| 1 | /* $NetBSD: midivar.h,v 1.20 2014/12/22 07:02:22 mrg Exp $ */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (c) 1998, 2008 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Lennart Augustsson (augustss@NetBSD.org) and (midi FST refactoring and |
| 9 | * Active Sense) Chapman Flack (chap@NetBSD.org). |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or without |
| 12 | * modification, are permitted provided that the following conditions |
| 13 | * are met: |
| 14 | * 1. Redistributions of source code must retain the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer. |
| 16 | * 2. Redistributions in binary form must reproduce the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer in the |
| 18 | * documentation and/or other materials provided with the distribution. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | #ifndef _SYS_DEV_MIDIVAR_H_ |
| 34 | #define _SYS_DEV_MIDIVAR_H_ |
| 35 | |
| 36 | #define MIDI_BUFSIZE 1024 |
| 37 | |
| 38 | #include <sys/callout.h> |
| 39 | #include <sys/cdefs.h> |
| 40 | #include <sys/device.h> |
| 41 | #include <sys/condvar.h> |
| 42 | #include <sys/mutex.h> |
| 43 | |
| 44 | /* |
| 45 | * In both xmt and rcv direction, the midi_fst runs at the time data are |
| 46 | * buffered (midi_writebytes for xmt, midi_in for rcv) so what's in the |
| 47 | * buffer is always in canonical form (or compressed, on xmt, if the hw |
| 48 | * wants it that way). To preserve message boundaries for the buffer |
| 49 | * consumer, but allow transfers larger than one message, the buffer is |
| 50 | * split into a buf fork and an idx fork, where each byte of idx encodes |
| 51 | * the type and length of a message. Because messages are variable length, |
| 52 | * it is a guess how to set the relative sizes of idx and buf, or how many |
| 53 | * messages can be buffered before one or the other fills. |
| 54 | * |
| 55 | * The producer adds only complete messages to a buffer (except for SysEx |
| 56 | * messages, which have unpredictable length). A consumer serving byte-at-a- |
| 57 | * time hardware may partially consume a message, in which case it updates |
| 58 | * the length count at *idx_consumerp to reflect the remaining length of the |
| 59 | * message, only incrementing idx_consumerp when the message has been entirely |
| 60 | * consumed. |
| 61 | * |
| 62 | * The buffers are structured in the simple 1 reader 1 writer bounded buffer |
| 63 | * form, considered full when 1 unused byte remains. This should allow their |
| 64 | * use with minimal locking provided single pointer reads and writes can be |
| 65 | * assured atomic ... but then I chickened out on assuming that assurance, and |
| 66 | * added the extra locks to the code. |
| 67 | * |
| 68 | * Macros for manipulating the buffers: |
| 69 | * |
| 70 | * MIDI_BUF_DECLARE(frk) where frk is either buf or idx: |
| 71 | * declares the local variables frk_cur, frk_lim, frk_org, and frk_end. |
| 72 | * |
| 73 | * MIDI_BUF_CONSUMER_INIT(mb,frk) |
| 74 | * MIDI_BUF_PRODUCER_INIT(mb,frk) |
| 75 | * initializes frk_org and frk_end to the base and end (that is, address just |
| 76 | * past the last valid byte) of the buffer fork frk, frk_cur to the |
| 77 | * consumer's or producer's current position, respectively, and frk_lim to |
| 78 | * the current limit (for either consumer or producer, immediately following |
| 79 | * this macro, frk_lim-frk_cur gives the number of bytes to play with). That |
| 80 | * means frk_lim may actually point past the buffer; loops on the condition |
| 81 | * (frk_cur < frk_lim) must contain WRAP(frk) if proceeding byte-by-byte, or |
| 82 | * must explicitly handle wrapping around frk_end if doing anything clever. |
| 83 | * These are expression-shaped macros that have the value frk_lim. When used |
| 84 | * without locking--provided pointer reads and writes can be assumed atomic-- |
| 85 | * these macros give a conservative estimate of what is available to consume |
| 86 | * or produce. |
| 87 | * |
| 88 | * MIDI_BUF_WRAP(frk) |
| 89 | * tests whether frk_cur == frk_end and, if so, wraps both frk_cur and |
| 90 | * frk_lim around the beginning of the buffer. Because the test is ==, it |
| 91 | * must be applied at each byte in a loop; if the loop is proceeding in |
| 92 | * bigger steps, the possibility of wrap must be coded for. This expression- |
| 93 | * shaped macro has the value of frk_cur after wrapping. |
| 94 | * |
| 95 | * MIDI_BUF_CONSUMER_REFRESH(mb,frk) |
| 96 | * MIDI_BUF_PRODUCER_REFRESH(mb,frk) |
| 97 | * refresh the local value frk_lim for a new snapshot of bytes available; an |
| 98 | * expression-shaped macro with the new value of frk_lim. Usually used after |
| 99 | * using up the first conservative estimate and obtaining a lock to get a |
| 100 | * final value. Used unlocked, just gives a more recent conservative estimate. |
| 101 | * |
| 102 | * MIDI_BUF_CONSUMER_WBACK(mb,frk) |
| 103 | * MIDI_BUF_PRODUCER_WBACK(mb,frk) |
| 104 | * write back the local copy of frk_cur to the buffer, after a barrier to |
| 105 | * ensure prior writes go first. Under the right atomicity conditions a |
| 106 | * producer could get away with using these unlocked, as long as the order |
| 107 | * is buf followed by idx. A consumer should update both in a critical |
| 108 | * section. |
| 109 | */ |
| 110 | struct midi_buffer { |
| 111 | u_char * __volatile idx_producerp; |
| 112 | u_char * __volatile idx_consumerp; |
| 113 | u_char * __volatile buf_producerp; |
| 114 | u_char * __volatile buf_consumerp; |
| 115 | u_char idx[MIDI_BUFSIZE/3]; |
| 116 | u_char buf[MIDI_BUFSIZE-MIDI_BUFSIZE/3]; |
| 117 | }; |
| 118 | #define MIDI_BUF_DECLARE(frk) \ |
| 119 | u_char *__CONCAT(frk,_cur); \ |
| 120 | u_char *__CONCAT(frk,_lim); \ |
| 121 | u_char *__CONCAT(frk,_org); \ |
| 122 | u_char *__CONCAT(frk,_end) |
| 123 | |
| 124 | #define MIDI_BUF_CONSUMER_REFRESH(mb,frk) \ |
| 125 | ((__CONCAT(frk,_lim)=(mb)->__CONCAT(frk,_producerp)), \ |
| 126 | __CONCAT(frk,_lim) < __CONCAT(frk,_cur) ? \ |
| 127 | (__CONCAT(frk,_lim) += sizeof (mb)->frk) : __CONCAT(frk,_lim)) |
| 128 | |
| 129 | #define MIDI_BUF_PRODUCER_REFRESH(mb,frk) \ |
| 130 | ((__CONCAT(frk,_lim)=(mb)->__CONCAT(frk,_consumerp)-1), \ |
| 131 | __CONCAT(frk,_lim) < __CONCAT(frk,_cur) ? \ |
| 132 | (__CONCAT(frk,_lim) += sizeof (mb)->frk) : __CONCAT(frk,_lim)) |
| 133 | |
| 134 | #define MIDI_BUF_EXTENT_INIT(mb,frk) \ |
| 135 | ((__CONCAT(frk,_org)=(mb)->frk), \ |
| 136 | (__CONCAT(frk,_end)=__CONCAT(frk,_org)+sizeof (mb)->frk)) |
| 137 | |
| 138 | #define MIDI_BUF_CONSUMER_INIT(mb,frk) \ |
| 139 | (MIDI_BUF_EXTENT_INIT((mb),frk), \ |
| 140 | (__CONCAT(frk,_cur)=(mb)->__CONCAT(frk,_consumerp)), \ |
| 141 | MIDI_BUF_CONSUMER_REFRESH((mb),frk)) |
| 142 | |
| 143 | #define MIDI_BUF_PRODUCER_INIT(mb,frk) \ |
| 144 | (MIDI_BUF_EXTENT_INIT((mb),frk), \ |
| 145 | (__CONCAT(frk,_cur)=(mb)->__CONCAT(frk,_producerp)), \ |
| 146 | MIDI_BUF_PRODUCER_REFRESH((mb),frk)) |
| 147 | |
| 148 | #define MIDI_BUF_WRAP(frk) \ |
| 149 | (__predict_false(__CONCAT(frk,_cur)==__CONCAT(frk,_end)) ? (\ |
| 150 | (__CONCAT(frk,_lim)-=__CONCAT(frk,_end)-__CONCAT(frk,_org)), \ |
| 151 | (__CONCAT(frk,_cur)=__CONCAT(frk,_org))) : __CONCAT(frk,_cur)) |
| 152 | |
| 153 | #define MIDI_BUF_CONSUMER_WBACK(mb,frk) do { \ |
| 154 | __insn_barrier(); \ |
| 155 | (mb)->__CONCAT(frk,_consumerp)=__CONCAT(frk,_cur); \ |
| 156 | } while (/*CONSTCOND*/0) |
| 157 | |
| 158 | #define MIDI_BUF_PRODUCER_WBACK(mb,frk) do { \ |
| 159 | __insn_barrier(); \ |
| 160 | (mb)->__CONCAT(frk,_producerp)=__CONCAT(frk,_cur); \ |
| 161 | } while (/*CONSTCOND*/0) |
| 162 | |
| 163 | |
| 164 | #define MIDI_MAX_WRITE 32 /* max bytes written with busy wait */ |
| 165 | #define MIDI_WAIT 10000 /* microseconds to wait after busy wait */ |
| 166 | |
| 167 | struct midi_state { |
| 168 | struct evcnt bytesDiscarded; |
| 169 | struct evcnt incompleteMessages; |
| 170 | struct { |
| 171 | uint32_t bytesDiscarded; |
| 172 | uint32_t incompleteMessages; |
| 173 | } atOpen, |
| 174 | atQuery; |
| 175 | int state; |
| 176 | u_char *pos; |
| 177 | u_char *end; |
| 178 | u_char msg[3]; |
| 179 | }; |
| 180 | |
| 181 | struct midi_softc { |
| 182 | device_t dev; /* Hardware device struct */ |
| 183 | void *hw_hdl; /* Hardware driver handle */ |
| 184 | const struct midi_hw_if *hw_if; /* Hardware interface */ |
| 185 | const struct midi_hw_if_ext *hw_if_ext; /* see midi_if.h */ |
| 186 | int isopen; /* Open indicator */ |
| 187 | int flags; /* Open flags */ |
| 188 | int dying; |
| 189 | struct midi_buffer outbuf; |
| 190 | struct midi_buffer inbuf; |
| 191 | int props; |
| 192 | int refcnt; |
| 193 | kcondvar_t detach_cv; |
| 194 | kcondvar_t rchan; |
| 195 | kcondvar_t wchan; |
| 196 | kmutex_t *lock; |
| 197 | int pbus; |
| 198 | int rcv_expect_asense; |
| 199 | int rcv_quiescent; |
| 200 | int rcv_eof; |
| 201 | struct selinfo wsel; /* write selector */ |
| 202 | struct selinfo rsel; /* read selector */ |
| 203 | pid_t async; /* process who wants audio SIGIO */ |
| 204 | void *sih; |
| 205 | |
| 206 | struct callout xmt_asense_co; |
| 207 | struct callout rcv_asense_co; |
| 208 | |
| 209 | /* MIDI input state machine; states are *s of 4 to allow | CAT bits */ |
| 210 | struct midi_state rcv; |
| 211 | struct midi_state xmt; |
| 212 | #define MIDI_IN_START 0 |
| 213 | #define MIDI_IN_RUN0_1 4 |
| 214 | #define MIDI_IN_RUN1_1 8 |
| 215 | #define MIDI_IN_RUN0_2 12 |
| 216 | #define MIDI_IN_RUN1_2 16 |
| 217 | #define MIDI_IN_RUN2_2 20 |
| 218 | #define MIDI_IN_COM0_1 24 |
| 219 | #define MIDI_IN_COM0_2 28 |
| 220 | #define MIDI_IN_COM1_2 32 |
| 221 | #define MIDI_IN_SYX1_3 36 |
| 222 | #define MIDI_IN_SYX2_3 40 |
| 223 | #define MIDI_IN_SYX0_3 44 |
| 224 | #define MIDI_IN_RNX0_1 48 |
| 225 | #define MIDI_IN_RNX0_2 52 |
| 226 | #define MIDI_IN_RNX1_2 56 |
| 227 | #define MIDI_IN_RNY1_2 60 /* not needed except for accurate error counts */ |
| 228 | /* |
| 229 | * Four more states are needed to model the equivalence of NoteOff vel. 64 |
| 230 | * and NoteOn vel. 0 for canonicalization or compression. In each of these 4 |
| 231 | * states, we know the last message input and output was a NoteOn or a NoteOff. |
| 232 | */ |
| 233 | #define MIDI_IN_RXX2_2 64 /* last output == msg[0] != last input */ |
| 234 | #define MIDI_IN_RXX0_2 68 /* last output != msg[0] == this input */ |
| 235 | #define MIDI_IN_RXX1_2 72 /* " */ |
| 236 | #define MIDI_IN_RXY1_2 76 /* variant of RXX1_2 needed for error count only */ |
| 237 | |
| 238 | #define MIDI_CAT_DATA 0 |
| 239 | #define MIDI_CAT_STATUS1 1 |
| 240 | #define MIDI_CAT_STATUS2 2 |
| 241 | #define MIDI_CAT_COMMON 3 |
| 242 | |
| 243 | /* Synthesizer emulation stuff */ |
| 244 | int seqopen; |
| 245 | struct midi_dev *seq_md; /* structure that links us with the seq. */ |
| 246 | }; |
| 247 | |
| 248 | #define MIDIUNIT(d) ((d) & 0xff) |
| 249 | |
| 250 | #endif /* _SYS_DEV_MIDIVAR_H_ */ |
| 251 | |