| 1 | /* $NetBSD: ffs_alloc.c,v 1.154 2016/10/30 15:01:46 christos Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Wasabi Systems, Inc. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 29 | * POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | |
| 32 | /* |
| 33 | * Copyright (c) 2002 Networks Associates Technology, Inc. |
| 34 | * All rights reserved. |
| 35 | * |
| 36 | * This software was developed for the FreeBSD Project by Marshall |
| 37 | * Kirk McKusick and Network Associates Laboratories, the Security |
| 38 | * Research Division of Network Associates, Inc. under DARPA/SPAWAR |
| 39 | * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS |
| 40 | * research program |
| 41 | * |
| 42 | * Copyright (c) 1982, 1986, 1989, 1993 |
| 43 | * The Regents of the University of California. All rights reserved. |
| 44 | * |
| 45 | * Redistribution and use in source and binary forms, with or without |
| 46 | * modification, are permitted provided that the following conditions |
| 47 | * are met: |
| 48 | * 1. Redistributions of source code must retain the above copyright |
| 49 | * notice, this list of conditions and the following disclaimer. |
| 50 | * 2. Redistributions in binary form must reproduce the above copyright |
| 51 | * notice, this list of conditions and the following disclaimer in the |
| 52 | * documentation and/or other materials provided with the distribution. |
| 53 | * 3. Neither the name of the University nor the names of its contributors |
| 54 | * may be used to endorse or promote products derived from this software |
| 55 | * without specific prior written permission. |
| 56 | * |
| 57 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 58 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 59 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 60 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 61 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 62 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 63 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 64 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 65 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 66 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 67 | * SUCH DAMAGE. |
| 68 | * |
| 69 | * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95 |
| 70 | */ |
| 71 | |
| 72 | #include <sys/cdefs.h> |
| 73 | __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.154 2016/10/30 15:01:46 christos Exp $" ); |
| 74 | |
| 75 | #if defined(_KERNEL_OPT) |
| 76 | #include "opt_ffs.h" |
| 77 | #include "opt_quota.h" |
| 78 | #include "opt_uvm_page_trkown.h" |
| 79 | #endif |
| 80 | |
| 81 | #include <sys/param.h> |
| 82 | #include <sys/systm.h> |
| 83 | #include <sys/buf.h> |
| 84 | #include <sys/cprng.h> |
| 85 | #include <sys/fstrans.h> |
| 86 | #include <sys/kauth.h> |
| 87 | #include <sys/kernel.h> |
| 88 | #include <sys/mount.h> |
| 89 | #include <sys/proc.h> |
| 90 | #include <sys/syslog.h> |
| 91 | #include <sys/vnode.h> |
| 92 | #include <sys/wapbl.h> |
| 93 | #include <sys/cprng.h> |
| 94 | |
| 95 | #include <miscfs/specfs/specdev.h> |
| 96 | #include <ufs/ufs/quota.h> |
| 97 | #include <ufs/ufs/ufsmount.h> |
| 98 | #include <ufs/ufs/inode.h> |
| 99 | #include <ufs/ufs/ufs_extern.h> |
| 100 | #include <ufs/ufs/ufs_bswap.h> |
| 101 | #include <ufs/ufs/ufs_wapbl.h> |
| 102 | |
| 103 | #include <ufs/ffs/fs.h> |
| 104 | #include <ufs/ffs/ffs_extern.h> |
| 105 | |
| 106 | #ifdef UVM_PAGE_TRKOWN |
| 107 | #include <uvm/uvm.h> |
| 108 | #endif |
| 109 | |
| 110 | static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int); |
| 111 | static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int); |
| 112 | static ino_t ffs_dirpref(struct inode *); |
| 113 | static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int); |
| 114 | static void ffs_fserr(struct fs *, kauth_cred_t, const char *); |
| 115 | static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int, |
| 116 | daddr_t (*)(struct inode *, int, daddr_t, int, int, int)); |
| 117 | static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int); |
| 118 | static int32_t ffs_mapsearch(struct fs *, struct cg *, |
| 119 | daddr_t, int); |
| 120 | static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *, |
| 121 | daddr_t, long, bool); |
| 122 | static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t, |
| 123 | int, bool); |
| 124 | |
| 125 | /* if 1, changes in optimalization strategy are logged */ |
| 126 | int ffs_log_changeopt = 0; |
| 127 | |
| 128 | /* in ffs_tables.c */ |
| 129 | extern const int inside[], around[]; |
| 130 | extern const u_char * const fragtbl[]; |
| 131 | |
| 132 | /* Basic consistency check for block allocations */ |
| 133 | static int |
| 134 | ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno, |
| 135 | long size, dev_t dev, ino_t inum) |
| 136 | { |
| 137 | if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 || |
| 138 | ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) { |
| 139 | panic("%s: bad size: dev = 0x%llx, bno = %" PRId64 |
| 140 | " bsize = %d, size = %ld, fs = %s" , func, |
| 141 | (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt); |
| 142 | } |
| 143 | |
| 144 | if (bno >= fs->fs_size) { |
| 145 | printf("%s: bad block %" PRId64 ", ino %llu\n" , func, bno, |
| 146 | (unsigned long long)inum); |
| 147 | ffs_fserr(fs, NOCRED, "bad block" ); |
| 148 | return EINVAL; |
| 149 | } |
| 150 | return 0; |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * Allocate a block in the file system. |
| 155 | * |
| 156 | * The size of the requested block is given, which must be some |
| 157 | * multiple of fs_fsize and <= fs_bsize. |
| 158 | * A preference may be optionally specified. If a preference is given |
| 159 | * the following hierarchy is used to allocate a block: |
| 160 | * 1) allocate the requested block. |
| 161 | * 2) allocate a rotationally optimal block in the same cylinder. |
| 162 | * 3) allocate a block in the same cylinder group. |
| 163 | * 4) quadradically rehash into other cylinder groups, until an |
| 164 | * available block is located. |
| 165 | * If no block preference is given the following hierarchy is used |
| 166 | * to allocate a block: |
| 167 | * 1) allocate a block in the cylinder group that contains the |
| 168 | * inode for the file. |
| 169 | * 2) quadradically rehash into other cylinder groups, until an |
| 170 | * available block is located. |
| 171 | * |
| 172 | * => called with um_lock held |
| 173 | * => releases um_lock before returning |
| 174 | */ |
| 175 | int |
| 176 | ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, |
| 177 | int flags, kauth_cred_t cred, daddr_t *bnp) |
| 178 | { |
| 179 | struct ufsmount *ump; |
| 180 | struct fs *fs; |
| 181 | daddr_t bno; |
| 182 | int cg; |
| 183 | #if defined(QUOTA) || defined(QUOTA2) |
| 184 | int error; |
| 185 | #endif |
| 186 | |
| 187 | fs = ip->i_fs; |
| 188 | ump = ip->i_ump; |
| 189 | |
| 190 | KASSERT(mutex_owned(&ump->um_lock)); |
| 191 | |
| 192 | #ifdef UVM_PAGE_TRKOWN |
| 193 | |
| 194 | /* |
| 195 | * Sanity-check that allocations within the file size |
| 196 | * do not allow other threads to read the stale contents |
| 197 | * of newly allocated blocks. |
| 198 | * Usually pages will exist to cover the new allocation. |
| 199 | * There is an optimization in ffs_write() where we skip |
| 200 | * creating pages if several conditions are met: |
| 201 | * - the file must not be mapped (in any user address space). |
| 202 | * - the write must cover whole pages and whole blocks. |
| 203 | * If those conditions are not met then pages must exist and |
| 204 | * be locked by the current thread. |
| 205 | */ |
| 206 | |
| 207 | if (ITOV(ip)->v_type == VREG && |
| 208 | ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) { |
| 209 | struct vm_page *pg; |
| 210 | struct vnode *vp = ITOV(ip); |
| 211 | struct uvm_object *uobj = &vp->v_uobj; |
| 212 | voff_t off = trunc_page(ffs_lblktosize(fs, lbn)); |
| 213 | voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size); |
| 214 | |
| 215 | mutex_enter(uobj->vmobjlock); |
| 216 | while (off < endoff) { |
| 217 | pg = uvm_pagelookup(uobj, off); |
| 218 | KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 && |
| 219 | (size & PAGE_MASK) == 0 && |
| 220 | ffs_blkoff(fs, size) == 0) || |
| 221 | (pg != NULL && pg->owner == curproc->p_pid && |
| 222 | pg->lowner == curlwp->l_lid)); |
| 223 | off += PAGE_SIZE; |
| 224 | } |
| 225 | mutex_exit(uobj->vmobjlock); |
| 226 | } |
| 227 | #endif |
| 228 | |
| 229 | *bnp = 0; |
| 230 | #ifdef DIAGNOSTIC |
| 231 | if (cred == NOCRED) |
| 232 | panic("%s: missing credential" , __func__); |
| 233 | if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) { |
| 234 | panic("%s: bad size: dev = 0x%llx, bsize = %d, size = %d, " |
| 235 | "fs = %s" , __func__, (unsigned long long)ip->i_dev, |
| 236 | fs->fs_bsize, size, fs->fs_fsmnt); |
| 237 | } |
| 238 | #endif /* DIAGNOSTIC */ |
| 239 | if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) |
| 240 | goto nospace; |
| 241 | if (freespace(fs, fs->fs_minfree) <= 0 && |
| 242 | kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL, |
| 243 | NULL, NULL) != 0) |
| 244 | goto nospace; |
| 245 | #if defined(QUOTA) || defined(QUOTA2) |
| 246 | mutex_exit(&ump->um_lock); |
| 247 | if ((error = chkdq(ip, btodb(size), cred, 0)) != 0) |
| 248 | return (error); |
| 249 | mutex_enter(&ump->um_lock); |
| 250 | #endif |
| 251 | |
| 252 | if (bpref >= fs->fs_size) |
| 253 | bpref = 0; |
| 254 | if (bpref == 0) |
| 255 | cg = ino_to_cg(fs, ip->i_number); |
| 256 | else |
| 257 | cg = dtog(fs, bpref); |
| 258 | bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg); |
| 259 | if (bno > 0) { |
| 260 | DIP_ADD(ip, blocks, btodb(size)); |
| 261 | ip->i_flag |= IN_CHANGE | IN_UPDATE; |
| 262 | *bnp = bno; |
| 263 | return (0); |
| 264 | } |
| 265 | #if defined(QUOTA) || defined(QUOTA2) |
| 266 | /* |
| 267 | * Restore user's disk quota because allocation failed. |
| 268 | */ |
| 269 | (void) chkdq(ip, -btodb(size), cred, FORCE); |
| 270 | #endif |
| 271 | if (flags & B_CONTIG) { |
| 272 | /* |
| 273 | * XXX ump->um_lock handling is "suspect" at best. |
| 274 | * For the case where ffs_hashalloc() fails early |
| 275 | * in the B_CONTIG case we reach here with um_lock |
| 276 | * already unlocked, so we can't release it again |
| 277 | * like in the normal error path. See kern/39206. |
| 278 | * |
| 279 | * |
| 280 | * Fail silently - it's up to our caller to report |
| 281 | * errors. |
| 282 | */ |
| 283 | return (ENOSPC); |
| 284 | } |
| 285 | nospace: |
| 286 | mutex_exit(&ump->um_lock); |
| 287 | ffs_fserr(fs, cred, "file system full" ); |
| 288 | uprintf("\n%s: write failed, file system is full\n" , fs->fs_fsmnt); |
| 289 | return (ENOSPC); |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | * Reallocate a fragment to a bigger size |
| 294 | * |
| 295 | * The number and size of the old block is given, and a preference |
| 296 | * and new size is also specified. The allocator attempts to extend |
| 297 | * the original block. Failing that, the regular block allocator is |
| 298 | * invoked to get an appropriate block. |
| 299 | * |
| 300 | * => called with um_lock held |
| 301 | * => return with um_lock released |
| 302 | */ |
| 303 | int |
| 304 | ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize, |
| 305 | int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop) |
| 306 | { |
| 307 | struct ufsmount *ump; |
| 308 | struct fs *fs; |
| 309 | struct buf *bp; |
| 310 | int cg, request, error; |
| 311 | daddr_t bprev, bno; |
| 312 | |
| 313 | fs = ip->i_fs; |
| 314 | ump = ip->i_ump; |
| 315 | |
| 316 | KASSERT(mutex_owned(&ump->um_lock)); |
| 317 | |
| 318 | #ifdef UVM_PAGE_TRKOWN |
| 319 | |
| 320 | /* |
| 321 | * Sanity-check that allocations within the file size |
| 322 | * do not allow other threads to read the stale contents |
| 323 | * of newly allocated blocks. |
| 324 | * Unlike in ffs_alloc(), here pages must always exist |
| 325 | * for such allocations, because only the last block of a file |
| 326 | * can be a fragment and ffs_write() will reallocate the |
| 327 | * fragment to the new size using ufs_balloc_range(), |
| 328 | * which always creates pages to cover blocks it allocates. |
| 329 | */ |
| 330 | |
| 331 | if (ITOV(ip)->v_type == VREG) { |
| 332 | struct vm_page *pg; |
| 333 | struct uvm_object *uobj = &ITOV(ip)->v_uobj; |
| 334 | voff_t off = trunc_page(ffs_lblktosize(fs, lbprev)); |
| 335 | voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize); |
| 336 | |
| 337 | mutex_enter(uobj->vmobjlock); |
| 338 | while (off < endoff) { |
| 339 | pg = uvm_pagelookup(uobj, off); |
| 340 | KASSERT(pg->owner == curproc->p_pid && |
| 341 | pg->lowner == curlwp->l_lid); |
| 342 | off += PAGE_SIZE; |
| 343 | } |
| 344 | mutex_exit(uobj->vmobjlock); |
| 345 | } |
| 346 | #endif |
| 347 | |
| 348 | #ifdef DIAGNOSTIC |
| 349 | if (cred == NOCRED) |
| 350 | panic("%s: missing credential" , __func__); |
| 351 | if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 || |
| 352 | (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) { |
| 353 | panic("%s: bad size: dev = 0x%llx, bsize = %d, osize = %d, " |
| 354 | "nsize = %d, fs = %s" , __func__, |
| 355 | (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize, |
| 356 | fs->fs_fsmnt); |
| 357 | } |
| 358 | #endif /* DIAGNOSTIC */ |
| 359 | if (freespace(fs, fs->fs_minfree) <= 0 && |
| 360 | kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL, |
| 361 | NULL, NULL) != 0) { |
| 362 | mutex_exit(&ump->um_lock); |
| 363 | goto nospace; |
| 364 | } |
| 365 | if (fs->fs_magic == FS_UFS2_MAGIC) |
| 366 | bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs)); |
| 367 | else |
| 368 | bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs)); |
| 369 | |
| 370 | if (bprev == 0) { |
| 371 | panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %" |
| 372 | PRId64 ", fs = %s" , __func__, |
| 373 | (unsigned long long)ip->i_dev, fs->fs_bsize, bprev, |
| 374 | fs->fs_fsmnt); |
| 375 | } |
| 376 | mutex_exit(&ump->um_lock); |
| 377 | |
| 378 | /* |
| 379 | * Allocate the extra space in the buffer. |
| 380 | */ |
| 381 | if (bpp != NULL && |
| 382 | (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) { |
| 383 | return (error); |
| 384 | } |
| 385 | #if defined(QUOTA) || defined(QUOTA2) |
| 386 | if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) { |
| 387 | if (bpp != NULL) { |
| 388 | brelse(bp, 0); |
| 389 | } |
| 390 | return (error); |
| 391 | } |
| 392 | #endif |
| 393 | /* |
| 394 | * Check for extension in the existing location. |
| 395 | */ |
| 396 | cg = dtog(fs, bprev); |
| 397 | mutex_enter(&ump->um_lock); |
| 398 | if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) { |
| 399 | DIP_ADD(ip, blocks, btodb(nsize - osize)); |
| 400 | ip->i_flag |= IN_CHANGE | IN_UPDATE; |
| 401 | |
| 402 | if (bpp != NULL) { |
| 403 | if (bp->b_blkno != FFS_FSBTODB(fs, bno)) { |
| 404 | panic("%s: bad blockno %#llx != %#llx" , |
| 405 | __func__, (unsigned long long) bp->b_blkno, |
| 406 | (unsigned long long)FFS_FSBTODB(fs, bno)); |
| 407 | } |
| 408 | allocbuf(bp, nsize, 1); |
| 409 | memset((char *)bp->b_data + osize, 0, nsize - osize); |
| 410 | mutex_enter(bp->b_objlock); |
| 411 | KASSERT(!cv_has_waiters(&bp->b_done)); |
| 412 | bp->b_oflags |= BO_DONE; |
| 413 | mutex_exit(bp->b_objlock); |
| 414 | *bpp = bp; |
| 415 | } |
| 416 | if (blknop != NULL) { |
| 417 | *blknop = bno; |
| 418 | } |
| 419 | return (0); |
| 420 | } |
| 421 | /* |
| 422 | * Allocate a new disk location. |
| 423 | */ |
| 424 | if (bpref >= fs->fs_size) |
| 425 | bpref = 0; |
| 426 | switch ((int)fs->fs_optim) { |
| 427 | case FS_OPTSPACE: |
| 428 | /* |
| 429 | * Allocate an exact sized fragment. Although this makes |
| 430 | * best use of space, we will waste time relocating it if |
| 431 | * the file continues to grow. If the fragmentation is |
| 432 | * less than half of the minimum free reserve, we choose |
| 433 | * to begin optimizing for time. |
| 434 | */ |
| 435 | request = nsize; |
| 436 | if (fs->fs_minfree < 5 || |
| 437 | fs->fs_cstotal.cs_nffree > |
| 438 | fs->fs_dsize * fs->fs_minfree / (2 * 100)) |
| 439 | break; |
| 440 | |
| 441 | if (ffs_log_changeopt) { |
| 442 | log(LOG_NOTICE, |
| 443 | "%s: optimization changed from SPACE to TIME\n" , |
| 444 | fs->fs_fsmnt); |
| 445 | } |
| 446 | |
| 447 | fs->fs_optim = FS_OPTTIME; |
| 448 | break; |
| 449 | case FS_OPTTIME: |
| 450 | /* |
| 451 | * At this point we have discovered a file that is trying to |
| 452 | * grow a small fragment to a larger fragment. To save time, |
| 453 | * we allocate a full sized block, then free the unused portion. |
| 454 | * If the file continues to grow, the `ffs_fragextend' call |
| 455 | * above will be able to grow it in place without further |
| 456 | * copying. If aberrant programs cause disk fragmentation to |
| 457 | * grow within 2% of the free reserve, we choose to begin |
| 458 | * optimizing for space. |
| 459 | */ |
| 460 | request = fs->fs_bsize; |
| 461 | if (fs->fs_cstotal.cs_nffree < |
| 462 | fs->fs_dsize * (fs->fs_minfree - 2) / 100) |
| 463 | break; |
| 464 | |
| 465 | if (ffs_log_changeopt) { |
| 466 | log(LOG_NOTICE, |
| 467 | "%s: optimization changed from TIME to SPACE\n" , |
| 468 | fs->fs_fsmnt); |
| 469 | } |
| 470 | |
| 471 | fs->fs_optim = FS_OPTSPACE; |
| 472 | break; |
| 473 | default: |
| 474 | panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s" , |
| 475 | __func__, (unsigned long long)ip->i_dev, fs->fs_optim, |
| 476 | fs->fs_fsmnt); |
| 477 | /* NOTREACHED */ |
| 478 | } |
| 479 | bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg); |
| 480 | if (bno > 0) { |
| 481 | /* |
| 482 | * Use forced deallocation registration, we can't handle |
| 483 | * failure here. This is safe, as this place is ever hit |
| 484 | * maximum once per write operation, when fragment is extended |
| 485 | * to longer fragment, or a full block. |
| 486 | */ |
| 487 | if ((ip->i_ump->um_mountp->mnt_wapbl) && |
| 488 | (ITOV(ip)->v_type != VREG)) { |
| 489 | /* this should never fail */ |
| 490 | error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE( |
| 491 | ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev), |
| 492 | osize); |
| 493 | if (error) |
| 494 | panic("ffs_realloccg: dealloc registration failed" ); |
| 495 | } else { |
| 496 | ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize, |
| 497 | ip->i_number); |
| 498 | } |
| 499 | DIP_ADD(ip, blocks, btodb(nsize - osize)); |
| 500 | ip->i_flag |= IN_CHANGE | IN_UPDATE; |
| 501 | if (bpp != NULL) { |
| 502 | bp->b_blkno = FFS_FSBTODB(fs, bno); |
| 503 | allocbuf(bp, nsize, 1); |
| 504 | memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize); |
| 505 | mutex_enter(bp->b_objlock); |
| 506 | KASSERT(!cv_has_waiters(&bp->b_done)); |
| 507 | bp->b_oflags |= BO_DONE; |
| 508 | mutex_exit(bp->b_objlock); |
| 509 | *bpp = bp; |
| 510 | } |
| 511 | if (blknop != NULL) { |
| 512 | *blknop = bno; |
| 513 | } |
| 514 | return (0); |
| 515 | } |
| 516 | mutex_exit(&ump->um_lock); |
| 517 | |
| 518 | #if defined(QUOTA) || defined(QUOTA2) |
| 519 | /* |
| 520 | * Restore user's disk quota because allocation failed. |
| 521 | */ |
| 522 | (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); |
| 523 | #endif |
| 524 | if (bpp != NULL) { |
| 525 | brelse(bp, 0); |
| 526 | } |
| 527 | |
| 528 | nospace: |
| 529 | /* |
| 530 | * no space available |
| 531 | */ |
| 532 | ffs_fserr(fs, cred, "file system full" ); |
| 533 | uprintf("\n%s: write failed, file system is full\n" , fs->fs_fsmnt); |
| 534 | return (ENOSPC); |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * Allocate an inode in the file system. |
| 539 | * |
| 540 | * If allocating a directory, use ffs_dirpref to select the inode. |
| 541 | * If allocating in a directory, the following hierarchy is followed: |
| 542 | * 1) allocate the preferred inode. |
| 543 | * 2) allocate an inode in the same cylinder group. |
| 544 | * 3) quadradically rehash into other cylinder groups, until an |
| 545 | * available inode is located. |
| 546 | * If no inode preference is given the following hierarchy is used |
| 547 | * to allocate an inode: |
| 548 | * 1) allocate an inode in cylinder group 0. |
| 549 | * 2) quadradically rehash into other cylinder groups, until an |
| 550 | * available inode is located. |
| 551 | * |
| 552 | * => um_lock not held upon entry or return |
| 553 | */ |
| 554 | int |
| 555 | ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop) |
| 556 | { |
| 557 | struct ufsmount *ump; |
| 558 | struct inode *pip; |
| 559 | struct fs *fs; |
| 560 | ino_t ino, ipref; |
| 561 | int cg, error; |
| 562 | |
| 563 | UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount); |
| 564 | |
| 565 | pip = VTOI(pvp); |
| 566 | fs = pip->i_fs; |
| 567 | ump = pip->i_ump; |
| 568 | |
| 569 | error = UFS_WAPBL_BEGIN(pvp->v_mount); |
| 570 | if (error) { |
| 571 | return error; |
| 572 | } |
| 573 | mutex_enter(&ump->um_lock); |
| 574 | if (fs->fs_cstotal.cs_nifree == 0) |
| 575 | goto noinodes; |
| 576 | |
| 577 | if ((mode & IFMT) == IFDIR) |
| 578 | ipref = ffs_dirpref(pip); |
| 579 | else |
| 580 | ipref = pip->i_number; |
| 581 | if (ipref >= fs->fs_ncg * fs->fs_ipg) |
| 582 | ipref = 0; |
| 583 | cg = ino_to_cg(fs, ipref); |
| 584 | /* |
| 585 | * Track number of dirs created one after another |
| 586 | * in a same cg without intervening by files. |
| 587 | */ |
| 588 | if ((mode & IFMT) == IFDIR) { |
| 589 | if (fs->fs_contigdirs[cg] < 255) |
| 590 | fs->fs_contigdirs[cg]++; |
| 591 | } else { |
| 592 | if (fs->fs_contigdirs[cg] > 0) |
| 593 | fs->fs_contigdirs[cg]--; |
| 594 | } |
| 595 | ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg); |
| 596 | if (ino == 0) |
| 597 | goto noinodes; |
| 598 | UFS_WAPBL_END(pvp->v_mount); |
| 599 | *inop = ino; |
| 600 | return 0; |
| 601 | |
| 602 | noinodes: |
| 603 | mutex_exit(&ump->um_lock); |
| 604 | UFS_WAPBL_END(pvp->v_mount); |
| 605 | ffs_fserr(fs, cred, "out of inodes" ); |
| 606 | uprintf("\n%s: create/symlink failed, no inodes free\n" , fs->fs_fsmnt); |
| 607 | return ENOSPC; |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * Find a cylinder group in which to place a directory. |
| 612 | * |
| 613 | * The policy implemented by this algorithm is to allocate a |
| 614 | * directory inode in the same cylinder group as its parent |
| 615 | * directory, but also to reserve space for its files inodes |
| 616 | * and data. Restrict the number of directories which may be |
| 617 | * allocated one after another in the same cylinder group |
| 618 | * without intervening allocation of files. |
| 619 | * |
| 620 | * If we allocate a first level directory then force allocation |
| 621 | * in another cylinder group. |
| 622 | */ |
| 623 | static ino_t |
| 624 | ffs_dirpref(struct inode *pip) |
| 625 | { |
| 626 | register struct fs *fs; |
| 627 | int cg, prefcg; |
| 628 | int64_t dirsize, cgsize, curdsz; |
| 629 | int avgifree, avgbfree, avgndir; |
| 630 | int minifree, minbfree, maxndir; |
| 631 | int mincg, minndir; |
| 632 | int maxcontigdirs; |
| 633 | |
| 634 | KASSERT(mutex_owned(&pip->i_ump->um_lock)); |
| 635 | |
| 636 | fs = pip->i_fs; |
| 637 | |
| 638 | avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; |
| 639 | avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; |
| 640 | avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; |
| 641 | |
| 642 | /* |
| 643 | * Force allocation in another cg if creating a first level dir. |
| 644 | */ |
| 645 | if (ITOV(pip)->v_vflag & VV_ROOT) { |
| 646 | prefcg = cprng_fast32() % fs->fs_ncg; |
| 647 | mincg = prefcg; |
| 648 | minndir = fs->fs_ipg; |
| 649 | for (cg = prefcg; cg < fs->fs_ncg; cg++) |
| 650 | if (fs->fs_cs(fs, cg).cs_ndir < minndir && |
| 651 | fs->fs_cs(fs, cg).cs_nifree >= avgifree && |
| 652 | fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { |
| 653 | mincg = cg; |
| 654 | minndir = fs->fs_cs(fs, cg).cs_ndir; |
| 655 | } |
| 656 | for (cg = 0; cg < prefcg; cg++) |
| 657 | if (fs->fs_cs(fs, cg).cs_ndir < minndir && |
| 658 | fs->fs_cs(fs, cg).cs_nifree >= avgifree && |
| 659 | fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { |
| 660 | mincg = cg; |
| 661 | minndir = fs->fs_cs(fs, cg).cs_ndir; |
| 662 | } |
| 663 | return ((ino_t)(fs->fs_ipg * mincg)); |
| 664 | } |
| 665 | |
| 666 | /* |
| 667 | * Count various limits which used for |
| 668 | * optimal allocation of a directory inode. |
| 669 | * Try cylinder groups with >75% avgifree and avgbfree. |
| 670 | * Avoid cylinder groups with no free blocks or inodes as that |
| 671 | * triggers an I/O-expensive cylinder group scan. |
| 672 | */ |
| 673 | maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); |
| 674 | minifree = avgifree - avgifree / 4; |
| 675 | if (minifree < 1) |
| 676 | minifree = 1; |
| 677 | minbfree = avgbfree - avgbfree / 4; |
| 678 | if (minbfree < 1) |
| 679 | minbfree = 1; |
| 680 | cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg; |
| 681 | dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir; |
| 682 | if (avgndir != 0) { |
| 683 | curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir; |
| 684 | if (dirsize < curdsz) |
| 685 | dirsize = curdsz; |
| 686 | } |
| 687 | if (cgsize < dirsize * 255) |
| 688 | maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize; |
| 689 | else |
| 690 | maxcontigdirs = 255; |
| 691 | if (fs->fs_avgfpdir > 0) |
| 692 | maxcontigdirs = min(maxcontigdirs, |
| 693 | fs->fs_ipg / fs->fs_avgfpdir); |
| 694 | if (maxcontigdirs == 0) |
| 695 | maxcontigdirs = 1; |
| 696 | |
| 697 | /* |
| 698 | * Limit number of dirs in one cg and reserve space for |
| 699 | * regular files, but only if we have no deficit in |
| 700 | * inodes or space. |
| 701 | */ |
| 702 | prefcg = ino_to_cg(fs, pip->i_number); |
| 703 | for (cg = prefcg; cg < fs->fs_ncg; cg++) |
| 704 | if (fs->fs_cs(fs, cg).cs_ndir < maxndir && |
| 705 | fs->fs_cs(fs, cg).cs_nifree >= minifree && |
| 706 | fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { |
| 707 | if (fs->fs_contigdirs[cg] < maxcontigdirs) |
| 708 | return ((ino_t)(fs->fs_ipg * cg)); |
| 709 | } |
| 710 | for (cg = 0; cg < prefcg; cg++) |
| 711 | if (fs->fs_cs(fs, cg).cs_ndir < maxndir && |
| 712 | fs->fs_cs(fs, cg).cs_nifree >= minifree && |
| 713 | fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { |
| 714 | if (fs->fs_contigdirs[cg] < maxcontigdirs) |
| 715 | return ((ino_t)(fs->fs_ipg * cg)); |
| 716 | } |
| 717 | /* |
| 718 | * This is a backstop when we are deficient in space. |
| 719 | */ |
| 720 | for (cg = prefcg; cg < fs->fs_ncg; cg++) |
| 721 | if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) |
| 722 | return ((ino_t)(fs->fs_ipg * cg)); |
| 723 | for (cg = 0; cg < prefcg; cg++) |
| 724 | if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) |
| 725 | break; |
| 726 | return ((ino_t)(fs->fs_ipg * cg)); |
| 727 | } |
| 728 | |
| 729 | /* |
| 730 | * Select the desired position for the next block in a file. The file is |
| 731 | * logically divided into sections. The first section is composed of the |
| 732 | * direct blocks. Each additional section contains fs_maxbpg blocks. |
| 733 | * |
| 734 | * If no blocks have been allocated in the first section, the policy is to |
| 735 | * request a block in the same cylinder group as the inode that describes |
| 736 | * the file. If no blocks have been allocated in any other section, the |
| 737 | * policy is to place the section in a cylinder group with a greater than |
| 738 | * average number of free blocks. An appropriate cylinder group is found |
| 739 | * by using a rotor that sweeps the cylinder groups. When a new group of |
| 740 | * blocks is needed, the sweep begins in the cylinder group following the |
| 741 | * cylinder group from which the previous allocation was made. The sweep |
| 742 | * continues until a cylinder group with greater than the average number |
| 743 | * of free blocks is found. If the allocation is for the first block in an |
| 744 | * indirect block, the information on the previous allocation is unavailable; |
| 745 | * here a best guess is made based upon the logical block number being |
| 746 | * allocated. |
| 747 | * |
| 748 | * If a section is already partially allocated, the policy is to |
| 749 | * contiguously allocate fs_maxcontig blocks. The end of one of these |
| 750 | * contiguous blocks and the beginning of the next is laid out |
| 751 | * contigously if possible. |
| 752 | * |
| 753 | * => um_lock held on entry and exit |
| 754 | */ |
| 755 | daddr_t |
| 756 | ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags, |
| 757 | int32_t *bap /* XXX ondisk32 */) |
| 758 | { |
| 759 | struct fs *fs; |
| 760 | int cg; |
| 761 | int avgbfree, startcg; |
| 762 | |
| 763 | KASSERT(mutex_owned(&ip->i_ump->um_lock)); |
| 764 | |
| 765 | fs = ip->i_fs; |
| 766 | |
| 767 | /* |
| 768 | * If allocating a contiguous file with B_CONTIG, use the hints |
| 769 | * in the inode extentions to return the desired block. |
| 770 | * |
| 771 | * For metadata (indirect blocks) return the address of where |
| 772 | * the first indirect block resides - we'll scan for the next |
| 773 | * available slot if we need to allocate more than one indirect |
| 774 | * block. For data, return the address of the actual block |
| 775 | * relative to the address of the first data block. |
| 776 | */ |
| 777 | if (flags & B_CONTIG) { |
| 778 | KASSERT(ip->i_ffs_first_data_blk != 0); |
| 779 | KASSERT(ip->i_ffs_first_indir_blk != 0); |
| 780 | if (flags & B_METAONLY) |
| 781 | return ip->i_ffs_first_indir_blk; |
| 782 | else |
| 783 | return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn); |
| 784 | } |
| 785 | |
| 786 | if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { |
| 787 | if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) { |
| 788 | cg = ino_to_cg(fs, ip->i_number); |
| 789 | return (cgbase(fs, cg) + fs->fs_frag); |
| 790 | } |
| 791 | /* |
| 792 | * Find a cylinder with greater than average number of |
| 793 | * unused data blocks. |
| 794 | */ |
| 795 | if (indx == 0 || bap[indx - 1] == 0) |
| 796 | startcg = |
| 797 | ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; |
| 798 | else |
| 799 | startcg = dtog(fs, |
| 800 | ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1); |
| 801 | startcg %= fs->fs_ncg; |
| 802 | avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; |
| 803 | for (cg = startcg; cg < fs->fs_ncg; cg++) |
| 804 | if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { |
| 805 | return (cgbase(fs, cg) + fs->fs_frag); |
| 806 | } |
| 807 | for (cg = 0; cg < startcg; cg++) |
| 808 | if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { |
| 809 | return (cgbase(fs, cg) + fs->fs_frag); |
| 810 | } |
| 811 | return (0); |
| 812 | } |
| 813 | /* |
| 814 | * We just always try to lay things out contiguously. |
| 815 | */ |
| 816 | return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag; |
| 817 | } |
| 818 | |
| 819 | daddr_t |
| 820 | ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags, |
| 821 | int64_t *bap) |
| 822 | { |
| 823 | struct fs *fs; |
| 824 | int cg; |
| 825 | int avgbfree, startcg; |
| 826 | |
| 827 | KASSERT(mutex_owned(&ip->i_ump->um_lock)); |
| 828 | |
| 829 | fs = ip->i_fs; |
| 830 | |
| 831 | /* |
| 832 | * If allocating a contiguous file with B_CONTIG, use the hints |
| 833 | * in the inode extentions to return the desired block. |
| 834 | * |
| 835 | * For metadata (indirect blocks) return the address of where |
| 836 | * the first indirect block resides - we'll scan for the next |
| 837 | * available slot if we need to allocate more than one indirect |
| 838 | * block. For data, return the address of the actual block |
| 839 | * relative to the address of the first data block. |
| 840 | */ |
| 841 | if (flags & B_CONTIG) { |
| 842 | KASSERT(ip->i_ffs_first_data_blk != 0); |
| 843 | KASSERT(ip->i_ffs_first_indir_blk != 0); |
| 844 | if (flags & B_METAONLY) |
| 845 | return ip->i_ffs_first_indir_blk; |
| 846 | else |
| 847 | return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn); |
| 848 | } |
| 849 | |
| 850 | if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { |
| 851 | if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) { |
| 852 | cg = ino_to_cg(fs, ip->i_number); |
| 853 | return (cgbase(fs, cg) + fs->fs_frag); |
| 854 | } |
| 855 | /* |
| 856 | * Find a cylinder with greater than average number of |
| 857 | * unused data blocks. |
| 858 | */ |
| 859 | if (indx == 0 || bap[indx - 1] == 0) |
| 860 | startcg = |
| 861 | ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; |
| 862 | else |
| 863 | startcg = dtog(fs, |
| 864 | ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1); |
| 865 | startcg %= fs->fs_ncg; |
| 866 | avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; |
| 867 | for (cg = startcg; cg < fs->fs_ncg; cg++) |
| 868 | if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { |
| 869 | return (cgbase(fs, cg) + fs->fs_frag); |
| 870 | } |
| 871 | for (cg = 0; cg < startcg; cg++) |
| 872 | if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { |
| 873 | return (cgbase(fs, cg) + fs->fs_frag); |
| 874 | } |
| 875 | return (0); |
| 876 | } |
| 877 | /* |
| 878 | * We just always try to lay things out contiguously. |
| 879 | */ |
| 880 | return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag; |
| 881 | } |
| 882 | |
| 883 | |
| 884 | /* |
| 885 | * Implement the cylinder overflow algorithm. |
| 886 | * |
| 887 | * The policy implemented by this algorithm is: |
| 888 | * 1) allocate the block in its requested cylinder group. |
| 889 | * 2) quadradically rehash on the cylinder group number. |
| 890 | * 3) brute force search for a free block. |
| 891 | * |
| 892 | * => called with um_lock held |
| 893 | * => returns with um_lock released on success, held on failure |
| 894 | * (*allocator releases lock on success, retains lock on failure) |
| 895 | */ |
| 896 | /*VARARGS5*/ |
| 897 | static daddr_t |
| 898 | ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, |
| 899 | int size /* size for data blocks, mode for inodes */, |
| 900 | int realsize, |
| 901 | int flags, |
| 902 | daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int)) |
| 903 | { |
| 904 | struct fs *fs; |
| 905 | daddr_t result; |
| 906 | int i, icg = cg; |
| 907 | |
| 908 | fs = ip->i_fs; |
| 909 | /* |
| 910 | * 1: preferred cylinder group |
| 911 | */ |
| 912 | result = (*allocator)(ip, cg, pref, size, realsize, flags); |
| 913 | if (result) |
| 914 | return (result); |
| 915 | |
| 916 | if (flags & B_CONTIG) |
| 917 | return (result); |
| 918 | /* |
| 919 | * 2: quadratic rehash |
| 920 | */ |
| 921 | for (i = 1; i < fs->fs_ncg; i *= 2) { |
| 922 | cg += i; |
| 923 | if (cg >= fs->fs_ncg) |
| 924 | cg -= fs->fs_ncg; |
| 925 | result = (*allocator)(ip, cg, 0, size, realsize, flags); |
| 926 | if (result) |
| 927 | return (result); |
| 928 | } |
| 929 | /* |
| 930 | * 3: brute force search |
| 931 | * Note that we start at i == 2, since 0 was checked initially, |
| 932 | * and 1 is always checked in the quadratic rehash. |
| 933 | */ |
| 934 | cg = (icg + 2) % fs->fs_ncg; |
| 935 | for (i = 2; i < fs->fs_ncg; i++) { |
| 936 | result = (*allocator)(ip, cg, 0, size, realsize, flags); |
| 937 | if (result) |
| 938 | return (result); |
| 939 | cg++; |
| 940 | if (cg == fs->fs_ncg) |
| 941 | cg = 0; |
| 942 | } |
| 943 | return (0); |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * Determine whether a fragment can be extended. |
| 948 | * |
| 949 | * Check to see if the necessary fragments are available, and |
| 950 | * if they are, allocate them. |
| 951 | * |
| 952 | * => called with um_lock held |
| 953 | * => returns with um_lock released on success, held on failure |
| 954 | */ |
| 955 | static daddr_t |
| 956 | ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize) |
| 957 | { |
| 958 | struct ufsmount *ump; |
| 959 | struct fs *fs; |
| 960 | struct cg *cgp; |
| 961 | struct buf *bp; |
| 962 | daddr_t bno; |
| 963 | int frags, bbase; |
| 964 | int i, error; |
| 965 | u_int8_t *blksfree; |
| 966 | |
| 967 | fs = ip->i_fs; |
| 968 | ump = ip->i_ump; |
| 969 | |
| 970 | KASSERT(mutex_owned(&ump->um_lock)); |
| 971 | |
| 972 | if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize)) |
| 973 | return (0); |
| 974 | frags = ffs_numfrags(fs, nsize); |
| 975 | bbase = ffs_fragnum(fs, bprev); |
| 976 | if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) { |
| 977 | /* cannot extend across a block boundary */ |
| 978 | return (0); |
| 979 | } |
| 980 | mutex_exit(&ump->um_lock); |
| 981 | error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)), |
| 982 | (int)fs->fs_cgsize, B_MODIFY, &bp); |
| 983 | if (error) |
| 984 | goto fail; |
| 985 | cgp = (struct cg *)bp->b_data; |
| 986 | if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) |
| 987 | goto fail; |
| 988 | cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs)); |
| 989 | if ((fs->fs_magic != FS_UFS1_MAGIC) || |
| 990 | (fs->fs_old_flags & FS_FLAGS_UPDATED)) |
| 991 | cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs)); |
| 992 | bno = dtogd(fs, bprev); |
| 993 | blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)); |
| 994 | for (i = ffs_numfrags(fs, osize); i < frags; i++) |
| 995 | if (isclr(blksfree, bno + i)) |
| 996 | goto fail; |
| 997 | /* |
| 998 | * the current fragment can be extended |
| 999 | * deduct the count on fragment being extended into |
| 1000 | * increase the count on the remaining fragment (if any) |
| 1001 | * allocate the extended piece |
| 1002 | */ |
| 1003 | for (i = frags; i < fs->fs_frag - bbase; i++) |
| 1004 | if (isclr(blksfree, bno + i)) |
| 1005 | break; |
| 1006 | ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs)); |
| 1007 | if (i != frags) |
| 1008 | ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs)); |
| 1009 | mutex_enter(&ump->um_lock); |
| 1010 | for (i = ffs_numfrags(fs, osize); i < frags; i++) { |
| 1011 | clrbit(blksfree, bno + i); |
| 1012 | ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs)); |
| 1013 | fs->fs_cstotal.cs_nffree--; |
| 1014 | fs->fs_cs(fs, cg).cs_nffree--; |
| 1015 | } |
| 1016 | fs->fs_fmod = 1; |
| 1017 | ACTIVECG_CLR(fs, cg); |
| 1018 | mutex_exit(&ump->um_lock); |
| 1019 | bdwrite(bp); |
| 1020 | return (bprev); |
| 1021 | |
| 1022 | fail: |
| 1023 | if (bp != NULL) |
| 1024 | brelse(bp, 0); |
| 1025 | mutex_enter(&ump->um_lock); |
| 1026 | return (0); |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * Determine whether a block can be allocated. |
| 1031 | * |
| 1032 | * Check to see if a block of the appropriate size is available, |
| 1033 | * and if it is, allocate it. |
| 1034 | */ |
| 1035 | static daddr_t |
| 1036 | ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize, |
| 1037 | int flags) |
| 1038 | { |
| 1039 | struct ufsmount *ump; |
| 1040 | struct fs *fs = ip->i_fs; |
| 1041 | struct cg *cgp; |
| 1042 | struct buf *bp; |
| 1043 | int32_t bno; |
| 1044 | daddr_t blkno; |
| 1045 | int error, frags, allocsiz, i; |
| 1046 | u_int8_t *blksfree; |
| 1047 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1048 | |
| 1049 | ump = ip->i_ump; |
| 1050 | |
| 1051 | KASSERT(mutex_owned(&ump->um_lock)); |
| 1052 | |
| 1053 | if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) |
| 1054 | return (0); |
| 1055 | mutex_exit(&ump->um_lock); |
| 1056 | error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)), |
| 1057 | (int)fs->fs_cgsize, B_MODIFY, &bp); |
| 1058 | if (error) |
| 1059 | goto fail; |
| 1060 | cgp = (struct cg *)bp->b_data; |
| 1061 | if (!cg_chkmagic(cgp, needswap) || |
| 1062 | (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) |
| 1063 | goto fail; |
| 1064 | cgp->cg_old_time = ufs_rw32(time_second, needswap); |
| 1065 | if ((fs->fs_magic != FS_UFS1_MAGIC) || |
| 1066 | (fs->fs_old_flags & FS_FLAGS_UPDATED)) |
| 1067 | cgp->cg_time = ufs_rw64(time_second, needswap); |
| 1068 | if (size == fs->fs_bsize) { |
| 1069 | mutex_enter(&ump->um_lock); |
| 1070 | blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags); |
| 1071 | ACTIVECG_CLR(fs, cg); |
| 1072 | mutex_exit(&ump->um_lock); |
| 1073 | |
| 1074 | /* |
| 1075 | * If actually needed size is lower, free the extra blocks now. |
| 1076 | * This is safe to call here, there is no outside reference |
| 1077 | * to this block yet. It is not necessary to keep um_lock |
| 1078 | * locked. |
| 1079 | */ |
| 1080 | if (realsize != 0 && realsize < size) { |
| 1081 | ffs_blkfree_common(ip->i_ump, ip->i_fs, |
| 1082 | ip->i_devvp->v_rdev, |
| 1083 | bp, blkno + ffs_numfrags(fs, realsize), |
| 1084 | (long)(size - realsize), false); |
| 1085 | } |
| 1086 | |
| 1087 | bdwrite(bp); |
| 1088 | return (blkno); |
| 1089 | } |
| 1090 | /* |
| 1091 | * check to see if any fragments are already available |
| 1092 | * allocsiz is the size which will be allocated, hacking |
| 1093 | * it down to a smaller size if necessary |
| 1094 | */ |
| 1095 | blksfree = cg_blksfree(cgp, needswap); |
| 1096 | frags = ffs_numfrags(fs, size); |
| 1097 | for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) |
| 1098 | if (cgp->cg_frsum[allocsiz] != 0) |
| 1099 | break; |
| 1100 | if (allocsiz == fs->fs_frag) { |
| 1101 | /* |
| 1102 | * no fragments were available, so a block will be |
| 1103 | * allocated, and hacked up |
| 1104 | */ |
| 1105 | if (cgp->cg_cs.cs_nbfree == 0) |
| 1106 | goto fail; |
| 1107 | mutex_enter(&ump->um_lock); |
| 1108 | blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags); |
| 1109 | bno = dtogd(fs, blkno); |
| 1110 | for (i = frags; i < fs->fs_frag; i++) |
| 1111 | setbit(blksfree, bno + i); |
| 1112 | i = fs->fs_frag - frags; |
| 1113 | ufs_add32(cgp->cg_cs.cs_nffree, i, needswap); |
| 1114 | fs->fs_cstotal.cs_nffree += i; |
| 1115 | fs->fs_cs(fs, cg).cs_nffree += i; |
| 1116 | fs->fs_fmod = 1; |
| 1117 | ufs_add32(cgp->cg_frsum[i], 1, needswap); |
| 1118 | ACTIVECG_CLR(fs, cg); |
| 1119 | mutex_exit(&ump->um_lock); |
| 1120 | bdwrite(bp); |
| 1121 | return (blkno); |
| 1122 | } |
| 1123 | bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); |
| 1124 | #if 0 |
| 1125 | /* |
| 1126 | * XXX fvdl mapsearch will panic, and never return -1 |
| 1127 | * also: returning NULL as daddr_t ? |
| 1128 | */ |
| 1129 | if (bno < 0) |
| 1130 | goto fail; |
| 1131 | #endif |
| 1132 | for (i = 0; i < frags; i++) |
| 1133 | clrbit(blksfree, bno + i); |
| 1134 | mutex_enter(&ump->um_lock); |
| 1135 | ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap); |
| 1136 | fs->fs_cstotal.cs_nffree -= frags; |
| 1137 | fs->fs_cs(fs, cg).cs_nffree -= frags; |
| 1138 | fs->fs_fmod = 1; |
| 1139 | ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap); |
| 1140 | if (frags != allocsiz) |
| 1141 | ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap); |
| 1142 | blkno = cgbase(fs, cg) + bno; |
| 1143 | ACTIVECG_CLR(fs, cg); |
| 1144 | mutex_exit(&ump->um_lock); |
| 1145 | bdwrite(bp); |
| 1146 | return blkno; |
| 1147 | |
| 1148 | fail: |
| 1149 | if (bp != NULL) |
| 1150 | brelse(bp, 0); |
| 1151 | mutex_enter(&ump->um_lock); |
| 1152 | return (0); |
| 1153 | } |
| 1154 | |
| 1155 | /* |
| 1156 | * Allocate a block in a cylinder group. |
| 1157 | * |
| 1158 | * This algorithm implements the following policy: |
| 1159 | * 1) allocate the requested block. |
| 1160 | * 2) allocate a rotationally optimal block in the same cylinder. |
| 1161 | * 3) allocate the next available block on the block rotor for the |
| 1162 | * specified cylinder group. |
| 1163 | * Note that this routine only allocates fs_bsize blocks; these |
| 1164 | * blocks may be fragmented by the routine that allocates them. |
| 1165 | */ |
| 1166 | static daddr_t |
| 1167 | ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize, |
| 1168 | int flags) |
| 1169 | { |
| 1170 | struct fs *fs = ip->i_fs; |
| 1171 | struct cg *cgp; |
| 1172 | int cg; |
| 1173 | daddr_t blkno; |
| 1174 | int32_t bno; |
| 1175 | u_int8_t *blksfree; |
| 1176 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1177 | |
| 1178 | KASSERT(mutex_owned(&ip->i_ump->um_lock)); |
| 1179 | |
| 1180 | cgp = (struct cg *)bp->b_data; |
| 1181 | blksfree = cg_blksfree(cgp, needswap); |
| 1182 | if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) { |
| 1183 | bpref = ufs_rw32(cgp->cg_rotor, needswap); |
| 1184 | } else { |
| 1185 | bpref = ffs_blknum(fs, bpref); |
| 1186 | bno = dtogd(fs, bpref); |
| 1187 | /* |
| 1188 | * if the requested block is available, use it |
| 1189 | */ |
| 1190 | if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno))) |
| 1191 | goto gotit; |
| 1192 | /* |
| 1193 | * if the requested data block isn't available and we are |
| 1194 | * trying to allocate a contiguous file, return an error. |
| 1195 | */ |
| 1196 | if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG) |
| 1197 | return (0); |
| 1198 | } |
| 1199 | |
| 1200 | /* |
| 1201 | * Take the next available block in this cylinder group. |
| 1202 | */ |
| 1203 | bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); |
| 1204 | #if 0 |
| 1205 | /* |
| 1206 | * XXX jdolecek ffs_mapsearch() succeeds or panics |
| 1207 | */ |
| 1208 | if (bno < 0) |
| 1209 | return (0); |
| 1210 | #endif |
| 1211 | cgp->cg_rotor = ufs_rw32(bno, needswap); |
| 1212 | gotit: |
| 1213 | blkno = ffs_fragstoblks(fs, bno); |
| 1214 | ffs_clrblock(fs, blksfree, blkno); |
| 1215 | ffs_clusteracct(fs, cgp, blkno, -1); |
| 1216 | ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap); |
| 1217 | fs->fs_cstotal.cs_nbfree--; |
| 1218 | fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--; |
| 1219 | if ((fs->fs_magic == FS_UFS1_MAGIC) && |
| 1220 | ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) { |
| 1221 | int cylno; |
| 1222 | cylno = old_cbtocylno(fs, bno); |
| 1223 | KASSERT(cylno >= 0); |
| 1224 | KASSERT(cylno < fs->fs_old_ncyl); |
| 1225 | KASSERT(old_cbtorpos(fs, bno) >= 0); |
| 1226 | KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos); |
| 1227 | ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1, |
| 1228 | needswap); |
| 1229 | ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap); |
| 1230 | } |
| 1231 | fs->fs_fmod = 1; |
| 1232 | cg = ufs_rw32(cgp->cg_cgx, needswap); |
| 1233 | blkno = cgbase(fs, cg) + bno; |
| 1234 | return (blkno); |
| 1235 | } |
| 1236 | |
| 1237 | /* |
| 1238 | * Determine whether an inode can be allocated. |
| 1239 | * |
| 1240 | * Check to see if an inode is available, and if it is, |
| 1241 | * allocate it using the following policy: |
| 1242 | * 1) allocate the requested inode. |
| 1243 | * 2) allocate the next available inode after the requested |
| 1244 | * inode in the specified cylinder group. |
| 1245 | */ |
| 1246 | static daddr_t |
| 1247 | ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize, |
| 1248 | int flags) |
| 1249 | { |
| 1250 | struct ufsmount *ump = ip->i_ump; |
| 1251 | struct fs *fs = ip->i_fs; |
| 1252 | struct cg *cgp; |
| 1253 | struct buf *bp, *ibp; |
| 1254 | u_int8_t *inosused; |
| 1255 | int error, start, len, loc, map, i; |
| 1256 | int32_t initediblk; |
| 1257 | daddr_t nalloc; |
| 1258 | struct ufs2_dinode *dp2; |
| 1259 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1260 | |
| 1261 | KASSERT(mutex_owned(&ump->um_lock)); |
| 1262 | UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp); |
| 1263 | |
| 1264 | if (fs->fs_cs(fs, cg).cs_nifree == 0) |
| 1265 | return (0); |
| 1266 | mutex_exit(&ump->um_lock); |
| 1267 | ibp = NULL; |
| 1268 | initediblk = -1; |
| 1269 | retry: |
| 1270 | error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)), |
| 1271 | (int)fs->fs_cgsize, B_MODIFY, &bp); |
| 1272 | if (error) |
| 1273 | goto fail; |
| 1274 | cgp = (struct cg *)bp->b_data; |
| 1275 | if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) |
| 1276 | goto fail; |
| 1277 | |
| 1278 | if (ibp != NULL && |
| 1279 | initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) { |
| 1280 | /* Another thread allocated more inodes so we retry the test. */ |
| 1281 | brelse(ibp, 0); |
| 1282 | ibp = NULL; |
| 1283 | } |
| 1284 | /* |
| 1285 | * Check to see if we need to initialize more inodes. |
| 1286 | */ |
| 1287 | if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) { |
| 1288 | initediblk = ufs_rw32(cgp->cg_initediblk, needswap); |
| 1289 | nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap); |
| 1290 | if (nalloc + FFS_INOPB(fs) > initediblk && |
| 1291 | initediblk < ufs_rw32(cgp->cg_niblk, needswap)) { |
| 1292 | /* |
| 1293 | * We have to release the cg buffer here to prevent |
| 1294 | * a deadlock when reading the inode block will |
| 1295 | * run a copy-on-write that might use this cg. |
| 1296 | */ |
| 1297 | brelse(bp, 0); |
| 1298 | bp = NULL; |
| 1299 | error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs, |
| 1300 | ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)), |
| 1301 | FFS_NOBLK, fs->fs_bsize, false, &ibp); |
| 1302 | if (error) |
| 1303 | goto fail; |
| 1304 | goto retry; |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | cgp->cg_old_time = ufs_rw32(time_second, needswap); |
| 1309 | if ((fs->fs_magic != FS_UFS1_MAGIC) || |
| 1310 | (fs->fs_old_flags & FS_FLAGS_UPDATED)) |
| 1311 | cgp->cg_time = ufs_rw64(time_second, needswap); |
| 1312 | inosused = cg_inosused(cgp, needswap); |
| 1313 | if (ipref) { |
| 1314 | ipref %= fs->fs_ipg; |
| 1315 | if (isclr(inosused, ipref)) |
| 1316 | goto gotit; |
| 1317 | } |
| 1318 | start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY; |
| 1319 | len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap), |
| 1320 | NBBY); |
| 1321 | loc = skpc(0xff, len, &inosused[start]); |
| 1322 | if (loc == 0) { |
| 1323 | len = start + 1; |
| 1324 | start = 0; |
| 1325 | loc = skpc(0xff, len, &inosused[0]); |
| 1326 | if (loc == 0) { |
| 1327 | panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s" , |
| 1328 | __func__, cg, ufs_rw32(cgp->cg_irotor, needswap), |
| 1329 | fs->fs_fsmnt); |
| 1330 | /* NOTREACHED */ |
| 1331 | } |
| 1332 | } |
| 1333 | i = start + len - loc; |
| 1334 | map = inosused[i] ^ 0xff; |
| 1335 | if (map == 0) { |
| 1336 | panic("%s: block not in map: fs=%s" , __func__, fs->fs_fsmnt); |
| 1337 | } |
| 1338 | ipref = i * NBBY + ffs(map) - 1; |
| 1339 | cgp->cg_irotor = ufs_rw32(ipref, needswap); |
| 1340 | gotit: |
| 1341 | UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref, |
| 1342 | mode); |
| 1343 | /* |
| 1344 | * Check to see if we need to initialize more inodes. |
| 1345 | */ |
| 1346 | if (ibp != NULL) { |
| 1347 | KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap)); |
| 1348 | memset(ibp->b_data, 0, fs->fs_bsize); |
| 1349 | dp2 = (struct ufs2_dinode *)(ibp->b_data); |
| 1350 | for (i = 0; i < FFS_INOPB(fs); i++) { |
| 1351 | /* |
| 1352 | * Don't bother to swap, it's supposed to be |
| 1353 | * random, after all. |
| 1354 | */ |
| 1355 | dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1; |
| 1356 | dp2++; |
| 1357 | } |
| 1358 | initediblk += FFS_INOPB(fs); |
| 1359 | cgp->cg_initediblk = ufs_rw32(initediblk, needswap); |
| 1360 | } |
| 1361 | |
| 1362 | mutex_enter(&ump->um_lock); |
| 1363 | ACTIVECG_CLR(fs, cg); |
| 1364 | setbit(inosused, ipref); |
| 1365 | ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap); |
| 1366 | fs->fs_cstotal.cs_nifree--; |
| 1367 | fs->fs_cs(fs, cg).cs_nifree--; |
| 1368 | fs->fs_fmod = 1; |
| 1369 | if ((mode & IFMT) == IFDIR) { |
| 1370 | ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap); |
| 1371 | fs->fs_cstotal.cs_ndir++; |
| 1372 | fs->fs_cs(fs, cg).cs_ndir++; |
| 1373 | } |
| 1374 | mutex_exit(&ump->um_lock); |
| 1375 | if (ibp != NULL) { |
| 1376 | bwrite(bp); |
| 1377 | bawrite(ibp); |
| 1378 | } else |
| 1379 | bdwrite(bp); |
| 1380 | return (cg * fs->fs_ipg + ipref); |
| 1381 | fail: |
| 1382 | if (bp != NULL) |
| 1383 | brelse(bp, 0); |
| 1384 | if (ibp != NULL) |
| 1385 | brelse(ibp, 0); |
| 1386 | mutex_enter(&ump->um_lock); |
| 1387 | return (0); |
| 1388 | } |
| 1389 | |
| 1390 | /* |
| 1391 | * Allocate a block or fragment. |
| 1392 | * |
| 1393 | * The specified block or fragment is removed from the |
| 1394 | * free map, possibly fragmenting a block in the process. |
| 1395 | * |
| 1396 | * This implementation should mirror fs_blkfree |
| 1397 | * |
| 1398 | * => um_lock not held on entry or exit |
| 1399 | */ |
| 1400 | int |
| 1401 | ffs_blkalloc(struct inode *ip, daddr_t bno, long size) |
| 1402 | { |
| 1403 | int error; |
| 1404 | |
| 1405 | error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size, |
| 1406 | ip->i_dev, ip->i_uid); |
| 1407 | if (error) |
| 1408 | return error; |
| 1409 | |
| 1410 | return ffs_blkalloc_ump(ip->i_ump, bno, size); |
| 1411 | } |
| 1412 | |
| 1413 | int |
| 1414 | ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size) |
| 1415 | { |
| 1416 | struct fs *fs = ump->um_fs; |
| 1417 | struct cg *cgp; |
| 1418 | struct buf *bp; |
| 1419 | int32_t fragno, cgbno; |
| 1420 | int i, error, cg, blk, frags, bbase; |
| 1421 | u_int8_t *blksfree; |
| 1422 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1423 | |
| 1424 | KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 && |
| 1425 | ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag); |
| 1426 | KASSERT(bno < fs->fs_size); |
| 1427 | |
| 1428 | cg = dtog(fs, bno); |
| 1429 | error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)), |
| 1430 | (int)fs->fs_cgsize, B_MODIFY, &bp); |
| 1431 | if (error) { |
| 1432 | return error; |
| 1433 | } |
| 1434 | cgp = (struct cg *)bp->b_data; |
| 1435 | if (!cg_chkmagic(cgp, needswap)) { |
| 1436 | brelse(bp, 0); |
| 1437 | return EIO; |
| 1438 | } |
| 1439 | cgp->cg_old_time = ufs_rw32(time_second, needswap); |
| 1440 | cgp->cg_time = ufs_rw64(time_second, needswap); |
| 1441 | cgbno = dtogd(fs, bno); |
| 1442 | blksfree = cg_blksfree(cgp, needswap); |
| 1443 | |
| 1444 | mutex_enter(&ump->um_lock); |
| 1445 | if (size == fs->fs_bsize) { |
| 1446 | fragno = ffs_fragstoblks(fs, cgbno); |
| 1447 | if (!ffs_isblock(fs, blksfree, fragno)) { |
| 1448 | mutex_exit(&ump->um_lock); |
| 1449 | brelse(bp, 0); |
| 1450 | return EBUSY; |
| 1451 | } |
| 1452 | ffs_clrblock(fs, blksfree, fragno); |
| 1453 | ffs_clusteracct(fs, cgp, fragno, -1); |
| 1454 | ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap); |
| 1455 | fs->fs_cstotal.cs_nbfree--; |
| 1456 | fs->fs_cs(fs, cg).cs_nbfree--; |
| 1457 | } else { |
| 1458 | bbase = cgbno - ffs_fragnum(fs, cgbno); |
| 1459 | |
| 1460 | frags = ffs_numfrags(fs, size); |
| 1461 | for (i = 0; i < frags; i++) { |
| 1462 | if (isclr(blksfree, cgbno + i)) { |
| 1463 | mutex_exit(&ump->um_lock); |
| 1464 | brelse(bp, 0); |
| 1465 | return EBUSY; |
| 1466 | } |
| 1467 | } |
| 1468 | /* |
| 1469 | * if a complete block is being split, account for it |
| 1470 | */ |
| 1471 | fragno = ffs_fragstoblks(fs, bbase); |
| 1472 | if (ffs_isblock(fs, blksfree, fragno)) { |
| 1473 | ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap); |
| 1474 | fs->fs_cstotal.cs_nffree += fs->fs_frag; |
| 1475 | fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag; |
| 1476 | ffs_clusteracct(fs, cgp, fragno, -1); |
| 1477 | ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap); |
| 1478 | fs->fs_cstotal.cs_nbfree--; |
| 1479 | fs->fs_cs(fs, cg).cs_nbfree--; |
| 1480 | } |
| 1481 | /* |
| 1482 | * decrement the counts associated with the old frags |
| 1483 | */ |
| 1484 | blk = blkmap(fs, blksfree, bbase); |
| 1485 | ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap); |
| 1486 | /* |
| 1487 | * allocate the fragment |
| 1488 | */ |
| 1489 | for (i = 0; i < frags; i++) { |
| 1490 | clrbit(blksfree, cgbno + i); |
| 1491 | } |
| 1492 | ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap); |
| 1493 | fs->fs_cstotal.cs_nffree -= i; |
| 1494 | fs->fs_cs(fs, cg).cs_nffree -= i; |
| 1495 | /* |
| 1496 | * add back in counts associated with the new frags |
| 1497 | */ |
| 1498 | blk = blkmap(fs, blksfree, bbase); |
| 1499 | ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap); |
| 1500 | } |
| 1501 | fs->fs_fmod = 1; |
| 1502 | ACTIVECG_CLR(fs, cg); |
| 1503 | mutex_exit(&ump->um_lock); |
| 1504 | bdwrite(bp); |
| 1505 | return 0; |
| 1506 | } |
| 1507 | |
| 1508 | /* |
| 1509 | * Free a block or fragment. |
| 1510 | * |
| 1511 | * The specified block or fragment is placed back in the |
| 1512 | * free map. If a fragment is deallocated, a possible |
| 1513 | * block reassembly is checked. |
| 1514 | * |
| 1515 | * => um_lock not held on entry or exit |
| 1516 | */ |
| 1517 | static void |
| 1518 | ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size) |
| 1519 | { |
| 1520 | struct cg *cgp; |
| 1521 | struct buf *bp; |
| 1522 | struct ufsmount *ump; |
| 1523 | daddr_t cgblkno; |
| 1524 | int error, cg; |
| 1525 | dev_t dev; |
| 1526 | const bool devvp_is_snapshot = (devvp->v_type != VBLK); |
| 1527 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1528 | |
| 1529 | KASSERT(!devvp_is_snapshot); |
| 1530 | |
| 1531 | cg = dtog(fs, bno); |
| 1532 | dev = devvp->v_rdev; |
| 1533 | ump = VFSTOUFS(spec_node_getmountedfs(devvp)); |
| 1534 | KASSERT(fs == ump->um_fs); |
| 1535 | cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg)); |
| 1536 | |
| 1537 | error = bread(devvp, cgblkno, (int)fs->fs_cgsize, |
| 1538 | B_MODIFY, &bp); |
| 1539 | if (error) { |
| 1540 | return; |
| 1541 | } |
| 1542 | cgp = (struct cg *)bp->b_data; |
| 1543 | if (!cg_chkmagic(cgp, needswap)) { |
| 1544 | brelse(bp, 0); |
| 1545 | return; |
| 1546 | } |
| 1547 | |
| 1548 | ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot); |
| 1549 | |
| 1550 | bdwrite(bp); |
| 1551 | } |
| 1552 | |
| 1553 | struct discardopdata { |
| 1554 | struct work wk; /* must be first */ |
| 1555 | struct vnode *devvp; |
| 1556 | daddr_t bno; |
| 1557 | long size; |
| 1558 | }; |
| 1559 | |
| 1560 | struct discarddata { |
| 1561 | struct fs *fs; |
| 1562 | struct discardopdata *entry; |
| 1563 | long maxsize; |
| 1564 | kmutex_t entrylk; |
| 1565 | struct workqueue *wq; |
| 1566 | int wqcnt, wqdraining; |
| 1567 | kmutex_t wqlk; |
| 1568 | kcondvar_t wqcv; |
| 1569 | /* timer for flush? */ |
| 1570 | }; |
| 1571 | |
| 1572 | static void |
| 1573 | ffs_blkfree_td(struct fs *fs, struct discardopdata *td) |
| 1574 | { |
| 1575 | struct mount *mp = spec_node_getmountedfs(td->devvp); |
| 1576 | long todo; |
| 1577 | int error; |
| 1578 | |
| 1579 | while (td->size) { |
| 1580 | todo = min(td->size, |
| 1581 | ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno)))); |
| 1582 | error = UFS_WAPBL_BEGIN(mp); |
| 1583 | if (error) { |
| 1584 | printf("ffs: failed to begin wapbl transaction" |
| 1585 | " for discard: %d\n" , error); |
| 1586 | break; |
| 1587 | } |
| 1588 | ffs_blkfree_cg(fs, td->devvp, td->bno, todo); |
| 1589 | UFS_WAPBL_END(mp); |
| 1590 | td->bno += ffs_numfrags(fs, todo); |
| 1591 | td->size -= todo; |
| 1592 | } |
| 1593 | } |
| 1594 | |
| 1595 | static void |
| 1596 | ffs_discardcb(struct work *wk, void *arg) |
| 1597 | { |
| 1598 | struct discardopdata *td = (void *)wk; |
| 1599 | struct discarddata *ts = arg; |
| 1600 | struct fs *fs = ts->fs; |
| 1601 | off_t start, len; |
| 1602 | #ifdef TRIMDEBUG |
| 1603 | int error; |
| 1604 | #endif |
| 1605 | |
| 1606 | /* like FSBTODB but emits bytes; XXX move to fs.h */ |
| 1607 | #ifndef FFS_FSBTOBYTES |
| 1608 | #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift) |
| 1609 | #endif |
| 1610 | |
| 1611 | start = FFS_FSBTOBYTES(fs, td->bno); |
| 1612 | len = td->size; |
| 1613 | #ifdef TRIMDEBUG |
| 1614 | error = |
| 1615 | #endif |
| 1616 | VOP_FDISCARD(td->devvp, start, len); |
| 1617 | #ifdef TRIMDEBUG |
| 1618 | printf("trim(%" PRId64 ",%ld):%d\n" , td->bno, td->size, error); |
| 1619 | #endif |
| 1620 | |
| 1621 | ffs_blkfree_td(fs, td); |
| 1622 | kmem_free(td, sizeof(*td)); |
| 1623 | mutex_enter(&ts->wqlk); |
| 1624 | ts->wqcnt--; |
| 1625 | if (ts->wqdraining && !ts->wqcnt) |
| 1626 | cv_signal(&ts->wqcv); |
| 1627 | mutex_exit(&ts->wqlk); |
| 1628 | } |
| 1629 | |
| 1630 | void * |
| 1631 | ffs_discard_init(struct vnode *devvp, struct fs *fs) |
| 1632 | { |
| 1633 | struct discarddata *ts; |
| 1634 | int error; |
| 1635 | |
| 1636 | ts = kmem_zalloc(sizeof (*ts), KM_SLEEP); |
| 1637 | error = workqueue_create(&ts->wq, "trimwq" , ffs_discardcb, ts, |
| 1638 | 0, 0, 0); |
| 1639 | if (error) { |
| 1640 | kmem_free(ts, sizeof (*ts)); |
| 1641 | return NULL; |
| 1642 | } |
| 1643 | mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE); |
| 1644 | mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE); |
| 1645 | cv_init(&ts->wqcv, "trimwqcv" ); |
| 1646 | ts->maxsize = 100*1024; /* XXX */ |
| 1647 | ts->fs = fs; |
| 1648 | return ts; |
| 1649 | } |
| 1650 | |
| 1651 | void |
| 1652 | ffs_discard_finish(void *vts, int flags) |
| 1653 | { |
| 1654 | struct discarddata *ts = vts; |
| 1655 | struct discardopdata *td = NULL; |
| 1656 | int res = 0; |
| 1657 | |
| 1658 | /* wait for workqueue to drain */ |
| 1659 | mutex_enter(&ts->wqlk); |
| 1660 | if (ts->wqcnt) { |
| 1661 | ts->wqdraining = 1; |
| 1662 | res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000)); |
| 1663 | } |
| 1664 | mutex_exit(&ts->wqlk); |
| 1665 | if (res) |
| 1666 | printf("ffs_discarddata drain timeout\n" ); |
| 1667 | |
| 1668 | mutex_enter(&ts->entrylk); |
| 1669 | if (ts->entry) { |
| 1670 | td = ts->entry; |
| 1671 | ts->entry = NULL; |
| 1672 | } |
| 1673 | mutex_exit(&ts->entrylk); |
| 1674 | if (td) { |
| 1675 | /* XXX don't tell disk, its optional */ |
| 1676 | ffs_blkfree_td(ts->fs, td); |
| 1677 | #ifdef TRIMDEBUG |
| 1678 | printf("finish(%" PRId64 ",%ld)\n" , td->bno, td->size); |
| 1679 | #endif |
| 1680 | kmem_free(td, sizeof(*td)); |
| 1681 | } |
| 1682 | |
| 1683 | cv_destroy(&ts->wqcv); |
| 1684 | mutex_destroy(&ts->entrylk); |
| 1685 | mutex_destroy(&ts->wqlk); |
| 1686 | workqueue_destroy(ts->wq); |
| 1687 | kmem_free(ts, sizeof(*ts)); |
| 1688 | } |
| 1689 | |
| 1690 | void |
| 1691 | ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size, |
| 1692 | ino_t inum) |
| 1693 | { |
| 1694 | struct ufsmount *ump; |
| 1695 | int error; |
| 1696 | dev_t dev; |
| 1697 | struct discarddata *ts; |
| 1698 | struct discardopdata *td; |
| 1699 | |
| 1700 | dev = devvp->v_rdev; |
| 1701 | ump = VFSTOUFS(spec_node_getmountedfs(devvp)); |
| 1702 | if (ffs_snapblkfree(fs, devvp, bno, size, inum)) |
| 1703 | return; |
| 1704 | |
| 1705 | error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum); |
| 1706 | if (error) |
| 1707 | return; |
| 1708 | |
| 1709 | if (!ump->um_discarddata) { |
| 1710 | ffs_blkfree_cg(fs, devvp, bno, size); |
| 1711 | return; |
| 1712 | } |
| 1713 | |
| 1714 | #ifdef TRIMDEBUG |
| 1715 | printf("blkfree(%" PRId64 ",%ld)\n" , bno, size); |
| 1716 | #endif |
| 1717 | ts = ump->um_discarddata; |
| 1718 | td = NULL; |
| 1719 | |
| 1720 | mutex_enter(&ts->entrylk); |
| 1721 | if (ts->entry) { |
| 1722 | td = ts->entry; |
| 1723 | /* ffs deallocs backwards, check for prepend only */ |
| 1724 | if (td->bno == bno + ffs_numfrags(fs, size) |
| 1725 | && td->size + size <= ts->maxsize) { |
| 1726 | td->bno = bno; |
| 1727 | td->size += size; |
| 1728 | if (td->size < ts->maxsize) { |
| 1729 | #ifdef TRIMDEBUG |
| 1730 | printf("defer(%" PRId64 ",%ld)\n" , td->bno, td->size); |
| 1731 | #endif |
| 1732 | mutex_exit(&ts->entrylk); |
| 1733 | return; |
| 1734 | } |
| 1735 | size = 0; /* mark done */ |
| 1736 | } |
| 1737 | ts->entry = NULL; |
| 1738 | } |
| 1739 | mutex_exit(&ts->entrylk); |
| 1740 | |
| 1741 | if (td) { |
| 1742 | #ifdef TRIMDEBUG |
| 1743 | printf("enq old(%" PRId64 ",%ld)\n" , td->bno, td->size); |
| 1744 | #endif |
| 1745 | mutex_enter(&ts->wqlk); |
| 1746 | ts->wqcnt++; |
| 1747 | mutex_exit(&ts->wqlk); |
| 1748 | workqueue_enqueue(ts->wq, &td->wk, NULL); |
| 1749 | } |
| 1750 | if (!size) |
| 1751 | return; |
| 1752 | |
| 1753 | td = kmem_alloc(sizeof(*td), KM_SLEEP); |
| 1754 | td->devvp = devvp; |
| 1755 | td->bno = bno; |
| 1756 | td->size = size; |
| 1757 | |
| 1758 | if (td->size < ts->maxsize) { /* XXX always the case */ |
| 1759 | mutex_enter(&ts->entrylk); |
| 1760 | if (!ts->entry) { /* possible race? */ |
| 1761 | #ifdef TRIMDEBUG |
| 1762 | printf("defer(%" PRId64 ",%ld)\n" , td->bno, td->size); |
| 1763 | #endif |
| 1764 | ts->entry = td; |
| 1765 | td = NULL; |
| 1766 | } |
| 1767 | mutex_exit(&ts->entrylk); |
| 1768 | } |
| 1769 | if (td) { |
| 1770 | #ifdef TRIMDEBUG |
| 1771 | printf("enq new(%" PRId64 ",%ld)\n" , td->bno, td->size); |
| 1772 | #endif |
| 1773 | mutex_enter(&ts->wqlk); |
| 1774 | ts->wqcnt++; |
| 1775 | mutex_exit(&ts->wqlk); |
| 1776 | workqueue_enqueue(ts->wq, &td->wk, NULL); |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | /* |
| 1781 | * Free a block or fragment from a snapshot cg copy. |
| 1782 | * |
| 1783 | * The specified block or fragment is placed back in the |
| 1784 | * free map. If a fragment is deallocated, a possible |
| 1785 | * block reassembly is checked. |
| 1786 | * |
| 1787 | * => um_lock not held on entry or exit |
| 1788 | */ |
| 1789 | void |
| 1790 | ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size, |
| 1791 | ino_t inum) |
| 1792 | { |
| 1793 | struct cg *cgp; |
| 1794 | struct buf *bp; |
| 1795 | struct ufsmount *ump; |
| 1796 | daddr_t cgblkno; |
| 1797 | int error, cg; |
| 1798 | dev_t dev; |
| 1799 | const bool devvp_is_snapshot = (devvp->v_type != VBLK); |
| 1800 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1801 | |
| 1802 | KASSERT(devvp_is_snapshot); |
| 1803 | |
| 1804 | cg = dtog(fs, bno); |
| 1805 | dev = VTOI(devvp)->i_devvp->v_rdev; |
| 1806 | ump = VFSTOUFS(devvp->v_mount); |
| 1807 | cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg)); |
| 1808 | |
| 1809 | error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum); |
| 1810 | if (error) |
| 1811 | return; |
| 1812 | |
| 1813 | error = bread(devvp, cgblkno, (int)fs->fs_cgsize, |
| 1814 | B_MODIFY, &bp); |
| 1815 | if (error) { |
| 1816 | return; |
| 1817 | } |
| 1818 | cgp = (struct cg *)bp->b_data; |
| 1819 | if (!cg_chkmagic(cgp, needswap)) { |
| 1820 | brelse(bp, 0); |
| 1821 | return; |
| 1822 | } |
| 1823 | |
| 1824 | ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot); |
| 1825 | |
| 1826 | bdwrite(bp); |
| 1827 | } |
| 1828 | |
| 1829 | static void |
| 1830 | ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev, |
| 1831 | struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot) |
| 1832 | { |
| 1833 | struct cg *cgp; |
| 1834 | int32_t fragno, cgbno; |
| 1835 | int i, cg, blk, frags, bbase; |
| 1836 | u_int8_t *blksfree; |
| 1837 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1838 | |
| 1839 | cg = dtog(fs, bno); |
| 1840 | cgp = (struct cg *)bp->b_data; |
| 1841 | cgp->cg_old_time = ufs_rw32(time_second, needswap); |
| 1842 | if ((fs->fs_magic != FS_UFS1_MAGIC) || |
| 1843 | (fs->fs_old_flags & FS_FLAGS_UPDATED)) |
| 1844 | cgp->cg_time = ufs_rw64(time_second, needswap); |
| 1845 | cgbno = dtogd(fs, bno); |
| 1846 | blksfree = cg_blksfree(cgp, needswap); |
| 1847 | mutex_enter(&ump->um_lock); |
| 1848 | if (size == fs->fs_bsize) { |
| 1849 | fragno = ffs_fragstoblks(fs, cgbno); |
| 1850 | if (!ffs_isfreeblock(fs, blksfree, fragno)) { |
| 1851 | if (devvp_is_snapshot) { |
| 1852 | mutex_exit(&ump->um_lock); |
| 1853 | return; |
| 1854 | } |
| 1855 | panic("%s: freeing free block: dev = 0x%llx, block = %" |
| 1856 | PRId64 ", fs = %s" , __func__, |
| 1857 | (unsigned long long)dev, bno, fs->fs_fsmnt); |
| 1858 | } |
| 1859 | ffs_setblock(fs, blksfree, fragno); |
| 1860 | ffs_clusteracct(fs, cgp, fragno, 1); |
| 1861 | ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap); |
| 1862 | fs->fs_cstotal.cs_nbfree++; |
| 1863 | fs->fs_cs(fs, cg).cs_nbfree++; |
| 1864 | if ((fs->fs_magic == FS_UFS1_MAGIC) && |
| 1865 | ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) { |
| 1866 | i = old_cbtocylno(fs, cgbno); |
| 1867 | KASSERT(i >= 0); |
| 1868 | KASSERT(i < fs->fs_old_ncyl); |
| 1869 | KASSERT(old_cbtorpos(fs, cgbno) >= 0); |
| 1870 | KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos); |
| 1871 | ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1, |
| 1872 | needswap); |
| 1873 | ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap); |
| 1874 | } |
| 1875 | } else { |
| 1876 | bbase = cgbno - ffs_fragnum(fs, cgbno); |
| 1877 | /* |
| 1878 | * decrement the counts associated with the old frags |
| 1879 | */ |
| 1880 | blk = blkmap(fs, blksfree, bbase); |
| 1881 | ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap); |
| 1882 | /* |
| 1883 | * deallocate the fragment |
| 1884 | */ |
| 1885 | frags = ffs_numfrags(fs, size); |
| 1886 | for (i = 0; i < frags; i++) { |
| 1887 | if (isset(blksfree, cgbno + i)) { |
| 1888 | panic("%s: freeing free frag: " |
| 1889 | "dev = 0x%llx, block = %" PRId64 |
| 1890 | ", fs = %s" , __func__, |
| 1891 | (unsigned long long)dev, bno + i, |
| 1892 | fs->fs_fsmnt); |
| 1893 | } |
| 1894 | setbit(blksfree, cgbno + i); |
| 1895 | } |
| 1896 | ufs_add32(cgp->cg_cs.cs_nffree, i, needswap); |
| 1897 | fs->fs_cstotal.cs_nffree += i; |
| 1898 | fs->fs_cs(fs, cg).cs_nffree += i; |
| 1899 | /* |
| 1900 | * add back in counts associated with the new frags |
| 1901 | */ |
| 1902 | blk = blkmap(fs, blksfree, bbase); |
| 1903 | ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap); |
| 1904 | /* |
| 1905 | * if a complete block has been reassembled, account for it |
| 1906 | */ |
| 1907 | fragno = ffs_fragstoblks(fs, bbase); |
| 1908 | if (ffs_isblock(fs, blksfree, fragno)) { |
| 1909 | ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap); |
| 1910 | fs->fs_cstotal.cs_nffree -= fs->fs_frag; |
| 1911 | fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; |
| 1912 | ffs_clusteracct(fs, cgp, fragno, 1); |
| 1913 | ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap); |
| 1914 | fs->fs_cstotal.cs_nbfree++; |
| 1915 | fs->fs_cs(fs, cg).cs_nbfree++; |
| 1916 | if ((fs->fs_magic == FS_UFS1_MAGIC) && |
| 1917 | ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) { |
| 1918 | i = old_cbtocylno(fs, bbase); |
| 1919 | KASSERT(i >= 0); |
| 1920 | KASSERT(i < fs->fs_old_ncyl); |
| 1921 | KASSERT(old_cbtorpos(fs, bbase) >= 0); |
| 1922 | KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos); |
| 1923 | ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, |
| 1924 | bbase)], 1, needswap); |
| 1925 | ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap); |
| 1926 | } |
| 1927 | } |
| 1928 | } |
| 1929 | fs->fs_fmod = 1; |
| 1930 | ACTIVECG_CLR(fs, cg); |
| 1931 | mutex_exit(&ump->um_lock); |
| 1932 | } |
| 1933 | |
| 1934 | /* |
| 1935 | * Free an inode. |
| 1936 | */ |
| 1937 | int |
| 1938 | ffs_vfree(struct vnode *vp, ino_t ino, int mode) |
| 1939 | { |
| 1940 | |
| 1941 | return ffs_freefile(vp->v_mount, ino, mode); |
| 1942 | } |
| 1943 | |
| 1944 | /* |
| 1945 | * Do the actual free operation. |
| 1946 | * The specified inode is placed back in the free map. |
| 1947 | * |
| 1948 | * => um_lock not held on entry or exit |
| 1949 | */ |
| 1950 | int |
| 1951 | ffs_freefile(struct mount *mp, ino_t ino, int mode) |
| 1952 | { |
| 1953 | struct ufsmount *ump = VFSTOUFS(mp); |
| 1954 | struct fs *fs = ump->um_fs; |
| 1955 | struct vnode *devvp; |
| 1956 | struct cg *cgp; |
| 1957 | struct buf *bp; |
| 1958 | int error, cg; |
| 1959 | daddr_t cgbno; |
| 1960 | dev_t dev; |
| 1961 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1962 | |
| 1963 | cg = ino_to_cg(fs, ino); |
| 1964 | devvp = ump->um_devvp; |
| 1965 | dev = devvp->v_rdev; |
| 1966 | cgbno = FFS_FSBTODB(fs, cgtod(fs, cg)); |
| 1967 | |
| 1968 | if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) |
| 1969 | panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s" , __func__, |
| 1970 | (long long)dev, (unsigned long long)ino, fs->fs_fsmnt); |
| 1971 | error = bread(devvp, cgbno, (int)fs->fs_cgsize, |
| 1972 | B_MODIFY, &bp); |
| 1973 | if (error) { |
| 1974 | return (error); |
| 1975 | } |
| 1976 | cgp = (struct cg *)bp->b_data; |
| 1977 | if (!cg_chkmagic(cgp, needswap)) { |
| 1978 | brelse(bp, 0); |
| 1979 | return (0); |
| 1980 | } |
| 1981 | |
| 1982 | ffs_freefile_common(ump, fs, dev, bp, ino, mode, false); |
| 1983 | |
| 1984 | bdwrite(bp); |
| 1985 | |
| 1986 | return 0; |
| 1987 | } |
| 1988 | |
| 1989 | int |
| 1990 | ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode) |
| 1991 | { |
| 1992 | struct ufsmount *ump; |
| 1993 | struct cg *cgp; |
| 1994 | struct buf *bp; |
| 1995 | int error, cg; |
| 1996 | daddr_t cgbno; |
| 1997 | dev_t dev; |
| 1998 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 1999 | |
| 2000 | KASSERT(devvp->v_type != VBLK); |
| 2001 | |
| 2002 | cg = ino_to_cg(fs, ino); |
| 2003 | dev = VTOI(devvp)->i_devvp->v_rdev; |
| 2004 | ump = VFSTOUFS(devvp->v_mount); |
| 2005 | cgbno = ffs_fragstoblks(fs, cgtod(fs, cg)); |
| 2006 | if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) |
| 2007 | panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s" , __func__, |
| 2008 | (unsigned long long)dev, (unsigned long long)ino, |
| 2009 | fs->fs_fsmnt); |
| 2010 | error = bread(devvp, cgbno, (int)fs->fs_cgsize, |
| 2011 | B_MODIFY, &bp); |
| 2012 | if (error) { |
| 2013 | return (error); |
| 2014 | } |
| 2015 | cgp = (struct cg *)bp->b_data; |
| 2016 | if (!cg_chkmagic(cgp, needswap)) { |
| 2017 | brelse(bp, 0); |
| 2018 | return (0); |
| 2019 | } |
| 2020 | ffs_freefile_common(ump, fs, dev, bp, ino, mode, true); |
| 2021 | |
| 2022 | bdwrite(bp); |
| 2023 | |
| 2024 | return 0; |
| 2025 | } |
| 2026 | |
| 2027 | static void |
| 2028 | ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev, |
| 2029 | struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot) |
| 2030 | { |
| 2031 | int cg; |
| 2032 | struct cg *cgp; |
| 2033 | u_int8_t *inosused; |
| 2034 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 2035 | |
| 2036 | cg = ino_to_cg(fs, ino); |
| 2037 | cgp = (struct cg *)bp->b_data; |
| 2038 | cgp->cg_old_time = ufs_rw32(time_second, needswap); |
| 2039 | if ((fs->fs_magic != FS_UFS1_MAGIC) || |
| 2040 | (fs->fs_old_flags & FS_FLAGS_UPDATED)) |
| 2041 | cgp->cg_time = ufs_rw64(time_second, needswap); |
| 2042 | inosused = cg_inosused(cgp, needswap); |
| 2043 | ino %= fs->fs_ipg; |
| 2044 | if (isclr(inosused, ino)) { |
| 2045 | printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n" , |
| 2046 | (unsigned long long)dev, (unsigned long long)ino + |
| 2047 | cg * fs->fs_ipg, fs->fs_fsmnt); |
| 2048 | if (fs->fs_ronly == 0) |
| 2049 | panic("%s: freeing free inode" , __func__); |
| 2050 | } |
| 2051 | clrbit(inosused, ino); |
| 2052 | if (!devvp_is_snapshot) |
| 2053 | UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp, |
| 2054 | ino + cg * fs->fs_ipg, mode); |
| 2055 | if (ino < ufs_rw32(cgp->cg_irotor, needswap)) |
| 2056 | cgp->cg_irotor = ufs_rw32(ino, needswap); |
| 2057 | ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap); |
| 2058 | mutex_enter(&ump->um_lock); |
| 2059 | fs->fs_cstotal.cs_nifree++; |
| 2060 | fs->fs_cs(fs, cg).cs_nifree++; |
| 2061 | if ((mode & IFMT) == IFDIR) { |
| 2062 | ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap); |
| 2063 | fs->fs_cstotal.cs_ndir--; |
| 2064 | fs->fs_cs(fs, cg).cs_ndir--; |
| 2065 | } |
| 2066 | fs->fs_fmod = 1; |
| 2067 | ACTIVECG_CLR(fs, cg); |
| 2068 | mutex_exit(&ump->um_lock); |
| 2069 | } |
| 2070 | |
| 2071 | /* |
| 2072 | * Check to see if a file is free. |
| 2073 | */ |
| 2074 | int |
| 2075 | ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino) |
| 2076 | { |
| 2077 | struct cg *cgp; |
| 2078 | struct buf *bp; |
| 2079 | daddr_t cgbno; |
| 2080 | int ret, cg; |
| 2081 | u_int8_t *inosused; |
| 2082 | const bool devvp_is_snapshot = (devvp->v_type != VBLK); |
| 2083 | |
| 2084 | KASSERT(devvp_is_snapshot); |
| 2085 | |
| 2086 | cg = ino_to_cg(fs, ino); |
| 2087 | if (devvp_is_snapshot) |
| 2088 | cgbno = ffs_fragstoblks(fs, cgtod(fs, cg)); |
| 2089 | else |
| 2090 | cgbno = FFS_FSBTODB(fs, cgtod(fs, cg)); |
| 2091 | if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) |
| 2092 | return 1; |
| 2093 | if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) { |
| 2094 | return 1; |
| 2095 | } |
| 2096 | cgp = (struct cg *)bp->b_data; |
| 2097 | if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) { |
| 2098 | brelse(bp, 0); |
| 2099 | return 1; |
| 2100 | } |
| 2101 | inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs)); |
| 2102 | ino %= fs->fs_ipg; |
| 2103 | ret = isclr(inosused, ino); |
| 2104 | brelse(bp, 0); |
| 2105 | return ret; |
| 2106 | } |
| 2107 | |
| 2108 | /* |
| 2109 | * Find a block of the specified size in the specified cylinder group. |
| 2110 | * |
| 2111 | * It is a panic if a request is made to find a block if none are |
| 2112 | * available. |
| 2113 | */ |
| 2114 | static int32_t |
| 2115 | ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz) |
| 2116 | { |
| 2117 | int32_t bno; |
| 2118 | int start, len, loc, i; |
| 2119 | int blk, field, subfield, pos; |
| 2120 | int ostart, olen; |
| 2121 | u_int8_t *blksfree; |
| 2122 | const int needswap = UFS_FSNEEDSWAP(fs); |
| 2123 | |
| 2124 | /* KASSERT(mutex_owned(&ump->um_lock)); */ |
| 2125 | |
| 2126 | /* |
| 2127 | * find the fragment by searching through the free block |
| 2128 | * map for an appropriate bit pattern |
| 2129 | */ |
| 2130 | if (bpref) |
| 2131 | start = dtogd(fs, bpref) / NBBY; |
| 2132 | else |
| 2133 | start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY; |
| 2134 | blksfree = cg_blksfree(cgp, needswap); |
| 2135 | len = howmany(fs->fs_fpg, NBBY) - start; |
| 2136 | ostart = start; |
| 2137 | olen = len; |
| 2138 | loc = scanc((u_int)len, |
| 2139 | (const u_char *)&blksfree[start], |
| 2140 | (const u_char *)fragtbl[fs->fs_frag], |
| 2141 | (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1))))); |
| 2142 | if (loc == 0) { |
| 2143 | len = start + 1; |
| 2144 | start = 0; |
| 2145 | loc = scanc((u_int)len, |
| 2146 | (const u_char *)&blksfree[0], |
| 2147 | (const u_char *)fragtbl[fs->fs_frag], |
| 2148 | (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1))))); |
| 2149 | if (loc == 0) { |
| 2150 | panic("%s: map corrupted: start=%d, len=%d, " |
| 2151 | "fs = %s, offset=%d/%ld, cg %d" , __func__, |
| 2152 | ostart, olen, fs->fs_fsmnt, |
| 2153 | ufs_rw32(cgp->cg_freeoff, needswap), |
| 2154 | (long)blksfree - (long)cgp, cgp->cg_cgx); |
| 2155 | /* NOTREACHED */ |
| 2156 | } |
| 2157 | } |
| 2158 | bno = (start + len - loc) * NBBY; |
| 2159 | cgp->cg_frotor = ufs_rw32(bno, needswap); |
| 2160 | /* |
| 2161 | * found the byte in the map |
| 2162 | * sift through the bits to find the selected frag |
| 2163 | */ |
| 2164 | for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { |
| 2165 | blk = blkmap(fs, blksfree, bno); |
| 2166 | blk <<= 1; |
| 2167 | field = around[allocsiz]; |
| 2168 | subfield = inside[allocsiz]; |
| 2169 | for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { |
| 2170 | if ((blk & field) == subfield) |
| 2171 | return (bno + pos); |
| 2172 | field <<= 1; |
| 2173 | subfield <<= 1; |
| 2174 | } |
| 2175 | } |
| 2176 | panic("%s: block not in map: bno=%d, fs=%s" , __func__, |
| 2177 | bno, fs->fs_fsmnt); |
| 2178 | /* return (-1); */ |
| 2179 | } |
| 2180 | |
| 2181 | /* |
| 2182 | * Fserr prints the name of a file system with an error diagnostic. |
| 2183 | * |
| 2184 | * The form of the error message is: |
| 2185 | * fs: error message |
| 2186 | */ |
| 2187 | static void |
| 2188 | ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp) |
| 2189 | { |
| 2190 | KASSERT(cred != NULL); |
| 2191 | |
| 2192 | if (cred == NOCRED || cred == FSCRED) { |
| 2193 | log(LOG_ERR, "pid %d, command %s, on %s: %s\n" , |
| 2194 | curproc->p_pid, curproc->p_comm, |
| 2195 | fs->fs_fsmnt, cp); |
| 2196 | } else { |
| 2197 | log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n" , |
| 2198 | kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm, |
| 2199 | fs->fs_fsmnt, cp); |
| 2200 | } |
| 2201 | } |
| 2202 | |