| 1 | /* $NetBSD: rf_parityscan.c,v 1.34 2011/05/01 01:09:05 mrg Exp $ */ |
| 2 | /* |
| 3 | * Copyright (c) 1995 Carnegie-Mellon University. |
| 4 | * All rights reserved. |
| 5 | * |
| 6 | * Author: Mark Holland |
| 7 | * |
| 8 | * Permission to use, copy, modify and distribute this software and |
| 9 | * its documentation is hereby granted, provided that both the copyright |
| 10 | * notice and this permission notice appear in all copies of the |
| 11 | * software, derivative works or modified versions, and any portions |
| 12 | * thereof, and that both notices appear in supporting documentation. |
| 13 | * |
| 14 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 15 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND |
| 16 | * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 17 | * |
| 18 | * Carnegie Mellon requests users of this software to return to |
| 19 | * |
| 20 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 21 | * School of Computer Science |
| 22 | * Carnegie Mellon University |
| 23 | * Pittsburgh PA 15213-3890 |
| 24 | * |
| 25 | * any improvements or extensions that they make and grant Carnegie the |
| 26 | * rights to redistribute these changes. |
| 27 | */ |
| 28 | |
| 29 | /***************************************************************************** |
| 30 | * |
| 31 | * rf_parityscan.c -- misc utilities related to parity verification |
| 32 | * |
| 33 | ****************************************************************************/ |
| 34 | |
| 35 | #include <sys/cdefs.h> |
| 36 | __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.34 2011/05/01 01:09:05 mrg Exp $" ); |
| 37 | |
| 38 | #include <dev/raidframe/raidframevar.h> |
| 39 | |
| 40 | #include "rf_raid.h" |
| 41 | #include "rf_dag.h" |
| 42 | #include "rf_dagfuncs.h" |
| 43 | #include "rf_dagutils.h" |
| 44 | #include "rf_mcpair.h" |
| 45 | #include "rf_general.h" |
| 46 | #include "rf_engine.h" |
| 47 | #include "rf_parityscan.h" |
| 48 | #include "rf_map.h" |
| 49 | #include "rf_paritymap.h" |
| 50 | |
| 51 | /***************************************************************************** |
| 52 | * |
| 53 | * walk through the entire arry and write new parity. This works by |
| 54 | * creating two DAGs, one to read a stripe of data and one to write |
| 55 | * new parity. The first is executed, the data is xored together, and |
| 56 | * then the second is executed. To avoid constantly building and |
| 57 | * tearing down the DAGs, we create them a priori and fill them in |
| 58 | * with the mapping information as we go along. |
| 59 | * |
| 60 | * there should never be more than one thread running this. |
| 61 | * |
| 62 | ****************************************************************************/ |
| 63 | |
| 64 | int |
| 65 | rf_RewriteParity(RF_Raid_t *raidPtr) |
| 66 | { |
| 67 | if (raidPtr->parity_map != NULL) |
| 68 | return rf_paritymap_rewrite(raidPtr->parity_map); |
| 69 | else |
| 70 | return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors); |
| 71 | } |
| 72 | |
| 73 | int |
| 74 | rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin, |
| 75 | RF_SectorNum_t sec_len) |
| 76 | { |
| 77 | /* |
| 78 | * Note: It is the caller's responsibility to ensure that |
| 79 | * sec_begin and sec_len are stripe-aligned. |
| 80 | */ |
| 81 | RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; |
| 82 | RF_AccessStripeMapHeader_t *asm_h; |
| 83 | int ret_val; |
| 84 | int rc; |
| 85 | RF_SectorNum_t i; |
| 86 | |
| 87 | if (raidPtr->Layout.map->faultsTolerated == 0) { |
| 88 | /* There isn't any parity. Call it "okay." */ |
| 89 | return (RF_PARITY_OKAY); |
| 90 | } |
| 91 | if (raidPtr->status != rf_rs_optimal) { |
| 92 | /* |
| 93 | * We're in degraded mode. Don't try to verify parity now! |
| 94 | * XXX: this should be a "we don't want to", not a |
| 95 | * "we can't" error. |
| 96 | */ |
| 97 | return (RF_PARITY_COULD_NOT_VERIFY); |
| 98 | } |
| 99 | |
| 100 | ret_val = 0; |
| 101 | |
| 102 | rc = RF_PARITY_OKAY; |
| 103 | |
| 104 | for (i = sec_begin; i < sec_begin + sec_len && |
| 105 | rc <= RF_PARITY_CORRECTED; |
| 106 | i += layoutPtr->dataSectorsPerStripe) { |
| 107 | if (raidPtr->waitShutdown) { |
| 108 | /* Someone is pulling the plug on this set... |
| 109 | abort the re-write */ |
| 110 | return (1); |
| 111 | } |
| 112 | asm_h = rf_MapAccess(raidPtr, i, |
| 113 | layoutPtr->dataSectorsPerStripe, |
| 114 | NULL, RF_DONT_REMAP); |
| 115 | raidPtr->parity_rewrite_stripes_done = |
| 116 | i / layoutPtr->dataSectorsPerStripe ; |
| 117 | rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0); |
| 118 | |
| 119 | switch (rc) { |
| 120 | case RF_PARITY_OKAY: |
| 121 | case RF_PARITY_CORRECTED: |
| 122 | break; |
| 123 | case RF_PARITY_BAD: |
| 124 | printf("Parity bad during correction\n" ); |
| 125 | ret_val = 1; |
| 126 | break; |
| 127 | case RF_PARITY_COULD_NOT_CORRECT: |
| 128 | printf("Could not correct bad parity\n" ); |
| 129 | ret_val = 1; |
| 130 | break; |
| 131 | case RF_PARITY_COULD_NOT_VERIFY: |
| 132 | printf("Could not verify parity\n" ); |
| 133 | ret_val = 1; |
| 134 | break; |
| 135 | default: |
| 136 | printf("Bad rc=%d from VerifyParity in RewriteParity\n" , rc); |
| 137 | ret_val = 1; |
| 138 | } |
| 139 | rf_FreeAccessStripeMap(asm_h); |
| 140 | } |
| 141 | return (ret_val); |
| 142 | } |
| 143 | /***************************************************************************** |
| 144 | * |
| 145 | * verify that the parity in a particular stripe is correct. we |
| 146 | * validate only the range of parity defined by parityPDA, since this |
| 147 | * is all we have locked. The way we do this is to create an asm that |
| 148 | * maps the whole stripe and then range-restrict it to the parity |
| 149 | * region defined by the parityPDA. |
| 150 | * |
| 151 | ****************************************************************************/ |
| 152 | int |
| 153 | rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm, |
| 154 | int correct_it, RF_RaidAccessFlags_t flags) |
| 155 | { |
| 156 | RF_PhysDiskAddr_t *parityPDA; |
| 157 | RF_AccessStripeMap_t *doasm; |
| 158 | const RF_LayoutSW_t *lp; |
| 159 | int lrc, rc; |
| 160 | |
| 161 | lp = raidPtr->Layout.map; |
| 162 | if (lp->faultsTolerated == 0) { |
| 163 | /* |
| 164 | * There isn't any parity. Call it "okay." |
| 165 | */ |
| 166 | return (RF_PARITY_OKAY); |
| 167 | } |
| 168 | rc = RF_PARITY_OKAY; |
| 169 | if (lp->VerifyParity) { |
| 170 | for (doasm = aasm; doasm; doasm = doasm->next) { |
| 171 | for (parityPDA = doasm->parityInfo; parityPDA; |
| 172 | parityPDA = parityPDA->next) { |
| 173 | lrc = lp->VerifyParity(raidPtr, |
| 174 | doasm->raidAddress, |
| 175 | parityPDA, |
| 176 | correct_it, flags); |
| 177 | if (lrc > rc) { |
| 178 | /* see rf_parityscan.h for why this |
| 179 | * works */ |
| 180 | rc = lrc; |
| 181 | } |
| 182 | } |
| 183 | } |
| 184 | } else { |
| 185 | rc = RF_PARITY_COULD_NOT_VERIFY; |
| 186 | } |
| 187 | return (rc); |
| 188 | } |
| 189 | |
| 190 | int |
| 191 | rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr, |
| 192 | RF_PhysDiskAddr_t *parityPDA, int correct_it, |
| 193 | RF_RaidAccessFlags_t flags) |
| 194 | { |
| 195 | RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); |
| 196 | RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, |
| 197 | raidAddr); |
| 198 | RF_SectorCount_t numsector = parityPDA->numSector; |
| 199 | int numbytes = rf_RaidAddressToByte(raidPtr, numsector); |
| 200 | int bytesPerStripe = numbytes * layoutPtr->numDataCol; |
| 201 | RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */ |
| 202 | RF_DagNode_t *blockNode, *wrBlock; |
| 203 | RF_AccessStripeMapHeader_t *asm_h; |
| 204 | RF_AccessStripeMap_t *asmap; |
| 205 | RF_AllocListElem_t *alloclist; |
| 206 | RF_PhysDiskAddr_t *pda; |
| 207 | char *pbuf, *bf, *end_p, *p; |
| 208 | int i, retcode; |
| 209 | RF_ReconUnitNum_t which_ru; |
| 210 | RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, |
| 211 | raidAddr, |
| 212 | &which_ru); |
| 213 | int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; |
| 214 | #if RF_ACC_TRACE > 0 |
| 215 | RF_AccTraceEntry_t tracerec; |
| 216 | #endif |
| 217 | RF_MCPair_t *mcpair; |
| 218 | |
| 219 | retcode = RF_PARITY_OKAY; |
| 220 | |
| 221 | mcpair = rf_AllocMCPair(); |
| 222 | rf_MakeAllocList(alloclist); |
| 223 | RF_MallocAndAdd(bf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist); |
| 224 | RF_MallocAndAdd(pbuf, numbytes, (char *), alloclist); |
| 225 | end_p = bf + bytesPerStripe; |
| 226 | |
| 227 | rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, bf, rf_DiskReadFunc, rf_DiskReadUndoFunc, |
| 228 | "Rod" , alloclist, flags, RF_IO_NORMAL_PRIORITY); |
| 229 | blockNode = rd_dag_h->succedents[0]; |
| 230 | |
| 231 | /* map the stripe and fill in the PDAs in the dag */ |
| 232 | asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, bf, RF_DONT_REMAP); |
| 233 | asmap = asm_h->stripeMap; |
| 234 | |
| 235 | for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { |
| 236 | RF_ASSERT(pda); |
| 237 | rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); |
| 238 | RF_ASSERT(pda->numSector != 0); |
| 239 | if (rf_TryToRedirectPDA(raidPtr, pda, 0)) |
| 240 | goto out; /* no way to verify parity if disk is |
| 241 | * dead. return w/ good status */ |
| 242 | blockNode->succedents[i]->params[0].p = pda; |
| 243 | blockNode->succedents[i]->params[2].v = psID; |
| 244 | blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
| 245 | } |
| 246 | |
| 247 | RF_ASSERT(!asmap->parityInfo->next); |
| 248 | rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1); |
| 249 | RF_ASSERT(asmap->parityInfo->numSector != 0); |
| 250 | if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1)) |
| 251 | goto out; |
| 252 | blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo; |
| 253 | |
| 254 | /* fire off the DAG */ |
| 255 | #if RF_ACC_TRACE > 0 |
| 256 | memset((char *) &tracerec, 0, sizeof(tracerec)); |
| 257 | rd_dag_h->tracerec = &tracerec; |
| 258 | #endif |
| 259 | #if 0 |
| 260 | if (rf_verifyParityDebug) { |
| 261 | printf("Parity verify read dag:\n" ); |
| 262 | rf_PrintDAGList(rd_dag_h); |
| 263 | } |
| 264 | #endif |
| 265 | RF_LOCK_MCPAIR(mcpair); |
| 266 | mcpair->flag = 0; |
| 267 | RF_UNLOCK_MCPAIR(mcpair); |
| 268 | |
| 269 | rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, |
| 270 | (void *) mcpair); |
| 271 | |
| 272 | RF_LOCK_MCPAIR(mcpair); |
| 273 | while (!mcpair->flag) |
| 274 | RF_WAIT_MCPAIR(mcpair); |
| 275 | RF_UNLOCK_MCPAIR(mcpair); |
| 276 | if (rd_dag_h->status != rf_enable) { |
| 277 | RF_ERRORMSG("Unable to verify parity: can't read the stripe\n" ); |
| 278 | retcode = RF_PARITY_COULD_NOT_VERIFY; |
| 279 | goto out; |
| 280 | } |
| 281 | for (p = bf; p < end_p; p += numbytes) { |
| 282 | rf_bxor(p, pbuf, numbytes); |
| 283 | } |
| 284 | for (i = 0; i < numbytes; i++) { |
| 285 | if (pbuf[i] != bf[bytesPerStripe + i]) { |
| 286 | if (!correct_it) |
| 287 | RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n" , |
| 288 | i, (u_char) bf[bytesPerStripe + i], (u_char) pbuf[i]); |
| 289 | retcode = RF_PARITY_BAD; |
| 290 | break; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | if (retcode && correct_it) { |
| 295 | wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, |
| 296 | "Wnp" , alloclist, flags, RF_IO_NORMAL_PRIORITY); |
| 297 | wrBlock = wr_dag_h->succedents[0]; |
| 298 | wrBlock->succedents[0]->params[0].p = asmap->parityInfo; |
| 299 | wrBlock->succedents[0]->params[2].v = psID; |
| 300 | wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
| 301 | #if RF_ACC_TRACE > 0 |
| 302 | memset((char *) &tracerec, 0, sizeof(tracerec)); |
| 303 | wr_dag_h->tracerec = &tracerec; |
| 304 | #endif |
| 305 | #if 0 |
| 306 | if (rf_verifyParityDebug) { |
| 307 | printf("Parity verify write dag:\n" ); |
| 308 | rf_PrintDAGList(wr_dag_h); |
| 309 | } |
| 310 | #endif |
| 311 | RF_LOCK_MCPAIR(mcpair); |
| 312 | mcpair->flag = 0; |
| 313 | RF_UNLOCK_MCPAIR(mcpair); |
| 314 | |
| 315 | rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, |
| 316 | (void *) mcpair); |
| 317 | |
| 318 | RF_LOCK_MCPAIR(mcpair); |
| 319 | while (!mcpair->flag) |
| 320 | RF_WAIT_MCPAIR(mcpair); |
| 321 | RF_UNLOCK_MCPAIR(mcpair); |
| 322 | if (wr_dag_h->status != rf_enable) { |
| 323 | RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n" ); |
| 324 | retcode = RF_PARITY_COULD_NOT_CORRECT; |
| 325 | } |
| 326 | rf_FreeDAG(wr_dag_h); |
| 327 | if (retcode == RF_PARITY_BAD) |
| 328 | retcode = RF_PARITY_CORRECTED; |
| 329 | } |
| 330 | out: |
| 331 | rf_FreeAccessStripeMap(asm_h); |
| 332 | rf_FreeAllocList(alloclist); |
| 333 | rf_FreeDAG(rd_dag_h); |
| 334 | rf_FreeMCPair(mcpair); |
| 335 | return (retcode); |
| 336 | } |
| 337 | |
| 338 | int |
| 339 | rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, |
| 340 | int parity) |
| 341 | { |
| 342 | if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) { |
| 343 | if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) { |
| 344 | #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 |
| 345 | if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { |
| 346 | #if RF_DEBUG_VERIFYPARITY |
| 347 | RF_RowCol_t oc = pda->col; |
| 348 | RF_SectorNum_t os = pda->startSector; |
| 349 | #endif |
| 350 | if (parity) { |
| 351 | (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP); |
| 352 | #if RF_DEBUG_VERIFYPARITY |
| 353 | if (rf_verifyParityDebug) |
| 354 | printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n" , |
| 355 | oc, (long) os, pda->col, (long) pda->startSector); |
| 356 | #endif |
| 357 | } else { |
| 358 | (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP); |
| 359 | #if RF_DEBUG_VERIFYPARITY |
| 360 | if (rf_verifyParityDebug) |
| 361 | printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n" , |
| 362 | oc, (long) os, pda->col, (long) pda->startSector); |
| 363 | #endif |
| 364 | } |
| 365 | } else { |
| 366 | #endif |
| 367 | RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol; |
| 368 | pda->col = spCol; |
| 369 | #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 |
| 370 | } |
| 371 | #endif |
| 372 | } |
| 373 | } |
| 374 | if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status)) |
| 375 | return (1); |
| 376 | return (0); |
| 377 | } |
| 378 | /***************************************************************************** |
| 379 | * |
| 380 | * currently a stub. |
| 381 | * |
| 382 | * takes as input an ASM describing a write operation and containing |
| 383 | * one failure, and verifies that the parity was correctly updated to |
| 384 | * reflect the write. |
| 385 | * |
| 386 | * if it's a data unit that's failed, we read the other data units in |
| 387 | * the stripe and the parity unit, XOR them together, and verify that |
| 388 | * we get the data intended for the failed disk. Since it's easy, we |
| 389 | * also validate that the right data got written to the surviving data |
| 390 | * disks. |
| 391 | * |
| 392 | * If it's the parity that failed, there's really no validation we can |
| 393 | * do except the above verification that the right data got written to |
| 394 | * all disks. This is because the new data intended for the failed |
| 395 | * disk is supplied in the ASM, but this is of course not the case for |
| 396 | * the new parity. |
| 397 | * |
| 398 | ****************************************************************************/ |
| 399 | #if 0 |
| 400 | int |
| 401 | rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh) |
| 402 | { |
| 403 | return (0); |
| 404 | } |
| 405 | #endif |
| 406 | /* creates a simple DAG with a header, a block-recon node at level 1, |
| 407 | * nNodes nodes at level 2, an unblock-recon node at level 3, and a |
| 408 | * terminator node at level 4. The stripe address field in the block |
| 409 | * and unblock nodes are not touched, nor are the pda fields in the |
| 410 | * second-level nodes, so they must be filled in later. |
| 411 | * |
| 412 | * commit point is established at unblock node - this means that any |
| 413 | * failure during dag execution causes the dag to fail |
| 414 | * |
| 415 | * name - node names at the second level |
| 416 | */ |
| 417 | RF_DagHeader_t * |
| 418 | rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf, |
| 419 | int (*doFunc) (RF_DagNode_t * node), |
| 420 | int (*undoFunc) (RF_DagNode_t * node), |
| 421 | const char *name, RF_AllocListElem_t *alloclist, |
| 422 | RF_RaidAccessFlags_t flags, int priority) |
| 423 | { |
| 424 | RF_DagHeader_t *dag_h; |
| 425 | RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode; |
| 426 | int i; |
| 427 | |
| 428 | /* grab a DAG header... */ |
| 429 | |
| 430 | dag_h = rf_AllocDAGHeader(); |
| 431 | dag_h->raidPtr = (void *) raidPtr; |
| 432 | dag_h->allocList = NULL;/* we won't use this alloc list */ |
| 433 | dag_h->status = rf_enable; |
| 434 | dag_h->numSuccedents = 1; |
| 435 | dag_h->creator = "SimpleDAG" ; |
| 436 | |
| 437 | /* this dag can not commit until the unblock node is reached errors |
| 438 | * prior to the commit point imply the dag has failed */ |
| 439 | dag_h->numCommitNodes = 1; |
| 440 | dag_h->numCommits = 0; |
| 441 | |
| 442 | /* create the nodes, the block & unblock nodes, and the terminator |
| 443 | * node */ |
| 444 | |
| 445 | for (i = 0; i < nNodes; i++) { |
| 446 | tmpNode = rf_AllocDAGNode(); |
| 447 | tmpNode->list_next = dag_h->nodes; |
| 448 | dag_h->nodes = tmpNode; |
| 449 | } |
| 450 | nodes = dag_h->nodes; |
| 451 | |
| 452 | blockNode = rf_AllocDAGNode(); |
| 453 | blockNode->list_next = dag_h->nodes; |
| 454 | dag_h->nodes = blockNode; |
| 455 | |
| 456 | unblockNode = rf_AllocDAGNode(); |
| 457 | unblockNode->list_next = dag_h->nodes; |
| 458 | dag_h->nodes = unblockNode; |
| 459 | |
| 460 | termNode = rf_AllocDAGNode(); |
| 461 | termNode->list_next = dag_h->nodes; |
| 462 | dag_h->nodes = termNode; |
| 463 | |
| 464 | dag_h->succedents[0] = blockNode; |
| 465 | rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil" , alloclist); |
| 466 | rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil" , alloclist); |
| 467 | unblockNode->succedents[0] = termNode; |
| 468 | tmpNode = nodes; |
| 469 | for (i = 0; i < nNodes; i++) { |
| 470 | blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode; |
| 471 | unblockNode->antType[i] = rf_control; |
| 472 | rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist); |
| 473 | tmpNode->succedents[0] = unblockNode; |
| 474 | tmpNode->antecedents[0] = blockNode; |
| 475 | tmpNode->antType[0] = rf_control; |
| 476 | tmpNode->params[1].p = (databuf + (i * bytesPerSU)); |
| 477 | tmpNode = tmpNode->list_next; |
| 478 | } |
| 479 | rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm" , alloclist); |
| 480 | termNode->antecedents[0] = unblockNode; |
| 481 | termNode->antType[0] = rf_control; |
| 482 | return (dag_h); |
| 483 | } |
| 484 | |