| 891 | * We have to write them anyway, though, under two conditions: (1) the |
| 892 | * vnode is being flushed (for reuse by vinvalbuf); or (2) we are |
| 893 | * checkpointing. |
| 894 | * |
| 895 | * BUT if we are cleaning, we might have indirect blocks that refer to |
| 896 | * new blocks not being written yet, in addition to fragments being |
| 897 | * moved out of a cleaned segment. If that is the case, don't |
| 898 | * write the indirect blocks, or the finfo will have a small block |
| 899 | * in the middle of it! |
| 900 | * XXX in this case isn't the inode size wrong too? |
| 901 | */ |
| 902 | frag = 0; |
| 903 | if (sp->seg_flags & SEGM_CLEAN) { |
| 904 | for (i = 0; i < ULFS_NDADDR; i++) |
| 905 | if (ip->i_lfs_fragsize[i] > 0 && |
| 906 | ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs)) |
| 907 | ++frag; |
| 908 | } |
| 909 | #ifdef DIAGNOSTIC |
| 910 | if (frag > 1) |
| 911 | panic("lfs_writefile: more than one fragment!" ); |
| 912 | #endif |
| 913 | if (IS_FLUSHING(fs, vp) || |
| 914 | (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { |
| 915 | lfs_gather(fs, sp, vp, lfs_match_indir); |
| 916 | lfs_gather(fs, sp, vp, lfs_match_dindir); |
| 917 | lfs_gather(fs, sp, vp, lfs_match_tindir); |
| 918 | } |
| 919 | lfs_release_finfo(fs); |
| 920 | |
| 921 | return error; |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * Update segment accounting to reflect this inode's change of address. |
| 926 | */ |
| 927 | static int |
| 928 | lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr) |
| 929 | { |
| 930 | struct buf *bp; |
| 931 | daddr_t daddr; |
| 932 | IFILE *ifp; |
| 933 | SEGUSE *sup; |
| 934 | ino_t ino; |
| 935 | int redo_ifile; |
| 936 | u_int32_t sn; |
| 937 | |
| 938 | redo_ifile = 0; |
| 939 | |
| 940 | /* |
| 941 | * If updating the ifile, update the super-block. Update the disk |
| 942 | * address and access times for this inode in the ifile. |
| 943 | */ |
| 944 | ino = ip->i_number; |
| 945 | if (ino == LFS_IFILE_INUM) { |
| 946 | daddr = lfs_sb_getidaddr(fs); |
| 947 | lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr)); |
| 948 | } else { |
| 949 | LFS_IENTRY(ifp, fs, ino, bp); |
| 950 | daddr = lfs_if_getdaddr(fs, ifp); |
| 951 | lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr)); |
| 952 | (void)LFS_BWRITE_LOG(bp); /* Ifile */ |
| 953 | } |
| 954 | |
| 955 | /* |
| 956 | * If this is the Ifile and lfs_offset is set to the first block |
| 957 | * in the segment, dirty the new segment's accounting block |
| 958 | * (XXX should already be dirty?) and tell the caller to do it again. |
| 959 | */ |
| 960 | if (ip->i_number == LFS_IFILE_INUM) { |
| 961 | sn = lfs_dtosn(fs, lfs_sb_getoffset(fs)); |
| 962 | if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) == |
| 963 | lfs_sb_getoffset(fs)) { |
| 964 | LFS_SEGENTRY(sup, fs, sn, bp); |
| 965 | KASSERT(bp->b_oflags & BO_DELWRI); |
| 966 | LFS_WRITESEGENTRY(sup, fs, sn, bp); |
| 967 | /* fs->lfs_flags |= LFS_IFDIRTY; */ |
| 968 | redo_ifile |= 1; |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | /* |
| 973 | * The inode's last address should not be in the current partial |
| 974 | * segment, except under exceptional circumstances (lfs_writevnodes |
| 975 | * had to start over, and in the meantime more blocks were written |
| 976 | * to a vnode). Both inodes will be accounted to this segment |
| 977 | * in lfs_writeseg so we need to subtract the earlier version |
| 978 | * here anyway. The segment count can temporarily dip below |
| 979 | * zero here; keep track of how many duplicates we have in |
| 980 | * "dupino" so we don't panic below. |
| 981 | */ |
| 982 | if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) { |
| 983 | ++sp->ndupino; |
| 984 | DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " |
| 985 | "(ino %d daddr 0x%llx) ndupino=%d\n" , ino, |
| 986 | (long long)daddr, sp->ndupino)); |
| 987 | } |
| 988 | /* |
| 989 | * Account the inode: it no longer belongs to its former segment, |
| 990 | * though it will not belong to the new segment until that segment |
| 991 | * is actually written. |
| 992 | */ |
| 993 | if (daddr != LFS_UNUSED_DADDR) { |
| 994 | u_int32_t oldsn = lfs_dtosn(fs, daddr); |
| 995 | #ifdef DIAGNOSTIC |
| 996 | int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; |
| 997 | #endif |
| 998 | LFS_SEGENTRY(sup, fs, oldsn, bp); |
| 999 | #ifdef DIAGNOSTIC |
| 1000 | if (sup->su_nbytes + DINOSIZE(fs) * ndupino < DINOSIZE(fs)) { |
| 1001 | printf("lfs_writeinode: negative bytes " |
| 1002 | "(segment %" PRIu32 " short by %d, " |
| 1003 | "oldsn=%" PRIu32 ", cursn=%" PRIu32 |
| 1004 | ", daddr=%" PRId64 ", su_nbytes=%u, " |
| 1005 | "ndupino=%d)\n" , |
| 1006 | lfs_dtosn(fs, daddr), |
| 1007 | (int)DINOSIZE(fs) * |
| 1008 | (1 - sp->ndupino) - sup->su_nbytes, |
| 1009 | oldsn, sp->seg_number, daddr, |
| 1010 | (unsigned int)sup->su_nbytes, |
| 1011 | sp->ndupino); |
| 1012 | panic("lfs_writeinode: negative bytes" ); |
| 1013 | sup->su_nbytes = DINOSIZE(fs); |
| 1014 | } |
| 1015 | #endif |
| 1016 | DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n" , |
| 1017 | lfs_dtosn(fs, daddr), DINOSIZE(fs), ino)); |
| 1018 | sup->su_nbytes -= DINOSIZE(fs); |
| 1019 | redo_ifile |= |
| 1020 | (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); |
| 1021 | if (redo_ifile) { |
| 1022 | mutex_enter(&lfs_lock); |
| 1023 | fs->lfs_flags |= LFS_IFDIRTY; |
| 1024 | mutex_exit(&lfs_lock); |
| 1025 | /* Don't double-account */ |
| 1026 | lfs_sb_setidaddr(fs, 0x0); |
| 1027 | } |
| 1028 | LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ |
| 1029 | } |
| 1030 | |
| 1031 | return redo_ifile; |
| 1032 | } |
| 1033 | |
| 1034 | int |
| 1035 | lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) |
| 1036 | { |
| 1037 | struct buf *bp; |
| 1038 | union lfs_dinode *cdp; |
| 1039 | struct vnode *vp = ITOV(ip); |
| 1040 | daddr_t daddr; |
| 1041 | IINFO *iip; |
| 1042 | int i; |
| 1043 | int redo_ifile = 0; |
| 1044 | int gotblk = 0; |
| 1045 | int count; |
| 1046 | SEGSUM *ssp; |
| 1047 | |
| 1048 | ASSERT_SEGLOCK(fs); |
| 1049 | if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP)) |
| 1050 | return (0); |
| 1051 | |
| 1052 | /* Can't write ifile when writer is not set */ |
| 1053 | KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 || |
| 1054 | (sp->seg_flags & SEGM_CLEAN)); |
| 1055 | |
| 1056 | /* |
| 1057 | * If this is the Ifile, see if writing it here will generate a |
| 1058 | * temporary misaccounting. If it will, do the accounting and write |
| 1059 | * the blocks, postponing the inode write until the accounting is |
| 1060 | * solid. |
| 1061 | */ |
| 1062 | count = 0; |
| 1063 | while (vp == fs->lfs_ivnode) { |
| 1064 | int redo = 0; |
| 1065 | |
| 1066 | if (sp->idp == NULL && sp->ibp == NULL && |
| 1067 | (sp->seg_bytes_left < lfs_sb_getibsize(fs) || |
| 1068 | sp->sum_bytes_left < sizeof(int32_t))) { |
| 1069 | (void) lfs_writeseg(fs, sp); |
| 1070 | continue; |
| 1071 | } |
| 1072 | |
| 1073 | /* Look for dirty Ifile blocks */ |
| 1074 | LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) { |
| 1075 | if (!(bp->b_flags & B_GATHERED)) { |
| 1076 | redo = 1; |
| 1077 | break; |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | if (redo == 0) |
| 1082 | redo = lfs_update_iaddr(fs, sp, ip, 0x0); |
| 1083 | if (redo == 0) |
| 1084 | break; |
| 1085 | |
| 1086 | if (sp->idp) { |
| 1087 | lfs_dino_setinumber(fs, sp->idp, 0); |
| 1088 | sp->idp = NULL; |
| 1089 | } |
| 1090 | ++count; |
| 1091 | if (count > 2) |
| 1092 | log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n" , count); |
| 1093 | lfs_writefile(fs, sp, fs->lfs_ivnode); |
| 1094 | } |
| 1095 | |
| 1096 | /* Allocate a new inode block if necessary. */ |
| 1097 | if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && |
| 1098 | sp->ibp == NULL) { |
| 1099 | /* Allocate a new segment if necessary. */ |
| 1100 | if (sp->seg_bytes_left < lfs_sb_getibsize(fs) || |
| 1101 | sp->sum_bytes_left < sizeof(int32_t)) |
| 1102 | (void) lfs_writeseg(fs, sp); |
| 1103 | |
| 1104 | /* Get next inode block. */ |
| 1105 | daddr = lfs_sb_getoffset(fs); |
| 1106 | lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs))); |
| 1107 | sp->ibp = *sp->cbpp++ = |
| 1108 | getblk(VTOI(fs->lfs_ivnode)->i_devvp, |
| 1109 | LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0); |
| 1110 | gotblk++; |
| 1111 | |
| 1112 | /* Zero out inode numbers */ |
| 1113 | for (i = 0; i < LFS_INOPB(fs); ++i) { |
| 1114 | union lfs_dinode *tmpdi; |
| 1115 | |
| 1116 | tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data + |
| 1117 | DINOSIZE(fs) * i); |
| 1118 | lfs_dino_setinumber(fs, tmpdi, 0); |
| 1119 | } |
| 1120 | |
| 1121 | ++sp->start_bpp; |
| 1122 | lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs))); |
| 1123 | /* Set remaining space counters. */ |
| 1124 | sp->seg_bytes_left -= lfs_sb_getibsize(fs); |
| 1125 | sp->sum_bytes_left -= sizeof(int32_t); |
| 1126 | |
| 1127 | /* Store the address in the segment summary. */ |
| 1128 | iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs)); |
| 1129 | lfs_ii_setblock(fs, iip, daddr); |
| 1130 | } |
| 1131 | |
| 1132 | /* Check VU_DIROP in case there is a new file with no data blocks */ |
| 1133 | if (vp->v_uflag & VU_DIROP) { |
| 1134 | ssp = (SEGSUM *)sp->segsum; |
| 1135 | lfs_ss_setflags(fs, ssp, |
| 1136 | lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT)); |
| 1137 | } |
| 1138 | |
| 1139 | /* Update the inode times and copy the inode onto the inode page. */ |
| 1140 | /* XXX kludge --- don't redirty the ifile just to put times on it */ |
| 1141 | if (ip->i_number != LFS_IFILE_INUM) |
| 1142 | LFS_ITIMES(ip, NULL, NULL, NULL); |
| 1143 | |
| 1144 | /* |
| 1145 | * If this is the Ifile, and we've already written the Ifile in this |
| 1146 | * partial segment, just overwrite it (it's not on disk yet) and |
| 1147 | * continue. |
| 1148 | * |
| 1149 | * XXX we know that the bp that we get the second time around has |
| 1150 | * already been gathered. |
| 1151 | */ |
| 1152 | if (ip->i_number == LFS_IFILE_INUM && sp->idp) { |
| 1153 | lfs_copy_dinode(fs, sp->idp, ip->i_din); |
| 1154 | ip->i_lfs_osize = ip->i_size; |
| 1155 | return 0; |
| 1156 | } |
| 1157 | |
| 1158 | bp = sp->ibp; |
| 1159 | cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs)); |
| 1160 | lfs_copy_dinode(fs, cdp, ip->i_din); |
| 1161 | |
| 1162 | /* |
| 1163 | * This inode is on its way to disk; clear its VU_DIROP status when |
| 1164 | * the write is complete. |
| 1165 | */ |
| 1166 | if (vp->v_uflag & VU_DIROP) { |
| 1167 | if (!(sp->seg_flags & SEGM_CLEAN)) |
| 1168 | ip->i_flag |= IN_CDIROP; |
| 1169 | else { |
| 1170 | DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n" , (int)ip->i_number)); |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | /* |
| 1175 | * If cleaning, link counts and directory file sizes cannot change, |
| 1176 | * since those would be directory operations---even if the file |
| 1177 | * we are writing is marked VU_DIROP we should write the old values. |
| 1178 | * If we're not cleaning, of course, update the values so we get |
| 1179 | * current values the next time we clean. |
| 1180 | */ |
| 1181 | if (sp->seg_flags & SEGM_CLEAN) { |
| 1182 | if (vp->v_uflag & VU_DIROP) { |
| 1183 | lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink); |
| 1184 | /* if (vp->v_type == VDIR) */ |
| 1185 | lfs_dino_setsize(fs, cdp, ip->i_lfs_osize); |
| 1186 | } |
| 1187 | } else { |
| 1188 | ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp); |
| 1189 | ip->i_lfs_osize = ip->i_size; |
| 1190 | } |
| 1191 | |
| 1192 | |
| 1193 | /* We can finish the segment accounting for truncations now */ |
| 1194 | lfs_finalize_ino_seguse(fs, ip); |
| 1195 | |
| 1196 | /* |
| 1197 | * If we are cleaning, ensure that we don't write UNWRITTEN disk |
| 1198 | * addresses to disk; possibly change the on-disk record of |
| 1199 | * the inode size, either by reverting to the previous size |
| 1200 | * (in the case of cleaning) or by verifying the inode's block |
| 1201 | * holdings (in the case of files being allocated as they are being |
| 1202 | * written). |
| 1203 | * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail |
| 1204 | * XXX count on disk wrong by the same amount. We should be |
| 1205 | * XXX able to "borrow" from lfs_avail and return it after the |
| 1206 | * XXX Ifile is written. See also in lfs_writeseg. |
| 1207 | */ |
| 1208 | |
| 1209 | /* Check file size based on highest allocated block */ |
| 1210 | if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG || |
| 1211 | (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) && |
| 1212 | ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) { |
| 1213 | lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs)); |
| 1214 | DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %" |
| 1215 | PRId64 "\n" , (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp))); |
| 1216 | } |
| 1217 | if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) { |
| 1218 | DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)" |
| 1219 | " at %jx\n" , ip->i_number, (intmax_t)ip->i_lfs_effnblks, |
| 1220 | lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs))); |
| 1221 | for (i=0; i<ULFS_NDADDR; i++) { |
| 1222 | if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) { |
| 1223 | DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n" )); |
| 1224 | lfs_dino_setdb(fs, cdp, i, 0); |
| 1225 | } |
| 1226 | } |
| 1227 | for (i=0; i<ULFS_NIADDR; i++) { |
| 1228 | if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) { |
| 1229 | DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n" )); |
| 1230 | lfs_dino_setib(fs, cdp, i, 0); |
| 1231 | } |
| 1232 | } |
| 1233 | } |
| 1234 | |
| 1235 | #ifdef DIAGNOSTIC |
| 1236 | /* |
| 1237 | * Check dinode held blocks against dinode size. |
| 1238 | * This should be identical to the check in lfs_vget(). |
| 1239 | */ |
| 1240 | for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs); |
| 1241 | i < ULFS_NDADDR; i++) { |
| 1242 | KASSERT(i >= 0); |
| 1243 | if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK) |
| 1244 | continue; |
| 1245 | if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK || |
| 1246 | (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0) |
| 1247 | continue; |
| 1248 | if (lfs_dino_getdb(fs, cdp, i) != 0) { |
| 1249 | # ifdef DEBUG |
| 1250 | lfs_dump_dinode(fs, cdp); |
| 1251 | # endif |
| 1252 | panic("writing inconsistent inode" ); |
| 1253 | } |
| 1254 | } |
| 1255 | #endif /* DIAGNOSTIC */ |
| 1256 | |
| 1257 | if (ip->i_flag & IN_CLEANING) |
| 1258 | LFS_CLR_UINO(ip, IN_CLEANING); |
| 1259 | else { |
| 1260 | /* XXX IN_ALLMOD */ |
| 1261 | LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | |
| 1262 | IN_UPDATE | IN_MODIFY); |
| 1263 | if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din)) |
| 1264 | LFS_CLR_UINO(ip, IN_MODIFIED); |
| 1265 | else { |
| 1266 | DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real " |
| 1267 | "blks=%d, eff=%jd\n" , ip->i_number, |
| 1268 | lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks)); |
| 1269 | } |
| 1270 | } |
| 1271 | |
| 1272 | if (ip->i_number == LFS_IFILE_INUM) { |
| 1273 | /* We know sp->idp == NULL */ |
| 1274 | sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs)); |
| 1275 | |
| 1276 | /* Not dirty any more */ |
| 1277 | mutex_enter(&lfs_lock); |
| 1278 | fs->lfs_flags &= ~LFS_IFDIRTY; |
| 1279 | mutex_exit(&lfs_lock); |
| 1280 | } |
| 1281 | |
| 1282 | if (gotblk) { |
| 1283 | mutex_enter(&bufcache_lock); |
| 1284 | LFS_LOCK_BUF(bp); |
| 1285 | brelsel(bp, 0); |
| 1286 | mutex_exit(&bufcache_lock); |
| 1287 | } |
| 1288 | |
| 1289 | /* Increment inode count in segment summary block. */ |
| 1290 | |
| 1291 | ssp = (SEGSUM *)sp->segsum; |
| 1292 | lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1); |
| 1293 | |
| 1294 | /* If this page is full, set flag to allocate a new page. */ |
| 1295 | if (++sp->ninodes % LFS_INOPB(fs) == 0) |
| 1296 | sp->ibp = NULL; |
| 1297 | |
| 1298 | redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno); |
| 1299 | |
| 1300 | KASSERT(redo_ifile == 0); |
| 1301 | return (redo_ifile); |
| 1302 | } |
| 1303 | |
| 1304 | int |
| 1305 | lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr) |
| 1306 | { |
| 1307 | struct lfs *fs; |
| 1308 | int vers; |
| 1309 | int j, blksinblk; |
| 1310 | |
| 1311 | ASSERT_SEGLOCK(sp->fs); |
| 1312 | /* |
| 1313 | * If full, finish this segment. We may be doing I/O, so |
| 1314 | * release and reacquire the splbio(). |
| 1315 | */ |
| 1316 | #ifdef DIAGNOSTIC |
| 1317 | if (sp->vp == NULL) |
| 1318 | panic ("lfs_gatherblock: Null vp in segment" ); |
| 1319 | #endif |
| 1320 | fs = sp->fs; |
| 1321 | blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs)); |
| 1322 | if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || |
| 1323 | sp->seg_bytes_left < bp->b_bcount) { |
| 1324 | if (mptr) |
| 1325 | mutex_exit(mptr); |
| 1326 | lfs_updatemeta(sp); |
| 1327 | |
| 1328 | vers = lfs_fi_getversion(fs, sp->fip); |
| 1329 | (void) lfs_writeseg(fs, sp); |
| 1330 | |
| 1331 | /* Add the current file to the segment summary. */ |
| 1332 | lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers); |
| 1333 | |
| 1334 | if (mptr) |
| 1335 | mutex_enter(mptr); |
| 1336 | return (1); |
| 1337 | } |
| 1338 | |
| 1339 | if (bp->b_flags & B_GATHERED) { |
| 1340 | DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju," |
| 1341 | " lbn %" PRId64 "\n" , |
| 1342 | (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno)); |
| 1343 | return (0); |
| 1344 | } |
| 1345 | |
| 1346 | /* Insert into the buffer list, update the FINFO block. */ |
| 1347 | bp->b_flags |= B_GATHERED; |
| 1348 | |
| 1349 | *sp->cbpp++ = bp; |
| 1350 | for (j = 0; j < blksinblk; j++) { |
| 1351 | unsigned bn; |
| 1352 | |
| 1353 | bn = lfs_fi_getnblocks(fs, sp->fip); |
| 1354 | lfs_fi_setnblocks(fs, sp->fip, bn+1); |
| 1355 | lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j); |
| 1356 | /* This block's accounting moves from lfs_favail to lfs_avail */ |
| 1357 | lfs_deregister_block(sp->vp, bp->b_lblkno + j); |
| 1358 | } |
| 1359 | |
| 1360 | sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; |
| 1361 | sp->seg_bytes_left -= bp->b_bcount; |
| 1362 | return (0); |
| 1363 | } |
| 1364 | |
| 1365 | int |
| 1366 | lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, |
| 1367 | int (*match)(struct lfs *, struct buf *)) |
| 1368 | { |
| 1369 | struct buf *bp, *nbp; |
| 1370 | int count = 0; |
| 1371 | |
| 1372 | ASSERT_SEGLOCK(fs); |
| 1373 | if (vp->v_type == VBLK) |
| 1374 | return 0; |
| 1375 | KASSERT(sp->vp == NULL); |
| 1376 | sp->vp = vp; |
| 1377 | mutex_enter(&bufcache_lock); |
| 1378 | |
| 1379 | #ifndef LFS_NO_BACKBUF_HACK |
| 1380 | /* This is a hack to see if ordering the blocks in LFS makes a difference. */ |
| 1381 | # define BUF_OFFSET \ |
| 1382 | (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp) |
| 1383 | # define BACK_BUF(BP) \ |
| 1384 | ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) |
| 1385 | # define BEG_OF_LIST \ |
| 1386 | ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) |
| 1387 | |
| 1388 | loop: |
| 1389 | /* Find last buffer. */ |
| 1390 | for (bp = LIST_FIRST(&vp->v_dirtyblkhd); |
| 1391 | bp && LIST_NEXT(bp, b_vnbufs) != NULL; |
| 1392 | bp = LIST_NEXT(bp, b_vnbufs)) |
| 1393 | /* nothing */; |
| 1394 | for (; bp && bp != BEG_OF_LIST; bp = nbp) { |
| 1395 | nbp = BACK_BUF(bp); |
| 1396 | #else /* LFS_NO_BACKBUF_HACK */ |
| 1397 | loop: |
| 1398 | for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { |
| 1399 | nbp = LIST_NEXT(bp, b_vnbufs); |
| 1400 | #endif /* LFS_NO_BACKBUF_HACK */ |
| 1401 | if ((bp->b_cflags & BC_BUSY) != 0 || |
| 1402 | (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) { |
| 1403 | #ifdef DEBUG |
| 1404 | if (vp == fs->lfs_ivnode && |
| 1405 | (bp->b_cflags & BC_BUSY) != 0 && |
| 1406 | (bp->b_flags & B_GATHERED) == 0) |
| 1407 | log(LOG_NOTICE, "lfs_gather: ifile lbn %" |
| 1408 | PRId64 " busy (%x) at 0x%jx" , |
| 1409 | bp->b_lblkno, bp->b_flags, |
| 1410 | (uintmax_t)lfs_sb_getoffset(fs)); |
| 1411 | #endif |
| 1412 | continue; |
| 1413 | } |
| 1414 | #ifdef DIAGNOSTIC |
| 1415 | # ifdef LFS_USE_B_INVAL |
| 1416 | if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) { |
| 1417 | DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 |
| 1418 | " is BC_INVAL\n" , bp->b_lblkno)); |
| 1419 | VOP_PRINT(bp->b_vp); |
| 1420 | } |
| 1421 | # endif /* LFS_USE_B_INVAL */ |
| 1422 | if (!(bp->b_oflags & BO_DELWRI)) |
| 1423 | panic("lfs_gather: bp not BO_DELWRI" ); |
| 1424 | if (!(bp->b_flags & B_LOCKED)) { |
| 1425 | DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 |
| 1426 | " blk %" PRId64 " not B_LOCKED\n" , |
| 1427 | bp->b_lblkno, |
| 1428 | LFS_DBTOFSB(fs, bp->b_blkno))); |
| 1429 | VOP_PRINT(bp->b_vp); |
| 1430 | panic("lfs_gather: bp not B_LOCKED" ); |
| 1431 | } |
| 1432 | #endif |
| 1433 | if (lfs_gatherblock(sp, bp, &bufcache_lock)) { |
| 1434 | goto loop; |
| 1435 | } |
| 1436 | count++; |
| 1437 | } |
| 1438 | mutex_exit(&bufcache_lock); |
| 1439 | lfs_updatemeta(sp); |
| 1440 | KASSERT(sp->vp == vp); |
| 1441 | sp->vp = NULL; |
| 1442 | return count; |
| 1443 | } |
| 1444 | |
| 1445 | #if DEBUG |
| 1446 | # define DEBUG_OOFF(n) do { \ |
| 1447 | if (ooff == 0) { \ |
| 1448 | DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ |
| 1449 | "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ |
| 1450 | ", was 0x0 (or %" PRId64 ")\n", \ |
| 1451 | (n), ip->i_number, lbn, ndaddr, daddr)); \ |
| 1452 | } \ |
| 1453 | } while (0) |
| 1454 | #else |
| 1455 | # define DEBUG_OOFF(n) |
| 1456 | #endif |
| 1457 | |
| 1458 | /* |
| 1459 | * Change the given block's address to ndaddr, finding its previous |
| 1460 | * location using ulfs_bmaparray(). |
| 1461 | * |
| 1462 | * Account for this change in the segment table. |
| 1463 | * |
| 1464 | * called with sp == NULL by roll-forwarding code. |
| 1465 | */ |
| 1466 | void |
| 1467 | lfs_update_single(struct lfs *fs, struct segment *sp, |
| 1468 | struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size) |
| 1469 | { |
| 1470 | SEGUSE *sup; |
| 1471 | struct buf *bp; |
| 1472 | struct indir a[ULFS_NIADDR + 2], *ap; |
| 1473 | struct inode *ip; |
| 1474 | daddr_t daddr, ooff; |
| 1475 | int num, error; |
| 1476 | int bb, osize, obb; |
| 1477 | |
| 1478 | ASSERT_SEGLOCK(fs); |
| 1479 | KASSERT(sp == NULL || sp->vp == vp); |
| 1480 | ip = VTOI(vp); |
| 1481 | |
| 1482 | error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); |
| 1483 | if (error) |
| 1484 | panic("lfs_updatemeta: ulfs_bmaparray returned %d" , error); |
| 1485 | |
| 1486 | KASSERT(daddr <= LFS_MAX_DADDR(fs)); |
| 1487 | if (daddr > 0) |
| 1488 | daddr = LFS_DBTOFSB(fs, daddr); |
| 1489 | |
| 1490 | bb = lfs_numfrags(fs, size); |
| 1491 | switch (num) { |
| 1492 | case 0: |
| 1493 | ooff = lfs_dino_getdb(fs, ip->i_din, lbn); |
| 1494 | DEBUG_OOFF(0); |
| 1495 | if (ooff == UNWRITTEN) |
| 1496 | lfs_dino_setblocks(fs, ip->i_din, |
| 1497 | lfs_dino_getblocks(fs, ip->i_din) + bb); |
| 1498 | else { |
| 1499 | /* possible fragment truncation or extension */ |
| 1500 | obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]); |
| 1501 | lfs_dino_setblocks(fs, ip->i_din, |
| 1502 | lfs_dino_getblocks(fs, ip->i_din) + (bb-obb)); |
| 1503 | } |
| 1504 | lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr); |
| 1505 | break; |
| 1506 | case 1: |
| 1507 | ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off); |
| 1508 | DEBUG_OOFF(1); |
| 1509 | if (ooff == UNWRITTEN) |
| 1510 | lfs_dino_setblocks(fs, ip->i_din, |
| 1511 | lfs_dino_getblocks(fs, ip->i_din) + bb); |
| 1512 | lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr); |
| 1513 | break; |
| 1514 | default: |
| 1515 | ap = &a[num - 1]; |
| 1516 | if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs), |
| 1517 | B_MODIFY, &bp)) |
| 1518 | panic("lfs_updatemeta: bread bno %" PRId64, |
| 1519 | ap->in_lbn); |
| 1520 | |
| 1521 | ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off); |
| 1522 | DEBUG_OOFF(num); |
| 1523 | if (ooff == UNWRITTEN) |
| 1524 | lfs_dino_setblocks(fs, ip->i_din, |
| 1525 | lfs_dino_getblocks(fs, ip->i_din) + bb); |
| 1526 | lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr); |
| 1527 | (void) VOP_BWRITE(bp->b_vp, bp); |
| 1528 | } |
| 1529 | |
| 1530 | KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); |
| 1531 | |
| 1532 | /* Update hiblk when extending the file */ |
| 1533 | if (lbn > ip->i_lfs_hiblk) |
| 1534 | ip->i_lfs_hiblk = lbn; |
| 1535 | |
| 1536 | /* |
| 1537 | * Though we'd rather it couldn't, this *can* happen right now |
| 1538 | * if cleaning blocks and regular blocks coexist. |
| 1539 | */ |
| 1540 | /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ |
| 1541 | |
| 1542 | /* |
| 1543 | * Update segment usage information, based on old size |
| 1544 | * and location. |
| 1545 | */ |
| 1546 | if (daddr > 0) { |
| 1547 | u_int32_t oldsn = lfs_dtosn(fs, daddr); |
| 1548 | #ifdef DIAGNOSTIC |
| 1549 | int ndupino; |
| 1550 | |
| 1551 | if (sp && sp->seg_number == oldsn) { |
| 1552 | ndupino = sp->ndupino; |
| 1553 | } else { |
| 1554 | ndupino = 0; |
| 1555 | } |
| 1556 | #endif |
| 1557 | KASSERT(oldsn < lfs_sb_getnseg(fs)); |
| 1558 | if (lbn >= 0 && lbn < ULFS_NDADDR) |
| 1559 | osize = ip->i_lfs_fragsize[lbn]; |
| 1560 | else |
| 1561 | osize = lfs_sb_getbsize(fs); |
| 1562 | LFS_SEGENTRY(sup, fs, oldsn, bp); |
| 1563 | #ifdef DIAGNOSTIC |
| 1564 | if (sup->su_nbytes + DINOSIZE(fs) * ndupino < osize) { |
| 1565 | printf("lfs_updatemeta: negative bytes " |
| 1566 | "(segment %" PRIu32 " short by %" PRId64 |
| 1567 | ")\n" , lfs_dtosn(fs, daddr), |
| 1568 | (int64_t)osize - |
| 1569 | (DINOSIZE(fs) * ndupino + sup->su_nbytes)); |
| 1570 | printf("lfs_updatemeta: ino %llu, lbn %" PRId64 |
| 1571 | ", addr = 0x%" PRIx64 "\n" , |
| 1572 | (unsigned long long)ip->i_number, lbn, daddr); |
| 1573 | printf("lfs_updatemeta: ndupino=%d\n" , ndupino); |
| 1574 | panic("lfs_updatemeta: negative bytes" ); |
| 1575 | sup->su_nbytes = osize - |
| 1576 | DINOSIZE(fs) * ndupino; |
| 1577 | } |
| 1578 | #endif |
| 1579 | DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 |
| 1580 | " db 0x%" PRIx64 "\n" , |
| 1581 | lfs_dtosn(fs, daddr), osize, |
| 1582 | ip->i_number, lbn, daddr)); |
| 1583 | sup->su_nbytes -= osize; |
| 1584 | if (!(bp->b_flags & B_GATHERED)) { |
| 1585 | mutex_enter(&lfs_lock); |
| 1586 | fs->lfs_flags |= LFS_IFDIRTY; |
| 1587 | mutex_exit(&lfs_lock); |
| 1588 | } |
| 1589 | LFS_WRITESEGENTRY(sup, fs, oldsn, bp); |
| 1590 | } |
| 1591 | /* |
| 1592 | * Now that this block has a new address, and its old |
| 1593 | * segment no longer owns it, we can forget about its |
| 1594 | * old size. |
| 1595 | */ |
| 1596 | if (lbn >= 0 && lbn < ULFS_NDADDR) |
| 1597 | ip->i_lfs_fragsize[lbn] = size; |
| 1598 | } |
| 1599 | |
| 1600 | /* |
| 1601 | * Update the metadata that points to the blocks listed in the FINFO |
| 1602 | * array. |
| 1603 | */ |
| 1604 | void |
| 1605 | lfs_updatemeta(struct segment *sp) |
| 1606 | { |
| 1607 | struct buf *sbp; |
| 1608 | struct lfs *fs; |
| 1609 | struct vnode *vp; |
| 1610 | daddr_t lbn; |
| 1611 | int i, nblocks, num; |
| 1612 | int __diagused nblocks_orig; |
| 1613 | int bb; |
| 1614 | int bytesleft, size; |
| 1615 | unsigned lastlength; |
| 1616 | union lfs_blocks tmpptr; |
| 1617 | |
| 1618 | fs = sp->fs; |
| 1619 | vp = sp->vp; |
| 1620 | ASSERT_SEGLOCK(fs); |
| 1621 | |
| 1622 | /* |
| 1623 | * This used to be: |
| 1624 | * |
| 1625 | * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; |
| 1626 | * |
| 1627 | * that is, it allowed for the possibility that start_lbp did |
| 1628 | * not point to the beginning of the finfo block pointer area. |
| 1629 | * This particular formulation is six kinds of painful in the |
| 1630 | * lfs64 world where we have two sizes of block pointer, so |
| 1631 | * unless/until everything can be cleaned up to not move |
| 1632 | * start_lbp around but instead use an offset, we do the |
| 1633 | * following: |
| 1634 | * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as |
| 1635 | * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong |
| 1636 | * type. (Ugh.) |
| 1637 | * 2. Cast it to void *, then assign it to a temporary |
| 1638 | * union lfs_blocks. |
| 1639 | * 3. Subtract start_lbp from that. |
| 1640 | * 4. Save the value of nblocks in blocks_orig so we can |
| 1641 | * assert below that it hasn't changed without repeating this |
| 1642 | * rubbish. |
| 1643 | * |
| 1644 | * XXX. |
| 1645 | */ |
| 1646 | lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip)); |
| 1647 | nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp); |
| 1648 | nblocks_orig = nblocks; |
| 1649 | |
| 1650 | KASSERT(nblocks >= 0); |
| 1651 | KASSERT(vp != NULL); |
| 1652 | if (nblocks == 0) |
| 1653 | return; |
| 1654 | |
| 1655 | /* |
| 1656 | * This count may be high due to oversize blocks from lfs_gop_write. |
| 1657 | * Correct for this. (XXX we should be able to keep track of these.) |
| 1658 | */ |
| 1659 | for (i = 0; i < nblocks; i++) { |
| 1660 | if (sp->start_bpp[i] == NULL) { |
| 1661 | DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n" , i, nblocks)); |
| 1662 | nblocks = i; |
| 1663 | break; |
| 1664 | } |
| 1665 | num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs)); |
| 1666 | KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); |
| 1667 | nblocks -= num - 1; |
| 1668 | } |
| 1669 | |
| 1670 | #if 0 |
| 1671 | /* pre-lfs64 assertion */ |
| 1672 | KASSERT(vp->v_type == VREG || |
| 1673 | nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); |
| 1674 | #else |
| 1675 | KASSERT(vp->v_type == VREG || nblocks == nblocks_orig); |
| 1676 | #endif |
| 1677 | KASSERT(nblocks == sp->cbpp - sp->start_bpp); |
| 1678 | |
| 1679 | /* |
| 1680 | * Sort the blocks. |
| 1681 | * |
| 1682 | * We have to sort even if the blocks come from the |
| 1683 | * cleaner, because there might be other pending blocks on the |
| 1684 | * same inode...and if we don't sort, and there are fragments |
| 1685 | * present, blocks may be written in the wrong place. |
| 1686 | */ |
| 1687 | lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs)); |
| 1688 | |
| 1689 | /* |
| 1690 | * Record the length of the last block in case it's a fragment. |
| 1691 | * If there are indirect blocks present, they sort last. An |
| 1692 | * indirect block will be lfs_bsize and its presence indicates |
| 1693 | * that you cannot have fragments. |
| 1694 | * |
| 1695 | * XXX This last is a lie. A cleaned fragment can coexist with |
| 1696 | * XXX a later indirect block. This will continue to be |
| 1697 | * XXX true until lfs_markv is fixed to do everything with |
| 1698 | * XXX fake blocks (including fake inodes and fake indirect blocks). |
| 1699 | */ |
| 1700 | lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & |
| 1701 | lfs_sb_getbmask(fs)) + 1; |
| 1702 | lfs_fi_setlastlength(fs, sp->fip, lastlength); |
| 1703 | |
| 1704 | /* |
| 1705 | * Assign disk addresses, and update references to the logical |
| 1706 | * block and the segment usage information. |
| 1707 | */ |
| 1708 | for (i = nblocks; i--; ++sp->start_bpp) { |
| 1709 | sbp = *sp->start_bpp; |
| 1710 | lbn = lfs_blocks_get(fs, &sp->start_lbp, 0); |
| 1711 | KASSERT(sbp->b_lblkno == lbn); |
| 1712 | |
| 1713 | sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs)); |
| 1714 | |
| 1715 | /* |
| 1716 | * If we write a frag in the wrong place, the cleaner won't |
| 1717 | * be able to correctly identify its size later, and the |
| 1718 | * segment will be uncleanable. (Even worse, it will assume |
| 1719 | * that the indirect block that actually ends the list |
| 1720 | * is of a smaller size!) |
| 1721 | */ |
| 1722 | if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0) |
| 1723 | panic("lfs_updatemeta: fragment is not last block" ); |
| 1724 | |
| 1725 | /* |
| 1726 | * For each subblock in this possibly oversized block, |
| 1727 | * update its address on disk. |
| 1728 | */ |
| 1729 | KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs)); |
| 1730 | KASSERT(vp == sbp->b_vp); |
| 1731 | for (bytesleft = sbp->b_bcount; bytesleft > 0; |
| 1732 | bytesleft -= lfs_sb_getbsize(fs)) { |
| 1733 | size = MIN(bytesleft, lfs_sb_getbsize(fs)); |
| 1734 | bb = lfs_numfrags(fs, size); |
| 1735 | lbn = lfs_blocks_get(fs, &sp->start_lbp, 0); |
| 1736 | lfs_blocks_inc(fs, &sp->start_lbp); |
| 1737 | lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs), |
| 1738 | size); |
| 1739 | lfs_sb_addoffset(fs, bb); |
| 1740 | } |
| 1741 | |
| 1742 | } |
| 1743 | |
| 1744 | /* This inode has been modified */ |
| 1745 | LFS_SET_UINO(VTOI(vp), IN_MODIFIED); |
| 1746 | } |
| 1747 | |
| 1748 | /* |
| 1749 | * Move lfs_offset to a segment earlier than newsn. |
| 1750 | */ |
| 1751 | int |
| 1752 | lfs_rewind(struct lfs *fs, int newsn) |
| 1753 | { |
| 1754 | int sn, osn, isdirty; |
| 1755 | struct buf *bp; |
| 1756 | SEGUSE *sup; |
| 1757 | |
| 1758 | ASSERT_SEGLOCK(fs); |
| 1759 | |
| 1760 | osn = lfs_dtosn(fs, lfs_sb_getoffset(fs)); |
| 1761 | if (osn < newsn) |
| 1762 | return 0; |
| 1763 | |
| 1764 | /* lfs_avail eats the remaining space in this segment */ |
| 1765 | lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs))); |
| 1766 | |
| 1767 | /* Find a low-numbered segment */ |
| 1768 | for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) { |
| 1769 | LFS_SEGENTRY(sup, fs, sn, bp); |
| 1770 | isdirty = sup->su_flags & SEGUSE_DIRTY; |
| 1771 | brelse(bp, 0); |
| 1772 | |
| 1773 | if (!isdirty) |
| 1774 | break; |
| 1775 | } |
| 1776 | if (sn == lfs_sb_getnseg(fs)) |
| 1777 | panic("lfs_rewind: no clean segments" ); |
| 1778 | if (newsn >= 0 && sn >= newsn) |
| 1779 | return ENOENT; |
| 1780 | lfs_sb_setnextseg(fs, lfs_sntod(fs, sn)); |
| 1781 | lfs_newseg(fs); |
| 1782 | lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs)); |
| 1783 | |
| 1784 | return 0; |
| 1785 | } |
| 1786 | |
| 1787 | /* |
| 1788 | * Start a new partial segment. |
| 1789 | * |
| 1790 | * Return 1 when we entered to a new segment. |
| 1791 | * Otherwise, return 0. |
| 1792 | */ |
| 1793 | int |
| 1794 | lfs_initseg(struct lfs *fs) |
| 1795 | { |
| 1796 | struct segment *sp = fs->lfs_sp; |
| 1797 | SEGSUM *ssp; |
| 1798 | struct buf *sbp; /* buffer for SEGSUM */ |
| 1799 | int repeat = 0; /* return value */ |
| 1800 | |
| 1801 | ASSERT_SEGLOCK(fs); |
| 1802 | /* Advance to the next segment. */ |
| 1803 | if (!LFS_PARTIAL_FITS(fs)) { |
| 1804 | SEGUSE *sup; |
| 1805 | struct buf *bp; |
| 1806 | |
| 1807 | /* lfs_avail eats the remaining space */ |
| 1808 | lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - |
| 1809 | lfs_sb_getcurseg(fs))); |
| 1810 | /* Wake up any cleaning procs waiting on this file system. */ |
| 1811 | lfs_wakeup_cleaner(fs); |
| 1812 | lfs_newseg(fs); |
| 1813 | repeat = 1; |
| 1814 | lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs)); |
| 1815 | |
| 1816 | sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs)); |
| 1817 | sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs)); |
| 1818 | |
| 1819 | /* |
| 1820 | * If the segment contains a superblock, update the offset |
| 1821 | * and summary address to skip over it. |
| 1822 | */ |
| 1823 | LFS_SEGENTRY(sup, fs, sp->seg_number, bp); |
| 1824 | if (sup->su_flags & SEGUSE_SUPERBLOCK) { |
| 1825 | lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD)); |
| 1826 | sp->seg_bytes_left -= LFS_SBPAD; |
| 1827 | } |
| 1828 | brelse(bp, 0); |
| 1829 | /* Segment zero could also contain the labelpad */ |
| 1830 | if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 && |
| 1831 | lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) { |
| 1832 | lfs_sb_addoffset(fs, |
| 1833 | lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs)); |
| 1834 | sp->seg_bytes_left -= |
| 1835 | LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs)); |
| 1836 | } |
| 1837 | } else { |
| 1838 | sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs)); |
| 1839 | sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) - |
| 1840 | (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs))); |
| 1841 | } |
| 1842 | lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs)); |
| 1843 | |
| 1844 | /* Record first address of this partial segment */ |
| 1845 | if (sp->seg_flags & SEGM_CLEAN) { |
| 1846 | fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs); |
| 1847 | if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { |
| 1848 | /* "1" is the artificial inc in lfs_seglock */ |
| 1849 | mutex_enter(&lfs_lock); |
| 1850 | while (fs->lfs_iocount > 1) { |
| 1851 | mtsleep(&fs->lfs_iocount, PRIBIO + 1, |
| 1852 | "lfs_initseg" , 0, &lfs_lock); |
| 1853 | } |
| 1854 | mutex_exit(&lfs_lock); |
| 1855 | fs->lfs_cleanind = 0; |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | sp->fs = fs; |
| 1860 | sp->ibp = NULL; |
| 1861 | sp->idp = NULL; |
| 1862 | sp->ninodes = 0; |
| 1863 | sp->ndupino = 0; |
| 1864 | |
| 1865 | sp->cbpp = sp->bpp; |
| 1866 | |
| 1867 | /* Get a new buffer for SEGSUM */ |
| 1868 | sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, |
| 1869 | LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY); |
| 1870 | |
| 1871 | /* ... and enter it into the buffer list. */ |
| 1872 | *sp->cbpp = sbp; |
| 1873 | sp->cbpp++; |
| 1874 | lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs))); |
| 1875 | |
| 1876 | sp->start_bpp = sp->cbpp; |
| 1877 | |
| 1878 | /* Set point to SEGSUM, initialize it. */ |
| 1879 | ssp = sp->segsum = sbp->b_data; |
| 1880 | memset(ssp, 0, lfs_sb_getsumsize(fs)); |
| 1881 | lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs)); |
| 1882 | lfs_ss_setnfinfo(fs, ssp, 0); |
| 1883 | lfs_ss_setninos(fs, ssp, 0); |
| 1884 | lfs_ss_setmagic(fs, ssp, SS_MAGIC); |
| 1885 | |
| 1886 | /* Set pointer to first FINFO, initialize it. */ |
| 1887 | sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum); |
| 1888 | lfs_fi_setnblocks(fs, sp->fip, 0); |
| 1889 | lfs_fi_setlastlength(fs, sp->fip, 0); |
| 1890 | lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip); |
| 1891 | |
| 1892 | sp->seg_bytes_left -= lfs_sb_getsumsize(fs); |
| 1893 | sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs); |
| 1894 | |
| 1895 | return (repeat); |
| 1896 | } |
| 1897 | |
| 1898 | /* |
| 1899 | * Remove SEGUSE_INVAL from all segments. |
| 1900 | */ |
| 1901 | void |
| 1902 | lfs_unset_inval_all(struct lfs *fs) |
| 1903 | { |
| 1904 | SEGUSE *sup; |
| 1905 | struct buf *bp; |
| 1906 | int i; |
| 1907 | |
| 1908 | for (i = 0; i < lfs_sb_getnseg(fs); i++) { |
| 1909 | LFS_SEGENTRY(sup, fs, i, bp); |
| 1910 | if (sup->su_flags & SEGUSE_INVAL) { |
| 1911 | sup->su_flags &= ~SEGUSE_INVAL; |
| 1912 | LFS_WRITESEGENTRY(sup, fs, i, bp); |
| 1913 | } else |
| 1914 | brelse(bp, 0); |
| 1915 | } |
| 1916 | } |
| 1917 | |
| 1918 | /* |
| 1919 | * Return the next segment to write. |
| 1920 | */ |
| 1921 | void |
| 1922 | lfs_newseg(struct lfs *fs) |
| 1923 | { |
| 1924 | CLEANERINFO *cip; |
| 1925 | SEGUSE *sup; |
| 1926 | struct buf *bp; |
| 1927 | int curseg, isdirty, sn, skip_inval; |
| 1928 | |
| 1929 | ASSERT_SEGLOCK(fs); |
| 1930 | |
| 1931 | /* Honor LFCNWRAPSTOP */ |
| 1932 | mutex_enter(&lfs_lock); |
| 1933 | while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) { |
| 1934 | if (fs->lfs_wrappass) { |
| 1935 | log(LOG_NOTICE, "%s: wrappass=%d\n" , |
| 1936 | lfs_sb_getfsmnt(fs), fs->lfs_wrappass); |
| 1937 | fs->lfs_wrappass = 0; |
| 1938 | break; |
| 1939 | } |
| 1940 | fs->lfs_wrapstatus = LFS_WRAP_WAITING; |
| 1941 | wakeup(&fs->lfs_nowrap); |
| 1942 | log(LOG_NOTICE, "%s: waiting at log wrap\n" , lfs_sb_getfsmnt(fs)); |
| 1943 | mtsleep(&fs->lfs_wrappass, PVFS, "newseg" , 10 * hz, |
| 1944 | &lfs_lock); |
| 1945 | } |
| 1946 | fs->lfs_wrapstatus = LFS_WRAP_GOING; |
| 1947 | mutex_exit(&lfs_lock); |
| 1948 | |
| 1949 | LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp); |
| 1950 | DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n" , |
| 1951 | lfs_dtosn(fs, lfs_sb_getnextseg(fs)))); |
| 1952 | sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; |
| 1953 | sup->su_nbytes = 0; |
| 1954 | sup->su_nsums = 0; |
| 1955 | sup->su_ninos = 0; |
| 1956 | LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp); |
| 1957 | |
| 1958 | LFS_CLEANERINFO(cip, fs, bp); |
| 1959 | lfs_ci_shiftcleantodirty(fs, cip, 1); |
| 1960 | lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip)); |
| 1961 | LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); |
| 1962 | |
| 1963 | lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs)); |
| 1964 | lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs)); |
| 1965 | skip_inval = 1; |
| 1966 | for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) { |
| 1967 | sn = (sn + 1) % lfs_sb_getnseg(fs); |
| 1968 | |
| 1969 | if (sn == curseg) { |
| 1970 | if (skip_inval) |
| 1971 | skip_inval = 0; |
| 1972 | else |
| 1973 | panic("lfs_nextseg: no clean segments" ); |
| 1974 | } |
| 1975 | LFS_SEGENTRY(sup, fs, sn, bp); |
| 1976 | isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0)); |
| 1977 | /* Check SEGUSE_EMPTY as we go along */ |
| 1978 | if (isdirty && sup->su_nbytes == 0 && |
| 1979 | !(sup->su_flags & SEGUSE_EMPTY)) |
| 1980 | LFS_WRITESEGENTRY(sup, fs, sn, bp); |
| 1981 | else |
| 1982 | brelse(bp, 0); |
| 1983 | |
| 1984 | if (!isdirty) |
| 1985 | break; |
| 1986 | } |
| 1987 | if (skip_inval == 0) |
| 1988 | lfs_unset_inval_all(fs); |
| 1989 | |
| 1990 | ++fs->lfs_nactive; |
| 1991 | lfs_sb_setnextseg(fs, lfs_sntod(fs, sn)); |
| 1992 | if (lfs_dostats) { |
| 1993 | ++lfs_stats.segsused; |
| 1994 | } |
| 1995 | } |
| 1996 | |
| 1997 | static struct buf * |
| 1998 | lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, |
| 1999 | int n) |
| 2000 | { |
| 2001 | struct lfs_cluster *cl; |
| 2002 | struct buf **bpp, *bp; |
| 2003 | |
| 2004 | ASSERT_SEGLOCK(fs); |
| 2005 | cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); |
| 2006 | bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); |
| 2007 | memset(cl, 0, sizeof(*cl)); |
| 2008 | cl->fs = fs; |
| 2009 | cl->bpp = bpp; |
| 2010 | cl->bufcount = 0; |
| 2011 | cl->bufsize = 0; |
| 2012 | |
| 2013 | /* If this segment is being written synchronously, note that */ |
| 2014 | if (fs->lfs_sp->seg_flags & SEGM_SYNC) { |
| 2015 | cl->flags |= LFS_CL_SYNC; |
| 2016 | cl->seg = fs->lfs_sp; |
| 2017 | ++cl->seg->seg_iocount; |
| 2018 | } |
| 2019 | |
| 2020 | /* Get an empty buffer header, or maybe one with something on it */ |
| 2021 | bp = getiobuf(vp, true); |
| 2022 | bp->b_dev = NODEV; |
| 2023 | bp->b_blkno = bp->b_lblkno = addr; |
| 2024 | bp->b_iodone = lfs_cluster_callback; |
| 2025 | bp->b_private = cl; |
| 2026 | |
| 2027 | return bp; |
| 2028 | } |
| 2029 | |
| 2030 | int |
| 2031 | lfs_writeseg(struct lfs *fs, struct segment *sp) |
| 2032 | { |
| 2033 | struct buf **bpp, *bp, *cbp, *newbp, *unbusybp; |
| 2034 | SEGUSE *sup; |
| 2035 | SEGSUM *ssp; |
| 2036 | int i; |
| 2037 | int do_again, nblocks, byteoffset; |
| 2038 | size_t el_size; |
| 2039 | struct lfs_cluster *cl; |
| 2040 | u_short ninos; |
| 2041 | struct vnode *devvp; |
| 2042 | char *p = NULL; |
| 2043 | struct vnode *vp; |
| 2044 | unsigned ibindex, iblimit; |
| 2045 | int changed; |
| 2046 | u_int32_t sum; |
| 2047 | size_t sumstart; |
| 2048 | #ifdef DEBUG |
| 2049 | FINFO *fip; |
| 2050 | int findex; |
| 2051 | #endif |
| 2052 | |
| 2053 | ASSERT_SEGLOCK(fs); |
| 2054 | |
| 2055 | ssp = (SEGSUM *)sp->segsum; |
| 2056 | |
| 2057 | /* |
| 2058 | * If there are no buffers other than the segment summary to write, |
| 2059 | * don't do anything. If we are the end of a dirop sequence, however, |
| 2060 | * write the empty segment summary anyway, to help out the |
| 2061 | * roll-forward agent. |
| 2062 | */ |
| 2063 | if ((nblocks = sp->cbpp - sp->bpp) == 1) { |
| 2064 | if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP) |
| 2065 | return 0; |
| 2066 | } |
| 2067 | |
| 2068 | /* Note if partial segment is being written by the cleaner */ |
| 2069 | if (sp->seg_flags & SEGM_CLEAN) |
| 2070 | lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN); |
| 2071 | |
| 2072 | /* Note if we are writing to reclaim */ |
| 2073 | if (sp->seg_flags & SEGM_RECLAIM) { |
| 2074 | lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM); |
| 2075 | lfs_ss_setreclino(fs, ssp, fs->lfs_reclino); |
| 2076 | } |
| 2077 | |
| 2078 | devvp = VTOI(fs->lfs_ivnode)->i_devvp; |
| 2079 | |
| 2080 | /* Update the segment usage information. */ |
| 2081 | LFS_SEGENTRY(sup, fs, sp->seg_number, bp); |
| 2082 | |
| 2083 | /* Loop through all blocks, except the segment summary. */ |
| 2084 | for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { |
| 2085 | if ((*bpp)->b_vp != devvp) { |
| 2086 | sup->su_nbytes += (*bpp)->b_bcount; |
| 2087 | DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" |
| 2088 | " lbn %" PRId64 " db 0x%" PRIx64 "\n" , |
| 2089 | sp->seg_number, (*bpp)->b_bcount, |
| 2090 | VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, |
| 2091 | (*bpp)->b_blkno)); |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | #ifdef DEBUG |
| 2096 | /* Check for zero-length and zero-version FINFO entries. */ |
| 2097 | fip = SEGSUM_FINFOBASE(fs, ssp); |
| 2098 | for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) { |
| 2099 | KDASSERT(lfs_fi_getnblocks(fs, fip) > 0); |
| 2100 | KDASSERT(lfs_fi_getversion(fs, fip) > 0); |
| 2101 | fip = NEXT_FINFO(fs, fip); |
| 2102 | } |
| 2103 | #endif /* DEBUG */ |
| 2104 | |
| 2105 | ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs); |
| 2106 | DLOG((DLOG_SU, "seg %d += %d for %d inodes\n" , |
| 2107 | sp->seg_number, |
| 2108 | lfs_ss_getninos(fs, ssp) * DINOSIZE(fs), |
| 2109 | lfs_ss_getninos(fs, ssp))); |
| 2110 | sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs); |
| 2111 | /* sup->su_nbytes += lfs_sb_getsumsize(fs); */ |
| 2112 | if (lfs_sb_getversion(fs) == 1) |
| 2113 | sup->su_olastmod = time_second; |
| 2114 | else |
| 2115 | sup->su_lastmod = time_second; |
| 2116 | sup->su_ninos += ninos; |
| 2117 | ++sup->su_nsums; |
| 2118 | lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs))); |
| 2119 | |
| 2120 | do_again = !(bp->b_flags & B_GATHERED); |
| 2121 | LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ |
| 2122 | |
| 2123 | /* |
| 2124 | * Mark blocks B_BUSY, to prevent then from being changed between |
| 2125 | * the checksum computation and the actual write. |
| 2126 | * |
| 2127 | * If we are cleaning, check indirect blocks for UNWRITTEN, and if |
| 2128 | * there are any, replace them with copies that have UNASSIGNED |
| 2129 | * instead. |
| 2130 | */ |
| 2131 | mutex_enter(&bufcache_lock); |
| 2132 | for (bpp = sp->bpp, i = nblocks - 1; i--;) { |
| 2133 | ++bpp; |
| 2134 | bp = *bpp; |
| 2135 | if (bp->b_iodone != NULL) { /* UBC or malloced buffer */ |
| 2136 | bp->b_cflags |= BC_BUSY; |
| 2137 | continue; |
| 2138 | } |
| 2139 | |
| 2140 | while (bp->b_cflags & BC_BUSY) { |
| 2141 | DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" |
| 2142 | " data summary corruption for ino %d, lbn %" |
| 2143 | PRId64 "\n" , |
| 2144 | VTOI(bp->b_vp)->i_number, bp->b_lblkno)); |
| 2145 | bp->b_cflags |= BC_WANTED; |
| 2146 | cv_wait(&bp->b_busy, &bufcache_lock); |
| 2147 | } |
| 2148 | bp->b_cflags |= BC_BUSY; |
| 2149 | mutex_exit(&bufcache_lock); |
| 2150 | unbusybp = NULL; |
| 2151 | |
| 2152 | /* |
| 2153 | * Check and replace indirect block UNWRITTEN bogosity. |
| 2154 | * XXX See comment in lfs_writefile. |
| 2155 | */ |
| 2156 | if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && |
| 2157 | lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) != |
| 2158 | VTOI(bp->b_vp)->i_lfs_effnblks) { |
| 2159 | DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n" , |
| 2160 | VTOI(bp->b_vp)->i_number, |
| 2161 | (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks, |
| 2162 | lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din))); |
| 2163 | /* Make a copy we'll make changes to */ |
| 2164 | newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, |
| 2165 | bp->b_bcount, LFS_NB_IBLOCK); |
| 2166 | newbp->b_blkno = bp->b_blkno; |
| 2167 | memcpy(newbp->b_data, bp->b_data, |
| 2168 | newbp->b_bcount); |
| 2169 | |
| 2170 | changed = 0; |
| 2171 | iblimit = newbp->b_bcount / LFS_BLKPTRSIZE(fs); |
| 2172 | for (ibindex = 0; ibindex < iblimit; ibindex++) { |
| 2173 | if (lfs_iblock_get(fs, newbp->b_data, ibindex) == UNWRITTEN) { |
| 2174 | ++changed; |
| 2175 | lfs_iblock_set(fs, newbp->b_data, |
| 2176 | ibindex, 0); |
| 2177 | } |
| 2178 | } |
| 2179 | /* |
| 2180 | * Get rid of the old buffer. Don't mark it clean, |
| 2181 | * though, if it still has dirty data on it. |
| 2182 | */ |
| 2183 | if (changed) { |
| 2184 | DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" |
| 2185 | " bp = %p newbp = %p\n" , changed, bp, |
| 2186 | newbp)); |
| 2187 | *bpp = newbp; |
| 2188 | bp->b_flags &= ~B_GATHERED; |
| 2189 | bp->b_error = 0; |
| 2190 | if (bp->b_iodone != NULL) { |
| 2191 | DLOG((DLOG_SEG, "lfs_writeseg: " |
| 2192 | "indir bp should not be B_CALL\n" )); |
| 2193 | biodone(bp); |
| 2194 | bp = NULL; |
| 2195 | } else { |
| 2196 | /* Still on free list, leave it there */ |
| 2197 | unbusybp = bp; |
| 2198 | /* |
| 2199 | * We have to re-decrement lfs_avail |
| 2200 | * since this block is going to come |
| 2201 | * back around to us in the next |
| 2202 | * segment. |
| 2203 | */ |
| 2204 | lfs_sb_subavail(fs, |
| 2205 | lfs_btofsb(fs, bp->b_bcount)); |
| 2206 | } |
| 2207 | } else { |
| 2208 | lfs_freebuf(fs, newbp); |
| 2209 | } |
| 2210 | } |
| 2211 | mutex_enter(&bufcache_lock); |
| 2212 | if (unbusybp != NULL) { |
| 2213 | unbusybp->b_cflags &= ~BC_BUSY; |
| 2214 | if (unbusybp->b_cflags & BC_WANTED) |
| 2215 | cv_broadcast(&bp->b_busy); |
| 2216 | } |
| 2217 | } |
| 2218 | mutex_exit(&bufcache_lock); |
| 2219 | |
| 2220 | /* |
| 2221 | * Compute checksum across data and then across summary; the first |
| 2222 | * block (the summary block) is skipped. Set the create time here |
| 2223 | * so that it's guaranteed to be later than the inode mod times. |
| 2224 | */ |
| 2225 | sum = 0; |
| 2226 | if (lfs_sb_getversion(fs) == 1) |
| 2227 | el_size = sizeof(u_long); |
| 2228 | else |
| 2229 | el_size = sizeof(u_int32_t); |
| 2230 | for (bpp = sp->bpp, i = nblocks - 1; i--; ) { |
| 2231 | ++bpp; |
| 2232 | /* Loop through gop_write cluster blocks */ |
| 2233 | for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; |
| 2234 | byteoffset += lfs_sb_getbsize(fs)) { |
| 2235 | #ifdef LFS_USE_B_INVAL |
| 2236 | if (((*bpp)->b_cflags & BC_INVAL) != 0 && |
| 2237 | (*bpp)->b_iodone != NULL) { |
| 2238 | if (copyin((void *)(*bpp)->b_saveaddr + |
| 2239 | byteoffset, dp, el_size)) { |
| 2240 | panic("lfs_writeseg: copyin failed [1]:" |
| 2241 | " ino %" PRIu64 " blk %" PRId64, |
| 2242 | VTOI((*bpp)->b_vp)->i_number, |
| 2243 | (*bpp)->b_lblkno); |
| 2244 | } |
| 2245 | } else |
| 2246 | #endif /* LFS_USE_B_INVAL */ |
| 2247 | { |
| 2248 | sum = lfs_cksum_part((char *) |
| 2249 | (*bpp)->b_data + byteoffset, el_size, sum); |
| 2250 | } |
| 2251 | } |
| 2252 | } |
| 2253 | if (lfs_sb_getversion(fs) == 1) |
| 2254 | lfs_ss_setocreate(fs, ssp, time_second); |
| 2255 | else { |
| 2256 | lfs_ss_setcreate(fs, ssp, time_second); |
| 2257 | lfs_sb_addserial(fs, 1); |
| 2258 | lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs)); |
| 2259 | lfs_ss_setident(fs, ssp, lfs_sb_getident(fs)); |
| 2260 | } |
| 2261 | lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum)); |
| 2262 | sumstart = lfs_ss_getsumstart(fs); |
| 2263 | lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart, |
| 2264 | lfs_sb_getsumsize(fs) - sumstart)); |
| 2265 | |
| 2266 | mutex_enter(&lfs_lock); |
| 2267 | lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) + |
| 2268 | lfs_btofsb(fs, lfs_sb_getsumsize(fs)))); |
| 2269 | lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) + |
| 2270 | lfs_btofsb(fs, lfs_sb_getsumsize(fs)))); |
| 2271 | mutex_exit(&lfs_lock); |
| 2272 | |
| 2273 | /* |
| 2274 | * When we simply write the blocks we lose a rotation for every block |
| 2275 | * written. To avoid this problem, we cluster the buffers into a |
| 2276 | * chunk and write the chunk. MAXPHYS is the largest size I/O |
| 2277 | * devices can handle, use that for the size of the chunks. |
| 2278 | * |
| 2279 | * Blocks that are already clusters (from GOP_WRITE), however, we |
| 2280 | * don't bother to copy into other clusters. |
| 2281 | */ |
| 2282 | |
| 2283 | #define CHUNKSIZE MAXPHYS |
| 2284 | |
| 2285 | if (devvp == NULL) |
| 2286 | panic("devvp is NULL" ); |
| 2287 | for (bpp = sp->bpp, i = nblocks; i;) { |
| 2288 | cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); |
| 2289 | cl = cbp->b_private; |
| 2290 | |
| 2291 | cbp->b_flags |= B_ASYNC; |
| 2292 | cbp->b_cflags |= BC_BUSY; |
| 2293 | cbp->b_bcount = 0; |
| 2294 | |
| 2295 | #if defined(DEBUG) && defined(DIAGNOSTIC) |
| 2296 | if (bpp - sp->bpp > (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs)) |
| 2297 | / sizeof(int32_t)) { |
| 2298 | panic("lfs_writeseg: real bpp overwrite" ); |
| 2299 | } |
| 2300 | if (bpp - sp->bpp > lfs_segsize(fs) / lfs_sb_getfsize(fs)) { |
| 2301 | panic("lfs_writeseg: theoretical bpp overwrite" ); |
| 2302 | } |
| 2303 | #endif |
| 2304 | |
| 2305 | /* |
| 2306 | * Construct the cluster. |
| 2307 | */ |
| 2308 | mutex_enter(&lfs_lock); |
| 2309 | ++fs->lfs_iocount; |
| 2310 | mutex_exit(&lfs_lock); |
| 2311 | while (i && cbp->b_bcount < CHUNKSIZE) { |
| 2312 | bp = *bpp; |
| 2313 | |
| 2314 | if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) |
| 2315 | break; |
| 2316 | if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) |
| 2317 | break; |
| 2318 | |
| 2319 | /* Clusters from GOP_WRITE are expedited */ |
| 2320 | if (bp->b_bcount > lfs_sb_getbsize(fs)) { |
| 2321 | if (cbp->b_bcount > 0) |
| 2322 | /* Put in its own buffer */ |
| 2323 | break; |
| 2324 | else { |
| 2325 | cbp->b_data = bp->b_data; |
| 2326 | } |
| 2327 | } else if (cbp->b_bcount == 0) { |
| 2328 | p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, |
| 2329 | LFS_NB_CLUSTER); |
| 2330 | cl->flags |= LFS_CL_MALLOC; |
| 2331 | } |
| 2332 | #ifdef DIAGNOSTIC |
| 2333 | if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno + |
| 2334 | btodb(bp->b_bcount - 1))) != |
| 2335 | sp->seg_number) { |
| 2336 | printf("blk size %d daddr %" PRIx64 |
| 2337 | " not in seg %d\n" , |
| 2338 | bp->b_bcount, bp->b_blkno, |
| 2339 | sp->seg_number); |
| 2340 | panic("segment overwrite" ); |
| 2341 | } |
| 2342 | #endif |
| 2343 | |
| 2344 | #ifdef LFS_USE_B_INVAL |
| 2345 | /* |
| 2346 | * Fake buffers from the cleaner are marked as B_INVAL. |
| 2347 | * We need to copy the data from user space rather than |
| 2348 | * from the buffer indicated. |
| 2349 | * XXX == what do I do on an error? |
| 2350 | */ |
| 2351 | if ((bp->b_cflags & BC_INVAL) != 0 && |
| 2352 | bp->b_iodone != NULL) { |
| 2353 | if (copyin(bp->b_saveaddr, p, bp->b_bcount)) |
| 2354 | panic("lfs_writeseg: " |
| 2355 | "copyin failed [2]" ); |
| 2356 | } else |
| 2357 | #endif /* LFS_USE_B_INVAL */ |
| 2358 | if (cl->flags & LFS_CL_MALLOC) { |
| 2359 | /* copy data into our cluster. */ |
| 2360 | memcpy(p, bp->b_data, bp->b_bcount); |
| 2361 | p += bp->b_bcount; |
| 2362 | } |
| 2363 | |
| 2364 | cbp->b_bcount += bp->b_bcount; |
| 2365 | cl->bufsize += bp->b_bcount; |
| 2366 | |
| 2367 | bp->b_flags &= ~B_READ; |
| 2368 | bp->b_error = 0; |
| 2369 | cl->bpp[cl->bufcount++] = bp; |
| 2370 | |
| 2371 | vp = bp->b_vp; |
| 2372 | mutex_enter(&bufcache_lock); |
| 2373 | mutex_enter(vp->v_interlock); |
| 2374 | bp->b_oflags &= ~(BO_DELWRI | BO_DONE); |
| 2375 | reassignbuf(bp, vp); |
| 2376 | vp->v_numoutput++; |
| 2377 | mutex_exit(vp->v_interlock); |
| 2378 | mutex_exit(&bufcache_lock); |
| 2379 | |
| 2380 | bpp++; |
| 2381 | i--; |
| 2382 | } |
| 2383 | if (fs->lfs_sp->seg_flags & SEGM_SYNC) |
| 2384 | BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); |
| 2385 | else |
| 2386 | BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); |
| 2387 | mutex_enter(devvp->v_interlock); |
| 2388 | devvp->v_numoutput++; |
| 2389 | mutex_exit(devvp->v_interlock); |
| 2390 | VOP_STRATEGY(devvp, cbp); |
| 2391 | curlwp->l_ru.ru_oublock++; |
| 2392 | } |
| 2393 | |
| 2394 | if (lfs_dostats) { |
| 2395 | ++lfs_stats.psegwrites; |
| 2396 | lfs_stats.blocktot += nblocks - 1; |
| 2397 | if (fs->lfs_sp->seg_flags & SEGM_SYNC) |
| 2398 | ++lfs_stats.psyncwrites; |
| 2399 | if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { |
| 2400 | ++lfs_stats.pcleanwrites; |
| 2401 | lfs_stats.cleanblocks += nblocks - 1; |
| 2402 | } |
| 2403 | } |
| 2404 | |
| 2405 | return (lfs_initseg(fs) || do_again); |
| 2406 | } |
| 2407 | |
| 2408 | void |
| 2409 | lfs_writesuper(struct lfs *fs, daddr_t daddr) |
| 2410 | { |
| 2411 | struct buf *bp; |
| 2412 | struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; |
| 2413 | int s; |
| 2414 | |
| 2415 | ASSERT_MAYBE_SEGLOCK(fs); |
| 2416 | #ifdef DIAGNOSTIC |
| 2417 | if (fs->lfs_is64) { |
| 2418 | KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC); |
| 2419 | } else { |
| 2420 | KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC); |
| 2421 | } |
| 2422 | #endif |
| 2423 | /* |
| 2424 | * If we can write one superblock while another is in |
| 2425 | * progress, we risk not having a complete checkpoint if we crash. |
| 2426 | * So, block here if a superblock write is in progress. |
| 2427 | */ |
| 2428 | mutex_enter(&lfs_lock); |
| 2429 | s = splbio(); |
| 2430 | while (fs->lfs_sbactive) { |
| 2431 | mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb" , 0, |
| 2432 | &lfs_lock); |
| 2433 | } |
| 2434 | fs->lfs_sbactive = daddr; |
| 2435 | splx(s); |
| 2436 | mutex_exit(&lfs_lock); |
| 2437 | |
| 2438 | /* Set timestamp of this version of the superblock */ |
| 2439 | if (lfs_sb_getversion(fs) == 1) |
| 2440 | lfs_sb_setotstamp(fs, time_second); |
| 2441 | lfs_sb_settstamp(fs, time_second); |
| 2442 | |
| 2443 | /* The next chunk of code relies on this assumption */ |
| 2444 | CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64)); |
| 2445 | |
| 2446 | /* Checksum the superblock and copy it into a buffer. */ |
| 2447 | lfs_sb_setcksum(fs, lfs_sb_cksum(fs)); |
| 2448 | bp = lfs_newbuf(fs, devvp, |
| 2449 | LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); |
| 2450 | memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs)); |
| 2451 | memset((char *)bp->b_data + sizeof(struct dlfs), 0, |
| 2452 | LFS_SBPAD - sizeof(struct dlfs)); |
| 2453 | |
| 2454 | bp->b_cflags |= BC_BUSY; |
| 2455 | bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC; |
| 2456 | bp->b_oflags &= ~(BO_DONE | BO_DELWRI); |
| 2457 | bp->b_error = 0; |
| 2458 | bp->b_iodone = lfs_supercallback; |
| 2459 | |
| 2460 | if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) |
| 2461 | BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); |
| 2462 | else |
| 2463 | BIO_SETPRIO(bp, BPRIO_TIMELIMITED); |
| 2464 | curlwp->l_ru.ru_oublock++; |
| 2465 | |
| 2466 | mutex_enter(devvp->v_interlock); |
| 2467 | devvp->v_numoutput++; |
| 2468 | mutex_exit(devvp->v_interlock); |
| 2469 | |
| 2470 | mutex_enter(&lfs_lock); |
| 2471 | ++fs->lfs_iocount; |
| 2472 | mutex_exit(&lfs_lock); |
| 2473 | VOP_STRATEGY(devvp, bp); |
| 2474 | } |
| 2475 | |
| 2476 | /* |
| 2477 | * Logical block number match routines used when traversing the dirty block |
| 2478 | * chain. |
| 2479 | */ |
| 2480 | int |
| 2481 | lfs_match_fake(struct lfs *fs, struct buf *bp) |
| 2482 | { |
| 2483 | |
| 2484 | ASSERT_SEGLOCK(fs); |
| 2485 | return LFS_IS_MALLOC_BUF(bp); |
| 2486 | } |
| 2487 | |
| 2488 | #if 0 |
| 2489 | int |
| 2490 | lfs_match_real(struct lfs *fs, struct buf *bp) |
| 2491 | { |
| 2492 | |
| 2493 | ASSERT_SEGLOCK(fs); |
| 2494 | return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); |
| 2495 | } |
| 2496 | #endif |
| 2497 | |
| 2498 | int |
| 2499 | lfs_match_data(struct lfs *fs, struct buf *bp) |
| 2500 | { |
| 2501 | |
| 2502 | ASSERT_SEGLOCK(fs); |
| 2503 | return (bp->b_lblkno >= 0); |
| 2504 | } |
| 2505 | |
| 2506 | int |
| 2507 | lfs_match_indir(struct lfs *fs, struct buf *bp) |
| 2508 | { |
| 2509 | daddr_t lbn; |
| 2510 | |
| 2511 | ASSERT_SEGLOCK(fs); |
| 2512 | lbn = bp->b_lblkno; |
| 2513 | return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0); |
| 2514 | } |
| 2515 | |
| 2516 | int |
| 2517 | lfs_match_dindir(struct lfs *fs, struct buf *bp) |
| 2518 | { |
| 2519 | daddr_t lbn; |
| 2520 | |
| 2521 | ASSERT_SEGLOCK(fs); |
| 2522 | lbn = bp->b_lblkno; |
| 2523 | return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1); |
| 2524 | } |
| 2525 | |
| 2526 | int |
| 2527 | lfs_match_tindir(struct lfs *fs, struct buf *bp) |
| 2528 | { |
| 2529 | daddr_t lbn; |
| 2530 | |
| 2531 | ASSERT_SEGLOCK(fs); |
| 2532 | lbn = bp->b_lblkno; |
| 2533 | return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2); |
| 2534 | } |
| 2535 | |
| 2536 | static void |
| 2537 | lfs_free_aiodone(struct buf *bp) |
| 2538 | { |
| 2539 | struct lfs *fs; |
| 2540 | |
| 2541 | KERNEL_LOCK(1, curlwp); |
| 2542 | fs = bp->b_private; |
| 2543 | ASSERT_NO_SEGLOCK(fs); |
| 2544 | lfs_freebuf(fs, bp); |
| 2545 | KERNEL_UNLOCK_LAST(curlwp); |
| 2546 | } |
| 2547 | |
| 2548 | static void |
| 2549 | lfs_super_aiodone(struct buf *bp) |
| 2550 | { |
| 2551 | struct lfs *fs; |
| 2552 | |
| 2553 | KERNEL_LOCK(1, curlwp); |
| 2554 | fs = bp->b_private; |
| 2555 | ASSERT_NO_SEGLOCK(fs); |
| 2556 | mutex_enter(&lfs_lock); |
| 2557 | fs->lfs_sbactive = 0; |
| 2558 | if (--fs->lfs_iocount <= 1) |
| 2559 | wakeup(&fs->lfs_iocount); |
| 2560 | wakeup(&fs->lfs_sbactive); |
| 2561 | mutex_exit(&lfs_lock); |
| 2562 | lfs_freebuf(fs, bp); |
| 2563 | KERNEL_UNLOCK_LAST(curlwp); |
| 2564 | } |
| 2565 | |
| 2566 | static void |
| 2567 | lfs_cluster_aiodone(struct buf *bp) |
| 2568 | { |
| 2569 | struct lfs_cluster *cl; |
| 2570 | struct lfs *fs; |
| 2571 | struct buf *tbp, *fbp; |
| 2572 | struct vnode *vp, *devvp, *ovp; |
| 2573 | struct inode *ip; |
| 2574 | int error; |
| 2575 | |
| 2576 | KERNEL_LOCK(1, curlwp); |
| 2577 | |
| 2578 | error = bp->b_error; |
| 2579 | cl = bp->b_private; |
| 2580 | fs = cl->fs; |
| 2581 | devvp = VTOI(fs->lfs_ivnode)->i_devvp; |
| 2582 | ASSERT_NO_SEGLOCK(fs); |
| 2583 | |
| 2584 | /* Put the pages back, and release the buffer */ |
| 2585 | while (cl->bufcount--) { |
| 2586 | tbp = cl->bpp[cl->bufcount]; |
| 2587 | KASSERT(tbp->b_cflags & BC_BUSY); |
| 2588 | if (error) { |
| 2589 | tbp->b_error = error; |
| 2590 | } |
| 2591 | |
| 2592 | /* |
| 2593 | * We're done with tbp. If it has not been re-dirtied since |
| 2594 | * the cluster was written, free it. Otherwise, keep it on |
| 2595 | * the locked list to be written again. |
| 2596 | */ |
| 2597 | vp = tbp->b_vp; |
| 2598 | |
| 2599 | tbp->b_flags &= ~B_GATHERED; |
| 2600 | |
| 2601 | LFS_BCLEAN_LOG(fs, tbp); |
| 2602 | |
| 2603 | mutex_enter(&bufcache_lock); |
| 2604 | if (tbp->b_iodone == NULL) { |
| 2605 | KASSERT(tbp->b_flags & B_LOCKED); |
| 2606 | bremfree(tbp); |
| 2607 | if (vp) { |
| 2608 | mutex_enter(vp->v_interlock); |
| 2609 | reassignbuf(tbp, vp); |
| 2610 | mutex_exit(vp->v_interlock); |
| 2611 | } |
| 2612 | tbp->b_flags |= B_ASYNC; /* for biodone */ |
| 2613 | } |
| 2614 | |
| 2615 | if (((tbp->b_flags | tbp->b_oflags) & |
| 2616 | (B_LOCKED | BO_DELWRI)) == B_LOCKED) |
| 2617 | LFS_UNLOCK_BUF(tbp); |
| 2618 | |
| 2619 | if (tbp->b_oflags & BO_DONE) { |
| 2620 | DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n" , |
| 2621 | cl->bufcount, (long)tbp->b_flags)); |
| 2622 | } |
| 2623 | |
| 2624 | if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) { |
| 2625 | /* |
| 2626 | * A buffer from the page daemon. |
| 2627 | * We use the same iodone as it does, |
| 2628 | * so we must manually disassociate its |
| 2629 | * buffers from the vp. |
| 2630 | */ |
| 2631 | if ((ovp = tbp->b_vp) != NULL) { |
| 2632 | /* This is just silly */ |
| 2633 | mutex_enter(ovp->v_interlock); |
| 2634 | brelvp(tbp); |
| 2635 | mutex_exit(ovp->v_interlock); |
| 2636 | tbp->b_vp = vp; |
| 2637 | tbp->b_objlock = vp->v_interlock; |
| 2638 | } |
| 2639 | /* Put it back the way it was */ |
| 2640 | tbp->b_flags |= B_ASYNC; |
| 2641 | /* Master buffers have BC_AGE */ |
| 2642 | if (tbp->b_private == tbp) |
| 2643 | tbp->b_cflags |= BC_AGE; |
| 2644 | } |
| 2645 | mutex_exit(&bufcache_lock); |
| 2646 | |
| 2647 | biodone(tbp); |
| 2648 | |
| 2649 | /* |
| 2650 | * If this is the last block for this vnode, but |
| 2651 | * there are other blocks on its dirty list, |
| 2652 | * set IN_MODIFIED/IN_CLEANING depending on what |
| 2653 | * sort of block. Only do this for our mount point, |
| 2654 | * not for, e.g., inode blocks that are attached to |
| 2655 | * the devvp. |
| 2656 | * XXX KS - Shouldn't we set *both* if both types |
| 2657 | * of blocks are present (traverse the dirty list?) |
| 2658 | */ |
| 2659 | mutex_enter(vp->v_interlock); |
| 2660 | mutex_enter(&lfs_lock); |
| 2661 | if (vp != devvp && vp->v_numoutput == 0 && |
| 2662 | (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { |
| 2663 | ip = VTOI(vp); |
| 2664 | DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n" , |
| 2665 | ip->i_number)); |
| 2666 | if (LFS_IS_MALLOC_BUF(fbp)) |
| 2667 | LFS_SET_UINO(ip, IN_CLEANING); |
| 2668 | else |
| 2669 | LFS_SET_UINO(ip, IN_MODIFIED); |
| 2670 | } |
| 2671 | cv_broadcast(&vp->v_cv); |
| 2672 | mutex_exit(&lfs_lock); |
| 2673 | mutex_exit(vp->v_interlock); |
| 2674 | } |
| 2675 | |
| 2676 | /* Fix up the cluster buffer, and release it */ |
| 2677 | if (cl->flags & LFS_CL_MALLOC) |
| 2678 | lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); |
| 2679 | putiobuf(bp); |
| 2680 | |
| 2681 | /* Note i/o done */ |
| 2682 | if (cl->flags & LFS_CL_SYNC) { |
| 2683 | if (--cl->seg->seg_iocount == 0) |
| 2684 | wakeup(&cl->seg->seg_iocount); |
| 2685 | } |
| 2686 | mutex_enter(&lfs_lock); |
| 2687 | #ifdef DIAGNOSTIC |
| 2688 | if (fs->lfs_iocount == 0) |
| 2689 | panic("lfs_cluster_aiodone: zero iocount" ); |
| 2690 | #endif |
| 2691 | if (--fs->lfs_iocount <= 1) |
| 2692 | wakeup(&fs->lfs_iocount); |
| 2693 | mutex_exit(&lfs_lock); |
| 2694 | |
| 2695 | KERNEL_UNLOCK_LAST(curlwp); |
| 2696 | |
| 2697 | pool_put(&fs->lfs_bpppool, cl->bpp); |
| 2698 | cl->bpp = NULL; |
| 2699 | pool_put(&fs->lfs_clpool, cl); |
| 2700 | } |
| 2701 | |
| 2702 | static void |
| 2703 | lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) |
| 2704 | { |
| 2705 | /* reset b_iodone for when this is a single-buf i/o. */ |
| 2706 | bp->b_iodone = aiodone; |
| 2707 | |
| 2708 | workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL); |
| 2709 | } |
| 2710 | |
| 2711 | static void |
| 2712 | lfs_cluster_callback(struct buf *bp) |
| 2713 | { |
| 2714 | |
| 2715 | lfs_generic_callback(bp, lfs_cluster_aiodone); |
| 2716 | } |
| 2717 | |
| 2718 | void |
| 2719 | lfs_supercallback(struct buf *bp) |
| 2720 | { |
| 2721 | |
| 2722 | lfs_generic_callback(bp, lfs_super_aiodone); |
| 2723 | } |
| 2724 | |
| 2725 | /* |
| 2726 | * The only buffers that are going to hit these functions are the |
| 2727 | * segment write blocks, or the segment summaries, or the superblocks. |
| 2728 | * |
| 2729 | * All of the above are created by lfs_newbuf, and so do not need to be |
| 2730 | * released via brelse. |
| 2731 | */ |
| 2732 | void |
| 2733 | lfs_callback(struct buf *bp) |
| 2734 | { |
| 2735 | |
| 2736 | lfs_generic_callback(bp, lfs_free_aiodone); |
| 2737 | } |
| 2738 | |
| 2739 | /* |
| 2740 | * Shellsort (diminishing increment sort) from Data Structures and |
| 2741 | * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; |
| 2742 | * see also Knuth Vol. 3, page 84. The increments are selected from |
| 2743 | * formula (8), page 95. Roughly O(N^3/2). |
| 2744 | */ |
| 2745 | /* |
| 2746 | * This is our own private copy of shellsort because we want to sort |
| 2747 | * two parallel arrays (the array of buffer pointers and the array of |
| 2748 | * logical block numbers) simultaneously. Note that we cast the array |
| 2749 | * of logical block numbers to a unsigned in this routine so that the |
| 2750 | * negative block numbers (meta data blocks) sort AFTER the data blocks. |
| 2751 | */ |
| 2752 | |
| 2753 | static void |
| 2754 | lfs_shellsort(struct lfs *fs, |
| 2755 | struct buf **bp_array, union lfs_blocks *lb_array, |
| 2756 | int nmemb, int size) |
| 2757 | { |
| 2758 | static int [] = { 4, 1, 0 }; |
| 2759 | int incr, *incrp, t1, t2; |
| 2760 | struct buf *bp_temp; |
| 2761 | |
| 2762 | #ifdef DEBUG |
| 2763 | incr = 0; |
| 2764 | for (t1 = 0; t1 < nmemb; t1++) { |
| 2765 | for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { |
| 2766 | if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) { |
| 2767 | /* dump before panic */ |
| 2768 | printf("lfs_shellsort: nmemb=%d, size=%d\n" , |
| 2769 | nmemb, size); |
| 2770 | incr = 0; |
| 2771 | for (t1 = 0; t1 < nmemb; t1++) { |
| 2772 | const struct buf *bp = bp_array[t1]; |
| 2773 | |
| 2774 | printf("bp[%d]: lbn=%" PRIu64 ", size=%" |
| 2775 | PRIu64 "\n" , t1, |
| 2776 | (uint64_t)bp->b_bcount, |
| 2777 | (uint64_t)bp->b_lblkno); |
| 2778 | printf("lbns:" ); |
| 2779 | for (t2 = 0; t2 * size < bp->b_bcount; |
| 2780 | t2++) { |
| 2781 | printf(" %jd" , |
| 2782 | (intmax_t)lfs_blocks_get(fs, lb_array, incr++)); |
| 2783 | } |
| 2784 | printf("\n" ); |
| 2785 | } |
| 2786 | panic("lfs_shellsort: inconsistent input" ); |
| 2787 | } |
| 2788 | } |
| 2789 | } |
| 2790 | #endif |
| 2791 | |
| 2792 | for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) |
| 2793 | for (t1 = incr; t1 < nmemb; ++t1) |
| 2794 | for (t2 = t1 - incr; t2 >= 0;) |
| 2795 | if ((u_int64_t)bp_array[t2]->b_lblkno > |
| 2796 | (u_int64_t)bp_array[t2 + incr]->b_lblkno) { |
| 2797 | bp_temp = bp_array[t2]; |
| 2798 | bp_array[t2] = bp_array[t2 + incr]; |
| 2799 | bp_array[t2 + incr] = bp_temp; |
| 2800 | t2 -= incr; |
| 2801 | } else |
| 2802 | break; |
| 2803 | |
| 2804 | /* Reform the list of logical blocks */ |
| 2805 | incr = 0; |
| 2806 | for (t1 = 0; t1 < nmemb; t1++) { |
| 2807 | for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { |
| 2808 | lfs_blocks_set(fs, lb_array, incr++, |
| 2809 | bp_array[t1]->b_lblkno + t2); |
| 2810 | } |
| 2811 | } |
| 2812 | } |
| 2813 | |
| 2814 | /* |
| 2815 | * Set up an FINFO entry for a new file. The fip pointer is assumed to |
| 2816 | * point at uninitialized space. |
| 2817 | */ |
| 2818 | void |
| 2819 | lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers) |
| 2820 | { |
| 2821 | struct segment *sp = fs->lfs_sp; |
| 2822 | SEGSUM *ssp; |
| 2823 | |
| 2824 | KASSERT(vers > 0); |
| 2825 | |
| 2826 | if (sp->seg_bytes_left < lfs_sb_getbsize(fs) || |
| 2827 | sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs)) |
| 2828 | (void) lfs_writeseg(fs, fs->lfs_sp); |
| 2829 | |
| 2830 | sp->sum_bytes_left -= FINFOSIZE(fs); |
| 2831 | ssp = (SEGSUM *)sp->segsum; |
| 2832 | lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1); |
| 2833 | lfs_fi_setnblocks(fs, sp->fip, 0); |
| 2834 | lfs_fi_setino(fs, sp->fip, ino); |
| 2835 | lfs_fi_setversion(fs, sp->fip, vers); |
| 2836 | } |
| 2837 | |
| 2838 | /* |
| 2839 | * Release the FINFO entry, either clearing out an unused entry or |
| 2840 | * advancing us to the next available entry. |
| 2841 | */ |
| 2842 | void |
| 2843 | lfs_release_finfo(struct lfs *fs) |
| 2844 | { |
| 2845 | struct segment *sp = fs->lfs_sp; |
| 2846 | SEGSUM *ssp; |
| 2847 | |
| 2848 | if (lfs_fi_getnblocks(fs, sp->fip) != 0) { |
| 2849 | sp->fip = NEXT_FINFO(fs, sp->fip); |
| 2850 | lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip); |
| 2851 | } else { |
| 2852 | /* XXX shouldn't this update sp->fip? */ |
| 2853 | sp->sum_bytes_left += FINFOSIZE(fs); |
| 2854 | ssp = (SEGSUM *)sp->segsum; |
| 2855 | lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1); |
| 2856 | } |
| 2857 | } |
| 2858 | |