| 1 | /* $NetBSD: ses.c,v 1.50 2016/11/20 15:37:19 mlelstv Exp $ */ |
| 2 | /* |
| 3 | * Copyright (C) 2000 National Aeronautics & Space Administration |
| 4 | * All rights reserved. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * 2. The name of the author may not be used to endorse or promote products |
| 12 | * derived from this software without specific prior written permission |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 15 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 16 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 17 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 18 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 19 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 20 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 21 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 23 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | * |
| 25 | * Author: mjacob@nas.nasa.gov |
| 26 | */ |
| 27 | |
| 28 | #include <sys/cdefs.h> |
| 29 | __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.50 2016/11/20 15:37:19 mlelstv Exp $" ); |
| 30 | |
| 31 | #ifdef _KERNEL_OPT |
| 32 | #include "opt_scsi.h" |
| 33 | #endif |
| 34 | |
| 35 | #include <sys/param.h> |
| 36 | #include <sys/systm.h> |
| 37 | #include <sys/kernel.h> |
| 38 | #include <sys/file.h> |
| 39 | #include <sys/stat.h> |
| 40 | #include <sys/ioctl.h> |
| 41 | #include <sys/scsiio.h> |
| 42 | #include <sys/buf.h> |
| 43 | #include <sys/uio.h> |
| 44 | #include <sys/malloc.h> |
| 45 | #include <sys/errno.h> |
| 46 | #include <sys/device.h> |
| 47 | #include <sys/disklabel.h> |
| 48 | #include <sys/disk.h> |
| 49 | #include <sys/proc.h> |
| 50 | #include <sys/conf.h> |
| 51 | #include <sys/vnode.h> |
| 52 | |
| 53 | #include <dev/scsipi/scsipi_all.h> |
| 54 | #include <dev/scsipi/scsipi_disk.h> |
| 55 | #include <dev/scsipi/scsi_all.h> |
| 56 | #include <dev/scsipi/scsi_disk.h> |
| 57 | #include <dev/scsipi/scsipiconf.h> |
| 58 | #include <dev/scsipi/scsipi_base.h> |
| 59 | #include <dev/scsipi/ses.h> |
| 60 | |
| 61 | /* |
| 62 | * Platform Independent Driver Internal Definitions for SES devices. |
| 63 | */ |
| 64 | typedef enum { |
| 65 | SES_NONE, |
| 66 | SES_SES_SCSI2, |
| 67 | SES_SES, |
| 68 | SES_SES_PASSTHROUGH, |
| 69 | SES_SEN, |
| 70 | SES_SAFT |
| 71 | } enctyp; |
| 72 | |
| 73 | struct ses_softc; |
| 74 | typedef struct ses_softc ses_softc_t; |
| 75 | typedef struct { |
| 76 | int (*softc_init)(ses_softc_t *, int); |
| 77 | int (*init_enc)(ses_softc_t *); |
| 78 | int (*get_encstat)(ses_softc_t *, int); |
| 79 | int (*set_encstat)(ses_softc_t *, ses_encstat, int); |
| 80 | int (*get_objstat)(ses_softc_t *, ses_objstat *, int); |
| 81 | int (*set_objstat)(ses_softc_t *, ses_objstat *, int); |
| 82 | } encvec; |
| 83 | |
| 84 | #define ENCI_SVALID 0x80 |
| 85 | |
| 86 | typedef struct { |
| 87 | uint32_t |
| 88 | enctype : 8, /* enclosure type */ |
| 89 | subenclosure : 8, /* subenclosure id */ |
| 90 | svalid : 1, /* enclosure information valid */ |
| 91 | priv : 15; /* private data, per object */ |
| 92 | uint8_t encstat[4]; /* state && stats */ |
| 93 | } encobj; |
| 94 | |
| 95 | #define SEN_ID "UNISYS SUN_SEN" |
| 96 | #define SEN_ID_LEN 24 |
| 97 | |
| 98 | static enctyp ses_type(struct scsipi_inquiry_data *); |
| 99 | |
| 100 | |
| 101 | /* Forward reference to Enclosure Functions */ |
| 102 | static int ses_softc_init(ses_softc_t *, int); |
| 103 | static int ses_init_enc(ses_softc_t *); |
| 104 | static int ses_get_encstat(ses_softc_t *, int); |
| 105 | static int ses_set_encstat(ses_softc_t *, uint8_t, int); |
| 106 | static int ses_get_objstat(ses_softc_t *, ses_objstat *, int); |
| 107 | static int ses_set_objstat(ses_softc_t *, ses_objstat *, int); |
| 108 | |
| 109 | static int safte_softc_init(ses_softc_t *, int); |
| 110 | static int safte_init_enc(ses_softc_t *); |
| 111 | static int safte_get_encstat(ses_softc_t *, int); |
| 112 | static int safte_set_encstat(ses_softc_t *, uint8_t, int); |
| 113 | static int safte_get_objstat(ses_softc_t *, ses_objstat *, int); |
| 114 | static int safte_set_objstat(ses_softc_t *, ses_objstat *, int); |
| 115 | |
| 116 | /* |
| 117 | * Platform implementation defines/functions for SES internal kernel stuff |
| 118 | */ |
| 119 | |
| 120 | #define STRNCMP strncmp |
| 121 | #define PRINTF printf |
| 122 | #define SES_LOG ses_log |
| 123 | #if defined(DEBUG) || defined(SCSIDEBUG) |
| 124 | #define SES_VLOG ses_log |
| 125 | #else |
| 126 | #define SES_VLOG if (0) ses_log |
| 127 | #endif |
| 128 | #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT) |
| 129 | #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF) |
| 130 | #define MEMZERO(dest, amt) memset(dest, 0, amt) |
| 131 | #define MEMCPY(dest, src, amt) memcpy(dest, src, amt) |
| 132 | #define RECEIVE_DIAGNOSTIC 0x1c |
| 133 | #define SEND_DIAGNOSTIC 0x1d |
| 134 | #define WRITE_BUFFER 0x3b |
| 135 | #define READ_BUFFER 0x3c |
| 136 | |
| 137 | static dev_type_open(sesopen); |
| 138 | static dev_type_close(sesclose); |
| 139 | static dev_type_ioctl(sesioctl); |
| 140 | |
| 141 | const struct cdevsw ses_cdevsw = { |
| 142 | .d_open = sesopen, |
| 143 | .d_close = sesclose, |
| 144 | .d_read = noread, |
| 145 | .d_write = nowrite, |
| 146 | .d_ioctl = sesioctl, |
| 147 | .d_stop = nostop, |
| 148 | .d_tty = notty, |
| 149 | .d_poll = nopoll, |
| 150 | .d_mmap = nommap, |
| 151 | .d_kqfilter = nokqfilter, |
| 152 | .d_discard = nodiscard, |
| 153 | .d_flag = D_OTHER | D_MPSAFE |
| 154 | }; |
| 155 | |
| 156 | static int ses_runcmd(struct ses_softc *, char *, int, char *, int *); |
| 157 | static void ses_log(struct ses_softc *, const char *, ...) |
| 158 | __attribute__((__format__(__printf__, 2, 3))); |
| 159 | |
| 160 | /* |
| 161 | * General NetBSD kernel stuff. |
| 162 | */ |
| 163 | |
| 164 | struct ses_softc { |
| 165 | device_t sc_dev; |
| 166 | struct scsipi_periph *sc_periph; |
| 167 | enctyp ses_type; /* type of enclosure */ |
| 168 | encvec ses_vec; /* vector to handlers */ |
| 169 | void * ses_private; /* per-type private data */ |
| 170 | encobj * ses_objmap; /* objects */ |
| 171 | u_int32_t ses_nobjects; /* number of objects */ |
| 172 | ses_encstat ses_encstat; /* overall status */ |
| 173 | u_int8_t ses_flags; |
| 174 | }; |
| 175 | #define SES_FLAG_INVALID 0x01 |
| 176 | #define SES_FLAG_OPEN 0x02 |
| 177 | #define SES_FLAG_INITIALIZED 0x04 |
| 178 | |
| 179 | #define SESUNIT(x) (minor((x))) |
| 180 | |
| 181 | static int ses_match(device_t, cfdata_t, void *); |
| 182 | static void ses_attach(device_t, device_t, void *); |
| 183 | static int ses_detach(device_t, int); |
| 184 | static enctyp ses_device_type(struct scsipibus_attach_args *); |
| 185 | |
| 186 | CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc), |
| 187 | ses_match, ses_attach, ses_detach, NULL); |
| 188 | |
| 189 | extern struct cfdriver ses_cd; |
| 190 | |
| 191 | static const struct scsipi_periphsw ses_switch = { |
| 192 | NULL, |
| 193 | NULL, |
| 194 | NULL, |
| 195 | NULL |
| 196 | }; |
| 197 | |
| 198 | static int |
| 199 | ses_match(device_t parent, cfdata_t match, void *aux) |
| 200 | { |
| 201 | struct scsipibus_attach_args *sa = aux; |
| 202 | |
| 203 | switch (ses_device_type(sa)) { |
| 204 | case SES_SES: |
| 205 | case SES_SES_SCSI2: |
| 206 | case SES_SEN: |
| 207 | case SES_SAFT: |
| 208 | case SES_SES_PASSTHROUGH: |
| 209 | /* |
| 210 | * For these devices, it's a perfect match. |
| 211 | */ |
| 212 | return (24); |
| 213 | default: |
| 214 | return (0); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | |
| 219 | /* |
| 220 | * Complete the attachment. |
| 221 | * |
| 222 | * We have to repeat the rerun of INQUIRY data as above because |
| 223 | * it's not until the return from the match routine that we have |
| 224 | * the softc available to set stuff in. |
| 225 | */ |
| 226 | static void |
| 227 | ses_attach(device_t parent, device_t self, void *aux) |
| 228 | { |
| 229 | const char *tname; |
| 230 | struct ses_softc *softc = device_private(self); |
| 231 | struct scsipibus_attach_args *sa = aux; |
| 232 | struct scsipi_periph *periph = sa->sa_periph; |
| 233 | |
| 234 | softc->sc_dev = self; |
| 235 | SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: " )); |
| 236 | softc->sc_periph = periph; |
| 237 | periph->periph_dev = self; |
| 238 | periph->periph_switch = &ses_switch; |
| 239 | periph->periph_openings = 1; |
| 240 | |
| 241 | softc->ses_type = ses_device_type(sa); |
| 242 | switch (softc->ses_type) { |
| 243 | case SES_SES: |
| 244 | case SES_SES_SCSI2: |
| 245 | case SES_SES_PASSTHROUGH: |
| 246 | softc->ses_vec.softc_init = ses_softc_init; |
| 247 | softc->ses_vec.init_enc = ses_init_enc; |
| 248 | softc->ses_vec.get_encstat = ses_get_encstat; |
| 249 | softc->ses_vec.set_encstat = ses_set_encstat; |
| 250 | softc->ses_vec.get_objstat = ses_get_objstat; |
| 251 | softc->ses_vec.set_objstat = ses_set_objstat; |
| 252 | break; |
| 253 | case SES_SAFT: |
| 254 | softc->ses_vec.softc_init = safte_softc_init; |
| 255 | softc->ses_vec.init_enc = safte_init_enc; |
| 256 | softc->ses_vec.get_encstat = safte_get_encstat; |
| 257 | softc->ses_vec.set_encstat = safte_set_encstat; |
| 258 | softc->ses_vec.get_objstat = safte_get_objstat; |
| 259 | softc->ses_vec.set_objstat = safte_set_objstat; |
| 260 | break; |
| 261 | case SES_SEN: |
| 262 | break; |
| 263 | case SES_NONE: |
| 264 | default: |
| 265 | break; |
| 266 | } |
| 267 | |
| 268 | switch (softc->ses_type) { |
| 269 | default: |
| 270 | case SES_NONE: |
| 271 | tname = "No SES device" ; |
| 272 | break; |
| 273 | case SES_SES_SCSI2: |
| 274 | tname = "SCSI-2 SES Device" ; |
| 275 | break; |
| 276 | case SES_SES: |
| 277 | tname = "SCSI-3 SES Device" ; |
| 278 | break; |
| 279 | case SES_SES_PASSTHROUGH: |
| 280 | tname = "SES Passthrough Device" ; |
| 281 | break; |
| 282 | case SES_SEN: |
| 283 | tname = "UNISYS SEN Device (NOT HANDLED YET)" ; |
| 284 | break; |
| 285 | case SES_SAFT: |
| 286 | tname = "SAF-TE Compliant Device" ; |
| 287 | break; |
| 288 | } |
| 289 | aprint_naive("\n" ); |
| 290 | aprint_normal("\n%s: %s\n" , device_xname(softc->sc_dev), tname); |
| 291 | } |
| 292 | |
| 293 | static enctyp |
| 294 | ses_device_type(struct scsipibus_attach_args *sa) |
| 295 | { |
| 296 | struct scsipi_inquiry_data *inqp = sa->sa_inqptr; |
| 297 | |
| 298 | if (inqp == NULL) |
| 299 | return (SES_NONE); |
| 300 | |
| 301 | return (ses_type(inqp)); |
| 302 | } |
| 303 | |
| 304 | static int |
| 305 | sesopen(dev_t dev, int flags, int fmt, struct lwp *l) |
| 306 | { |
| 307 | struct ses_softc *softc; |
| 308 | int error, unit; |
| 309 | |
| 310 | unit = SESUNIT(dev); |
| 311 | softc = device_lookup_private(&ses_cd, unit); |
| 312 | if (softc == NULL) |
| 313 | return (ENXIO); |
| 314 | |
| 315 | if (softc->ses_flags & SES_FLAG_INVALID) { |
| 316 | error = ENXIO; |
| 317 | goto out; |
| 318 | } |
| 319 | if (softc->ses_flags & SES_FLAG_OPEN) { |
| 320 | error = EBUSY; |
| 321 | goto out; |
| 322 | } |
| 323 | if (softc->ses_vec.softc_init == NULL) { |
| 324 | error = ENXIO; |
| 325 | goto out; |
| 326 | } |
| 327 | error = scsipi_adapter_addref( |
| 328 | softc->sc_periph->periph_channel->chan_adapter); |
| 329 | if (error != 0) |
| 330 | goto out; |
| 331 | |
| 332 | |
| 333 | softc->ses_flags |= SES_FLAG_OPEN; |
| 334 | if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) { |
| 335 | error = (*softc->ses_vec.softc_init)(softc, 1); |
| 336 | if (error) |
| 337 | softc->ses_flags &= ~SES_FLAG_OPEN; |
| 338 | else |
| 339 | softc->ses_flags |= SES_FLAG_INITIALIZED; |
| 340 | } |
| 341 | |
| 342 | out: |
| 343 | return (error); |
| 344 | } |
| 345 | |
| 346 | static int |
| 347 | sesclose(dev_t dev, int flags, int fmt, |
| 348 | struct lwp *l) |
| 349 | { |
| 350 | struct ses_softc *softc; |
| 351 | int unit; |
| 352 | |
| 353 | unit = SESUNIT(dev); |
| 354 | softc = device_lookup_private(&ses_cd, unit); |
| 355 | if (softc == NULL) |
| 356 | return (ENXIO); |
| 357 | |
| 358 | scsipi_wait_drain(softc->sc_periph); |
| 359 | scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter); |
| 360 | softc->ses_flags &= ~SES_FLAG_OPEN; |
| 361 | return (0); |
| 362 | } |
| 363 | |
| 364 | static int |
| 365 | sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l) |
| 366 | { |
| 367 | ses_encstat tmp; |
| 368 | ses_objstat objs; |
| 369 | ses_object obj, *uobj; |
| 370 | struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev)); |
| 371 | void *addr; |
| 372 | int error, i; |
| 373 | |
| 374 | |
| 375 | if (arg_addr) |
| 376 | addr = *((void **) arg_addr); |
| 377 | else |
| 378 | addr = NULL; |
| 379 | |
| 380 | SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx " , cmd)); |
| 381 | |
| 382 | /* |
| 383 | * Now check to see whether we're initialized or not. |
| 384 | */ |
| 385 | if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) { |
| 386 | return (ENODEV); |
| 387 | } |
| 388 | |
| 389 | error = 0; |
| 390 | |
| 391 | /* |
| 392 | * If this command can change the device's state, |
| 393 | * we must have the device open for writing. |
| 394 | */ |
| 395 | switch (cmd) { |
| 396 | case SESIOC_GETNOBJ: |
| 397 | case SESIOC_GETOBJMAP: |
| 398 | case SESIOC_GETENCSTAT: |
| 399 | case SESIOC_GETOBJSTAT: |
| 400 | break; |
| 401 | default: |
| 402 | if ((flag & FWRITE) == 0) { |
| 403 | return (EBADF); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | switch (cmd) { |
| 408 | case SESIOC_GETNOBJ: |
| 409 | if (addr == NULL) |
| 410 | return EINVAL; |
| 411 | error = copyout(&ssc->ses_nobjects, addr, |
| 412 | sizeof (ssc->ses_nobjects)); |
| 413 | break; |
| 414 | |
| 415 | case SESIOC_GETOBJMAP: |
| 416 | if (addr == NULL) |
| 417 | return EINVAL; |
| 418 | for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) { |
| 419 | obj.obj_id = i; |
| 420 | obj.subencid = ssc->ses_objmap[i].subenclosure; |
| 421 | obj.object_type = ssc->ses_objmap[i].enctype; |
| 422 | error = copyout(&obj, uobj, sizeof (ses_object)); |
| 423 | if (error) { |
| 424 | break; |
| 425 | } |
| 426 | } |
| 427 | break; |
| 428 | |
| 429 | case SESIOC_GETENCSTAT: |
| 430 | if (addr == NULL) |
| 431 | return EINVAL; |
| 432 | error = (*ssc->ses_vec.get_encstat)(ssc, 1); |
| 433 | if (error) |
| 434 | break; |
| 435 | tmp = ssc->ses_encstat & ~ENCI_SVALID; |
| 436 | error = copyout(&tmp, addr, sizeof (ses_encstat)); |
| 437 | ssc->ses_encstat = tmp; |
| 438 | break; |
| 439 | |
| 440 | case SESIOC_SETENCSTAT: |
| 441 | if (addr == NULL) |
| 442 | return EINVAL; |
| 443 | error = copyin(addr, &tmp, sizeof (ses_encstat)); |
| 444 | if (error) |
| 445 | break; |
| 446 | error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1); |
| 447 | break; |
| 448 | |
| 449 | case SESIOC_GETOBJSTAT: |
| 450 | if (addr == NULL) |
| 451 | return EINVAL; |
| 452 | error = copyin(addr, &objs, sizeof (ses_objstat)); |
| 453 | if (error) |
| 454 | break; |
| 455 | if (objs.obj_id >= ssc->ses_nobjects) { |
| 456 | error = EINVAL; |
| 457 | break; |
| 458 | } |
| 459 | error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1); |
| 460 | if (error) |
| 461 | break; |
| 462 | error = copyout(&objs, addr, sizeof (ses_objstat)); |
| 463 | /* |
| 464 | * Always (for now) invalidate entry. |
| 465 | */ |
| 466 | ssc->ses_objmap[objs.obj_id].svalid = 0; |
| 467 | break; |
| 468 | |
| 469 | case SESIOC_SETOBJSTAT: |
| 470 | if (addr == NULL) |
| 471 | return EINVAL; |
| 472 | error = copyin(addr, &objs, sizeof (ses_objstat)); |
| 473 | if (error) |
| 474 | break; |
| 475 | |
| 476 | if (objs.obj_id >= ssc->ses_nobjects) { |
| 477 | error = EINVAL; |
| 478 | break; |
| 479 | } |
| 480 | error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1); |
| 481 | |
| 482 | /* |
| 483 | * Always (for now) invalidate entry. |
| 484 | */ |
| 485 | ssc->ses_objmap[objs.obj_id].svalid = 0; |
| 486 | break; |
| 487 | |
| 488 | case SESIOC_INIT: |
| 489 | |
| 490 | error = (*ssc->ses_vec.init_enc)(ssc); |
| 491 | break; |
| 492 | |
| 493 | default: |
| 494 | error = scsipi_do_ioctl(ssc->sc_periph, |
| 495 | dev, cmd, arg_addr, flag, l); |
| 496 | break; |
| 497 | } |
| 498 | return (error); |
| 499 | } |
| 500 | |
| 501 | static int |
| 502 | ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp) |
| 503 | { |
| 504 | struct scsipi_generic sgen; |
| 505 | int dl, flg, error; |
| 506 | |
| 507 | if (dptr) { |
| 508 | if ((dl = *dlenp) < 0) { |
| 509 | dl = -dl; |
| 510 | flg = XS_CTL_DATA_OUT; |
| 511 | } else { |
| 512 | flg = XS_CTL_DATA_IN; |
| 513 | } |
| 514 | } else { |
| 515 | dl = 0; |
| 516 | flg = 0; |
| 517 | } |
| 518 | |
| 519 | if (cdbl > sizeof (struct scsipi_generic)) { |
| 520 | cdbl = sizeof (struct scsipi_generic); |
| 521 | } |
| 522 | memcpy(&sgen, cdb, cdbl); |
| 523 | #ifndef SCSIDEBUG |
| 524 | flg |= XS_CTL_SILENT; |
| 525 | #endif |
| 526 | error = scsipi_command(ssc->sc_periph, &sgen, cdbl, |
| 527 | (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg); |
| 528 | |
| 529 | if (error == 0 && dptr) |
| 530 | *dlenp = 0; |
| 531 | |
| 532 | return (error); |
| 533 | } |
| 534 | |
| 535 | static void |
| 536 | ses_log(struct ses_softc *ssc, const char *fmt, ...) |
| 537 | { |
| 538 | va_list ap; |
| 539 | |
| 540 | printf("%s: " , device_xname(ssc->sc_dev)); |
| 541 | va_start(ap, fmt); |
| 542 | vprintf(fmt, ap); |
| 543 | va_end(ap); |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * The code after this point runs on many platforms, |
| 548 | * so forgive the slightly awkward and nonconforming |
| 549 | * appearance. |
| 550 | */ |
| 551 | |
| 552 | /* |
| 553 | * Is this a device that supports enclosure services? |
| 554 | * |
| 555 | * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's |
| 556 | * an SES device. If it happens to be an old UNISYS SEN device, we can |
| 557 | * handle that too. |
| 558 | */ |
| 559 | |
| 560 | #define SAFTE_START 44 |
| 561 | #define SAFTE_END 50 |
| 562 | #define SAFTE_LEN SAFTE_END-SAFTE_START |
| 563 | |
| 564 | static enctyp |
| 565 | ses_type(struct scsipi_inquiry_data *inqp) |
| 566 | { |
| 567 | size_t given_len = inqp->additional_length + 4; |
| 568 | |
| 569 | if (given_len < 8+SEN_ID_LEN) |
| 570 | return (SES_NONE); |
| 571 | |
| 572 | if ((inqp->device & SID_TYPE) == T_ENCLOSURE) { |
| 573 | if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) { |
| 574 | return (SES_SEN); |
| 575 | } else if ((inqp->version & SID_ANSII) > 2) { |
| 576 | return (SES_SES); |
| 577 | } else { |
| 578 | return (SES_SES_SCSI2); |
| 579 | } |
| 580 | return (SES_NONE); |
| 581 | } |
| 582 | |
| 583 | #ifdef SES_ENABLE_PASSTHROUGH |
| 584 | if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) { |
| 585 | /* |
| 586 | * PassThrough Device. |
| 587 | */ |
| 588 | return (SES_SES_PASSTHROUGH); |
| 589 | } |
| 590 | #endif |
| 591 | |
| 592 | /* |
| 593 | * The comparison is short for a reason- |
| 594 | * some vendors were chopping it short. |
| 595 | */ |
| 596 | |
| 597 | if (given_len < SAFTE_END - 2) { |
| 598 | return (SES_NONE); |
| 599 | } |
| 600 | |
| 601 | if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE" , |
| 602 | SAFTE_LEN - 2) == 0) { |
| 603 | return (SES_SAFT); |
| 604 | } |
| 605 | |
| 606 | return (SES_NONE); |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | * SES Native Type Device Support |
| 611 | */ |
| 612 | |
| 613 | /* |
| 614 | * SES Diagnostic Page Codes |
| 615 | */ |
| 616 | |
| 617 | typedef enum { |
| 618 | SesConfigPage = 0x1, |
| 619 | SesControlPage, |
| 620 | #define SesStatusPage SesControlPage |
| 621 | SesHelpTxt, |
| 622 | SesStringOut, |
| 623 | #define SesStringIn SesStringOut |
| 624 | SesThresholdOut, |
| 625 | #define SesThresholdIn SesThresholdOut |
| 626 | SesArrayControl, |
| 627 | #define SesArrayStatus SesArrayControl |
| 628 | SesElementDescriptor, |
| 629 | SesShortStatus |
| 630 | } SesDiagPageCodes; |
| 631 | |
| 632 | /* |
| 633 | * minimal amounts |
| 634 | */ |
| 635 | |
| 636 | /* |
| 637 | * Minimum amount of data, starting from byte 0, to have |
| 638 | * the config header. |
| 639 | */ |
| 640 | #define SES_CFGHDR_MINLEN 12 |
| 641 | |
| 642 | /* |
| 643 | * Minimum amount of data, starting from byte 0, to have |
| 644 | * the config header and one enclosure header. |
| 645 | */ |
| 646 | #define SES_ENCHDR_MINLEN 48 |
| 647 | |
| 648 | /* |
| 649 | * Take this value, subtract it from VEnclen and you know |
| 650 | * the length of the vendor unique bytes. |
| 651 | */ |
| 652 | #define SES_ENCHDR_VMIN 36 |
| 653 | |
| 654 | /* |
| 655 | * SES Data Structures |
| 656 | */ |
| 657 | |
| 658 | typedef struct { |
| 659 | uint32_t GenCode; /* Generation Code */ |
| 660 | uint8_t Nsubenc; /* Number of Subenclosures */ |
| 661 | } SesCfgHdr; |
| 662 | |
| 663 | typedef struct { |
| 664 | uint8_t Subencid; /* SubEnclosure Identifier */ |
| 665 | uint8_t Ntypes; /* # of supported types */ |
| 666 | uint8_t VEnclen; /* Enclosure Descriptor Length */ |
| 667 | } SesEncHdr; |
| 668 | |
| 669 | typedef struct { |
| 670 | uint8_t encWWN[8]; /* XXX- Not Right Yet */ |
| 671 | uint8_t encVid[8]; |
| 672 | uint8_t encPid[16]; |
| 673 | uint8_t encRev[4]; |
| 674 | uint8_t encVen[1]; |
| 675 | } SesEncDesc; |
| 676 | |
| 677 | typedef struct { |
| 678 | uint8_t enc_type; /* type of element */ |
| 679 | uint8_t enc_maxelt; /* maximum supported */ |
| 680 | uint8_t enc_subenc; /* in SubEnc # N */ |
| 681 | uint8_t enc_tlen; /* Type Descriptor Text Length */ |
| 682 | } SesThdr; |
| 683 | |
| 684 | typedef struct { |
| 685 | uint8_t comstatus; |
| 686 | uint8_t comstat[3]; |
| 687 | } SesComStat; |
| 688 | |
| 689 | struct typidx { |
| 690 | int ses_tidx; |
| 691 | int ses_oidx; |
| 692 | }; |
| 693 | |
| 694 | struct sscfg { |
| 695 | uint8_t ses_ntypes; /* total number of types supported */ |
| 696 | |
| 697 | /* |
| 698 | * We need to keep a type index as well as an |
| 699 | * object index for each object in an enclosure. |
| 700 | */ |
| 701 | struct typidx *ses_typidx; |
| 702 | |
| 703 | /* |
| 704 | * We also need to keep track of the number of elements |
| 705 | * per type of element. This is needed later so that we |
| 706 | * can find precisely in the returned status data the |
| 707 | * status for the Nth element of the Kth type. |
| 708 | */ |
| 709 | uint8_t * ses_eltmap; |
| 710 | }; |
| 711 | |
| 712 | |
| 713 | /* |
| 714 | * (de)canonicalization defines |
| 715 | */ |
| 716 | #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff) |
| 717 | #define sbit(x, bit) (((uint32_t)(x)) << bit) |
| 718 | #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) |
| 719 | |
| 720 | #define sset16(outp, idx, sval) \ |
| 721 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ |
| 722 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) |
| 723 | |
| 724 | |
| 725 | #define sset24(outp, idx, sval) \ |
| 726 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ |
| 727 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ |
| 728 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) |
| 729 | |
| 730 | |
| 731 | #define sset32(outp, idx, sval) \ |
| 732 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \ |
| 733 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ |
| 734 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ |
| 735 | (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) |
| 736 | |
| 737 | #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8)) |
| 738 | #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask) |
| 739 | #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++]) |
| 740 | #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx]) |
| 741 | |
| 742 | #define sget16(inp, idx, lval) \ |
| 743 | lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ |
| 744 | (((uint8_t *)(inp))[idx+1]), idx += 2 |
| 745 | |
| 746 | #define gget16(inp, idx, lval) \ |
| 747 | lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ |
| 748 | (((uint8_t *)(inp))[idx+1]) |
| 749 | |
| 750 | #define sget24(inp, idx, lval) \ |
| 751 | lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ |
| 752 | gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ |
| 753 | (((uint8_t *)(inp))[idx+2]), idx += 3 |
| 754 | |
| 755 | #define gget24(inp, idx, lval) \ |
| 756 | lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ |
| 757 | gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ |
| 758 | (((uint8_t *)(inp))[idx+2]) |
| 759 | |
| 760 | #define sget32(inp, idx, lval) \ |
| 761 | lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ |
| 762 | gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ |
| 763 | gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ |
| 764 | (((uint8_t *)(inp))[idx+3]), idx += 4 |
| 765 | |
| 766 | #define gget32(inp, idx, lval) \ |
| 767 | lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ |
| 768 | gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ |
| 769 | gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ |
| 770 | (((uint8_t *)(inp))[idx+3]) |
| 771 | |
| 772 | #define SCSZ 0x2000 |
| 773 | #define CFLEN (256 + SES_ENCHDR_MINLEN) |
| 774 | |
| 775 | /* |
| 776 | * Routines specific && private to SES only |
| 777 | */ |
| 778 | |
| 779 | static int ses_getconfig(ses_softc_t *); |
| 780 | static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int); |
| 781 | static int ses_cfghdr(uint8_t *, int, SesCfgHdr *); |
| 782 | static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *); |
| 783 | static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *); |
| 784 | static int ses_getthdr(uint8_t *, int, int, SesThdr *); |
| 785 | static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *); |
| 786 | static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *); |
| 787 | |
| 788 | static int |
| 789 | ses_softc_init(ses_softc_t *ssc, int doinit) |
| 790 | { |
| 791 | if (doinit == 0) { |
| 792 | struct sscfg *cc; |
| 793 | if (ssc->ses_nobjects) { |
| 794 | SES_FREE(ssc->ses_objmap, |
| 795 | ssc->ses_nobjects * sizeof (encobj)); |
| 796 | ssc->ses_objmap = NULL; |
| 797 | } |
| 798 | if ((cc = ssc->ses_private) != NULL) { |
| 799 | if (cc->ses_eltmap && cc->ses_ntypes) { |
| 800 | SES_FREE(cc->ses_eltmap, cc->ses_ntypes); |
| 801 | cc->ses_eltmap = NULL; |
| 802 | cc->ses_ntypes = 0; |
| 803 | } |
| 804 | if (cc->ses_typidx && ssc->ses_nobjects) { |
| 805 | SES_FREE(cc->ses_typidx, |
| 806 | ssc->ses_nobjects * sizeof (struct typidx)); |
| 807 | cc->ses_typidx = NULL; |
| 808 | } |
| 809 | SES_FREE(cc, sizeof (struct sscfg)); |
| 810 | ssc->ses_private = NULL; |
| 811 | } |
| 812 | ssc->ses_nobjects = 0; |
| 813 | return (0); |
| 814 | } |
| 815 | if (ssc->ses_private == NULL) { |
| 816 | ssc->ses_private = SES_MALLOC(sizeof (struct sscfg)); |
| 817 | } |
| 818 | if (ssc->ses_private == NULL) { |
| 819 | return (ENOMEM); |
| 820 | } |
| 821 | ssc->ses_nobjects = 0; |
| 822 | ssc->ses_encstat = 0; |
| 823 | return (ses_getconfig(ssc)); |
| 824 | } |
| 825 | |
| 826 | static int |
| 827 | ses_detach(device_t self, int flags) |
| 828 | { |
| 829 | struct ses_softc *ssc = device_private(self); |
| 830 | struct sscfg *cc = ssc->ses_private; |
| 831 | |
| 832 | if (ssc->ses_objmap) { |
| 833 | SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj))); |
| 834 | } |
| 835 | if (cc != NULL) { |
| 836 | if (cc->ses_typidx) { |
| 837 | SES_FREE(cc->ses_typidx, |
| 838 | (nobj * sizeof (struct typidx))); |
| 839 | } |
| 840 | if (cc->ses_eltmap) { |
| 841 | SES_FREE(cc->ses_eltmap, ntype); |
| 842 | } |
| 843 | SES_FREE(cc, sizeof (struct sscfg)); |
| 844 | } |
| 845 | |
| 846 | return 0; |
| 847 | } |
| 848 | |
| 849 | static int |
| 850 | ses_init_enc(ses_softc_t *ssc) |
| 851 | { |
| 852 | return (0); |
| 853 | } |
| 854 | |
| 855 | static int |
| 856 | ses_get_encstat(ses_softc_t *ssc, int slpflag) |
| 857 | { |
| 858 | SesComStat ComStat; |
| 859 | int status; |
| 860 | |
| 861 | if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) { |
| 862 | return (status); |
| 863 | } |
| 864 | ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID; |
| 865 | return (0); |
| 866 | } |
| 867 | |
| 868 | static int |
| 869 | ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag) |
| 870 | { |
| 871 | SesComStat ComStat; |
| 872 | int status; |
| 873 | |
| 874 | ComStat.comstatus = encstat & 0xf; |
| 875 | if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) { |
| 876 | return (status); |
| 877 | } |
| 878 | ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */ |
| 879 | return (0); |
| 880 | } |
| 881 | |
| 882 | static int |
| 883 | ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) |
| 884 | { |
| 885 | int i = (int)obp->obj_id; |
| 886 | |
| 887 | if (ssc->ses_objmap[i].svalid == 0) { |
| 888 | SesComStat ComStat; |
| 889 | int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1); |
| 890 | if (err) |
| 891 | return (err); |
| 892 | ssc->ses_objmap[i].encstat[0] = ComStat.comstatus; |
| 893 | ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0]; |
| 894 | ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1]; |
| 895 | ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2]; |
| 896 | ssc->ses_objmap[i].svalid = 1; |
| 897 | } |
| 898 | obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; |
| 899 | obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; |
| 900 | obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; |
| 901 | obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; |
| 902 | return (0); |
| 903 | } |
| 904 | |
| 905 | static int |
| 906 | ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) |
| 907 | { |
| 908 | SesComStat ComStat; |
| 909 | int err; |
| 910 | /* |
| 911 | * If this is clear, we don't do diddly. |
| 912 | */ |
| 913 | if ((obp->cstat[0] & SESCTL_CSEL) == 0) { |
| 914 | return (0); |
| 915 | } |
| 916 | ComStat.comstatus = obp->cstat[0]; |
| 917 | ComStat.comstat[0] = obp->cstat[1]; |
| 918 | ComStat.comstat[1] = obp->cstat[2]; |
| 919 | ComStat.comstat[2] = obp->cstat[3]; |
| 920 | err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0); |
| 921 | ssc->ses_objmap[(int)obp->obj_id].svalid = 0; |
| 922 | return (err); |
| 923 | } |
| 924 | |
| 925 | static int |
| 926 | ses_getconfig(ses_softc_t *ssc) |
| 927 | { |
| 928 | struct sscfg *cc; |
| 929 | SesCfgHdr cf; |
| 930 | SesEncHdr hd; |
| 931 | SesEncDesc *cdp; |
| 932 | SesThdr thdr; |
| 933 | int err, amt, i, nobj, ntype, maxima; |
| 934 | char storage[CFLEN], *sdata; |
| 935 | static char cdb[6] = { |
| 936 | RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0 |
| 937 | }; |
| 938 | |
| 939 | cc = ssc->ses_private; |
| 940 | if (cc == NULL) { |
| 941 | return (ENXIO); |
| 942 | } |
| 943 | |
| 944 | sdata = SES_MALLOC(SCSZ); |
| 945 | if (sdata == NULL) |
| 946 | return (ENOMEM); |
| 947 | |
| 948 | amt = SCSZ; |
| 949 | err = ses_runcmd(ssc, cdb, 6, sdata, &amt); |
| 950 | if (err) { |
| 951 | SES_FREE(sdata, SCSZ); |
| 952 | return (err); |
| 953 | } |
| 954 | amt = SCSZ - amt; |
| 955 | |
| 956 | if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) { |
| 957 | SES_LOG(ssc, "Unable to parse SES Config Header\n" ); |
| 958 | SES_FREE(sdata, SCSZ); |
| 959 | return (EIO); |
| 960 | } |
| 961 | if (amt < SES_ENCHDR_MINLEN) { |
| 962 | SES_LOG(ssc, "runt enclosure length (%d)\n" , amt); |
| 963 | SES_FREE(sdata, SCSZ); |
| 964 | return (EIO); |
| 965 | } |
| 966 | |
| 967 | SES_VLOG(ssc, "GenCode %x %d Subenclosures\n" , cf.GenCode, cf.Nsubenc); |
| 968 | |
| 969 | /* |
| 970 | * Now waltz through all the subenclosures toting up the |
| 971 | * number of types available in each. For this, we only |
| 972 | * really need the enclosure header. However, we get the |
| 973 | * enclosure descriptor for debug purposes, as well |
| 974 | * as self-consistency checking purposes. |
| 975 | */ |
| 976 | |
| 977 | maxima = cf.Nsubenc + 1; |
| 978 | cdp = (SesEncDesc *) storage; |
| 979 | for (ntype = i = 0; i < maxima; i++) { |
| 980 | MEMZERO((void *)cdp, sizeof (*cdp)); |
| 981 | if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) { |
| 982 | SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n" , i); |
| 983 | SES_FREE(sdata, SCSZ); |
| 984 | return (EIO); |
| 985 | } |
| 986 | SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En" |
| 987 | "closure Length %d\n" , hd.Subencid, hd.Ntypes, hd.VEnclen); |
| 988 | |
| 989 | if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) { |
| 990 | SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n" , i); |
| 991 | SES_FREE(sdata, SCSZ); |
| 992 | return (EIO); |
| 993 | } |
| 994 | SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n" , |
| 995 | cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2], |
| 996 | cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5], |
| 997 | cdp->encWWN[6], cdp->encWWN[7]); |
| 998 | ntype += hd.Ntypes; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Now waltz through all the types that are available, getting |
| 1003 | * the type header so we can start adding up the number of |
| 1004 | * objects available. |
| 1005 | */ |
| 1006 | for (nobj = i = 0; i < ntype; i++) { |
| 1007 | if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { |
| 1008 | SES_LOG(ssc, "Can't get Enclosure Type Header %d\n" , i); |
| 1009 | SES_FREE(sdata, SCSZ); |
| 1010 | return (EIO); |
| 1011 | } |
| 1012 | SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc " |
| 1013 | "%d, Text Length %d\n" , i, thdr.enc_type, thdr.enc_maxelt, |
| 1014 | thdr.enc_subenc, thdr.enc_tlen); |
| 1015 | nobj += thdr.enc_maxelt; |
| 1016 | } |
| 1017 | |
| 1018 | |
| 1019 | /* |
| 1020 | * Now allocate the object array and type map. |
| 1021 | */ |
| 1022 | |
| 1023 | ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj)); |
| 1024 | cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx)); |
| 1025 | cc->ses_eltmap = SES_MALLOC(ntype); |
| 1026 | |
| 1027 | if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL || |
| 1028 | cc->ses_eltmap == NULL) { |
| 1029 | if (ssc->ses_objmap) { |
| 1030 | SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj))); |
| 1031 | ssc->ses_objmap = NULL; |
| 1032 | } |
| 1033 | if (cc->ses_typidx) { |
| 1034 | SES_FREE(cc->ses_typidx, |
| 1035 | (nobj * sizeof (struct typidx))); |
| 1036 | cc->ses_typidx = NULL; |
| 1037 | } |
| 1038 | if (cc->ses_eltmap) { |
| 1039 | SES_FREE(cc->ses_eltmap, ntype); |
| 1040 | cc->ses_eltmap = NULL; |
| 1041 | } |
| 1042 | SES_FREE(sdata, SCSZ); |
| 1043 | return (ENOMEM); |
| 1044 | } |
| 1045 | MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj)); |
| 1046 | MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx)); |
| 1047 | MEMZERO(cc->ses_eltmap, ntype); |
| 1048 | cc->ses_ntypes = (uint8_t) ntype; |
| 1049 | ssc->ses_nobjects = nobj; |
| 1050 | |
| 1051 | /* |
| 1052 | * Now waltz through the # of types again to fill in the types |
| 1053 | * (and subenclosure ids) of the allocated objects. |
| 1054 | */ |
| 1055 | nobj = 0; |
| 1056 | for (i = 0; i < ntype; i++) { |
| 1057 | int j; |
| 1058 | if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { |
| 1059 | continue; |
| 1060 | } |
| 1061 | cc->ses_eltmap[i] = thdr.enc_maxelt; |
| 1062 | for (j = 0; j < thdr.enc_maxelt; j++) { |
| 1063 | cc->ses_typidx[nobj].ses_tidx = i; |
| 1064 | cc->ses_typidx[nobj].ses_oidx = j; |
| 1065 | ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc; |
| 1066 | ssc->ses_objmap[nobj++].enctype = thdr.enc_type; |
| 1067 | } |
| 1068 | } |
| 1069 | SES_FREE(sdata, SCSZ); |
| 1070 | return (0); |
| 1071 | } |
| 1072 | |
| 1073 | static int |
| 1074 | ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, |
| 1075 | int in) |
| 1076 | { |
| 1077 | struct sscfg *cc; |
| 1078 | int err, amt, bufsiz, tidx, oidx; |
| 1079 | char cdb[6], *sdata; |
| 1080 | |
| 1081 | cc = ssc->ses_private; |
| 1082 | if (cc == NULL) { |
| 1083 | return (ENXIO); |
| 1084 | } |
| 1085 | |
| 1086 | /* |
| 1087 | * If we're just getting overall enclosure status, |
| 1088 | * we only need 2 bytes of data storage. |
| 1089 | * |
| 1090 | * If we're getting anything else, we know how much |
| 1091 | * storage we need by noting that starting at offset |
| 1092 | * 8 in returned data, all object status bytes are 4 |
| 1093 | * bytes long, and are stored in chunks of types(M) |
| 1094 | * and nth+1 instances of type M. |
| 1095 | */ |
| 1096 | if (objid == -1) { |
| 1097 | bufsiz = 2; |
| 1098 | } else { |
| 1099 | bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8; |
| 1100 | } |
| 1101 | sdata = SES_MALLOC(bufsiz); |
| 1102 | if (sdata == NULL) |
| 1103 | return (ENOMEM); |
| 1104 | |
| 1105 | cdb[0] = RECEIVE_DIAGNOSTIC; |
| 1106 | cdb[1] = 1; |
| 1107 | cdb[2] = SesStatusPage; |
| 1108 | cdb[3] = bufsiz >> 8; |
| 1109 | cdb[4] = bufsiz & 0xff; |
| 1110 | cdb[5] = 0; |
| 1111 | amt = bufsiz; |
| 1112 | err = ses_runcmd(ssc, cdb, 6, sdata, &amt); |
| 1113 | if (err) { |
| 1114 | SES_FREE(sdata, bufsiz); |
| 1115 | return (err); |
| 1116 | } |
| 1117 | amt = bufsiz - amt; |
| 1118 | |
| 1119 | if (objid == -1) { |
| 1120 | tidx = -1; |
| 1121 | oidx = -1; |
| 1122 | } else { |
| 1123 | tidx = cc->ses_typidx[objid].ses_tidx; |
| 1124 | oidx = cc->ses_typidx[objid].ses_oidx; |
| 1125 | } |
| 1126 | if (in) { |
| 1127 | if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { |
| 1128 | err = ENODEV; |
| 1129 | } |
| 1130 | } else { |
| 1131 | if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { |
| 1132 | err = ENODEV; |
| 1133 | } else { |
| 1134 | cdb[0] = SEND_DIAGNOSTIC; |
| 1135 | cdb[1] = 0x10; |
| 1136 | cdb[2] = 0; |
| 1137 | cdb[3] = bufsiz >> 8; |
| 1138 | cdb[4] = bufsiz & 0xff; |
| 1139 | cdb[5] = 0; |
| 1140 | amt = -bufsiz; |
| 1141 | err = ses_runcmd(ssc, cdb, 6, sdata, &amt); |
| 1142 | } |
| 1143 | } |
| 1144 | SES_FREE(sdata, bufsiz); |
| 1145 | return (0); |
| 1146 | } |
| 1147 | |
| 1148 | |
| 1149 | /* |
| 1150 | * Routines to parse returned SES data structures. |
| 1151 | * Architecture and compiler independent. |
| 1152 | */ |
| 1153 | |
| 1154 | static int |
| 1155 | ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp) |
| 1156 | { |
| 1157 | if (buflen < SES_CFGHDR_MINLEN) { |
| 1158 | return (-1); |
| 1159 | } |
| 1160 | gget8(buffer, 1, cfp->Nsubenc); |
| 1161 | gget32(buffer, 4, cfp->GenCode); |
| 1162 | return (0); |
| 1163 | } |
| 1164 | |
| 1165 | static int |
| 1166 | ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp) |
| 1167 | { |
| 1168 | int s, off = 8; |
| 1169 | for (s = 0; s < SubEncId; s++) { |
| 1170 | if (off + 3 > amt) |
| 1171 | return (-1); |
| 1172 | off += buffer[off+3] + 4; |
| 1173 | } |
| 1174 | if (off + 3 > amt) { |
| 1175 | return (-1); |
| 1176 | } |
| 1177 | gget8(buffer, off+1, chp->Subencid); |
| 1178 | gget8(buffer, off+2, chp->Ntypes); |
| 1179 | gget8(buffer, off+3, chp->VEnclen); |
| 1180 | return (0); |
| 1181 | } |
| 1182 | |
| 1183 | static int |
| 1184 | ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp) |
| 1185 | { |
| 1186 | int s, e, enclen, off = 8; |
| 1187 | for (s = 0; s < SubEncId; s++) { |
| 1188 | if (off + 3 > amt) |
| 1189 | return (-1); |
| 1190 | off += buffer[off+3] + 4; |
| 1191 | } |
| 1192 | if (off + 3 > amt) { |
| 1193 | return (-1); |
| 1194 | } |
| 1195 | gget8(buffer, off+3, enclen); |
| 1196 | off += 4; |
| 1197 | if (off >= amt) |
| 1198 | return (-1); |
| 1199 | |
| 1200 | e = off + enclen; |
| 1201 | if (e > amt) { |
| 1202 | e = amt; |
| 1203 | } |
| 1204 | MEMCPY(cdp, &buffer[off], e - off); |
| 1205 | return (0); |
| 1206 | } |
| 1207 | |
| 1208 | static int |
| 1209 | ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp) |
| 1210 | { |
| 1211 | int s, off = 8; |
| 1212 | |
| 1213 | if (amt < SES_CFGHDR_MINLEN) { |
| 1214 | return (-1); |
| 1215 | } |
| 1216 | for (s = 0; s < buffer[1]; s++) { |
| 1217 | if (off + 3 > amt) |
| 1218 | return (-1); |
| 1219 | off += buffer[off+3] + 4; |
| 1220 | } |
| 1221 | if (off + 3 > amt) { |
| 1222 | return (-1); |
| 1223 | } |
| 1224 | off += buffer[off+3] + 4 + (nth * 4); |
| 1225 | if (amt < (off + 4)) |
| 1226 | return (-1); |
| 1227 | |
| 1228 | gget8(buffer, off++, thp->enc_type); |
| 1229 | gget8(buffer, off++, thp->enc_maxelt); |
| 1230 | gget8(buffer, off++, thp->enc_subenc); |
| 1231 | gget8(buffer, off, thp->enc_tlen); |
| 1232 | return (0); |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * This function needs a little explanation. |
| 1237 | * |
| 1238 | * The arguments are: |
| 1239 | * |
| 1240 | * |
| 1241 | * char *b, int amt |
| 1242 | * |
| 1243 | * These describes the raw input SES status data and length. |
| 1244 | * |
| 1245 | * uint8_t *ep |
| 1246 | * |
| 1247 | * This is a map of the number of types for each element type |
| 1248 | * in the enclosure. |
| 1249 | * |
| 1250 | * int elt |
| 1251 | * |
| 1252 | * This is the element type being sought. If elt is -1, |
| 1253 | * then overall enclosure status is being sought. |
| 1254 | * |
| 1255 | * int elm |
| 1256 | * |
| 1257 | * This is the ordinal Mth element of type elt being sought. |
| 1258 | * |
| 1259 | * SesComStat *sp |
| 1260 | * |
| 1261 | * This is the output area to store the status for |
| 1262 | * the Mth element of type Elt. |
| 1263 | */ |
| 1264 | |
| 1265 | static int |
| 1266 | ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) |
| 1267 | { |
| 1268 | int idx, i; |
| 1269 | |
| 1270 | /* |
| 1271 | * If it's overall enclosure status being sought, get that. |
| 1272 | * We need at least 2 bytes of status data to get that. |
| 1273 | */ |
| 1274 | if (elt == -1) { |
| 1275 | if (amt < 2) |
| 1276 | return (-1); |
| 1277 | gget8(b, 1, sp->comstatus); |
| 1278 | sp->comstat[0] = 0; |
| 1279 | sp->comstat[1] = 0; |
| 1280 | sp->comstat[2] = 0; |
| 1281 | return (0); |
| 1282 | } |
| 1283 | |
| 1284 | /* |
| 1285 | * Check to make sure that the Mth element is legal for type Elt. |
| 1286 | */ |
| 1287 | |
| 1288 | if (elm >= ep[elt]) |
| 1289 | return (-1); |
| 1290 | |
| 1291 | /* |
| 1292 | * Starting at offset 8, start skipping over the storage |
| 1293 | * for the element types we're not interested in. |
| 1294 | */ |
| 1295 | for (idx = 8, i = 0; i < elt; i++) { |
| 1296 | idx += ((ep[i] + 1) * 4); |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * Skip over Overall status for this element type. |
| 1301 | */ |
| 1302 | idx += 4; |
| 1303 | |
| 1304 | /* |
| 1305 | * And skip to the index for the Mth element that we're going for. |
| 1306 | */ |
| 1307 | idx += (4 * elm); |
| 1308 | |
| 1309 | /* |
| 1310 | * Make sure we haven't overflowed the buffer. |
| 1311 | */ |
| 1312 | if (idx+4 > amt) |
| 1313 | return (-1); |
| 1314 | |
| 1315 | /* |
| 1316 | * Retrieve the status. |
| 1317 | */ |
| 1318 | gget8(b, idx++, sp->comstatus); |
| 1319 | gget8(b, idx++, sp->comstat[0]); |
| 1320 | gget8(b, idx++, sp->comstat[1]); |
| 1321 | gget8(b, idx++, sp->comstat[2]); |
| 1322 | #if 0 |
| 1323 | PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n" , elt, elm, idx-4); |
| 1324 | #endif |
| 1325 | return (0); |
| 1326 | } |
| 1327 | |
| 1328 | /* |
| 1329 | * This is the mirror function to ses_decode, but we set the 'select' |
| 1330 | * bit for the object which we're interested in. All other objects, |
| 1331 | * after a status fetch, should have that bit off. Hmm. It'd be easy |
| 1332 | * enough to ensure this, so we will. |
| 1333 | */ |
| 1334 | |
| 1335 | static int |
| 1336 | ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) |
| 1337 | { |
| 1338 | int idx, i; |
| 1339 | |
| 1340 | /* |
| 1341 | * If it's overall enclosure status being sought, get that. |
| 1342 | * We need at least 2 bytes of status data to get that. |
| 1343 | */ |
| 1344 | if (elt == -1) { |
| 1345 | if (amt < 2) |
| 1346 | return (-1); |
| 1347 | i = 0; |
| 1348 | sset8(b, i, 0); |
| 1349 | sset8(b, i, sp->comstatus & 0xf); |
| 1350 | #if 0 |
| 1351 | PRINTF("set EncStat %x\n" , sp->comstatus); |
| 1352 | #endif |
| 1353 | return (0); |
| 1354 | } |
| 1355 | |
| 1356 | /* |
| 1357 | * Check to make sure that the Mth element is legal for type Elt. |
| 1358 | */ |
| 1359 | |
| 1360 | if (elm >= ep[elt]) |
| 1361 | return (-1); |
| 1362 | |
| 1363 | /* |
| 1364 | * Starting at offset 8, start skipping over the storage |
| 1365 | * for the element types we're not interested in. |
| 1366 | */ |
| 1367 | for (idx = 8, i = 0; i < elt; i++) { |
| 1368 | idx += ((ep[i] + 1) * 4); |
| 1369 | } |
| 1370 | |
| 1371 | /* |
| 1372 | * Skip over Overall status for this element type. |
| 1373 | */ |
| 1374 | idx += 4; |
| 1375 | |
| 1376 | /* |
| 1377 | * And skip to the index for the Mth element that we're going for. |
| 1378 | */ |
| 1379 | idx += (4 * elm); |
| 1380 | |
| 1381 | /* |
| 1382 | * Make sure we haven't overflowed the buffer. |
| 1383 | */ |
| 1384 | if (idx+4 > amt) |
| 1385 | return (-1); |
| 1386 | |
| 1387 | /* |
| 1388 | * Set the status. |
| 1389 | */ |
| 1390 | sset8(b, idx, sp->comstatus); |
| 1391 | sset8(b, idx, sp->comstat[0]); |
| 1392 | sset8(b, idx, sp->comstat[1]); |
| 1393 | sset8(b, idx, sp->comstat[2]); |
| 1394 | idx -= 4; |
| 1395 | |
| 1396 | #if 0 |
| 1397 | PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n" , |
| 1398 | elt, elm, idx, sp->comstatus, sp->comstat[0], |
| 1399 | sp->comstat[1], sp->comstat[2]); |
| 1400 | #endif |
| 1401 | |
| 1402 | /* |
| 1403 | * Now make sure all other 'Select' bits are off. |
| 1404 | */ |
| 1405 | for (i = 8; i < amt; i += 4) { |
| 1406 | if (i != idx) |
| 1407 | b[i] &= ~0x80; |
| 1408 | } |
| 1409 | /* |
| 1410 | * And make sure the INVOP bit is clear. |
| 1411 | */ |
| 1412 | b[2] &= ~0x10; |
| 1413 | |
| 1414 | return (0); |
| 1415 | } |
| 1416 | |
| 1417 | /* |
| 1418 | * SAF-TE Type Device Emulation |
| 1419 | */ |
| 1420 | |
| 1421 | static int safte_getconfig(ses_softc_t *); |
| 1422 | static int safte_rdstat(ses_softc_t *, int); |
| 1423 | static int set_objstat_sel(ses_softc_t *, ses_objstat *, int); |
| 1424 | static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int); |
| 1425 | static void wrslot_stat(ses_softc_t *, int); |
| 1426 | static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int); |
| 1427 | |
| 1428 | #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \ |
| 1429 | SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO) |
| 1430 | /* |
| 1431 | * SAF-TE specific defines- Mandatory ones only... |
| 1432 | */ |
| 1433 | |
| 1434 | /* |
| 1435 | * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb |
| 1436 | */ |
| 1437 | #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */ |
| 1438 | #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */ |
| 1439 | #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */ |
| 1440 | |
| 1441 | /* |
| 1442 | * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf |
| 1443 | */ |
| 1444 | #define SAFTE_WT_DSTAT 0x10 /* write device slot status */ |
| 1445 | #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */ |
| 1446 | #define SAFTE_WT_FANSPD 0x13 /* set fan speed */ |
| 1447 | #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */ |
| 1448 | #define SAFTE_WT_GLOBAL 0x15 /* send global command */ |
| 1449 | |
| 1450 | |
| 1451 | #define SAFT_SCRATCH 64 |
| 1452 | #define NPSEUDO_THERM 16 |
| 1453 | #define NPSEUDO_ALARM 1 |
| 1454 | struct scfg { |
| 1455 | /* |
| 1456 | * Cached Configuration |
| 1457 | */ |
| 1458 | uint8_t Nfans; /* Number of Fans */ |
| 1459 | uint8_t Npwr; /* Number of Power Supplies */ |
| 1460 | uint8_t Nslots; /* Number of Device Slots */ |
| 1461 | uint8_t DoorLock; /* Door Lock Installed */ |
| 1462 | uint8_t Ntherm; /* Number of Temperature Sensors */ |
| 1463 | uint8_t Nspkrs; /* Number of Speakers */ |
| 1464 | uint8_t Nalarm; /* Number of Alarms (at least one) */ |
| 1465 | /* |
| 1466 | * Cached Flag Bytes for Global Status |
| 1467 | */ |
| 1468 | uint8_t flag1; |
| 1469 | uint8_t flag2; |
| 1470 | /* |
| 1471 | * What object index ID is where various slots start. |
| 1472 | */ |
| 1473 | uint8_t pwroff; |
| 1474 | uint8_t slotoff; |
| 1475 | #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1 |
| 1476 | }; |
| 1477 | |
| 1478 | #define SAFT_FLG1_ALARM 0x1 |
| 1479 | #define SAFT_FLG1_GLOBFAIL 0x2 |
| 1480 | #define SAFT_FLG1_GLOBWARN 0x4 |
| 1481 | #define SAFT_FLG1_ENCPWROFF 0x8 |
| 1482 | #define SAFT_FLG1_ENCFANFAIL 0x10 |
| 1483 | #define SAFT_FLG1_ENCPWRFAIL 0x20 |
| 1484 | #define SAFT_FLG1_ENCDRVFAIL 0x40 |
| 1485 | #define SAFT_FLG1_ENCDRVWARN 0x80 |
| 1486 | |
| 1487 | #define SAFT_FLG2_LOCKDOOR 0x4 |
| 1488 | #define SAFT_PRIVATE sizeof (struct scfg) |
| 1489 | |
| 1490 | static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n" ; |
| 1491 | #define SAFT_BAIL(r, x, k, l) \ |
| 1492 | if (r >= x) { \ |
| 1493 | SES_LOG(ssc, safte_2little, x, __LINE__);\ |
| 1494 | SES_FREE(k, l); \ |
| 1495 | return (EIO); \ |
| 1496 | } |
| 1497 | |
| 1498 | |
| 1499 | static int |
| 1500 | safte_softc_init(ses_softc_t *ssc, int doinit) |
| 1501 | { |
| 1502 | int err, i, r; |
| 1503 | struct scfg *cc; |
| 1504 | |
| 1505 | if (doinit == 0) { |
| 1506 | if (ssc->ses_nobjects) { |
| 1507 | if (ssc->ses_objmap) { |
| 1508 | SES_FREE(ssc->ses_objmap, |
| 1509 | ssc->ses_nobjects * sizeof (encobj)); |
| 1510 | ssc->ses_objmap = NULL; |
| 1511 | } |
| 1512 | ssc->ses_nobjects = 0; |
| 1513 | } |
| 1514 | if (ssc->ses_private) { |
| 1515 | SES_FREE(ssc->ses_private, SAFT_PRIVATE); |
| 1516 | ssc->ses_private = NULL; |
| 1517 | } |
| 1518 | return (0); |
| 1519 | } |
| 1520 | |
| 1521 | if (ssc->ses_private == NULL) { |
| 1522 | ssc->ses_private = SES_MALLOC(SAFT_PRIVATE); |
| 1523 | if (ssc->ses_private == NULL) { |
| 1524 | return (ENOMEM); |
| 1525 | } |
| 1526 | MEMZERO(ssc->ses_private, SAFT_PRIVATE); |
| 1527 | } |
| 1528 | |
| 1529 | ssc->ses_nobjects = 0; |
| 1530 | ssc->ses_encstat = 0; |
| 1531 | |
| 1532 | if ((err = safte_getconfig(ssc)) != 0) { |
| 1533 | return (err); |
| 1534 | } |
| 1535 | |
| 1536 | /* |
| 1537 | * The number of objects here, as well as that reported by the |
| 1538 | * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15) |
| 1539 | * that get reported during READ_BUFFER/READ_ENC_STATUS. |
| 1540 | */ |
| 1541 | cc = ssc->ses_private; |
| 1542 | ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock + |
| 1543 | cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM; |
| 1544 | ssc->ses_objmap = (encobj *) |
| 1545 | SES_MALLOC(ssc->ses_nobjects * sizeof (encobj)); |
| 1546 | if (ssc->ses_objmap == NULL) { |
| 1547 | return (ENOMEM); |
| 1548 | } |
| 1549 | MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj)); |
| 1550 | |
| 1551 | r = 0; |
| 1552 | /* |
| 1553 | * Note that this is all arranged for the convenience |
| 1554 | * in later fetches of status. |
| 1555 | */ |
| 1556 | for (i = 0; i < cc->Nfans; i++) |
| 1557 | ssc->ses_objmap[r++].enctype = SESTYP_FAN; |
| 1558 | cc->pwroff = (uint8_t) r; |
| 1559 | for (i = 0; i < cc->Npwr; i++) |
| 1560 | ssc->ses_objmap[r++].enctype = SESTYP_POWER; |
| 1561 | for (i = 0; i < cc->DoorLock; i++) |
| 1562 | ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK; |
| 1563 | for (i = 0; i < cc->Nspkrs; i++) |
| 1564 | ssc->ses_objmap[r++].enctype = SESTYP_ALARM; |
| 1565 | for (i = 0; i < cc->Ntherm; i++) |
| 1566 | ssc->ses_objmap[r++].enctype = SESTYP_THERM; |
| 1567 | for (i = 0; i < NPSEUDO_THERM; i++) |
| 1568 | ssc->ses_objmap[r++].enctype = SESTYP_THERM; |
| 1569 | ssc->ses_objmap[r++].enctype = SESTYP_ALARM; |
| 1570 | cc->slotoff = (uint8_t) r; |
| 1571 | for (i = 0; i < cc->Nslots; i++) |
| 1572 | ssc->ses_objmap[r++].enctype = SESTYP_DEVICE; |
| 1573 | return (0); |
| 1574 | } |
| 1575 | |
| 1576 | static int |
| 1577 | safte_init_enc(ses_softc_t *ssc) |
| 1578 | { |
| 1579 | int err, amt; |
| 1580 | char *sdata; |
| 1581 | static char cdb0[6] = { SEND_DIAGNOSTIC }; |
| 1582 | static char cdb[10] = |
| 1583 | { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; |
| 1584 | |
| 1585 | sdata = SES_MALLOC(SAFT_SCRATCH); |
| 1586 | if (sdata == NULL) |
| 1587 | return (ENOMEM); |
| 1588 | |
| 1589 | err = ses_runcmd(ssc, cdb0, 6, NULL, 0); |
| 1590 | if (err) { |
| 1591 | SES_FREE(sdata, SAFT_SCRATCH); |
| 1592 | return (err); |
| 1593 | } |
| 1594 | sdata[0] = SAFTE_WT_GLOBAL; |
| 1595 | MEMZERO(&sdata[1], 15); |
| 1596 | amt = -SAFT_SCRATCH; |
| 1597 | err = ses_runcmd(ssc, cdb, 10, sdata, &amt); |
| 1598 | SES_FREE(sdata, SAFT_SCRATCH); |
| 1599 | return (err); |
| 1600 | } |
| 1601 | |
| 1602 | static int |
| 1603 | safte_get_encstat(ses_softc_t *ssc, int slpflg) |
| 1604 | { |
| 1605 | return (safte_rdstat(ssc, slpflg)); |
| 1606 | } |
| 1607 | |
| 1608 | static int |
| 1609 | safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg) |
| 1610 | { |
| 1611 | struct scfg *cc = ssc->ses_private; |
| 1612 | if (cc == NULL) |
| 1613 | return (0); |
| 1614 | /* |
| 1615 | * Since SAF-TE devices aren't necessarily sticky in terms |
| 1616 | * of state, make our soft copy of enclosure status 'sticky'- |
| 1617 | * that is, things set in enclosure status stay set (as implied |
| 1618 | * by conditions set in reading object status) until cleared. |
| 1619 | */ |
| 1620 | ssc->ses_encstat &= ~ALL_ENC_STAT; |
| 1621 | ssc->ses_encstat |= (encstat & ALL_ENC_STAT); |
| 1622 | ssc->ses_encstat |= ENCI_SVALID; |
| 1623 | cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN); |
| 1624 | if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) { |
| 1625 | cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL; |
| 1626 | } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) { |
| 1627 | cc->flag1 |= SAFT_FLG1_GLOBWARN; |
| 1628 | } |
| 1629 | return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg)); |
| 1630 | } |
| 1631 | |
| 1632 | static int |
| 1633 | safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg) |
| 1634 | { |
| 1635 | int i = (int)obp->obj_id; |
| 1636 | |
| 1637 | if ((ssc->ses_encstat & ENCI_SVALID) == 0 || |
| 1638 | (ssc->ses_objmap[i].svalid) == 0) { |
| 1639 | int err = safte_rdstat(ssc, slpflg); |
| 1640 | if (err) |
| 1641 | return (err); |
| 1642 | } |
| 1643 | obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; |
| 1644 | obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; |
| 1645 | obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; |
| 1646 | obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; |
| 1647 | return (0); |
| 1648 | } |
| 1649 | |
| 1650 | |
| 1651 | static int |
| 1652 | safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp) |
| 1653 | { |
| 1654 | int idx, err; |
| 1655 | encobj *ep; |
| 1656 | struct scfg *cc; |
| 1657 | |
| 1658 | |
| 1659 | SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n" , |
| 1660 | (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2], |
| 1661 | obp->cstat[3]); |
| 1662 | |
| 1663 | /* |
| 1664 | * If this is clear, we don't do diddly. |
| 1665 | */ |
| 1666 | if ((obp->cstat[0] & SESCTL_CSEL) == 0) { |
| 1667 | return (0); |
| 1668 | } |
| 1669 | |
| 1670 | err = 0; |
| 1671 | /* |
| 1672 | * Check to see if the common bits are set and do them first. |
| 1673 | */ |
| 1674 | if (obp->cstat[0] & ~SESCTL_CSEL) { |
| 1675 | err = set_objstat_sel(ssc, obp, slp); |
| 1676 | if (err) |
| 1677 | return (err); |
| 1678 | } |
| 1679 | |
| 1680 | cc = ssc->ses_private; |
| 1681 | if (cc == NULL) |
| 1682 | return (0); |
| 1683 | |
| 1684 | idx = (int)obp->obj_id; |
| 1685 | ep = &ssc->ses_objmap[idx]; |
| 1686 | |
| 1687 | switch (ep->enctype) { |
| 1688 | case SESTYP_DEVICE: |
| 1689 | { |
| 1690 | uint8_t slotop = 0; |
| 1691 | /* |
| 1692 | * XXX: I should probably cache the previous state |
| 1693 | * XXX: of SESCTL_DEVOFF so that when it goes from |
| 1694 | * XXX: true to false I can then set PREPARE FOR OPERATION |
| 1695 | * XXX: flag in PERFORM SLOT OPERATION write buffer command. |
| 1696 | */ |
| 1697 | if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) { |
| 1698 | slotop |= 0x2; |
| 1699 | } |
| 1700 | if (obp->cstat[2] & SESCTL_RQSID) { |
| 1701 | slotop |= 0x4; |
| 1702 | } |
| 1703 | err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff, |
| 1704 | slotop, slp); |
| 1705 | if (err) |
| 1706 | return (err); |
| 1707 | if (obp->cstat[3] & SESCTL_RQSFLT) { |
| 1708 | ep->priv |= 0x2; |
| 1709 | } else { |
| 1710 | ep->priv &= ~0x2; |
| 1711 | } |
| 1712 | if (ep->priv & 0xc6) { |
| 1713 | ep->priv &= ~0x1; |
| 1714 | } else { |
| 1715 | ep->priv |= 0x1; /* no errors */ |
| 1716 | } |
| 1717 | wrslot_stat(ssc, slp); |
| 1718 | break; |
| 1719 | } |
| 1720 | case SESTYP_POWER: |
| 1721 | if (obp->cstat[3] & SESCTL_RQSTFAIL) { |
| 1722 | cc->flag1 |= SAFT_FLG1_ENCPWRFAIL; |
| 1723 | } else { |
| 1724 | cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL; |
| 1725 | } |
| 1726 | err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, |
| 1727 | cc->flag2, 0, slp); |
| 1728 | if (err) |
| 1729 | return (err); |
| 1730 | if (obp->cstat[3] & SESCTL_RQSTON) { |
| 1731 | (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, |
| 1732 | idx - cc->pwroff, 0, 0, slp); |
| 1733 | } else { |
| 1734 | (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, |
| 1735 | idx - cc->pwroff, 0, 1, slp); |
| 1736 | } |
| 1737 | break; |
| 1738 | case SESTYP_FAN: |
| 1739 | if (obp->cstat[3] & SESCTL_RQSTFAIL) { |
| 1740 | cc->flag1 |= SAFT_FLG1_ENCFANFAIL; |
| 1741 | } else { |
| 1742 | cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL; |
| 1743 | } |
| 1744 | err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, |
| 1745 | cc->flag2, 0, slp); |
| 1746 | if (err) |
| 1747 | return (err); |
| 1748 | if (obp->cstat[3] & SESCTL_RQSTON) { |
| 1749 | uint8_t fsp; |
| 1750 | if ((obp->cstat[3] & 0x7) == 7) { |
| 1751 | fsp = 4; |
| 1752 | } else if ((obp->cstat[3] & 0x7) == 6) { |
| 1753 | fsp = 3; |
| 1754 | } else if ((obp->cstat[3] & 0x7) == 4) { |
| 1755 | fsp = 2; |
| 1756 | } else { |
| 1757 | fsp = 1; |
| 1758 | } |
| 1759 | (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp); |
| 1760 | } else { |
| 1761 | (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); |
| 1762 | } |
| 1763 | break; |
| 1764 | case SESTYP_DOORLOCK: |
| 1765 | if (obp->cstat[3] & 0x1) { |
| 1766 | cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; |
| 1767 | } else { |
| 1768 | cc->flag2 |= SAFT_FLG2_LOCKDOOR; |
| 1769 | } |
| 1770 | (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, |
| 1771 | cc->flag2, 0, slp); |
| 1772 | break; |
| 1773 | case SESTYP_ALARM: |
| 1774 | /* |
| 1775 | * On all nonzero but the 'muted' bit, we turn on the alarm, |
| 1776 | */ |
| 1777 | obp->cstat[3] &= ~0xa; |
| 1778 | if (obp->cstat[3] & 0x40) { |
| 1779 | cc->flag2 &= ~SAFT_FLG1_ALARM; |
| 1780 | } else if (obp->cstat[3] != 0) { |
| 1781 | cc->flag2 |= SAFT_FLG1_ALARM; |
| 1782 | } else { |
| 1783 | cc->flag2 &= ~SAFT_FLG1_ALARM; |
| 1784 | } |
| 1785 | ep->priv = obp->cstat[3]; |
| 1786 | (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, |
| 1787 | cc->flag2, 0, slp); |
| 1788 | break; |
| 1789 | default: |
| 1790 | break; |
| 1791 | } |
| 1792 | ep->svalid = 0; |
| 1793 | return (0); |
| 1794 | } |
| 1795 | |
| 1796 | static int |
| 1797 | safte_getconfig(ses_softc_t *ssc) |
| 1798 | { |
| 1799 | struct scfg *cfg; |
| 1800 | int err, amt; |
| 1801 | char *sdata; |
| 1802 | static char cdb[10] = |
| 1803 | { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; |
| 1804 | |
| 1805 | cfg = ssc->ses_private; |
| 1806 | if (cfg == NULL) |
| 1807 | return (ENXIO); |
| 1808 | |
| 1809 | sdata = SES_MALLOC(SAFT_SCRATCH); |
| 1810 | if (sdata == NULL) |
| 1811 | return (ENOMEM); |
| 1812 | |
| 1813 | amt = SAFT_SCRATCH; |
| 1814 | err = ses_runcmd(ssc, cdb, 10, sdata, &amt); |
| 1815 | if (err) { |
| 1816 | SES_FREE(sdata, SAFT_SCRATCH); |
| 1817 | return (err); |
| 1818 | } |
| 1819 | amt = SAFT_SCRATCH - amt; |
| 1820 | if (amt < 6) { |
| 1821 | SES_LOG(ssc, "too little data (%d) for configuration\n" , amt); |
| 1822 | SES_FREE(sdata, SAFT_SCRATCH); |
| 1823 | return (EIO); |
| 1824 | } |
| 1825 | SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n" , |
| 1826 | sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]); |
| 1827 | cfg->Nfans = sdata[0]; |
| 1828 | cfg->Npwr = sdata[1]; |
| 1829 | cfg->Nslots = sdata[2]; |
| 1830 | cfg->DoorLock = sdata[3]; |
| 1831 | cfg->Ntherm = sdata[4]; |
| 1832 | cfg->Nspkrs = sdata[5]; |
| 1833 | cfg->Nalarm = NPSEUDO_ALARM; |
| 1834 | SES_FREE(sdata, SAFT_SCRATCH); |
| 1835 | return (0); |
| 1836 | } |
| 1837 | |
| 1838 | static int |
| 1839 | safte_rdstat(ses_softc_t *ssc, int slpflg) |
| 1840 | { |
| 1841 | int err, oid, r, i, hiwater, nitems, amt; |
| 1842 | uint16_t tempflags; |
| 1843 | size_t buflen; |
| 1844 | uint8_t status, oencstat; |
| 1845 | char *sdata, cdb[10]; |
| 1846 | struct scfg *cc = ssc->ses_private; |
| 1847 | |
| 1848 | |
| 1849 | /* |
| 1850 | * The number of objects overstates things a bit, |
| 1851 | * both for the bogus 'thermometer' entries and |
| 1852 | * the drive status (which isn't read at the same |
| 1853 | * time as the enclosure status), but that's okay. |
| 1854 | */ |
| 1855 | buflen = 4 * cc->Nslots; |
| 1856 | if (ssc->ses_nobjects > buflen) |
| 1857 | buflen = ssc->ses_nobjects; |
| 1858 | sdata = SES_MALLOC(buflen); |
| 1859 | if (sdata == NULL) |
| 1860 | return (ENOMEM); |
| 1861 | |
| 1862 | cdb[0] = READ_BUFFER; |
| 1863 | cdb[1] = 1; |
| 1864 | cdb[2] = SAFTE_RD_RDESTS; |
| 1865 | cdb[3] = 0; |
| 1866 | cdb[4] = 0; |
| 1867 | cdb[5] = 0; |
| 1868 | cdb[6] = 0; |
| 1869 | cdb[7] = (buflen >> 8) & 0xff; |
| 1870 | cdb[8] = buflen & 0xff; |
| 1871 | cdb[9] = 0; |
| 1872 | amt = buflen; |
| 1873 | err = ses_runcmd(ssc, cdb, 10, sdata, &amt); |
| 1874 | if (err) { |
| 1875 | SES_FREE(sdata, buflen); |
| 1876 | return (err); |
| 1877 | } |
| 1878 | hiwater = buflen - amt; |
| 1879 | |
| 1880 | |
| 1881 | /* |
| 1882 | * invalidate all status bits. |
| 1883 | */ |
| 1884 | for (i = 0; i < ssc->ses_nobjects; i++) |
| 1885 | ssc->ses_objmap[i].svalid = 0; |
| 1886 | oencstat = ssc->ses_encstat & ALL_ENC_STAT; |
| 1887 | ssc->ses_encstat = 0; |
| 1888 | |
| 1889 | |
| 1890 | /* |
| 1891 | * Now parse returned buffer. |
| 1892 | * If we didn't get enough data back, |
| 1893 | * that's considered a fatal error. |
| 1894 | */ |
| 1895 | oid = r = 0; |
| 1896 | |
| 1897 | for (nitems = i = 0; i < cc->Nfans; i++) { |
| 1898 | SAFT_BAIL(r, hiwater, sdata, buflen); |
| 1899 | /* |
| 1900 | * 0 = Fan Operational |
| 1901 | * 1 = Fan is malfunctioning |
| 1902 | * 2 = Fan is not present |
| 1903 | * 0x80 = Unknown or Not Reportable Status |
| 1904 | */ |
| 1905 | ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ |
| 1906 | ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ |
| 1907 | switch ((int)(uint8_t)sdata[r]) { |
| 1908 | case 0: |
| 1909 | nitems++; |
| 1910 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 1911 | /* |
| 1912 | * We could get fancier and cache |
| 1913 | * fan speeds that we have set, but |
| 1914 | * that isn't done now. |
| 1915 | */ |
| 1916 | ssc->ses_objmap[oid].encstat[3] = 7; |
| 1917 | break; |
| 1918 | |
| 1919 | case 1: |
| 1920 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; |
| 1921 | /* |
| 1922 | * FAIL and FAN STOPPED synthesized |
| 1923 | */ |
| 1924 | ssc->ses_objmap[oid].encstat[3] = 0x40; |
| 1925 | /* |
| 1926 | * Enclosure marked with CRITICAL error |
| 1927 | * if only one fan or no thermometers, |
| 1928 | * else the NONCRITICAL error is set. |
| 1929 | */ |
| 1930 | if (cc->Nfans == 1 || cc->Ntherm == 0) |
| 1931 | ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; |
| 1932 | else |
| 1933 | ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; |
| 1934 | break; |
| 1935 | case 2: |
| 1936 | ssc->ses_objmap[oid].encstat[0] = |
| 1937 | SES_OBJSTAT_NOTINSTALLED; |
| 1938 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 1939 | /* |
| 1940 | * Enclosure marked with CRITICAL error |
| 1941 | * if only one fan or no thermometers, |
| 1942 | * else the NONCRITICAL error is set. |
| 1943 | */ |
| 1944 | if (cc->Nfans == 1) |
| 1945 | ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; |
| 1946 | else |
| 1947 | ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; |
| 1948 | break; |
| 1949 | case 0x80: |
| 1950 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; |
| 1951 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 1952 | ssc->ses_encstat |= SES_ENCSTAT_INFO; |
| 1953 | break; |
| 1954 | default: |
| 1955 | ssc->ses_objmap[oid].encstat[0] = |
| 1956 | SES_OBJSTAT_UNSUPPORTED; |
| 1957 | SES_LOG(ssc, "Unknown fan%d status 0x%x\n" , i, |
| 1958 | sdata[r] & 0xff); |
| 1959 | break; |
| 1960 | } |
| 1961 | ssc->ses_objmap[oid++].svalid = 1; |
| 1962 | r++; |
| 1963 | } |
| 1964 | |
| 1965 | /* |
| 1966 | * No matter how you cut it, no cooling elements when there |
| 1967 | * should be some there is critical. |
| 1968 | */ |
| 1969 | if (cc->Nfans && nitems == 0) { |
| 1970 | ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; |
| 1971 | } |
| 1972 | |
| 1973 | |
| 1974 | for (i = 0; i < cc->Npwr; i++) { |
| 1975 | SAFT_BAIL(r, hiwater, sdata, buflen); |
| 1976 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; |
| 1977 | ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ |
| 1978 | ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ |
| 1979 | ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */ |
| 1980 | switch ((uint8_t)sdata[r]) { |
| 1981 | case 0x00: /* pws operational and on */ |
| 1982 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 1983 | break; |
| 1984 | case 0x01: /* pws operational and off */ |
| 1985 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 1986 | ssc->ses_objmap[oid].encstat[3] = 0x10; |
| 1987 | ssc->ses_encstat |= SES_ENCSTAT_INFO; |
| 1988 | break; |
| 1989 | case 0x10: /* pws is malfunctioning and commanded on */ |
| 1990 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; |
| 1991 | ssc->ses_objmap[oid].encstat[3] = 0x61; |
| 1992 | ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; |
| 1993 | break; |
| 1994 | |
| 1995 | case 0x11: /* pws is malfunctioning and commanded off */ |
| 1996 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; |
| 1997 | ssc->ses_objmap[oid].encstat[3] = 0x51; |
| 1998 | ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; |
| 1999 | break; |
| 2000 | case 0x20: /* pws is not present */ |
| 2001 | ssc->ses_objmap[oid].encstat[0] = |
| 2002 | SES_OBJSTAT_NOTINSTALLED; |
| 2003 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2004 | ssc->ses_encstat |= SES_ENCSTAT_INFO; |
| 2005 | break; |
| 2006 | case 0x21: /* pws is present */ |
| 2007 | /* |
| 2008 | * This is for enclosures that cannot tell whether the |
| 2009 | * device is on or malfunctioning, but know that it is |
| 2010 | * present. Just fall through. |
| 2011 | */ |
| 2012 | /* FALLTHROUGH */ |
| 2013 | case 0x80: /* Unknown or Not Reportable Status */ |
| 2014 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; |
| 2015 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2016 | ssc->ses_encstat |= SES_ENCSTAT_INFO; |
| 2017 | break; |
| 2018 | default: |
| 2019 | SES_LOG(ssc, "unknown power supply %d status (0x%x)\n" , |
| 2020 | i, sdata[r] & 0xff); |
| 2021 | break; |
| 2022 | } |
| 2023 | ssc->ses_objmap[oid++].svalid = 1; |
| 2024 | r++; |
| 2025 | } |
| 2026 | |
| 2027 | /* |
| 2028 | * Skip over Slot SCSI IDs |
| 2029 | */ |
| 2030 | r += cc->Nslots; |
| 2031 | |
| 2032 | /* |
| 2033 | * We always have doorlock status, no matter what, |
| 2034 | * but we only save the status if we have one. |
| 2035 | */ |
| 2036 | SAFT_BAIL(r, hiwater, sdata, buflen); |
| 2037 | if (cc->DoorLock) { |
| 2038 | /* |
| 2039 | * 0 = Door Locked |
| 2040 | * 1 = Door Unlocked, or no Lock Installed |
| 2041 | * 0x80 = Unknown or Not Reportable Status |
| 2042 | */ |
| 2043 | ssc->ses_objmap[oid].encstat[1] = 0; |
| 2044 | ssc->ses_objmap[oid].encstat[2] = 0; |
| 2045 | switch ((uint8_t)sdata[r]) { |
| 2046 | case 0: |
| 2047 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 2048 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2049 | break; |
| 2050 | case 1: |
| 2051 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 2052 | ssc->ses_objmap[oid].encstat[3] = 1; |
| 2053 | break; |
| 2054 | case 0x80: |
| 2055 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; |
| 2056 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2057 | ssc->ses_encstat |= SES_ENCSTAT_INFO; |
| 2058 | break; |
| 2059 | default: |
| 2060 | ssc->ses_objmap[oid].encstat[0] = |
| 2061 | SES_OBJSTAT_UNSUPPORTED; |
| 2062 | SES_LOG(ssc, "unknown lock status 0x%x\n" , |
| 2063 | sdata[r] & 0xff); |
| 2064 | break; |
| 2065 | } |
| 2066 | ssc->ses_objmap[oid++].svalid = 1; |
| 2067 | } |
| 2068 | r++; |
| 2069 | |
| 2070 | /* |
| 2071 | * We always have speaker status, no matter what, |
| 2072 | * but we only save the status if we have one. |
| 2073 | */ |
| 2074 | SAFT_BAIL(r, hiwater, sdata, buflen); |
| 2075 | if (cc->Nspkrs) { |
| 2076 | ssc->ses_objmap[oid].encstat[1] = 0; |
| 2077 | ssc->ses_objmap[oid].encstat[2] = 0; |
| 2078 | if (sdata[r] == 1) { |
| 2079 | /* |
| 2080 | * We need to cache tone urgency indicators. |
| 2081 | * Someday. |
| 2082 | */ |
| 2083 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; |
| 2084 | ssc->ses_objmap[oid].encstat[3] = 0x8; |
| 2085 | ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; |
| 2086 | } else if (sdata[r] == 0) { |
| 2087 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 2088 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2089 | } else { |
| 2090 | ssc->ses_objmap[oid].encstat[0] = |
| 2091 | SES_OBJSTAT_UNSUPPORTED; |
| 2092 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2093 | SES_LOG(ssc, "unknown spkr status 0x%x\n" , |
| 2094 | sdata[r] & 0xff); |
| 2095 | } |
| 2096 | ssc->ses_objmap[oid++].svalid = 1; |
| 2097 | } |
| 2098 | r++; |
| 2099 | |
| 2100 | for (i = 0; i < cc->Ntherm; i++) { |
| 2101 | SAFT_BAIL(r, hiwater, sdata, buflen); |
| 2102 | /* |
| 2103 | * Status is a range from -10 to 245 deg Celsius, |
| 2104 | * which we need to normalize to -20 to -245 according |
| 2105 | * to the latest SCSI spec, which makes little |
| 2106 | * sense since this would overflow an 8bit value. |
| 2107 | * Well, still, the base normalization is -20, |
| 2108 | * not -10, so we have to adjust. |
| 2109 | * |
| 2110 | * So what's over and under temperature? |
| 2111 | * Hmm- we'll state that 'normal' operating |
| 2112 | * is 10 to 40 deg Celsius. |
| 2113 | */ |
| 2114 | |
| 2115 | /* |
| 2116 | * Actually.... All of the units that people out in the world |
| 2117 | * seem to have do not come even close to setting a value that |
| 2118 | * complies with this spec. |
| 2119 | * |
| 2120 | * The closest explanation I could find was in an |
| 2121 | * LSI-Logic manual, which seemed to indicate that |
| 2122 | * this value would be set by whatever the I2C code |
| 2123 | * would interpolate from the output of an LM75 |
| 2124 | * temperature sensor. |
| 2125 | * |
| 2126 | * This means that it is impossible to use the actual |
| 2127 | * numeric value to predict anything. But we don't want |
| 2128 | * to lose the value. So, we'll propagate the *uncorrected* |
| 2129 | * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the |
| 2130 | * temperature flags for warnings. |
| 2131 | */ |
| 2132 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL; |
| 2133 | ssc->ses_objmap[oid].encstat[1] = 0; |
| 2134 | ssc->ses_objmap[oid].encstat[2] = sdata[r]; |
| 2135 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2136 | ssc->ses_objmap[oid++].svalid = 1; |
| 2137 | r++; |
| 2138 | } |
| 2139 | |
| 2140 | /* |
| 2141 | * Now, for "pseudo" thermometers, we have two bytes |
| 2142 | * of information in enclosure status- 16 bits. Actually, |
| 2143 | * the MSB is a single TEMP ALERT flag indicating whether |
| 2144 | * any other bits are set, but, thanks to fuzzy thinking, |
| 2145 | * in the SAF-TE spec, this can also be set even if no |
| 2146 | * other bits are set, thus making this really another |
| 2147 | * binary temperature sensor. |
| 2148 | */ |
| 2149 | |
| 2150 | SAFT_BAIL(r, hiwater, sdata, buflen); |
| 2151 | tempflags = sdata[r++]; |
| 2152 | SAFT_BAIL(r, hiwater, sdata, buflen); |
| 2153 | tempflags |= (tempflags << 8) | sdata[r++]; |
| 2154 | |
| 2155 | for (i = 0; i < NPSEUDO_THERM; i++) { |
| 2156 | ssc->ses_objmap[oid].encstat[1] = 0; |
| 2157 | if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) { |
| 2158 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; |
| 2159 | ssc->ses_objmap[4].encstat[2] = 0xff; |
| 2160 | /* |
| 2161 | * Set 'over temperature' failure. |
| 2162 | */ |
| 2163 | ssc->ses_objmap[oid].encstat[3] = 8; |
| 2164 | ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; |
| 2165 | } else { |
| 2166 | /* |
| 2167 | * We used to say 'not available' and synthesize a |
| 2168 | * nominal 30 deg (C)- that was wrong. Actually, |
| 2169 | * Just say 'OK', and use the reserved value of |
| 2170 | * zero. |
| 2171 | */ |
| 2172 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 2173 | ssc->ses_objmap[oid].encstat[2] = 0; |
| 2174 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2175 | } |
| 2176 | ssc->ses_objmap[oid++].svalid = 1; |
| 2177 | } |
| 2178 | |
| 2179 | /* |
| 2180 | * Get alarm status. |
| 2181 | */ |
| 2182 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 2183 | ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv; |
| 2184 | ssc->ses_objmap[oid++].svalid = 1; |
| 2185 | |
| 2186 | /* |
| 2187 | * Now get drive slot status |
| 2188 | */ |
| 2189 | cdb[2] = SAFTE_RD_RDDSTS; |
| 2190 | amt = buflen; |
| 2191 | err = ses_runcmd(ssc, cdb, 10, sdata, &amt); |
| 2192 | if (err) { |
| 2193 | SES_FREE(sdata, buflen); |
| 2194 | return (err); |
| 2195 | } |
| 2196 | hiwater = buflen - amt; |
| 2197 | for (r = i = 0; i < cc->Nslots; i++, r += 4) { |
| 2198 | SAFT_BAIL(r+3, hiwater, sdata, buflen); |
| 2199 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED; |
| 2200 | ssc->ses_objmap[oid].encstat[1] = (uint8_t) i; |
| 2201 | ssc->ses_objmap[oid].encstat[2] = 0; |
| 2202 | ssc->ses_objmap[oid].encstat[3] = 0; |
| 2203 | status = sdata[r+3]; |
| 2204 | if ((status & 0x1) == 0) { /* no device */ |
| 2205 | ssc->ses_objmap[oid].encstat[0] = |
| 2206 | SES_OBJSTAT_NOTINSTALLED; |
| 2207 | } else { |
| 2208 | ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; |
| 2209 | } |
| 2210 | if (status & 0x2) { |
| 2211 | ssc->ses_objmap[oid].encstat[2] = 0x8; |
| 2212 | } |
| 2213 | if ((status & 0x4) == 0) { |
| 2214 | ssc->ses_objmap[oid].encstat[3] = 0x10; |
| 2215 | } |
| 2216 | ssc->ses_objmap[oid++].svalid = 1; |
| 2217 | } |
| 2218 | /* see comment below about sticky enclosure status */ |
| 2219 | ssc->ses_encstat |= ENCI_SVALID | oencstat; |
| 2220 | SES_FREE(sdata, buflen); |
| 2221 | return (0); |
| 2222 | } |
| 2223 | |
| 2224 | static int |
| 2225 | set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp) |
| 2226 | { |
| 2227 | int idx; |
| 2228 | encobj *ep; |
| 2229 | struct scfg *cc = ssc->ses_private; |
| 2230 | |
| 2231 | if (cc == NULL) |
| 2232 | return (0); |
| 2233 | |
| 2234 | idx = (int)obp->obj_id; |
| 2235 | ep = &ssc->ses_objmap[idx]; |
| 2236 | |
| 2237 | switch (ep->enctype) { |
| 2238 | case SESTYP_DEVICE: |
| 2239 | if (obp->cstat[0] & SESCTL_PRDFAIL) { |
| 2240 | ep->priv |= 0x40; |
| 2241 | } |
| 2242 | /* SESCTL_RSTSWAP has no correspondence in SAF-TE */ |
| 2243 | if (obp->cstat[0] & SESCTL_DISABLE) { |
| 2244 | ep->priv |= 0x80; |
| 2245 | /* |
| 2246 | * Hmm. Try to set the 'No Drive' flag. |
| 2247 | * Maybe that will count as a 'disable'. |
| 2248 | */ |
| 2249 | } |
| 2250 | if (ep->priv & 0xc6) { |
| 2251 | ep->priv &= ~0x1; |
| 2252 | } else { |
| 2253 | ep->priv |= 0x1; /* no errors */ |
| 2254 | } |
| 2255 | wrslot_stat(ssc, slp); |
| 2256 | break; |
| 2257 | case SESTYP_POWER: |
| 2258 | /* |
| 2259 | * Okay- the only one that makes sense here is to |
| 2260 | * do the 'disable' for a power supply. |
| 2261 | */ |
| 2262 | if (obp->cstat[0] & SESCTL_DISABLE) { |
| 2263 | (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, |
| 2264 | idx - cc->pwroff, 0, 0, slp); |
| 2265 | } |
| 2266 | break; |
| 2267 | case SESTYP_FAN: |
| 2268 | /* |
| 2269 | * Okay- the only one that makes sense here is to |
| 2270 | * set fan speed to zero on disable. |
| 2271 | */ |
| 2272 | if (obp->cstat[0] & SESCTL_DISABLE) { |
| 2273 | /* remember- fans are the first items, so idx works */ |
| 2274 | (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); |
| 2275 | } |
| 2276 | break; |
| 2277 | case SESTYP_DOORLOCK: |
| 2278 | /* |
| 2279 | * Well, we can 'disable' the lock. |
| 2280 | */ |
| 2281 | if (obp->cstat[0] & SESCTL_DISABLE) { |
| 2282 | cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; |
| 2283 | (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, |
| 2284 | cc->flag2, 0, slp); |
| 2285 | } |
| 2286 | break; |
| 2287 | case SESTYP_ALARM: |
| 2288 | /* |
| 2289 | * Well, we can 'disable' the alarm. |
| 2290 | */ |
| 2291 | if (obp->cstat[0] & SESCTL_DISABLE) { |
| 2292 | cc->flag2 &= ~SAFT_FLG1_ALARM; |
| 2293 | ep->priv |= 0x40; /* Muted */ |
| 2294 | (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, |
| 2295 | cc->flag2, 0, slp); |
| 2296 | } |
| 2297 | break; |
| 2298 | default: |
| 2299 | break; |
| 2300 | } |
| 2301 | ep->svalid = 0; |
| 2302 | return (0); |
| 2303 | } |
| 2304 | |
| 2305 | /* |
| 2306 | * This function handles all of the 16 byte WRITE BUFFER commands. |
| 2307 | */ |
| 2308 | static int |
| 2309 | wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2, |
| 2310 | uint8_t b3, int slp) |
| 2311 | { |
| 2312 | int err, amt; |
| 2313 | char *sdata; |
| 2314 | struct scfg *cc = ssc->ses_private; |
| 2315 | static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; |
| 2316 | |
| 2317 | if (cc == NULL) |
| 2318 | return (0); |
| 2319 | |
| 2320 | sdata = SES_MALLOC(16); |
| 2321 | if (sdata == NULL) |
| 2322 | return (ENOMEM); |
| 2323 | |
| 2324 | SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n" , op, b1, b2, b3); |
| 2325 | |
| 2326 | sdata[0] = op; |
| 2327 | sdata[1] = b1; |
| 2328 | sdata[2] = b2; |
| 2329 | sdata[3] = b3; |
| 2330 | MEMZERO(&sdata[4], 12); |
| 2331 | amt = -16; |
| 2332 | err = ses_runcmd(ssc, cdb, 10, sdata, &amt); |
| 2333 | SES_FREE(sdata, 16); |
| 2334 | return (err); |
| 2335 | } |
| 2336 | |
| 2337 | /* |
| 2338 | * This function updates the status byte for the device slot described. |
| 2339 | * |
| 2340 | * Since this is an optional SAF-TE command, there's no point in |
| 2341 | * returning an error. |
| 2342 | */ |
| 2343 | static void |
| 2344 | wrslot_stat(ses_softc_t *ssc, int slp) |
| 2345 | { |
| 2346 | int i, amt; |
| 2347 | encobj *ep; |
| 2348 | char cdb[10], *sdata; |
| 2349 | struct scfg *cc = ssc->ses_private; |
| 2350 | |
| 2351 | if (cc == NULL) |
| 2352 | return; |
| 2353 | |
| 2354 | SES_VLOG(ssc, "saf_wrslot\n" ); |
| 2355 | cdb[0] = WRITE_BUFFER; |
| 2356 | cdb[1] = 1; |
| 2357 | cdb[2] = 0; |
| 2358 | cdb[3] = 0; |
| 2359 | cdb[4] = 0; |
| 2360 | cdb[5] = 0; |
| 2361 | cdb[6] = 0; |
| 2362 | cdb[7] = 0; |
| 2363 | cdb[8] = cc->Nslots * 3 + 1; |
| 2364 | cdb[9] = 0; |
| 2365 | |
| 2366 | sdata = SES_MALLOC(cc->Nslots * 3 + 1); |
| 2367 | if (sdata == NULL) |
| 2368 | return; |
| 2369 | MEMZERO(sdata, cc->Nslots * 3 + 1); |
| 2370 | |
| 2371 | sdata[0] = SAFTE_WT_DSTAT; |
| 2372 | for (i = 0; i < cc->Nslots; i++) { |
| 2373 | ep = &ssc->ses_objmap[cc->slotoff + i]; |
| 2374 | SES_VLOG(ssc, "saf_wrslot %d <- %x\n" , i, ep->priv & 0xff); |
| 2375 | sdata[1 + (3 * i)] = ep->priv & 0xff; |
| 2376 | } |
| 2377 | amt = -(cc->Nslots * 3 + 1); |
| 2378 | (void) ses_runcmd(ssc, cdb, 10, sdata, &amt); |
| 2379 | SES_FREE(sdata, cc->Nslots * 3 + 1); |
| 2380 | } |
| 2381 | |
| 2382 | /* |
| 2383 | * This function issues the "PERFORM SLOT OPERATION" command. |
| 2384 | */ |
| 2385 | static int |
| 2386 | perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp) |
| 2387 | { |
| 2388 | int err, amt; |
| 2389 | char *sdata; |
| 2390 | struct scfg *cc = ssc->ses_private; |
| 2391 | static char cdb[10] = |
| 2392 | { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; |
| 2393 | |
| 2394 | if (cc == NULL) |
| 2395 | return (0); |
| 2396 | |
| 2397 | sdata = SES_MALLOC(SAFT_SCRATCH); |
| 2398 | if (sdata == NULL) |
| 2399 | return (ENOMEM); |
| 2400 | MEMZERO(sdata, SAFT_SCRATCH); |
| 2401 | |
| 2402 | sdata[0] = SAFTE_WT_SLTOP; |
| 2403 | sdata[1] = slot; |
| 2404 | sdata[2] = opflag; |
| 2405 | SES_VLOG(ssc, "saf_slotop slot %d op %x\n" , slot, opflag); |
| 2406 | amt = -SAFT_SCRATCH; |
| 2407 | err = ses_runcmd(ssc, cdb, 10, sdata, &amt); |
| 2408 | SES_FREE(sdata, SAFT_SCRATCH); |
| 2409 | return (err); |
| 2410 | } |
| 2411 | |