| 1 | /* |
| 2 | * Copyright (c) 2011 The NetBSD Foundation, Inc. |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This code is derived from software contributed to The NetBSD Foundation |
| 6 | * by Coyote Point Systems, Inc. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 18 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 19 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 20 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 21 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | * POSSIBILITY OF SUCH DAMAGE. |
| 28 | */ |
| 29 | |
| 30 | /* |
| 31 | * Reduces the resources demanded by TCP sessions in TIME_WAIT-state using |
| 32 | * methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime |
| 33 | * Truncation (MSLT). |
| 34 | * |
| 35 | * MSLT and VTW were contributed by Coyote Point Systems, Inc. |
| 36 | * |
| 37 | * Even after a TCP session enters the TIME_WAIT state, its corresponding |
| 38 | * socket and protocol control blocks (PCBs) stick around until the TCP |
| 39 | * Maximum Segment Lifetime (MSL) expires. On a host whose workload |
| 40 | * necessarily creates and closes down many TCP sockets, the sockets & PCBs |
| 41 | * for TCP sessions in TIME_WAIT state amount to many megabytes of dead |
| 42 | * weight in RAM. |
| 43 | * |
| 44 | * Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to |
| 45 | * a class based on the nearness of the peer. Corresponding to each class |
| 46 | * is an MSL, and a session uses the MSL of its class. The classes are |
| 47 | * loopback (local host equals remote host), local (local host and remote |
| 48 | * host are on the same link/subnet), and remote (local host and remote |
| 49 | * host communicate via one or more gateways). Classes corresponding to |
| 50 | * nearer peers have lower MSLs by default: 2 seconds for loopback, 10 |
| 51 | * seconds for local, 60 seconds for remote. Loopback and local sessions |
| 52 | * expire more quickly when MSLT is used. |
| 53 | * |
| 54 | * Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket |
| 55 | * dead weight with a compact representation of the session, called a |
| 56 | * "vestigial PCB". VTW data structures are designed to be very fast and |
| 57 | * memory-efficient: for fast insertion and lookup of vestigial PCBs, |
| 58 | * the PCBs are stored in a hash table that is designed to minimize the |
| 59 | * number of cacheline visits per lookup/insertion. The memory both |
| 60 | * for vestigial PCBs and for elements of the PCB hashtable come from |
| 61 | * fixed-size pools, and linked data structures exploit this to conserve |
| 62 | * memory by representing references with a narrow index/offset from the |
| 63 | * start of a pool instead of a pointer. When space for new vestigial PCBs |
| 64 | * runs out, VTW makes room by discarding old vestigial PCBs, oldest first. |
| 65 | * VTW cooperates with MSLT. |
| 66 | * |
| 67 | * It may help to think of VTW as a "FIN cache" by analogy to the SYN |
| 68 | * cache. |
| 69 | * |
| 70 | * A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT |
| 71 | * sessions as fast as it can is approximately 17% idle when VTW is active |
| 72 | * versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM |
| 73 | * when VTW is active (approximately 64k vestigial PCBs are created) than |
| 74 | * when it is inactive. |
| 75 | */ |
| 76 | |
| 77 | #include <sys/cdefs.h> |
| 78 | |
| 79 | #ifdef _KERNEL_OPT |
| 80 | #include "opt_ddb.h" |
| 81 | #include "opt_inet.h" |
| 82 | #include "opt_inet_csum.h" |
| 83 | #include "opt_tcp_debug.h" |
| 84 | #endif |
| 85 | |
| 86 | #include <sys/param.h> |
| 87 | #include <sys/systm.h> |
| 88 | #include <sys/kmem.h> |
| 89 | #include <sys/mbuf.h> |
| 90 | #include <sys/protosw.h> |
| 91 | #include <sys/socket.h> |
| 92 | #include <sys/socketvar.h> |
| 93 | #include <sys/errno.h> |
| 94 | #include <sys/syslog.h> |
| 95 | #include <sys/pool.h> |
| 96 | #include <sys/domain.h> |
| 97 | #include <sys/kernel.h> |
| 98 | #include <net/if.h> |
| 99 | #include <net/if_types.h> |
| 100 | |
| 101 | #include <netinet/in.h> |
| 102 | #include <netinet/in_systm.h> |
| 103 | #include <netinet/ip.h> |
| 104 | #include <netinet/in_pcb.h> |
| 105 | #include <netinet/in_var.h> |
| 106 | #include <netinet/ip_var.h> |
| 107 | #include <netinet/in_offload.h> |
| 108 | #include <netinet/ip6.h> |
| 109 | #include <netinet6/ip6_var.h> |
| 110 | #include <netinet6/in6_pcb.h> |
| 111 | #include <netinet6/ip6_var.h> |
| 112 | #include <netinet6/in6_var.h> |
| 113 | #include <netinet/icmp6.h> |
| 114 | #include <netinet6/nd6.h> |
| 115 | |
| 116 | #include <netinet/tcp.h> |
| 117 | #include <netinet/tcp_fsm.h> |
| 118 | #include <netinet/tcp_seq.h> |
| 119 | #include <netinet/tcp_timer.h> |
| 120 | #include <netinet/tcp_var.h> |
| 121 | #include <netinet/tcp_private.h> |
| 122 | #include <netinet/tcpip.h> |
| 123 | |
| 124 | #include <netinet/tcp_vtw.h> |
| 125 | |
| 126 | __KERNEL_RCSID(0, "$NetBSD: tcp_vtw.c,v 1.16 2016/07/28 07:54:31 martin Exp $" ); |
| 127 | |
| 128 | #define db_trace(__a, __b) do { } while (/*CONSTCOND*/0) |
| 129 | |
| 130 | static void vtw_debug_init(void); |
| 131 | |
| 132 | fatp_ctl_t fat_tcpv4; |
| 133 | fatp_ctl_t fat_tcpv6; |
| 134 | vtw_ctl_t vtw_tcpv4[VTW_NCLASS]; |
| 135 | vtw_ctl_t vtw_tcpv6[VTW_NCLASS]; |
| 136 | vtw_stats_t vtw_stats; |
| 137 | |
| 138 | /* We provide state for the lookup_ports iterator. |
| 139 | * As currently we are netlock-protected, there is one. |
| 140 | * If we were finer-grain, we would have one per CPU. |
| 141 | * I do not want to be in the business of alloc/free. |
| 142 | * The best alternate would be allocate on the caller's |
| 143 | * stack, but that would require them to know the struct, |
| 144 | * or at least the size. |
| 145 | * See how she goes. |
| 146 | */ |
| 147 | struct tcp_ports_iterator { |
| 148 | union { |
| 149 | struct in_addr v4; |
| 150 | struct in6_addr v6; |
| 151 | } addr; |
| 152 | u_int port; |
| 153 | |
| 154 | uint32_t wild : 1; |
| 155 | |
| 156 | vtw_ctl_t *ctl; |
| 157 | fatp_t *fp; |
| 158 | |
| 159 | uint16_t slot_idx; |
| 160 | uint16_t ctl_idx; |
| 161 | }; |
| 162 | |
| 163 | static struct tcp_ports_iterator tcp_ports_iterator_v4; |
| 164 | static struct tcp_ports_iterator tcp_ports_iterator_v6; |
| 165 | |
| 166 | static int vtw_age(vtw_ctl_t *, struct timeval *); |
| 167 | |
| 168 | /*!\brief allocate a fat pointer from a collection. |
| 169 | */ |
| 170 | static fatp_t * |
| 171 | fatp_alloc(fatp_ctl_t *fat) |
| 172 | { |
| 173 | fatp_t *fp = 0; |
| 174 | |
| 175 | if (fat->nfree) { |
| 176 | fp = fat->free; |
| 177 | if (fp) { |
| 178 | fat->free = fatp_next(fat, fp); |
| 179 | --fat->nfree; |
| 180 | ++fat->nalloc; |
| 181 | fp->nxt = 0; |
| 182 | |
| 183 | KASSERT(!fp->inuse); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | return fp; |
| 188 | } |
| 189 | |
| 190 | /*!\brief free a fat pointer. |
| 191 | */ |
| 192 | static void |
| 193 | fatp_free(fatp_ctl_t *fat, fatp_t *fp) |
| 194 | { |
| 195 | if (fp) { |
| 196 | KASSERT(!fp->inuse); |
| 197 | KASSERT(!fp->nxt); |
| 198 | |
| 199 | fp->nxt = fatp_index(fat, fat->free); |
| 200 | fat->free = fp; |
| 201 | |
| 202 | ++fat->nfree; |
| 203 | --fat->nalloc; |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | /*!\brief initialise a collection of fat pointers. |
| 208 | * |
| 209 | *\param n # hash buckets |
| 210 | *\param m total # fat pointers to allocate |
| 211 | * |
| 212 | * We allocate 2x as much, as we have two hashes: full and lport only. |
| 213 | */ |
| 214 | static void |
| 215 | fatp_init(fatp_ctl_t *fat, uint32_t n, uint32_t m, |
| 216 | fatp_t *fat_base, fatp_t **fat_hash) |
| 217 | { |
| 218 | fatp_t *fp; |
| 219 | |
| 220 | KASSERT(n <= FATP_MAX / 2); |
| 221 | |
| 222 | fat->hash = fat_hash; |
| 223 | fat->base = fat_base; |
| 224 | |
| 225 | fat->port = &fat->hash[m]; |
| 226 | |
| 227 | fat->mask = m - 1; // ASSERT is power of 2 (m) |
| 228 | fat->lim = fat->base + 2*n - 1; |
| 229 | fat->nfree = 0; |
| 230 | fat->nalloc = 2*n; |
| 231 | |
| 232 | /* Initialise the free list. |
| 233 | */ |
| 234 | for (fp = fat->lim; fp >= fat->base; --fp) { |
| 235 | fatp_free(fat, fp); |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * The `xtra' is XORed into the tag stored. |
| 241 | */ |
| 242 | static uint32_t fatp_xtra[] = { |
| 243 | 0x11111111,0x22222222,0x33333333,0x44444444, |
| 244 | 0x55555555,0x66666666,0x77777777,0x88888888, |
| 245 | 0x12121212,0x21212121,0x34343434,0x43434343, |
| 246 | 0x56565656,0x65656565,0x78787878,0x87878787, |
| 247 | 0x11221122,0x22112211,0x33443344,0x44334433, |
| 248 | 0x55665566,0x66556655,0x77887788,0x88778877, |
| 249 | 0x11112222,0x22221111,0x33334444,0x44443333, |
| 250 | 0x55556666,0x66665555,0x77778888,0x88887777, |
| 251 | }; |
| 252 | |
| 253 | /*!\brief turn a {fatp_t*,slot} into an integral key. |
| 254 | * |
| 255 | * The key can be used to obtain the fatp_t, and the slot, |
| 256 | * as it directly encodes them. |
| 257 | */ |
| 258 | static inline uint32_t |
| 259 | fatp_key(fatp_ctl_t *fat, fatp_t *fp, uint32_t slot) |
| 260 | { |
| 261 | CTASSERT(CACHE_LINE_SIZE == 32 || |
| 262 | CACHE_LINE_SIZE == 64 || |
| 263 | CACHE_LINE_SIZE == 128); |
| 264 | |
| 265 | switch (fatp_ntags()) { |
| 266 | case 7: |
| 267 | return (fatp_index(fat, fp) << 3) | slot; |
| 268 | case 15: |
| 269 | return (fatp_index(fat, fp) << 4) | slot; |
| 270 | case 31: |
| 271 | return (fatp_index(fat, fp) << 5) | slot; |
| 272 | default: |
| 273 | KASSERT(0 && "no support, for no good reason" ); |
| 274 | return ~0; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | static inline uint32_t |
| 279 | fatp_slot_from_key(fatp_ctl_t *fat, uint32_t key) |
| 280 | { |
| 281 | CTASSERT(CACHE_LINE_SIZE == 32 || |
| 282 | CACHE_LINE_SIZE == 64 || |
| 283 | CACHE_LINE_SIZE == 128); |
| 284 | |
| 285 | switch (fatp_ntags()) { |
| 286 | case 7: |
| 287 | return key & 7; |
| 288 | case 15: |
| 289 | return key & 15; |
| 290 | case 31: |
| 291 | return key & 31; |
| 292 | default: |
| 293 | KASSERT(0 && "no support, for no good reason" ); |
| 294 | return ~0; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | static inline fatp_t * |
| 299 | fatp_from_key(fatp_ctl_t *fat, uint32_t key) |
| 300 | { |
| 301 | CTASSERT(CACHE_LINE_SIZE == 32 || |
| 302 | CACHE_LINE_SIZE == 64 || |
| 303 | CACHE_LINE_SIZE == 128); |
| 304 | |
| 305 | switch (fatp_ntags()) { |
| 306 | case 7: |
| 307 | key >>= 3; |
| 308 | break; |
| 309 | case 15: |
| 310 | key >>= 4; |
| 311 | break; |
| 312 | case 31: |
| 313 | key >>= 5; |
| 314 | break; |
| 315 | default: |
| 316 | KASSERT(0 && "no support, for no good reason" ); |
| 317 | return 0; |
| 318 | } |
| 319 | |
| 320 | return key ? fat->base + key - 1 : 0; |
| 321 | } |
| 322 | |
| 323 | static inline uint32_t |
| 324 | idx_encode(vtw_ctl_t *ctl, uint32_t idx) |
| 325 | { |
| 326 | return (idx << ctl->idx_bits) | idx; |
| 327 | } |
| 328 | |
| 329 | static inline uint32_t |
| 330 | idx_decode(vtw_ctl_t *ctl, uint32_t bits) |
| 331 | { |
| 332 | uint32_t idx = bits & ctl->idx_mask; |
| 333 | |
| 334 | if (idx_encode(ctl, idx) == bits) |
| 335 | return idx; |
| 336 | else |
| 337 | return ~0; |
| 338 | } |
| 339 | |
| 340 | /*!\brief insert index into fatp hash |
| 341 | * |
| 342 | *\param idx - index of element being placed in hash chain |
| 343 | *\param tag - 32-bit tag identifier |
| 344 | * |
| 345 | *\returns |
| 346 | * value which can be used to locate entry. |
| 347 | * |
| 348 | *\note |
| 349 | * we rely on the fact that there are unused high bits in the index |
| 350 | * for verification purposes on lookup. |
| 351 | */ |
| 352 | |
| 353 | static inline uint32_t |
| 354 | fatp_vtw_inshash(fatp_ctl_t *fat, uint32_t idx, uint32_t tag, int which, |
| 355 | void *dbg) |
| 356 | { |
| 357 | fatp_t *fp; |
| 358 | fatp_t **hash = (which ? fat->port : fat->hash); |
| 359 | int i; |
| 360 | |
| 361 | fp = hash[tag & fat->mask]; |
| 362 | |
| 363 | while (!fp || fatp_full(fp)) { |
| 364 | fatp_t *fq; |
| 365 | |
| 366 | /* All entries are inuse at the top level. |
| 367 | * We allocate a spare, and push the top level |
| 368 | * down one. All entries in the fp we push down |
| 369 | * (think of a tape worm here) will be expelled sooner than |
| 370 | * any entries added subsequently to this hash bucket. |
| 371 | * This is a property of the time waits we are exploiting. |
| 372 | */ |
| 373 | |
| 374 | fq = fatp_alloc(fat); |
| 375 | if (!fq) { |
| 376 | vtw_age(fat->vtw, 0); |
| 377 | fp = hash[tag & fat->mask]; |
| 378 | continue; |
| 379 | } |
| 380 | |
| 381 | fq->inuse = 0; |
| 382 | fq->nxt = fatp_index(fat, fp); |
| 383 | |
| 384 | hash[tag & fat->mask] = fq; |
| 385 | |
| 386 | fp = fq; |
| 387 | } |
| 388 | |
| 389 | KASSERT(!fatp_full(fp)); |
| 390 | |
| 391 | /* Fill highest index first. Lookup is lowest first. |
| 392 | */ |
| 393 | for (i = fatp_ntags(); --i >= 0; ) { |
| 394 | if (!((1 << i) & fp->inuse)) { |
| 395 | break; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | fp->inuse |= 1 << i; |
| 400 | fp->tag[i] = tag ^ idx_encode(fat->vtw, idx) ^ fatp_xtra[i]; |
| 401 | |
| 402 | db_trace(KTR_VTW |
| 403 | , (fp, "fat: inuse %5.5x tag[%x] %8.8x" |
| 404 | , fp->inuse |
| 405 | , i, fp->tag[i])); |
| 406 | |
| 407 | return fatp_key(fat, fp, i); |
| 408 | } |
| 409 | |
| 410 | static inline int |
| 411 | vtw_alive(const vtw_t *vtw) |
| 412 | { |
| 413 | return vtw->hashed && vtw->expire.tv_sec; |
| 414 | } |
| 415 | |
| 416 | static inline uint32_t |
| 417 | vtw_index_v4(vtw_ctl_t *ctl, vtw_v4_t *v4) |
| 418 | { |
| 419 | if (ctl->base.v4 <= v4 && v4 <= ctl->lim.v4) |
| 420 | return v4 - ctl->base.v4; |
| 421 | |
| 422 | KASSERT(0 && "vtw out of bounds" ); |
| 423 | |
| 424 | return ~0; |
| 425 | } |
| 426 | |
| 427 | static inline uint32_t |
| 428 | vtw_index_v6(vtw_ctl_t *ctl, vtw_v6_t *v6) |
| 429 | { |
| 430 | if (ctl->base.v6 <= v6 && v6 <= ctl->lim.v6) |
| 431 | return v6 - ctl->base.v6; |
| 432 | |
| 433 | KASSERT(0 && "vtw out of bounds" ); |
| 434 | |
| 435 | return ~0; |
| 436 | } |
| 437 | |
| 438 | static inline uint32_t |
| 439 | vtw_index(vtw_ctl_t *ctl, vtw_t *vtw) |
| 440 | { |
| 441 | if (ctl->clidx) |
| 442 | ctl = ctl->ctl; |
| 443 | |
| 444 | if (ctl->is_v4) |
| 445 | return vtw_index_v4(ctl, (vtw_v4_t *)vtw); |
| 446 | |
| 447 | if (ctl->is_v6) |
| 448 | return vtw_index_v6(ctl, (vtw_v6_t *)vtw); |
| 449 | |
| 450 | KASSERT(0 && "neither 4 nor 6. most curious." ); |
| 451 | |
| 452 | return ~0; |
| 453 | } |
| 454 | |
| 455 | static inline vtw_t * |
| 456 | vtw_from_index(vtw_ctl_t *ctl, uint32_t idx) |
| 457 | { |
| 458 | if (ctl->clidx) |
| 459 | ctl = ctl->ctl; |
| 460 | |
| 461 | /* See if the index looks like it might be an index. |
| 462 | * Bits on outside of the valid index bits is a give away. |
| 463 | */ |
| 464 | idx = idx_decode(ctl, idx); |
| 465 | |
| 466 | if (idx == ~0) { |
| 467 | return 0; |
| 468 | } else if (ctl->is_v4) { |
| 469 | vtw_v4_t *vtw = ctl->base.v4 + idx; |
| 470 | |
| 471 | return (ctl->base.v4 <= vtw && vtw <= ctl->lim.v4) |
| 472 | ? &vtw->common : 0; |
| 473 | } else if (ctl->is_v6) { |
| 474 | vtw_v6_t *vtw = ctl->base.v6 + idx; |
| 475 | |
| 476 | return (ctl->base.v6 <= vtw && vtw <= ctl->lim.v6) |
| 477 | ? &vtw->common : 0; |
| 478 | } else { |
| 479 | KASSERT(0 && "badness" ); |
| 480 | return 0; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | /*!\brief return the next vtw after this one. |
| 485 | * |
| 486 | * Due to the differing sizes of the entries in differing |
| 487 | * arenas, we have to ensure we ++ the correct pointer type. |
| 488 | * |
| 489 | * Also handles wrap. |
| 490 | */ |
| 491 | static inline vtw_t * |
| 492 | vtw_next(vtw_ctl_t *ctl, vtw_t *vtw) |
| 493 | { |
| 494 | if (ctl->is_v4) { |
| 495 | vtw_v4_t *v4 = (void*)vtw; |
| 496 | |
| 497 | vtw = &(++v4)->common; |
| 498 | } else { |
| 499 | vtw_v6_t *v6 = (void*)vtw; |
| 500 | |
| 501 | vtw = &(++v6)->common; |
| 502 | } |
| 503 | |
| 504 | if (vtw > ctl->lim.v) |
| 505 | vtw = ctl->base.v; |
| 506 | |
| 507 | return vtw; |
| 508 | } |
| 509 | |
| 510 | /*!\brief remove entry from FATP hash chains |
| 511 | */ |
| 512 | static inline void |
| 513 | vtw_unhash(vtw_ctl_t *ctl, vtw_t *vtw) |
| 514 | { |
| 515 | fatp_ctl_t *fat = ctl->fat; |
| 516 | fatp_t *fp; |
| 517 | uint32_t key = vtw->key; |
| 518 | uint32_t tag, slot, idx; |
| 519 | vtw_v4_t *v4 = (void*)vtw; |
| 520 | vtw_v6_t *v6 = (void*)vtw; |
| 521 | |
| 522 | if (!vtw->hashed) { |
| 523 | KASSERT(0 && "unhashed" ); |
| 524 | return; |
| 525 | } |
| 526 | |
| 527 | if (fat->vtw->is_v4) { |
| 528 | tag = v4_tag(v4->faddr, v4->fport, v4->laddr, v4->lport); |
| 529 | } else if (fat->vtw->is_v6) { |
| 530 | tag = v6_tag(&v6->faddr, v6->fport, &v6->laddr, v6->lport); |
| 531 | } else { |
| 532 | tag = 0; |
| 533 | KASSERT(0 && "not reached" ); |
| 534 | } |
| 535 | |
| 536 | /* Remove from fat->hash[] |
| 537 | */ |
| 538 | slot = fatp_slot_from_key(fat, key); |
| 539 | fp = fatp_from_key(fat, key); |
| 540 | idx = vtw_index(ctl, vtw); |
| 541 | |
| 542 | db_trace(KTR_VTW |
| 543 | , (fp, "fat: del inuse %5.5x slot %x idx %x key %x tag %x" |
| 544 | , fp->inuse, slot, idx, key, tag)); |
| 545 | |
| 546 | KASSERT(fp->inuse & (1 << slot)); |
| 547 | KASSERT(fp->tag[slot] == (tag ^ idx_encode(ctl, idx) |
| 548 | ^ fatp_xtra[slot])); |
| 549 | |
| 550 | if ((fp->inuse & (1 << slot)) |
| 551 | && fp->tag[slot] == (tag ^ idx_encode(ctl, idx) |
| 552 | ^ fatp_xtra[slot])) { |
| 553 | fp->inuse ^= 1 << slot; |
| 554 | fp->tag[slot] = 0; |
| 555 | |
| 556 | /* When we delete entries, we do not compact. This is |
| 557 | * due to temporality. We add entries, and they |
| 558 | * (eventually) expire. Older entries will be further |
| 559 | * down the chain. |
| 560 | */ |
| 561 | if (!fp->inuse) { |
| 562 | uint32_t hi = tag & fat->mask; |
| 563 | fatp_t *fq = 0; |
| 564 | fatp_t *fr = fat->hash[hi]; |
| 565 | |
| 566 | while (fr && fr != fp) { |
| 567 | fr = fatp_next(fat, fq = fr); |
| 568 | } |
| 569 | |
| 570 | if (fr == fp) { |
| 571 | if (fq) { |
| 572 | fq->nxt = fp->nxt; |
| 573 | fp->nxt = 0; |
| 574 | fatp_free(fat, fp); |
| 575 | } else { |
| 576 | KASSERT(fat->hash[hi] == fp); |
| 577 | |
| 578 | if (fp->nxt) { |
| 579 | fat->hash[hi] |
| 580 | = fatp_next(fat, fp); |
| 581 | fp->nxt = 0; |
| 582 | fatp_free(fat, fp); |
| 583 | } else { |
| 584 | /* retain for next use. |
| 585 | */ |
| 586 | ; |
| 587 | } |
| 588 | } |
| 589 | } else { |
| 590 | fr = fat->hash[hi]; |
| 591 | |
| 592 | do { |
| 593 | db_trace(KTR_VTW |
| 594 | , (fr |
| 595 | , "fat:*del inuse %5.5x" |
| 596 | " nxt %x" |
| 597 | , fr->inuse, fr->nxt)); |
| 598 | |
| 599 | fr = fatp_next(fat, fq = fr); |
| 600 | } while (fr && fr != fp); |
| 601 | |
| 602 | KASSERT(0 && "oops" ); |
| 603 | } |
| 604 | } |
| 605 | vtw->key ^= ~0; |
| 606 | } |
| 607 | |
| 608 | if (fat->vtw->is_v4) { |
| 609 | tag = v4_port_tag(v4->lport); |
| 610 | } else if (fat->vtw->is_v6) { |
| 611 | tag = v6_port_tag(v6->lport); |
| 612 | } |
| 613 | |
| 614 | /* Remove from fat->port[] |
| 615 | */ |
| 616 | key = vtw->port_key; |
| 617 | slot = fatp_slot_from_key(fat, key); |
| 618 | fp = fatp_from_key(fat, key); |
| 619 | idx = vtw_index(ctl, vtw); |
| 620 | |
| 621 | db_trace(KTR_VTW |
| 622 | , (fp, "fatport: del inuse %5.5x" |
| 623 | " slot %x idx %x key %x tag %x" |
| 624 | , fp->inuse, slot, idx, key, tag)); |
| 625 | |
| 626 | KASSERT(fp->inuse & (1 << slot)); |
| 627 | KASSERT(fp->tag[slot] == (tag ^ idx_encode(ctl, idx) |
| 628 | ^ fatp_xtra[slot])); |
| 629 | |
| 630 | if ((fp->inuse & (1 << slot)) |
| 631 | && fp->tag[slot] == (tag ^ idx_encode(ctl, idx) |
| 632 | ^ fatp_xtra[slot])) { |
| 633 | fp->inuse ^= 1 << slot; |
| 634 | fp->tag[slot] = 0; |
| 635 | |
| 636 | if (!fp->inuse) { |
| 637 | uint32_t hi = tag & fat->mask; |
| 638 | fatp_t *fq = 0; |
| 639 | fatp_t *fr = fat->port[hi]; |
| 640 | |
| 641 | while (fr && fr != fp) { |
| 642 | fr = fatp_next(fat, fq = fr); |
| 643 | } |
| 644 | |
| 645 | if (fr == fp) { |
| 646 | if (fq) { |
| 647 | fq->nxt = fp->nxt; |
| 648 | fp->nxt = 0; |
| 649 | fatp_free(fat, fp); |
| 650 | } else { |
| 651 | KASSERT(fat->port[hi] == fp); |
| 652 | |
| 653 | if (fp->nxt) { |
| 654 | fat->port[hi] |
| 655 | = fatp_next(fat, fp); |
| 656 | fp->nxt = 0; |
| 657 | fatp_free(fat, fp); |
| 658 | } else { |
| 659 | /* retain for next use. |
| 660 | */ |
| 661 | ; |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | } |
| 666 | vtw->port_key ^= ~0; |
| 667 | } |
| 668 | |
| 669 | vtw->hashed = 0; |
| 670 | } |
| 671 | |
| 672 | /*!\brief remove entry from hash, possibly free. |
| 673 | */ |
| 674 | void |
| 675 | vtw_del(vtw_ctl_t *ctl, vtw_t *vtw) |
| 676 | { |
| 677 | KASSERT(mutex_owned(softnet_lock)); |
| 678 | |
| 679 | if (vtw->hashed) { |
| 680 | ++vtw_stats.del; |
| 681 | vtw_unhash(ctl, vtw); |
| 682 | } |
| 683 | |
| 684 | /* We only delete the oldest entry. |
| 685 | */ |
| 686 | if (vtw != ctl->oldest.v) |
| 687 | return; |
| 688 | |
| 689 | --ctl->nalloc; |
| 690 | ++ctl->nfree; |
| 691 | |
| 692 | vtw->expire.tv_sec = 0; |
| 693 | vtw->expire.tv_usec = ~0; |
| 694 | |
| 695 | if (!ctl->nalloc) |
| 696 | ctl->oldest.v = 0; |
| 697 | |
| 698 | ctl->oldest.v = vtw_next(ctl, vtw); |
| 699 | } |
| 700 | |
| 701 | /*!\brief insert vestigial timewait in hash chain |
| 702 | */ |
| 703 | static void |
| 704 | vtw_inshash_v4(vtw_ctl_t *ctl, vtw_t *vtw) |
| 705 | { |
| 706 | uint32_t idx = vtw_index(ctl, vtw); |
| 707 | uint32_t tag; |
| 708 | vtw_v4_t *v4 = (void*)vtw; |
| 709 | |
| 710 | KASSERT(mutex_owned(softnet_lock)); |
| 711 | KASSERT(!vtw->hashed); |
| 712 | KASSERT(ctl->clidx == vtw->msl_class); |
| 713 | |
| 714 | ++vtw_stats.ins; |
| 715 | |
| 716 | tag = v4_tag(v4->faddr, v4->fport, |
| 717 | v4->laddr, v4->lport); |
| 718 | |
| 719 | vtw->key = fatp_vtw_inshash(ctl->fat, idx, tag, 0, vtw); |
| 720 | |
| 721 | db_trace(KTR_VTW, (ctl |
| 722 | , "vtw: ins %8.8x:%4.4x %8.8x:%4.4x" |
| 723 | " tag %8.8x key %8.8x" |
| 724 | , v4->faddr, v4->fport |
| 725 | , v4->laddr, v4->lport |
| 726 | , tag |
| 727 | , vtw->key)); |
| 728 | |
| 729 | tag = v4_port_tag(v4->lport); |
| 730 | vtw->port_key = fatp_vtw_inshash(ctl->fat, idx, tag, 1, vtw); |
| 731 | |
| 732 | db_trace(KTR_VTW, (ctl, "vtw: ins %P - %4.4x tag %8.8x key %8.8x" |
| 733 | , v4->lport, v4->lport |
| 734 | , tag |
| 735 | , vtw->key)); |
| 736 | |
| 737 | vtw->hashed = 1; |
| 738 | } |
| 739 | |
| 740 | /*!\brief insert vestigial timewait in hash chain |
| 741 | */ |
| 742 | static void |
| 743 | vtw_inshash_v6(vtw_ctl_t *ctl, vtw_t *vtw) |
| 744 | { |
| 745 | uint32_t idx = vtw_index(ctl, vtw); |
| 746 | uint32_t tag; |
| 747 | vtw_v6_t *v6 = (void*)vtw; |
| 748 | |
| 749 | KASSERT(mutex_owned(softnet_lock)); |
| 750 | KASSERT(!vtw->hashed); |
| 751 | KASSERT(ctl->clidx == vtw->msl_class); |
| 752 | |
| 753 | ++vtw_stats.ins; |
| 754 | |
| 755 | tag = v6_tag(&v6->faddr, v6->fport, |
| 756 | &v6->laddr, v6->lport); |
| 757 | |
| 758 | vtw->key = fatp_vtw_inshash(ctl->fat, idx, tag, 0, vtw); |
| 759 | |
| 760 | tag = v6_port_tag(v6->lport); |
| 761 | vtw->port_key = fatp_vtw_inshash(ctl->fat, idx, tag, 1, vtw); |
| 762 | |
| 763 | db_trace(KTR_VTW, (ctl, "vtw: ins %P - %4.4x tag %8.8x key %8.8x" |
| 764 | , v6->lport, v6->lport |
| 765 | , tag |
| 766 | , vtw->key)); |
| 767 | |
| 768 | vtw->hashed = 1; |
| 769 | } |
| 770 | |
| 771 | static vtw_t * |
| 772 | vtw_lookup_hash_v4(vtw_ctl_t *ctl, uint32_t faddr, uint16_t fport |
| 773 | , uint32_t laddr, uint16_t lport |
| 774 | , int which) |
| 775 | { |
| 776 | vtw_v4_t *v4; |
| 777 | vtw_t *vtw; |
| 778 | uint32_t tag; |
| 779 | fatp_t *fp; |
| 780 | int i; |
| 781 | uint32_t fatps = 0, probes = 0, losings = 0; |
| 782 | |
| 783 | if (!ctl || !ctl->fat) |
| 784 | return 0; |
| 785 | |
| 786 | ++vtw_stats.look[which]; |
| 787 | |
| 788 | if (which) { |
| 789 | tag = v4_port_tag(lport); |
| 790 | fp = ctl->fat->port[tag & ctl->fat->mask]; |
| 791 | } else { |
| 792 | tag = v4_tag(faddr, fport, laddr, lport); |
| 793 | fp = ctl->fat->hash[tag & ctl->fat->mask]; |
| 794 | } |
| 795 | |
| 796 | while (fp && fp->inuse) { |
| 797 | uint32_t inuse = fp->inuse; |
| 798 | |
| 799 | ++fatps; |
| 800 | |
| 801 | for (i = 0; inuse && i < fatp_ntags(); ++i) { |
| 802 | uint32_t idx; |
| 803 | |
| 804 | if (!(inuse & (1 << i))) |
| 805 | continue; |
| 806 | |
| 807 | inuse ^= 1 << i; |
| 808 | |
| 809 | ++probes; |
| 810 | ++vtw_stats.probe[which]; |
| 811 | |
| 812 | idx = fp->tag[i] ^ tag ^ fatp_xtra[i]; |
| 813 | vtw = vtw_from_index(ctl, idx); |
| 814 | |
| 815 | if (!vtw) { |
| 816 | /* Hopefully fast path. |
| 817 | */ |
| 818 | db_trace(KTR_VTW |
| 819 | , (fp, "vtw: fast %A:%P %A:%P" |
| 820 | " idx %x tag %x" |
| 821 | , faddr, fport |
| 822 | , laddr, lport |
| 823 | , idx, tag)); |
| 824 | continue; |
| 825 | } |
| 826 | |
| 827 | v4 = (void*)vtw; |
| 828 | |
| 829 | /* The de-referencing of vtw is what we want to avoid. |
| 830 | * Losing. |
| 831 | */ |
| 832 | if (vtw_alive(vtw) |
| 833 | && ((which ? vtw->port_key : vtw->key) |
| 834 | == fatp_key(ctl->fat, fp, i)) |
| 835 | && (which |
| 836 | || (v4->faddr == faddr && v4->laddr == laddr |
| 837 | && v4->fport == fport)) |
| 838 | && v4->lport == lport) { |
| 839 | ++vtw_stats.hit[which]; |
| 840 | |
| 841 | db_trace(KTR_VTW |
| 842 | , (fp, "vtw: hit %8.8x:%4.4x" |
| 843 | " %8.8x:%4.4x idx %x key %x" |
| 844 | , faddr, fport |
| 845 | , laddr, lport |
| 846 | , idx_decode(ctl, idx), vtw->key)); |
| 847 | |
| 848 | KASSERT(vtw->hashed); |
| 849 | |
| 850 | goto out; |
| 851 | } |
| 852 | ++vtw_stats.losing[which]; |
| 853 | ++losings; |
| 854 | |
| 855 | if (vtw_alive(vtw)) { |
| 856 | db_trace(KTR_VTW |
| 857 | , (fp, "vtw:!mis %8.8x:%4.4x" |
| 858 | " %8.8x:%4.4x key %x tag %x" |
| 859 | , faddr, fport |
| 860 | , laddr, lport |
| 861 | , fatp_key(ctl->fat, fp, i) |
| 862 | , v4_tag(faddr, fport |
| 863 | , laddr, lport))); |
| 864 | db_trace(KTR_VTW |
| 865 | , (vtw, "vtw:!mis %8.8x:%4.4x" |
| 866 | " %8.8x:%4.4x key %x tag %x" |
| 867 | , v4->faddr, v4->fport |
| 868 | , v4->laddr, v4->lport |
| 869 | , vtw->key |
| 870 | , v4_tag(v4->faddr, v4->fport |
| 871 | , v4->laddr, v4->lport))); |
| 872 | |
| 873 | if (vtw->key == fatp_key(ctl->fat, fp, i)) { |
| 874 | db_trace(KTR_VTW |
| 875 | , (vtw, "vtw:!mis %8.8x:%4.4x" |
| 876 | " %8.8x:%4.4x key %x" |
| 877 | " which %x" |
| 878 | , v4->faddr, v4->fport |
| 879 | , v4->laddr, v4->lport |
| 880 | , vtw->key |
| 881 | , which)); |
| 882 | |
| 883 | } else { |
| 884 | db_trace(KTR_VTW |
| 885 | , (vtw |
| 886 | , "vtw:!mis" |
| 887 | " key %8.8x != %8.8x" |
| 888 | " idx %x i %x which %x" |
| 889 | , vtw->key |
| 890 | , fatp_key(ctl->fat, fp, i) |
| 891 | , idx_decode(ctl, idx) |
| 892 | , i |
| 893 | , which)); |
| 894 | } |
| 895 | } else { |
| 896 | db_trace(KTR_VTW |
| 897 | , (fp |
| 898 | , "vtw:!mis free entry" |
| 899 | " idx %x vtw %p which %x" |
| 900 | , idx_decode(ctl, idx) |
| 901 | , vtw, which)); |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | if (fp->nxt) { |
| 906 | fp = fatp_next(ctl->fat, fp); |
| 907 | } else { |
| 908 | break; |
| 909 | } |
| 910 | } |
| 911 | ++vtw_stats.miss[which]; |
| 912 | vtw = 0; |
| 913 | out: |
| 914 | if (fatps > vtw_stats.max_chain[which]) |
| 915 | vtw_stats.max_chain[which] = fatps; |
| 916 | if (probes > vtw_stats.max_probe[which]) |
| 917 | vtw_stats.max_probe[which] = probes; |
| 918 | if (losings > vtw_stats.max_loss[which]) |
| 919 | vtw_stats.max_loss[which] = losings; |
| 920 | |
| 921 | return vtw; |
| 922 | } |
| 923 | |
| 924 | static vtw_t * |
| 925 | vtw_lookup_hash_v6(vtw_ctl_t *ctl, const struct in6_addr *faddr, uint16_t fport |
| 926 | , const struct in6_addr *laddr, uint16_t lport |
| 927 | , int which) |
| 928 | { |
| 929 | vtw_v6_t *v6; |
| 930 | vtw_t *vtw; |
| 931 | uint32_t tag; |
| 932 | fatp_t *fp; |
| 933 | int i; |
| 934 | uint32_t fatps = 0, probes = 0, losings = 0; |
| 935 | |
| 936 | ++vtw_stats.look[which]; |
| 937 | |
| 938 | if (!ctl || !ctl->fat) |
| 939 | return 0; |
| 940 | |
| 941 | if (which) { |
| 942 | tag = v6_port_tag(lport); |
| 943 | fp = ctl->fat->port[tag & ctl->fat->mask]; |
| 944 | } else { |
| 945 | tag = v6_tag(faddr, fport, laddr, lport); |
| 946 | fp = ctl->fat->hash[tag & ctl->fat->mask]; |
| 947 | } |
| 948 | |
| 949 | while (fp && fp->inuse) { |
| 950 | uint32_t inuse = fp->inuse; |
| 951 | |
| 952 | ++fatps; |
| 953 | |
| 954 | for (i = 0; inuse && i < fatp_ntags(); ++i) { |
| 955 | uint32_t idx; |
| 956 | |
| 957 | if (!(inuse & (1 << i))) |
| 958 | continue; |
| 959 | |
| 960 | inuse ^= 1 << i; |
| 961 | |
| 962 | ++probes; |
| 963 | ++vtw_stats.probe[which]; |
| 964 | |
| 965 | idx = fp->tag[i] ^ tag ^ fatp_xtra[i]; |
| 966 | vtw = vtw_from_index(ctl, idx); |
| 967 | |
| 968 | db_trace(KTR_VTW |
| 969 | , (fp, "probe: %2d %6A:%4.4x %6A:%4.4x idx %x" |
| 970 | , i |
| 971 | , db_store(faddr, sizeof (*faddr)), fport |
| 972 | , db_store(laddr, sizeof (*laddr)), lport |
| 973 | , idx_decode(ctl, idx))); |
| 974 | |
| 975 | if (!vtw) { |
| 976 | /* Hopefully fast path. |
| 977 | */ |
| 978 | continue; |
| 979 | } |
| 980 | |
| 981 | v6 = (void*)vtw; |
| 982 | |
| 983 | if (vtw_alive(vtw) |
| 984 | && ((which ? vtw->port_key : vtw->key) |
| 985 | == fatp_key(ctl->fat, fp, i)) |
| 986 | && v6->lport == lport |
| 987 | && (which |
| 988 | || (v6->fport == fport |
| 989 | && !bcmp(&v6->faddr, faddr, sizeof (*faddr)) |
| 990 | && !bcmp(&v6->laddr, laddr |
| 991 | , sizeof (*laddr))))) { |
| 992 | ++vtw_stats.hit[which]; |
| 993 | |
| 994 | KASSERT(vtw->hashed); |
| 995 | goto out; |
| 996 | } else { |
| 997 | ++vtw_stats.losing[which]; |
| 998 | ++losings; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | if (fp->nxt) { |
| 1003 | fp = fatp_next(ctl->fat, fp); |
| 1004 | } else { |
| 1005 | break; |
| 1006 | } |
| 1007 | } |
| 1008 | ++vtw_stats.miss[which]; |
| 1009 | vtw = 0; |
| 1010 | out: |
| 1011 | if (fatps > vtw_stats.max_chain[which]) |
| 1012 | vtw_stats.max_chain[which] = fatps; |
| 1013 | if (probes > vtw_stats.max_probe[which]) |
| 1014 | vtw_stats.max_probe[which] = probes; |
| 1015 | if (losings > vtw_stats.max_loss[which]) |
| 1016 | vtw_stats.max_loss[which] = losings; |
| 1017 | |
| 1018 | return vtw; |
| 1019 | } |
| 1020 | |
| 1021 | /*!\brief port iterator |
| 1022 | */ |
| 1023 | static vtw_t * |
| 1024 | vtw_next_port_v4(struct tcp_ports_iterator *it) |
| 1025 | { |
| 1026 | vtw_ctl_t *ctl = it->ctl; |
| 1027 | vtw_v4_t *v4; |
| 1028 | vtw_t *vtw; |
| 1029 | uint32_t tag; |
| 1030 | uint16_t lport = it->port; |
| 1031 | fatp_t *fp; |
| 1032 | int i; |
| 1033 | uint32_t fatps = 0, probes = 0, losings = 0; |
| 1034 | |
| 1035 | tag = v4_port_tag(lport); |
| 1036 | if (!it->fp) { |
| 1037 | it->fp = ctl->fat->port[tag & ctl->fat->mask]; |
| 1038 | it->slot_idx = 0; |
| 1039 | } |
| 1040 | fp = it->fp; |
| 1041 | |
| 1042 | while (fp) { |
| 1043 | uint32_t inuse = fp->inuse; |
| 1044 | |
| 1045 | ++fatps; |
| 1046 | |
| 1047 | for (i = it->slot_idx; inuse && i < fatp_ntags(); ++i) { |
| 1048 | uint32_t idx; |
| 1049 | |
| 1050 | if (!(inuse & (1 << i))) |
| 1051 | continue; |
| 1052 | |
| 1053 | inuse &= ~0U << i; |
| 1054 | |
| 1055 | if (i < it->slot_idx) |
| 1056 | continue; |
| 1057 | |
| 1058 | ++vtw_stats.probe[1]; |
| 1059 | ++probes; |
| 1060 | |
| 1061 | idx = fp->tag[i] ^ tag ^ fatp_xtra[i]; |
| 1062 | vtw = vtw_from_index(ctl, idx); |
| 1063 | |
| 1064 | if (!vtw) { |
| 1065 | /* Hopefully fast path. |
| 1066 | */ |
| 1067 | continue; |
| 1068 | } |
| 1069 | |
| 1070 | v4 = (void*)vtw; |
| 1071 | |
| 1072 | if (vtw_alive(vtw) |
| 1073 | && vtw->port_key == fatp_key(ctl->fat, fp, i) |
| 1074 | && v4->lport == lport) { |
| 1075 | ++vtw_stats.hit[1]; |
| 1076 | |
| 1077 | it->slot_idx = i + 1; |
| 1078 | |
| 1079 | goto out; |
| 1080 | } else if (vtw_alive(vtw)) { |
| 1081 | ++vtw_stats.losing[1]; |
| 1082 | ++losings; |
| 1083 | |
| 1084 | db_trace(KTR_VTW |
| 1085 | , (vtw, "vtw:!mis" |
| 1086 | " port %8.8x:%4.4x %8.8x:%4.4x" |
| 1087 | " key %x port %x" |
| 1088 | , v4->faddr, v4->fport |
| 1089 | , v4->laddr, v4->lport |
| 1090 | , vtw->key |
| 1091 | , lport)); |
| 1092 | } else { |
| 1093 | /* Really losing here. We are coming |
| 1094 | * up with references to free entries. |
| 1095 | * Might find it better to use |
| 1096 | * traditional, or need another |
| 1097 | * add-hockery. The other add-hockery |
| 1098 | * would be to pul more into into the |
| 1099 | * cache line to reject the false |
| 1100 | * hits. |
| 1101 | */ |
| 1102 | ++vtw_stats.losing[1]; |
| 1103 | ++losings; |
| 1104 | db_trace(KTR_VTW |
| 1105 | , (fp, "vtw:!mis port %x" |
| 1106 | " - free entry idx %x vtw %p" |
| 1107 | , lport |
| 1108 | , idx_decode(ctl, idx) |
| 1109 | , vtw)); |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | if (fp->nxt) { |
| 1114 | it->fp = fp = fatp_next(ctl->fat, fp); |
| 1115 | it->slot_idx = 0; |
| 1116 | } else { |
| 1117 | it->fp = 0; |
| 1118 | break; |
| 1119 | } |
| 1120 | } |
| 1121 | ++vtw_stats.miss[1]; |
| 1122 | |
| 1123 | vtw = 0; |
| 1124 | out: |
| 1125 | if (fatps > vtw_stats.max_chain[1]) |
| 1126 | vtw_stats.max_chain[1] = fatps; |
| 1127 | if (probes > vtw_stats.max_probe[1]) |
| 1128 | vtw_stats.max_probe[1] = probes; |
| 1129 | if (losings > vtw_stats.max_loss[1]) |
| 1130 | vtw_stats.max_loss[1] = losings; |
| 1131 | |
| 1132 | return vtw; |
| 1133 | } |
| 1134 | |
| 1135 | /*!\brief port iterator |
| 1136 | */ |
| 1137 | static vtw_t * |
| 1138 | vtw_next_port_v6(struct tcp_ports_iterator *it) |
| 1139 | { |
| 1140 | vtw_ctl_t *ctl = it->ctl; |
| 1141 | vtw_v6_t *v6; |
| 1142 | vtw_t *vtw; |
| 1143 | uint32_t tag; |
| 1144 | uint16_t lport = it->port; |
| 1145 | fatp_t *fp; |
| 1146 | int i; |
| 1147 | uint32_t fatps = 0, probes = 0, losings = 0; |
| 1148 | |
| 1149 | tag = v6_port_tag(lport); |
| 1150 | if (!it->fp) { |
| 1151 | it->fp = ctl->fat->port[tag & ctl->fat->mask]; |
| 1152 | it->slot_idx = 0; |
| 1153 | } |
| 1154 | fp = it->fp; |
| 1155 | |
| 1156 | while (fp) { |
| 1157 | uint32_t inuse = fp->inuse; |
| 1158 | |
| 1159 | ++fatps; |
| 1160 | |
| 1161 | for (i = it->slot_idx; inuse && i < fatp_ntags(); ++i) { |
| 1162 | uint32_t idx; |
| 1163 | |
| 1164 | if (!(inuse & (1 << i))) |
| 1165 | continue; |
| 1166 | |
| 1167 | inuse &= ~0U << i; |
| 1168 | |
| 1169 | if (i < it->slot_idx) |
| 1170 | continue; |
| 1171 | |
| 1172 | ++vtw_stats.probe[1]; |
| 1173 | ++probes; |
| 1174 | |
| 1175 | idx = fp->tag[i] ^ tag ^ fatp_xtra[i]; |
| 1176 | vtw = vtw_from_index(ctl, idx); |
| 1177 | |
| 1178 | if (!vtw) { |
| 1179 | /* Hopefully fast path. |
| 1180 | */ |
| 1181 | continue; |
| 1182 | } |
| 1183 | |
| 1184 | v6 = (void*)vtw; |
| 1185 | |
| 1186 | db_trace(KTR_VTW |
| 1187 | , (vtw, "vtw: i %x idx %x fp->tag %x" |
| 1188 | " tag %x xtra %x" |
| 1189 | , i, idx_decode(ctl, idx) |
| 1190 | , fp->tag[i], tag, fatp_xtra[i])); |
| 1191 | |
| 1192 | if (vtw_alive(vtw) |
| 1193 | && vtw->port_key == fatp_key(ctl->fat, fp, i) |
| 1194 | && v6->lport == lport) { |
| 1195 | ++vtw_stats.hit[1]; |
| 1196 | |
| 1197 | db_trace(KTR_VTW |
| 1198 | , (fp, "vtw: nxt port %P - %4.4x" |
| 1199 | " idx %x key %x" |
| 1200 | , lport, lport |
| 1201 | , idx_decode(ctl, idx), vtw->key)); |
| 1202 | |
| 1203 | it->slot_idx = i + 1; |
| 1204 | goto out; |
| 1205 | } else if (vtw_alive(vtw)) { |
| 1206 | ++vtw_stats.losing[1]; |
| 1207 | |
| 1208 | db_trace(KTR_VTW |
| 1209 | , (vtw, "vtw:!mis port %6A:%4.4x" |
| 1210 | " %6A:%4.4x key %x port %x" |
| 1211 | , db_store(&v6->faddr |
| 1212 | , sizeof (v6->faddr)) |
| 1213 | , v6->fport |
| 1214 | , db_store(&v6->laddr |
| 1215 | , sizeof (v6->faddr)) |
| 1216 | , v6->lport |
| 1217 | , vtw->key |
| 1218 | , lport)); |
| 1219 | } else { |
| 1220 | /* Really losing here. We are coming |
| 1221 | * up with references to free entries. |
| 1222 | * Might find it better to use |
| 1223 | * traditional, or need another |
| 1224 | * add-hockery. The other add-hockery |
| 1225 | * would be to pul more into into the |
| 1226 | * cache line to reject the false |
| 1227 | * hits. |
| 1228 | */ |
| 1229 | ++vtw_stats.losing[1]; |
| 1230 | ++losings; |
| 1231 | |
| 1232 | db_trace(KTR_VTW |
| 1233 | , (fp |
| 1234 | , "vtw:!mis port %x" |
| 1235 | " - free entry idx %x vtw %p" |
| 1236 | , lport, idx_decode(ctl, idx) |
| 1237 | , vtw)); |
| 1238 | } |
| 1239 | } |
| 1240 | |
| 1241 | if (fp->nxt) { |
| 1242 | it->fp = fp = fatp_next(ctl->fat, fp); |
| 1243 | it->slot_idx = 0; |
| 1244 | } else { |
| 1245 | it->fp = 0; |
| 1246 | break; |
| 1247 | } |
| 1248 | } |
| 1249 | ++vtw_stats.miss[1]; |
| 1250 | |
| 1251 | vtw = 0; |
| 1252 | out: |
| 1253 | if (fatps > vtw_stats.max_chain[1]) |
| 1254 | vtw_stats.max_chain[1] = fatps; |
| 1255 | if (probes > vtw_stats.max_probe[1]) |
| 1256 | vtw_stats.max_probe[1] = probes; |
| 1257 | if (losings > vtw_stats.max_loss[1]) |
| 1258 | vtw_stats.max_loss[1] = losings; |
| 1259 | |
| 1260 | return vtw; |
| 1261 | } |
| 1262 | |
| 1263 | /*!\brief initialise the VTW allocation arena |
| 1264 | * |
| 1265 | * There are 1+3 allocation classes: |
| 1266 | * 0 classless |
| 1267 | * {1,2,3} MSL-class based allocation |
| 1268 | * |
| 1269 | * The allocation arenas are all initialised. Classless gets all the |
| 1270 | * space. MSL-class based divides the arena, so that allocation |
| 1271 | * within a class can proceed without having to consider entries |
| 1272 | * (aka: cache lines) from different classes. |
| 1273 | * |
| 1274 | * Usually, we are completely classless or class-based, but there can be |
| 1275 | * transition periods, corresponding to dynamic adjustments in the config |
| 1276 | * by the operator. |
| 1277 | */ |
| 1278 | static void |
| 1279 | vtw_init(fatp_ctl_t *fat, vtw_ctl_t *ctl, const uint32_t n, vtw_t *ctl_base_v) |
| 1280 | { |
| 1281 | int class_n, i; |
| 1282 | vtw_t *base; |
| 1283 | |
| 1284 | ctl->base.v = ctl_base_v; |
| 1285 | |
| 1286 | if (ctl->is_v4) { |
| 1287 | ctl->lim.v4 = ctl->base.v4 + n - 1; |
| 1288 | ctl->alloc.v4 = ctl->base.v4; |
| 1289 | } else { |
| 1290 | ctl->lim.v6 = ctl->base.v6 + n - 1; |
| 1291 | ctl->alloc.v6 = ctl->base.v6; |
| 1292 | } |
| 1293 | |
| 1294 | ctl->nfree = n; |
| 1295 | ctl->ctl = ctl; |
| 1296 | |
| 1297 | ctl->idx_bits = 32; |
| 1298 | for (ctl->idx_mask = ~0; (ctl->idx_mask & (n-1)) == n-1; ) { |
| 1299 | ctl->idx_mask >>= 1; |
| 1300 | ctl->idx_bits -= 1; |
| 1301 | } |
| 1302 | |
| 1303 | ctl->idx_mask <<= 1; |
| 1304 | ctl->idx_mask |= 1; |
| 1305 | ctl->idx_bits += 1; |
| 1306 | |
| 1307 | ctl->fat = fat; |
| 1308 | fat->vtw = ctl; |
| 1309 | |
| 1310 | /* Divide the resources equally amongst the classes. |
| 1311 | * This is not optimal, as the different classes |
| 1312 | * arrive and leave at different rates, but it is |
| 1313 | * the best I can do for now. |
| 1314 | */ |
| 1315 | class_n = n / (VTW_NCLASS-1); |
| 1316 | base = ctl->base.v; |
| 1317 | |
| 1318 | for (i = 1; i < VTW_NCLASS; ++i) { |
| 1319 | int j; |
| 1320 | |
| 1321 | ctl[i] = ctl[0]; |
| 1322 | ctl[i].clidx = i; |
| 1323 | |
| 1324 | ctl[i].base.v = base; |
| 1325 | ctl[i].alloc = ctl[i].base; |
| 1326 | |
| 1327 | for (j = 0; j < class_n - 1; ++j) { |
| 1328 | if (tcp_msl_enable) |
| 1329 | base->msl_class = i; |
| 1330 | base = vtw_next(ctl, base); |
| 1331 | } |
| 1332 | |
| 1333 | ctl[i].lim.v = base; |
| 1334 | base = vtw_next(ctl, base); |
| 1335 | ctl[i].nfree = class_n; |
| 1336 | } |
| 1337 | |
| 1338 | vtw_debug_init(); |
| 1339 | } |
| 1340 | |
| 1341 | /*!\brief map class to TCP MSL |
| 1342 | */ |
| 1343 | static inline uint32_t |
| 1344 | class_to_msl(int msl_class) |
| 1345 | { |
| 1346 | switch (msl_class) { |
| 1347 | case 0: |
| 1348 | case 1: |
| 1349 | return tcp_msl_remote ? tcp_msl_remote : (TCPTV_MSL >> 0); |
| 1350 | case 2: |
| 1351 | return tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1); |
| 1352 | default: |
| 1353 | return tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2); |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | /*!\brief map TCP MSL to class |
| 1358 | */ |
| 1359 | static inline uint32_t |
| 1360 | msl_to_class(int msl) |
| 1361 | { |
| 1362 | if (tcp_msl_enable) { |
| 1363 | if (msl <= (tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2))) |
| 1364 | return 1+2; |
| 1365 | if (msl <= (tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1))) |
| 1366 | return 1+1; |
| 1367 | return 1; |
| 1368 | } |
| 1369 | return 0; |
| 1370 | } |
| 1371 | |
| 1372 | /*!\brief allocate a vtw entry |
| 1373 | */ |
| 1374 | static inline vtw_t * |
| 1375 | vtw_alloc(vtw_ctl_t *ctl) |
| 1376 | { |
| 1377 | vtw_t *vtw = 0; |
| 1378 | int stuck = 0; |
| 1379 | int avail = ctl ? (ctl->nalloc + ctl->nfree) : 0; |
| 1380 | int msl; |
| 1381 | |
| 1382 | KASSERT(mutex_owned(softnet_lock)); |
| 1383 | |
| 1384 | /* If no resources, we will not get far. |
| 1385 | */ |
| 1386 | if (!ctl || !ctl->base.v4 || avail <= 0) |
| 1387 | return 0; |
| 1388 | |
| 1389 | /* Obtain a free one. |
| 1390 | */ |
| 1391 | while (!ctl->nfree) { |
| 1392 | vtw_age(ctl, 0); |
| 1393 | |
| 1394 | if (++stuck > avail) { |
| 1395 | /* When in transition between |
| 1396 | * schemes (classless, classed) we |
| 1397 | * can be stuck having to await the |
| 1398 | * expiration of cross-allocated entries. |
| 1399 | * |
| 1400 | * Returning zero means we will fall back to the |
| 1401 | * traditional TIME_WAIT handling, except in the |
| 1402 | * case of a re-shed, in which case we cannot |
| 1403 | * perform the reshecd, but will retain the extant |
| 1404 | * entry. |
| 1405 | */ |
| 1406 | db_trace(KTR_VTW |
| 1407 | , (ctl, "vtw:!none free in class %x %x/%x" |
| 1408 | , ctl->clidx |
| 1409 | , ctl->nalloc, ctl->nfree)); |
| 1410 | |
| 1411 | return 0; |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | vtw = ctl->alloc.v; |
| 1416 | |
| 1417 | if (vtw->msl_class != ctl->clidx) { |
| 1418 | /* Usurping rules: |
| 1419 | * 0 -> {1,2,3} or {1,2,3} -> 0 |
| 1420 | */ |
| 1421 | KASSERT(!vtw->msl_class || !ctl->clidx); |
| 1422 | |
| 1423 | if (vtw->hashed || vtw->expire.tv_sec) { |
| 1424 | /* As this is owned by some other class, |
| 1425 | * we must wait for it to expire it. |
| 1426 | * This will only happen on class/classless |
| 1427 | * transitions, which are guaranteed to progress |
| 1428 | * to completion in small finite time, barring bugs. |
| 1429 | */ |
| 1430 | db_trace(KTR_VTW |
| 1431 | , (ctl, "vtw:!%p class %x!=%x %x:%x%s" |
| 1432 | , vtw, vtw->msl_class, ctl->clidx |
| 1433 | , vtw->expire.tv_sec |
| 1434 | , vtw->expire.tv_usec |
| 1435 | , vtw->hashed ? " hashed" : "" )); |
| 1436 | |
| 1437 | return 0; |
| 1438 | } |
| 1439 | |
| 1440 | db_trace(KTR_VTW |
| 1441 | , (ctl, "vtw:!%p usurped from %x to %x" |
| 1442 | , vtw, vtw->msl_class, ctl->clidx)); |
| 1443 | |
| 1444 | vtw->msl_class = ctl->clidx; |
| 1445 | } |
| 1446 | |
| 1447 | if (vtw_alive(vtw)) { |
| 1448 | KASSERT(0 && "next free not free" ); |
| 1449 | return 0; |
| 1450 | } |
| 1451 | |
| 1452 | /* Advance allocation poiter. |
| 1453 | */ |
| 1454 | ctl->alloc.v = vtw_next(ctl, vtw); |
| 1455 | |
| 1456 | --ctl->nfree; |
| 1457 | ++ctl->nalloc; |
| 1458 | |
| 1459 | msl = (2 * class_to_msl(ctl->clidx) * 1000) / PR_SLOWHZ; // msec |
| 1460 | |
| 1461 | /* mark expiration |
| 1462 | */ |
| 1463 | getmicrouptime(&vtw->expire); |
| 1464 | |
| 1465 | /* Move expiration into the future. |
| 1466 | */ |
| 1467 | vtw->expire.tv_sec += msl / 1000; |
| 1468 | vtw->expire.tv_usec += 1000 * (msl % 1000); |
| 1469 | |
| 1470 | while (vtw->expire.tv_usec >= 1000*1000) { |
| 1471 | vtw->expire.tv_usec -= 1000*1000; |
| 1472 | vtw->expire.tv_sec += 1; |
| 1473 | } |
| 1474 | |
| 1475 | if (!ctl->oldest.v) |
| 1476 | ctl->oldest.v = vtw; |
| 1477 | |
| 1478 | return vtw; |
| 1479 | } |
| 1480 | |
| 1481 | /*!\brief expiration |
| 1482 | */ |
| 1483 | static int |
| 1484 | vtw_age(vtw_ctl_t *ctl, struct timeval *_when) |
| 1485 | { |
| 1486 | vtw_t *vtw; |
| 1487 | struct timeval then, *when = _when; |
| 1488 | int maxtries = 0; |
| 1489 | |
| 1490 | if (!ctl->oldest.v) { |
| 1491 | KASSERT(!ctl->nalloc); |
| 1492 | return 0; |
| 1493 | } |
| 1494 | |
| 1495 | for (vtw = ctl->oldest.v; vtw && ctl->nalloc; ) { |
| 1496 | if (++maxtries > ctl->nalloc) |
| 1497 | break; |
| 1498 | |
| 1499 | if (vtw->msl_class != ctl->clidx) { |
| 1500 | db_trace(KTR_VTW |
| 1501 | , (vtw, "vtw:!age class mismatch %x != %x" |
| 1502 | , vtw->msl_class, ctl->clidx)); |
| 1503 | /* XXXX |
| 1504 | * See if the appropriate action is to skip to the next. |
| 1505 | * XXXX |
| 1506 | */ |
| 1507 | ctl->oldest.v = vtw = vtw_next(ctl, vtw); |
| 1508 | continue; |
| 1509 | } |
| 1510 | if (!when) { |
| 1511 | /* Latch oldest timeval if none specified. |
| 1512 | */ |
| 1513 | then = vtw->expire; |
| 1514 | when = &then; |
| 1515 | } |
| 1516 | |
| 1517 | if (!timercmp(&vtw->expire, when, <=)) |
| 1518 | break; |
| 1519 | |
| 1520 | db_trace(KTR_VTW |
| 1521 | , (vtw, "vtw: expire %x %8.8x:%8.8x %x/%x" |
| 1522 | , ctl->clidx |
| 1523 | , vtw->expire.tv_sec |
| 1524 | , vtw->expire.tv_usec |
| 1525 | , ctl->nalloc |
| 1526 | , ctl->nfree)); |
| 1527 | |
| 1528 | if (!_when) |
| 1529 | ++vtw_stats.kill; |
| 1530 | |
| 1531 | vtw_del(ctl, vtw); |
| 1532 | vtw = ctl->oldest.v; |
| 1533 | } |
| 1534 | |
| 1535 | return ctl->nalloc; // # remaining allocated |
| 1536 | } |
| 1537 | |
| 1538 | static callout_t vtw_cs; |
| 1539 | |
| 1540 | /*!\brief notice the passage of time. |
| 1541 | * It seems to be getting faster. What happened to the year? |
| 1542 | */ |
| 1543 | static void |
| 1544 | vtw_tick(void *arg) |
| 1545 | { |
| 1546 | struct timeval now; |
| 1547 | int i, cnt = 0; |
| 1548 | |
| 1549 | getmicrouptime(&now); |
| 1550 | |
| 1551 | db_trace(KTR_VTW, (arg, "vtk: tick - now %8.8x:%8.8x" |
| 1552 | , now.tv_sec, now.tv_usec)); |
| 1553 | |
| 1554 | mutex_enter(softnet_lock); |
| 1555 | |
| 1556 | for (i = 0; i < VTW_NCLASS; ++i) { |
| 1557 | cnt += vtw_age(&vtw_tcpv4[i], &now); |
| 1558 | cnt += vtw_age(&vtw_tcpv6[i], &now); |
| 1559 | } |
| 1560 | |
| 1561 | /* Keep ticks coming while we need them. |
| 1562 | */ |
| 1563 | if (cnt) |
| 1564 | callout_schedule(&vtw_cs, hz / 5); |
| 1565 | else { |
| 1566 | tcp_vtw_was_enabled = 0; |
| 1567 | tcbtable.vestige = 0; |
| 1568 | } |
| 1569 | mutex_exit(softnet_lock); |
| 1570 | } |
| 1571 | |
| 1572 | /* in_pcblookup_ports assist for handling vestigial entries. |
| 1573 | */ |
| 1574 | static void * |
| 1575 | tcp_init_ports_v4(struct in_addr addr, u_int port, int wild) |
| 1576 | { |
| 1577 | struct tcp_ports_iterator *it = &tcp_ports_iterator_v4; |
| 1578 | |
| 1579 | bzero(it, sizeof (*it)); |
| 1580 | |
| 1581 | /* Note: the reference to vtw_tcpv4[0] is fine. |
| 1582 | * We do not need per-class iteration. We just |
| 1583 | * need to get to the fat, and there is one |
| 1584 | * shared fat. |
| 1585 | */ |
| 1586 | if (vtw_tcpv4[0].fat) { |
| 1587 | it->addr.v4 = addr; |
| 1588 | it->port = port; |
| 1589 | it->wild = !!wild; |
| 1590 | it->ctl = &vtw_tcpv4[0]; |
| 1591 | |
| 1592 | ++vtw_stats.look[1]; |
| 1593 | } |
| 1594 | |
| 1595 | return it; |
| 1596 | } |
| 1597 | |
| 1598 | /*!\brief export an IPv4 vtw. |
| 1599 | */ |
| 1600 | static int |
| 1601 | vtw_export_v4(vtw_ctl_t *ctl, vtw_t *vtw, vestigial_inpcb_t *res) |
| 1602 | { |
| 1603 | vtw_v4_t *v4 = (void*)vtw; |
| 1604 | |
| 1605 | bzero(res, sizeof (*res)); |
| 1606 | |
| 1607 | if (ctl && vtw) { |
| 1608 | if (!ctl->clidx && vtw->msl_class) |
| 1609 | ctl += vtw->msl_class; |
| 1610 | else |
| 1611 | KASSERT(ctl->clidx == vtw->msl_class); |
| 1612 | |
| 1613 | res->valid = 1; |
| 1614 | res->v4 = 1; |
| 1615 | |
| 1616 | res->faddr.v4.s_addr = v4->faddr; |
| 1617 | res->laddr.v4.s_addr = v4->laddr; |
| 1618 | res->fport = v4->fport; |
| 1619 | res->lport = v4->lport; |
| 1620 | res->vtw = vtw; // netlock held over call(s) |
| 1621 | res->ctl = ctl; |
| 1622 | res->reuse_addr = vtw->reuse_addr; |
| 1623 | res->reuse_port = vtw->reuse_port; |
| 1624 | res->snd_nxt = vtw->snd_nxt; |
| 1625 | res->rcv_nxt = vtw->rcv_nxt; |
| 1626 | res->rcv_wnd = vtw->rcv_wnd; |
| 1627 | res->uid = vtw->uid; |
| 1628 | } |
| 1629 | |
| 1630 | return res->valid; |
| 1631 | } |
| 1632 | |
| 1633 | /*!\brief return next port in the port iterator. yowza. |
| 1634 | */ |
| 1635 | static int |
| 1636 | tcp_next_port_v4(void *arg, struct vestigial_inpcb *res) |
| 1637 | { |
| 1638 | struct tcp_ports_iterator *it = arg; |
| 1639 | vtw_t *vtw = 0; |
| 1640 | |
| 1641 | if (it->ctl) |
| 1642 | vtw = vtw_next_port_v4(it); |
| 1643 | |
| 1644 | if (!vtw) |
| 1645 | it->ctl = 0; |
| 1646 | |
| 1647 | return vtw_export_v4(it->ctl, vtw, res); |
| 1648 | } |
| 1649 | |
| 1650 | static int |
| 1651 | tcp_lookup_v4(struct in_addr faddr, uint16_t fport, |
| 1652 | struct in_addr laddr, uint16_t lport, |
| 1653 | struct vestigial_inpcb *res) |
| 1654 | { |
| 1655 | vtw_t *vtw; |
| 1656 | vtw_ctl_t *ctl; |
| 1657 | |
| 1658 | |
| 1659 | db_trace(KTR_VTW |
| 1660 | , (res, "vtw: lookup %A:%P %A:%P" |
| 1661 | , faddr, fport |
| 1662 | , laddr, lport)); |
| 1663 | |
| 1664 | vtw = vtw_lookup_hash_v4((ctl = &vtw_tcpv4[0]) |
| 1665 | , faddr.s_addr, fport |
| 1666 | , laddr.s_addr, lport, 0); |
| 1667 | |
| 1668 | return vtw_export_v4(ctl, vtw, res); |
| 1669 | } |
| 1670 | |
| 1671 | /* in_pcblookup_ports assist for handling vestigial entries. |
| 1672 | */ |
| 1673 | static void * |
| 1674 | tcp_init_ports_v6(const struct in6_addr *addr, u_int port, int wild) |
| 1675 | { |
| 1676 | struct tcp_ports_iterator *it = &tcp_ports_iterator_v6; |
| 1677 | |
| 1678 | bzero(it, sizeof (*it)); |
| 1679 | |
| 1680 | /* Note: the reference to vtw_tcpv6[0] is fine. |
| 1681 | * We do not need per-class iteration. We just |
| 1682 | * need to get to the fat, and there is one |
| 1683 | * shared fat. |
| 1684 | */ |
| 1685 | if (vtw_tcpv6[0].fat) { |
| 1686 | it->addr.v6 = *addr; |
| 1687 | it->port = port; |
| 1688 | it->wild = !!wild; |
| 1689 | it->ctl = &vtw_tcpv6[0]; |
| 1690 | |
| 1691 | ++vtw_stats.look[1]; |
| 1692 | } |
| 1693 | |
| 1694 | return it; |
| 1695 | } |
| 1696 | |
| 1697 | /*!\brief export an IPv6 vtw. |
| 1698 | */ |
| 1699 | static int |
| 1700 | vtw_export_v6(vtw_ctl_t *ctl, vtw_t *vtw, vestigial_inpcb_t *res) |
| 1701 | { |
| 1702 | vtw_v6_t *v6 = (void*)vtw; |
| 1703 | |
| 1704 | bzero(res, sizeof (*res)); |
| 1705 | |
| 1706 | if (ctl && vtw) { |
| 1707 | if (!ctl->clidx && vtw->msl_class) |
| 1708 | ctl += vtw->msl_class; |
| 1709 | else |
| 1710 | KASSERT(ctl->clidx == vtw->msl_class); |
| 1711 | |
| 1712 | res->valid = 1; |
| 1713 | res->v4 = 0; |
| 1714 | |
| 1715 | res->faddr.v6 = v6->faddr; |
| 1716 | res->laddr.v6 = v6->laddr; |
| 1717 | res->fport = v6->fport; |
| 1718 | res->lport = v6->lport; |
| 1719 | res->vtw = vtw; // netlock held over call(s) |
| 1720 | res->ctl = ctl; |
| 1721 | |
| 1722 | res->v6only = vtw->v6only; |
| 1723 | res->reuse_addr = vtw->reuse_addr; |
| 1724 | res->reuse_port = vtw->reuse_port; |
| 1725 | |
| 1726 | res->snd_nxt = vtw->snd_nxt; |
| 1727 | res->rcv_nxt = vtw->rcv_nxt; |
| 1728 | res->rcv_wnd = vtw->rcv_wnd; |
| 1729 | res->uid = vtw->uid; |
| 1730 | } |
| 1731 | |
| 1732 | return res->valid; |
| 1733 | } |
| 1734 | |
| 1735 | static int |
| 1736 | tcp_next_port_v6(void *arg, struct vestigial_inpcb *res) |
| 1737 | { |
| 1738 | struct tcp_ports_iterator *it = arg; |
| 1739 | vtw_t *vtw = 0; |
| 1740 | |
| 1741 | if (it->ctl) |
| 1742 | vtw = vtw_next_port_v6(it); |
| 1743 | |
| 1744 | if (!vtw) |
| 1745 | it->ctl = 0; |
| 1746 | |
| 1747 | return vtw_export_v6(it->ctl, vtw, res); |
| 1748 | } |
| 1749 | |
| 1750 | static int |
| 1751 | tcp_lookup_v6(const struct in6_addr *faddr, uint16_t fport, |
| 1752 | const struct in6_addr *laddr, uint16_t lport, |
| 1753 | struct vestigial_inpcb *res) |
| 1754 | { |
| 1755 | vtw_ctl_t *ctl; |
| 1756 | vtw_t *vtw; |
| 1757 | |
| 1758 | db_trace(KTR_VTW |
| 1759 | , (res, "vtw: lookup %6A:%P %6A:%P" |
| 1760 | , db_store(faddr, sizeof (*faddr)), fport |
| 1761 | , db_store(laddr, sizeof (*laddr)), lport)); |
| 1762 | |
| 1763 | vtw = vtw_lookup_hash_v6((ctl = &vtw_tcpv6[0]) |
| 1764 | , faddr, fport |
| 1765 | , laddr, lport, 0); |
| 1766 | |
| 1767 | return vtw_export_v6(ctl, vtw, res); |
| 1768 | } |
| 1769 | |
| 1770 | static vestigial_hooks_t tcp_hooks = { |
| 1771 | .init_ports4 = tcp_init_ports_v4, |
| 1772 | .next_port4 = tcp_next_port_v4, |
| 1773 | .lookup4 = tcp_lookup_v4, |
| 1774 | .init_ports6 = tcp_init_ports_v6, |
| 1775 | .next_port6 = tcp_next_port_v6, |
| 1776 | .lookup6 = tcp_lookup_v6, |
| 1777 | }; |
| 1778 | |
| 1779 | static bool |
| 1780 | vtw_select(int af, fatp_ctl_t **fatp, vtw_ctl_t **ctlp) |
| 1781 | { |
| 1782 | fatp_ctl_t *fat; |
| 1783 | vtw_ctl_t *ctl; |
| 1784 | |
| 1785 | switch (af) { |
| 1786 | case AF_INET: |
| 1787 | fat = &fat_tcpv4; |
| 1788 | ctl = &vtw_tcpv4[0]; |
| 1789 | break; |
| 1790 | case AF_INET6: |
| 1791 | fat = &fat_tcpv6; |
| 1792 | ctl = &vtw_tcpv6[0]; |
| 1793 | break; |
| 1794 | default: |
| 1795 | return false; |
| 1796 | } |
| 1797 | if (fatp != NULL) |
| 1798 | *fatp = fat; |
| 1799 | if (ctlp != NULL) |
| 1800 | *ctlp = ctl; |
| 1801 | return true; |
| 1802 | } |
| 1803 | |
| 1804 | /*!\brief initialize controlling instance |
| 1805 | */ |
| 1806 | static int |
| 1807 | vtw_control_init(int af) |
| 1808 | { |
| 1809 | fatp_ctl_t *fat; |
| 1810 | vtw_ctl_t *ctl; |
| 1811 | fatp_t *fat_base; |
| 1812 | fatp_t **fat_hash; |
| 1813 | vtw_t *ctl_base_v; |
| 1814 | uint32_t n, m; |
| 1815 | size_t sz; |
| 1816 | |
| 1817 | KASSERT(powerof2(tcp_vtw_entries)); |
| 1818 | |
| 1819 | if (!vtw_select(af, &fat, &ctl)) |
| 1820 | return EAFNOSUPPORT; |
| 1821 | |
| 1822 | if (fat->hash != NULL) { |
| 1823 | KASSERT(fat->base != NULL && ctl->base.v != NULL); |
| 1824 | return 0; |
| 1825 | } |
| 1826 | |
| 1827 | /* Allocate 10% more capacity in the fat pointers. |
| 1828 | * We should only need ~#hash additional based on |
| 1829 | * how they age, but TIME_WAIT assassination could cause |
| 1830 | * sparse fat pointer utilisation. |
| 1831 | */ |
| 1832 | m = 512; |
| 1833 | n = 2*m + (11 * (tcp_vtw_entries / fatp_ntags())) / 10; |
| 1834 | sz = (ctl->is_v4 ? sizeof(vtw_v4_t) : sizeof(vtw_v6_t)); |
| 1835 | |
| 1836 | fat_hash = kmem_zalloc(2*m * sizeof(fatp_t *), KM_NOSLEEP); |
| 1837 | |
| 1838 | if (fat_hash == NULL) { |
| 1839 | printf("%s: could not allocate %zu bytes for " |
| 1840 | "hash anchors" , __func__, 2*m * sizeof(fatp_t *)); |
| 1841 | return ENOMEM; |
| 1842 | } |
| 1843 | |
| 1844 | fat_base = kmem_zalloc(2*n * sizeof(fatp_t), KM_NOSLEEP); |
| 1845 | |
| 1846 | if (fat_base == NULL) { |
| 1847 | kmem_free(fat_hash, 2*m * sizeof (fatp_t *)); |
| 1848 | printf("%s: could not allocate %zu bytes for " |
| 1849 | "fatp_t array" , __func__, 2*n * sizeof(fatp_t)); |
| 1850 | return ENOMEM; |
| 1851 | } |
| 1852 | |
| 1853 | ctl_base_v = kmem_zalloc(tcp_vtw_entries * sz, KM_NOSLEEP); |
| 1854 | |
| 1855 | if (ctl_base_v == NULL) { |
| 1856 | kmem_free(fat_hash, 2*m * sizeof (fatp_t *)); |
| 1857 | kmem_free(fat_base, 2*n * sizeof(fatp_t)); |
| 1858 | printf("%s: could not allocate %zu bytes for " |
| 1859 | "vtw_t array" , __func__, tcp_vtw_entries * sz); |
| 1860 | return ENOMEM; |
| 1861 | } |
| 1862 | |
| 1863 | fatp_init(fat, n, m, fat_base, fat_hash); |
| 1864 | |
| 1865 | vtw_init(fat, ctl, tcp_vtw_entries, ctl_base_v); |
| 1866 | |
| 1867 | return 0; |
| 1868 | } |
| 1869 | |
| 1870 | /*!\brief select controlling instance |
| 1871 | */ |
| 1872 | static vtw_ctl_t * |
| 1873 | vtw_control(int af, uint32_t msl) |
| 1874 | { |
| 1875 | fatp_ctl_t *fat; |
| 1876 | vtw_ctl_t *ctl; |
| 1877 | int msl_class = msl_to_class(msl); |
| 1878 | |
| 1879 | if (!vtw_select(af, &fat, &ctl)) |
| 1880 | return NULL; |
| 1881 | |
| 1882 | if (!fat->base || !ctl->base.v) |
| 1883 | return NULL; |
| 1884 | |
| 1885 | if (!tcp_vtw_was_enabled) { |
| 1886 | /* This guarantees is timer ticks until we no longer need them. |
| 1887 | */ |
| 1888 | tcp_vtw_was_enabled = 1; |
| 1889 | |
| 1890 | callout_schedule(&vtw_cs, hz / 5); |
| 1891 | |
| 1892 | tcbtable.vestige = &tcp_hooks; |
| 1893 | } |
| 1894 | |
| 1895 | return ctl + msl_class; |
| 1896 | } |
| 1897 | |
| 1898 | /*!\brief add TCP pcb to vestigial timewait |
| 1899 | */ |
| 1900 | int |
| 1901 | vtw_add(int af, struct tcpcb *tp) |
| 1902 | { |
| 1903 | #ifdef VTW_DEBUG |
| 1904 | int enable; |
| 1905 | #endif |
| 1906 | vtw_ctl_t *ctl; |
| 1907 | vtw_t *vtw; |
| 1908 | |
| 1909 | KASSERT(mutex_owned(softnet_lock)); |
| 1910 | |
| 1911 | ctl = vtw_control(af, tp->t_msl); |
| 1912 | if (!ctl) |
| 1913 | return 0; |
| 1914 | |
| 1915 | #ifdef VTW_DEBUG |
| 1916 | enable = (af == AF_INET) ? tcp4_vtw_enable : tcp6_vtw_enable; |
| 1917 | #endif |
| 1918 | |
| 1919 | vtw = vtw_alloc(ctl); |
| 1920 | |
| 1921 | if (vtw) { |
| 1922 | vtw->snd_nxt = tp->snd_nxt; |
| 1923 | vtw->rcv_nxt = tp->rcv_nxt; |
| 1924 | |
| 1925 | switch (af) { |
| 1926 | case AF_INET: { |
| 1927 | struct inpcb *inp = tp->t_inpcb; |
| 1928 | vtw_v4_t *v4 = (void*)vtw; |
| 1929 | |
| 1930 | v4->faddr = inp->inp_faddr.s_addr; |
| 1931 | v4->laddr = inp->inp_laddr.s_addr; |
| 1932 | v4->fport = inp->inp_fport; |
| 1933 | v4->lport = inp->inp_lport; |
| 1934 | |
| 1935 | vtw->reuse_port = !!(inp->inp_socket->so_options |
| 1936 | & SO_REUSEPORT); |
| 1937 | vtw->reuse_addr = !!(inp->inp_socket->so_options |
| 1938 | & SO_REUSEADDR); |
| 1939 | vtw->v6only = 0; |
| 1940 | vtw->uid = inp->inp_socket->so_uidinfo->ui_uid; |
| 1941 | |
| 1942 | vtw_inshash_v4(ctl, vtw); |
| 1943 | |
| 1944 | |
| 1945 | #ifdef VTW_DEBUG |
| 1946 | /* Immediate lookup (connected and port) to |
| 1947 | * ensure at least that works! |
| 1948 | */ |
| 1949 | if (enable & 4) { |
| 1950 | KASSERT(vtw_lookup_hash_v4 |
| 1951 | (ctl |
| 1952 | , inp->inp_faddr.s_addr, inp->inp_fport |
| 1953 | , inp->inp_laddr.s_addr, inp->inp_lport |
| 1954 | , 0) |
| 1955 | == vtw); |
| 1956 | KASSERT(vtw_lookup_hash_v4 |
| 1957 | (ctl |
| 1958 | , inp->inp_faddr.s_addr, inp->inp_fport |
| 1959 | , inp->inp_laddr.s_addr, inp->inp_lport |
| 1960 | , 1)); |
| 1961 | } |
| 1962 | /* Immediate port iterator functionality check: not wild |
| 1963 | */ |
| 1964 | if (enable & 8) { |
| 1965 | struct tcp_ports_iterator *it; |
| 1966 | struct vestigial_inpcb res; |
| 1967 | int cnt = 0; |
| 1968 | |
| 1969 | it = tcp_init_ports_v4(inp->inp_laddr |
| 1970 | , inp->inp_lport, 0); |
| 1971 | |
| 1972 | while (tcp_next_port_v4(it, &res)) { |
| 1973 | ++cnt; |
| 1974 | } |
| 1975 | KASSERT(cnt); |
| 1976 | } |
| 1977 | /* Immediate port iterator functionality check: wild |
| 1978 | */ |
| 1979 | if (enable & 16) { |
| 1980 | struct tcp_ports_iterator *it; |
| 1981 | struct vestigial_inpcb res; |
| 1982 | struct in_addr any; |
| 1983 | int cnt = 0; |
| 1984 | |
| 1985 | any.s_addr = htonl(INADDR_ANY); |
| 1986 | |
| 1987 | it = tcp_init_ports_v4(any, inp->inp_lport, 1); |
| 1988 | |
| 1989 | while (tcp_next_port_v4(it, &res)) { |
| 1990 | ++cnt; |
| 1991 | } |
| 1992 | KASSERT(cnt); |
| 1993 | } |
| 1994 | #endif /* VTW_DEBUG */ |
| 1995 | break; |
| 1996 | } |
| 1997 | |
| 1998 | case AF_INET6: { |
| 1999 | struct in6pcb *inp = tp->t_in6pcb; |
| 2000 | vtw_v6_t *v6 = (void*)vtw; |
| 2001 | |
| 2002 | v6->faddr = inp->in6p_faddr; |
| 2003 | v6->laddr = inp->in6p_laddr; |
| 2004 | v6->fport = inp->in6p_fport; |
| 2005 | v6->lport = inp->in6p_lport; |
| 2006 | |
| 2007 | vtw->reuse_port = !!(inp->in6p_socket->so_options |
| 2008 | & SO_REUSEPORT); |
| 2009 | vtw->reuse_addr = !!(inp->in6p_socket->so_options |
| 2010 | & SO_REUSEADDR); |
| 2011 | vtw->v6only = !!(inp->in6p_flags |
| 2012 | & IN6P_IPV6_V6ONLY); |
| 2013 | vtw->uid = inp->in6p_socket->so_uidinfo->ui_uid; |
| 2014 | |
| 2015 | vtw_inshash_v6(ctl, vtw); |
| 2016 | #ifdef VTW_DEBUG |
| 2017 | /* Immediate lookup (connected and port) to |
| 2018 | * ensure at least that works! |
| 2019 | */ |
| 2020 | if (enable & 4) { |
| 2021 | KASSERT(vtw_lookup_hash_v6(ctl |
| 2022 | , &inp->in6p_faddr, inp->in6p_fport |
| 2023 | , &inp->in6p_laddr, inp->in6p_lport |
| 2024 | , 0) |
| 2025 | == vtw); |
| 2026 | KASSERT(vtw_lookup_hash_v6 |
| 2027 | (ctl |
| 2028 | , &inp->in6p_faddr, inp->in6p_fport |
| 2029 | , &inp->in6p_laddr, inp->in6p_lport |
| 2030 | , 1)); |
| 2031 | } |
| 2032 | /* Immediate port iterator functionality check: not wild |
| 2033 | */ |
| 2034 | if (enable & 8) { |
| 2035 | struct tcp_ports_iterator *it; |
| 2036 | struct vestigial_inpcb res; |
| 2037 | int cnt = 0; |
| 2038 | |
| 2039 | it = tcp_init_ports_v6(&inp->in6p_laddr |
| 2040 | , inp->in6p_lport, 0); |
| 2041 | |
| 2042 | while (tcp_next_port_v6(it, &res)) { |
| 2043 | ++cnt; |
| 2044 | } |
| 2045 | KASSERT(cnt); |
| 2046 | } |
| 2047 | /* Immediate port iterator functionality check: wild |
| 2048 | */ |
| 2049 | if (enable & 16) { |
| 2050 | struct tcp_ports_iterator *it; |
| 2051 | struct vestigial_inpcb res; |
| 2052 | static struct in6_addr any = IN6ADDR_ANY_INIT; |
| 2053 | int cnt = 0; |
| 2054 | |
| 2055 | it = tcp_init_ports_v6(&any |
| 2056 | , inp->in6p_lport, 1); |
| 2057 | |
| 2058 | while (tcp_next_port_v6(it, &res)) { |
| 2059 | ++cnt; |
| 2060 | } |
| 2061 | KASSERT(cnt); |
| 2062 | } |
| 2063 | #endif /* VTW_DEBUG */ |
| 2064 | break; |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | tcp_canceltimers(tp); |
| 2069 | tp = tcp_close(tp); |
| 2070 | KASSERT(!tp); |
| 2071 | |
| 2072 | return 1; |
| 2073 | } |
| 2074 | |
| 2075 | return 0; |
| 2076 | } |
| 2077 | |
| 2078 | /*!\brief restart timer for vestigial time-wait entry |
| 2079 | */ |
| 2080 | static void |
| 2081 | vtw_restart_v4(vestigial_inpcb_t *vp) |
| 2082 | { |
| 2083 | vtw_v4_t copy = *(vtw_v4_t*)vp->vtw; |
| 2084 | vtw_t *vtw; |
| 2085 | vtw_t *cp = ©.common; |
| 2086 | vtw_ctl_t *ctl; |
| 2087 | |
| 2088 | KASSERT(mutex_owned(softnet_lock)); |
| 2089 | |
| 2090 | db_trace(KTR_VTW |
| 2091 | , (vp->vtw, "vtw: restart %A:%P %A:%P" |
| 2092 | , vp->faddr.v4.s_addr, vp->fport |
| 2093 | , vp->laddr.v4.s_addr, vp->lport)); |
| 2094 | |
| 2095 | /* Class might have changed, so have a squiz. |
| 2096 | */ |
| 2097 | ctl = vtw_control(AF_INET, class_to_msl(cp->msl_class)); |
| 2098 | vtw = vtw_alloc(ctl); |
| 2099 | |
| 2100 | if (vtw) { |
| 2101 | vtw_v4_t *v4 = (void*)vtw; |
| 2102 | |
| 2103 | /* Safe now to unhash the old entry |
| 2104 | */ |
| 2105 | vtw_del(vp->ctl, vp->vtw); |
| 2106 | |
| 2107 | vtw->snd_nxt = cp->snd_nxt; |
| 2108 | vtw->rcv_nxt = cp->rcv_nxt; |
| 2109 | |
| 2110 | v4->faddr = copy.faddr; |
| 2111 | v4->laddr = copy.laddr; |
| 2112 | v4->fport = copy.fport; |
| 2113 | v4->lport = copy.lport; |
| 2114 | |
| 2115 | vtw->reuse_port = cp->reuse_port; |
| 2116 | vtw->reuse_addr = cp->reuse_addr; |
| 2117 | vtw->v6only = 0; |
| 2118 | vtw->uid = cp->uid; |
| 2119 | |
| 2120 | vtw_inshash_v4(ctl, vtw); |
| 2121 | } |
| 2122 | |
| 2123 | vp->valid = 0; |
| 2124 | } |
| 2125 | |
| 2126 | /*!\brief restart timer for vestigial time-wait entry |
| 2127 | */ |
| 2128 | static void |
| 2129 | vtw_restart_v6(vestigial_inpcb_t *vp) |
| 2130 | { |
| 2131 | vtw_v6_t copy = *(vtw_v6_t*)vp->vtw; |
| 2132 | vtw_t *vtw; |
| 2133 | vtw_t *cp = ©.common; |
| 2134 | vtw_ctl_t *ctl; |
| 2135 | |
| 2136 | KASSERT(mutex_owned(softnet_lock)); |
| 2137 | |
| 2138 | db_trace(KTR_VTW |
| 2139 | , (vp->vtw, "vtw: restart %6A:%P %6A:%P" |
| 2140 | , db_store(&vp->faddr.v6, sizeof (vp->faddr.v6)) |
| 2141 | , vp->fport |
| 2142 | , db_store(&vp->laddr.v6, sizeof (vp->laddr.v6)) |
| 2143 | , vp->lport)); |
| 2144 | |
| 2145 | /* Class might have changed, so have a squiz. |
| 2146 | */ |
| 2147 | ctl = vtw_control(AF_INET6, class_to_msl(cp->msl_class)); |
| 2148 | vtw = vtw_alloc(ctl); |
| 2149 | |
| 2150 | if (vtw) { |
| 2151 | vtw_v6_t *v6 = (void*)vtw; |
| 2152 | |
| 2153 | /* Safe now to unhash the old entry |
| 2154 | */ |
| 2155 | vtw_del(vp->ctl, vp->vtw); |
| 2156 | |
| 2157 | vtw->snd_nxt = cp->snd_nxt; |
| 2158 | vtw->rcv_nxt = cp->rcv_nxt; |
| 2159 | |
| 2160 | v6->faddr = copy.faddr; |
| 2161 | v6->laddr = copy.laddr; |
| 2162 | v6->fport = copy.fport; |
| 2163 | v6->lport = copy.lport; |
| 2164 | |
| 2165 | vtw->reuse_port = cp->reuse_port; |
| 2166 | vtw->reuse_addr = cp->reuse_addr; |
| 2167 | vtw->v6only = cp->v6only; |
| 2168 | vtw->uid = cp->uid; |
| 2169 | |
| 2170 | vtw_inshash_v6(ctl, vtw); |
| 2171 | } |
| 2172 | |
| 2173 | vp->valid = 0; |
| 2174 | } |
| 2175 | |
| 2176 | /*!\brief restart timer for vestigial time-wait entry |
| 2177 | */ |
| 2178 | void |
| 2179 | vtw_restart(vestigial_inpcb_t *vp) |
| 2180 | { |
| 2181 | if (!vp || !vp->valid) |
| 2182 | return; |
| 2183 | |
| 2184 | if (vp->v4) |
| 2185 | vtw_restart_v4(vp); |
| 2186 | else |
| 2187 | vtw_restart_v6(vp); |
| 2188 | } |
| 2189 | |
| 2190 | int |
| 2191 | sysctl_tcp_vtw_enable(SYSCTLFN_ARGS) |
| 2192 | { |
| 2193 | int en, rc; |
| 2194 | struct sysctlnode node; |
| 2195 | |
| 2196 | node = *rnode; |
| 2197 | en = *(int *)rnode->sysctl_data; |
| 2198 | node.sysctl_data = &en; |
| 2199 | |
| 2200 | rc = sysctl_lookup(SYSCTLFN_CALL(&node)); |
| 2201 | if (rc != 0 || newp == NULL) |
| 2202 | return rc; |
| 2203 | |
| 2204 | if (rnode->sysctl_data != &tcp4_vtw_enable && |
| 2205 | rnode->sysctl_data != &tcp6_vtw_enable) |
| 2206 | rc = ENOENT; |
| 2207 | else if ((en & 1) == 0) |
| 2208 | rc = 0; |
| 2209 | else if (rnode->sysctl_data == &tcp4_vtw_enable) |
| 2210 | rc = vtw_control_init(AF_INET); |
| 2211 | else /* rnode->sysctl_data == &tcp6_vtw_enable */ |
| 2212 | rc = vtw_control_init(AF_INET6); |
| 2213 | |
| 2214 | if (rc == 0) |
| 2215 | *(int *)rnode->sysctl_data = en; |
| 2216 | |
| 2217 | return rc; |
| 2218 | } |
| 2219 | |
| 2220 | int |
| 2221 | vtw_earlyinit(void) |
| 2222 | { |
| 2223 | int i, rc; |
| 2224 | |
| 2225 | callout_init(&vtw_cs, 0); |
| 2226 | callout_setfunc(&vtw_cs, vtw_tick, 0); |
| 2227 | |
| 2228 | for (i = 0; i < VTW_NCLASS; ++i) { |
| 2229 | vtw_tcpv4[i].is_v4 = 1; |
| 2230 | vtw_tcpv6[i].is_v6 = 1; |
| 2231 | } |
| 2232 | |
| 2233 | if ((tcp4_vtw_enable & 1) != 0 && |
| 2234 | (rc = vtw_control_init(AF_INET)) != 0) |
| 2235 | return rc; |
| 2236 | |
| 2237 | if ((tcp6_vtw_enable & 1) != 0 && |
| 2238 | (rc = vtw_control_init(AF_INET6)) != 0) |
| 2239 | return rc; |
| 2240 | |
| 2241 | return 0; |
| 2242 | } |
| 2243 | |
| 2244 | #ifdef VTW_DEBUG |
| 2245 | #include <sys/syscallargs.h> |
| 2246 | #include <sys/sysctl.h> |
| 2247 | |
| 2248 | /*!\brief add lalp, fafp entries for debug |
| 2249 | */ |
| 2250 | int |
| 2251 | vtw_debug_add(int af, sin_either_t *la, sin_either_t *fa, int msl, int msl_class) |
| 2252 | { |
| 2253 | vtw_ctl_t *ctl; |
| 2254 | vtw_t *vtw; |
| 2255 | |
| 2256 | ctl = vtw_control(af, msl ? msl : class_to_msl(msl_class)); |
| 2257 | if (!ctl) |
| 2258 | return 0; |
| 2259 | |
| 2260 | vtw = vtw_alloc(ctl); |
| 2261 | |
| 2262 | if (vtw) { |
| 2263 | vtw->snd_nxt = 0; |
| 2264 | vtw->rcv_nxt = 0; |
| 2265 | |
| 2266 | switch (af) { |
| 2267 | case AF_INET: { |
| 2268 | vtw_v4_t *v4 = (void*)vtw; |
| 2269 | |
| 2270 | v4->faddr = fa->sin_addr.v4.s_addr; |
| 2271 | v4->laddr = la->sin_addr.v4.s_addr; |
| 2272 | v4->fport = fa->sin_port; |
| 2273 | v4->lport = la->sin_port; |
| 2274 | |
| 2275 | vtw->reuse_port = 1; |
| 2276 | vtw->reuse_addr = 1; |
| 2277 | vtw->v6only = 0; |
| 2278 | vtw->uid = 0; |
| 2279 | |
| 2280 | vtw_inshash_v4(ctl, vtw); |
| 2281 | break; |
| 2282 | } |
| 2283 | |
| 2284 | case AF_INET6: { |
| 2285 | vtw_v6_t *v6 = (void*)vtw; |
| 2286 | |
| 2287 | v6->faddr = fa->sin_addr.v6; |
| 2288 | v6->laddr = la->sin_addr.v6; |
| 2289 | |
| 2290 | v6->fport = fa->sin_port; |
| 2291 | v6->lport = la->sin_port; |
| 2292 | |
| 2293 | vtw->reuse_port = 1; |
| 2294 | vtw->reuse_addr = 1; |
| 2295 | vtw->v6only = 0; |
| 2296 | vtw->uid = 0; |
| 2297 | |
| 2298 | vtw_inshash_v6(ctl, vtw); |
| 2299 | break; |
| 2300 | } |
| 2301 | |
| 2302 | default: |
| 2303 | break; |
| 2304 | } |
| 2305 | |
| 2306 | return 1; |
| 2307 | } |
| 2308 | |
| 2309 | return 0; |
| 2310 | } |
| 2311 | |
| 2312 | static int vtw_syscall = 0; |
| 2313 | |
| 2314 | static int |
| 2315 | vtw_debug_process(vtw_sysargs_t *ap) |
| 2316 | { |
| 2317 | struct vestigial_inpcb vestige; |
| 2318 | int rc = 0; |
| 2319 | |
| 2320 | mutex_enter(softnet_lock); |
| 2321 | |
| 2322 | switch (ap->op) { |
| 2323 | case 0: // insert |
| 2324 | vtw_debug_add(ap->la.sin_family |
| 2325 | , &ap->la |
| 2326 | , &ap->fa |
| 2327 | , TCPTV_MSL |
| 2328 | , 0); |
| 2329 | break; |
| 2330 | |
| 2331 | case 1: // lookup |
| 2332 | case 2: // restart |
| 2333 | switch (ap->la.sin_family) { |
| 2334 | case AF_INET: |
| 2335 | if (tcp_lookup_v4(ap->fa.sin_addr.v4, ap->fa.sin_port, |
| 2336 | ap->la.sin_addr.v4, ap->la.sin_port, |
| 2337 | &vestige)) { |
| 2338 | if (ap->op == 2) { |
| 2339 | vtw_restart(&vestige); |
| 2340 | } |
| 2341 | rc = 0; |
| 2342 | } else |
| 2343 | rc = ESRCH; |
| 2344 | break; |
| 2345 | |
| 2346 | case AF_INET6: |
| 2347 | if (tcp_lookup_v6(&ap->fa.sin_addr.v6, ap->fa.sin_port, |
| 2348 | &ap->la.sin_addr.v6, ap->la.sin_port, |
| 2349 | &vestige)) { |
| 2350 | if (ap->op == 2) { |
| 2351 | vtw_restart(&vestige); |
| 2352 | } |
| 2353 | rc = 0; |
| 2354 | } else |
| 2355 | rc = ESRCH; |
| 2356 | break; |
| 2357 | default: |
| 2358 | rc = EINVAL; |
| 2359 | } |
| 2360 | break; |
| 2361 | |
| 2362 | default: |
| 2363 | rc = EINVAL; |
| 2364 | } |
| 2365 | |
| 2366 | mutex_exit(softnet_lock); |
| 2367 | return rc; |
| 2368 | } |
| 2369 | |
| 2370 | struct sys_vtw_args { |
| 2371 | syscallarg(const vtw_sysargs_t *) req; |
| 2372 | syscallarg(size_t) len; |
| 2373 | }; |
| 2374 | |
| 2375 | static int |
| 2376 | vtw_sys(struct lwp *l, const void *_, register_t *retval) |
| 2377 | { |
| 2378 | const struct sys_vtw_args *uap = _; |
| 2379 | void *buf; |
| 2380 | int rc; |
| 2381 | size_t len = SCARG(uap, len); |
| 2382 | |
| 2383 | if (len != sizeof (vtw_sysargs_t)) |
| 2384 | return EINVAL; |
| 2385 | |
| 2386 | buf = kmem_alloc(len, KM_SLEEP); |
| 2387 | if (!buf) |
| 2388 | return ENOMEM; |
| 2389 | |
| 2390 | rc = copyin(SCARG(uap, req), buf, len); |
| 2391 | if (!rc) { |
| 2392 | rc = vtw_debug_process(buf); |
| 2393 | } |
| 2394 | kmem_free(buf, len); |
| 2395 | |
| 2396 | return rc; |
| 2397 | } |
| 2398 | |
| 2399 | static void |
| 2400 | vtw_sanity_check(void) |
| 2401 | { |
| 2402 | vtw_ctl_t *ctl; |
| 2403 | vtw_t *vtw; |
| 2404 | int i; |
| 2405 | int n; |
| 2406 | |
| 2407 | for (i = 0; i < VTW_NCLASS; ++i) { |
| 2408 | ctl = &vtw_tcpv4[i]; |
| 2409 | |
| 2410 | if (!ctl->base.v || ctl->nalloc) |
| 2411 | continue; |
| 2412 | |
| 2413 | for (n = 0, vtw = ctl->base.v; ; ) { |
| 2414 | ++n; |
| 2415 | vtw = vtw_next(ctl, vtw); |
| 2416 | if (vtw == ctl->base.v) |
| 2417 | break; |
| 2418 | } |
| 2419 | db_trace(KTR_VTW |
| 2420 | , (ctl, "sanity: class %x n %x nfree %x" |
| 2421 | , i, n, ctl->nfree)); |
| 2422 | |
| 2423 | KASSERT(n == ctl->nfree); |
| 2424 | } |
| 2425 | |
| 2426 | for (i = 0; i < VTW_NCLASS; ++i) { |
| 2427 | ctl = &vtw_tcpv6[i]; |
| 2428 | |
| 2429 | if (!ctl->base.v || ctl->nalloc) |
| 2430 | continue; |
| 2431 | |
| 2432 | for (n = 0, vtw = ctl->base.v; ; ) { |
| 2433 | ++n; |
| 2434 | vtw = vtw_next(ctl, vtw); |
| 2435 | if (vtw == ctl->base.v) |
| 2436 | break; |
| 2437 | } |
| 2438 | db_trace(KTR_VTW |
| 2439 | , (ctl, "sanity: class %x n %x nfree %x" |
| 2440 | , i, n, ctl->nfree)); |
| 2441 | KASSERT(n == ctl->nfree); |
| 2442 | } |
| 2443 | } |
| 2444 | |
| 2445 | /*!\brief Initialise debug support. |
| 2446 | */ |
| 2447 | static void |
| 2448 | vtw_debug_init(void) |
| 2449 | { |
| 2450 | int i; |
| 2451 | |
| 2452 | vtw_sanity_check(); |
| 2453 | |
| 2454 | if (vtw_syscall) |
| 2455 | return; |
| 2456 | |
| 2457 | for (i = 511; i; --i) { |
| 2458 | if (sysent[i].sy_call == sys_nosys) { |
| 2459 | sysent[i].sy_call = vtw_sys; |
| 2460 | sysent[i].sy_narg = 2; |
| 2461 | sysent[i].sy_argsize = sizeof (struct sys_vtw_args); |
| 2462 | sysent[i].sy_flags = 0; |
| 2463 | |
| 2464 | vtw_syscall = i; |
| 2465 | break; |
| 2466 | } |
| 2467 | } |
| 2468 | if (i) { |
| 2469 | const struct sysctlnode *node; |
| 2470 | uint32_t flags; |
| 2471 | |
| 2472 | flags = sysctl_root.sysctl_flags; |
| 2473 | |
| 2474 | sysctl_root.sysctl_flags |= CTLFLAG_READWRITE; |
| 2475 | sysctl_root.sysctl_flags &= ~CTLFLAG_PERMANENT; |
| 2476 | |
| 2477 | sysctl_createv(0, 0, 0, &node, |
| 2478 | CTLFLAG_PERMANENT, CTLTYPE_NODE, |
| 2479 | "koff" , |
| 2480 | SYSCTL_DESCR("Kernel Obscure Feature Finder" ), |
| 2481 | 0, 0, 0, 0, CTL_CREATE, CTL_EOL); |
| 2482 | |
| 2483 | if (!node) { |
| 2484 | sysctl_createv(0, 0, 0, &node, |
| 2485 | CTLFLAG_PERMANENT, CTLTYPE_NODE, |
| 2486 | "koffka" , |
| 2487 | SYSCTL_DESCR("The Real(tm) Kernel" |
| 2488 | " Obscure Feature Finder" ), |
| 2489 | 0, 0, 0, 0, CTL_CREATE, CTL_EOL); |
| 2490 | } |
| 2491 | if (node) { |
| 2492 | sysctl_createv(0, 0, 0, 0, |
| 2493 | CTLFLAG_PERMANENT|CTLFLAG_READONLY, |
| 2494 | CTLTYPE_INT, "vtw_debug_syscall" , |
| 2495 | SYSCTL_DESCR("vtw debug" |
| 2496 | " system call number" ), |
| 2497 | 0, 0, &vtw_syscall, 0, node->sysctl_num, |
| 2498 | CTL_CREATE, CTL_EOL); |
| 2499 | } |
| 2500 | sysctl_root.sysctl_flags = flags; |
| 2501 | } |
| 2502 | } |
| 2503 | #else /* !VTW_DEBUG */ |
| 2504 | static void |
| 2505 | vtw_debug_init(void) |
| 2506 | { |
| 2507 | return; |
| 2508 | } |
| 2509 | #endif /* !VTW_DEBUG */ |
| 2510 | |