| 1 | /* $NetBSD: in.c,v 1.188 2016/11/18 10:38:55 knakahara Exp $ */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * 1. Redistributions of source code must retain the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer. |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * 3. Neither the name of the project nor the names of its contributors |
| 16 | * may be used to endorse or promote products derived from this software |
| 17 | * without specific prior written permission. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 20 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 21 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 22 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 23 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 24 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 25 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 26 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 27 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 28 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 29 | * SUCH DAMAGE. |
| 30 | */ |
| 31 | |
| 32 | /*- |
| 33 | * Copyright (c) 1998 The NetBSD Foundation, Inc. |
| 34 | * All rights reserved. |
| 35 | * |
| 36 | * This code is derived from software contributed to The NetBSD Foundation |
| 37 | * by Public Access Networks Corporation ("Panix"). It was developed under |
| 38 | * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. |
| 39 | * |
| 40 | * Redistribution and use in source and binary forms, with or without |
| 41 | * modification, are permitted provided that the following conditions |
| 42 | * are met: |
| 43 | * 1. Redistributions of source code must retain the above copyright |
| 44 | * notice, this list of conditions and the following disclaimer. |
| 45 | * 2. Redistributions in binary form must reproduce the above copyright |
| 46 | * notice, this list of conditions and the following disclaimer in the |
| 47 | * documentation and/or other materials provided with the distribution. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 50 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 51 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 52 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 53 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 54 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 55 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 56 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 57 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 58 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 59 | * POSSIBILITY OF SUCH DAMAGE. |
| 60 | */ |
| 61 | |
| 62 | /* |
| 63 | * Copyright (c) 1982, 1986, 1991, 1993 |
| 64 | * The Regents of the University of California. All rights reserved. |
| 65 | * |
| 66 | * Redistribution and use in source and binary forms, with or without |
| 67 | * modification, are permitted provided that the following conditions |
| 68 | * are met: |
| 69 | * 1. Redistributions of source code must retain the above copyright |
| 70 | * notice, this list of conditions and the following disclaimer. |
| 71 | * 2. Redistributions in binary form must reproduce the above copyright |
| 72 | * notice, this list of conditions and the following disclaimer in the |
| 73 | * documentation and/or other materials provided with the distribution. |
| 74 | * 3. Neither the name of the University nor the names of its contributors |
| 75 | * may be used to endorse or promote products derived from this software |
| 76 | * without specific prior written permission. |
| 77 | * |
| 78 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 79 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 80 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 81 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 82 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 83 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 84 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 85 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 86 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 87 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 88 | * SUCH DAMAGE. |
| 89 | * |
| 90 | * @(#)in.c 8.4 (Berkeley) 1/9/95 |
| 91 | */ |
| 92 | |
| 93 | #include <sys/cdefs.h> |
| 94 | __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.188 2016/11/18 10:38:55 knakahara Exp $" ); |
| 95 | |
| 96 | #include "arp.h" |
| 97 | |
| 98 | #ifdef _KERNEL_OPT |
| 99 | #include "opt_inet.h" |
| 100 | #include "opt_inet_conf.h" |
| 101 | #include "opt_mrouting.h" |
| 102 | #include "opt_net_mpsafe.h" |
| 103 | #endif |
| 104 | |
| 105 | #include <sys/param.h> |
| 106 | #include <sys/ioctl.h> |
| 107 | #include <sys/errno.h> |
| 108 | #include <sys/kernel.h> |
| 109 | #include <sys/malloc.h> |
| 110 | #include <sys/socket.h> |
| 111 | #include <sys/socketvar.h> |
| 112 | #include <sys/sysctl.h> |
| 113 | #include <sys/systm.h> |
| 114 | #include <sys/proc.h> |
| 115 | #include <sys/syslog.h> |
| 116 | #include <sys/kauth.h> |
| 117 | #include <sys/kmem.h> |
| 118 | |
| 119 | #include <sys/cprng.h> |
| 120 | |
| 121 | #include <net/if.h> |
| 122 | #include <net/route.h> |
| 123 | #include <net/pfil.h> |
| 124 | |
| 125 | #include <net/if_arp.h> |
| 126 | #include <net/if_ether.h> |
| 127 | #include <net/if_types.h> |
| 128 | #include <net/if_llatbl.h> |
| 129 | #include <net/if_dl.h> |
| 130 | |
| 131 | #include <netinet/in_systm.h> |
| 132 | #include <netinet/in.h> |
| 133 | #include <netinet/in_var.h> |
| 134 | #include <netinet/ip.h> |
| 135 | #include <netinet/ip_var.h> |
| 136 | #include <netinet/in_ifattach.h> |
| 137 | #include <netinet/in_pcb.h> |
| 138 | #include <netinet/in_selsrc.h> |
| 139 | #include <netinet/if_inarp.h> |
| 140 | #include <netinet/ip_mroute.h> |
| 141 | #include <netinet/igmp_var.h> |
| 142 | |
| 143 | #ifdef IPSELSRC |
| 144 | #include <netinet/in_selsrc.h> |
| 145 | #endif |
| 146 | |
| 147 | static u_int in_mask2len(struct in_addr *); |
| 148 | static void in_len2mask(struct in_addr *, u_int); |
| 149 | static int in_lifaddr_ioctl(struct socket *, u_long, void *, |
| 150 | struct ifnet *); |
| 151 | |
| 152 | static int in_addprefix(struct in_ifaddr *, int); |
| 153 | static void in_scrubaddr(struct in_ifaddr *); |
| 154 | static int in_scrubprefix(struct in_ifaddr *); |
| 155 | static void in_sysctl_init(struct sysctllog **); |
| 156 | |
| 157 | #ifndef SUBNETSARELOCAL |
| 158 | #define SUBNETSARELOCAL 1 |
| 159 | #endif |
| 160 | |
| 161 | #ifndef HOSTZEROBROADCAST |
| 162 | #define HOSTZEROBROADCAST 0 |
| 163 | #endif |
| 164 | |
| 165 | /* Note: 61, 127, 251, 509, 1021, 2039 are good. */ |
| 166 | #ifndef IN_MULTI_HASH_SIZE |
| 167 | #define IN_MULTI_HASH_SIZE 509 |
| 168 | #endif |
| 169 | |
| 170 | static int subnetsarelocal = SUBNETSARELOCAL; |
| 171 | static int hostzeroisbroadcast = HOSTZEROBROADCAST; |
| 172 | |
| 173 | /* |
| 174 | * This list is used to keep track of in_multi chains which belong to |
| 175 | * deleted interface addresses. We use in_ifaddr so that a chain head |
| 176 | * won't be deallocated until all multicast address record are deleted. |
| 177 | */ |
| 178 | |
| 179 | LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */ |
| 180 | |
| 181 | static struct pool inmulti_pool; |
| 182 | static u_int in_multientries; |
| 183 | static struct in_multihashhead *in_multihashtbl; |
| 184 | static u_long in_multihash; |
| 185 | static krwlock_t in_multilock; |
| 186 | |
| 187 | #define IN_MULTI_HASH(x, ifp) \ |
| 188 | (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE]) |
| 189 | |
| 190 | /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */ |
| 191 | struct in_ifaddrhashhead * in_ifaddrhashtbl; |
| 192 | u_long in_ifaddrhash; |
| 193 | struct in_ifaddrhead in_ifaddrhead; |
| 194 | static kmutex_t in_ifaddr_lock; |
| 195 | |
| 196 | pserialize_t in_ifaddrhash_psz; |
| 197 | struct pslist_head * in_ifaddrhashtbl_pslist; |
| 198 | u_long in_ifaddrhash_pslist; |
| 199 | struct pslist_head in_ifaddrhead_pslist; |
| 200 | |
| 201 | void |
| 202 | in_init(void) |
| 203 | { |
| 204 | pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl" , |
| 205 | NULL, IPL_SOFTNET); |
| 206 | TAILQ_INIT(&in_ifaddrhead); |
| 207 | PSLIST_INIT(&in_ifaddrhead_pslist); |
| 208 | |
| 209 | in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true, |
| 210 | &in_ifaddrhash); |
| 211 | |
| 212 | in_ifaddrhash_psz = pserialize_create(); |
| 213 | in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST, |
| 214 | true, &in_ifaddrhash_pslist); |
| 215 | mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE); |
| 216 | |
| 217 | in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true, |
| 218 | &in_multihash); |
| 219 | rw_init(&in_multilock); |
| 220 | |
| 221 | in_sysctl_init(NULL); |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Return 1 if an internet address is for a ``local'' host |
| 226 | * (one to which we have a connection). If subnetsarelocal |
| 227 | * is true, this includes other subnets of the local net. |
| 228 | * Otherwise, it includes only the directly-connected (sub)nets. |
| 229 | */ |
| 230 | int |
| 231 | in_localaddr(struct in_addr in) |
| 232 | { |
| 233 | struct in_ifaddr *ia; |
| 234 | int localaddr = 0; |
| 235 | int s = pserialize_read_enter(); |
| 236 | |
| 237 | if (subnetsarelocal) { |
| 238 | IN_ADDRLIST_READER_FOREACH(ia) { |
| 239 | if ((in.s_addr & ia->ia_netmask) == ia->ia_net) { |
| 240 | localaddr = 1; |
| 241 | break; |
| 242 | } |
| 243 | } |
| 244 | } else { |
| 245 | IN_ADDRLIST_READER_FOREACH(ia) { |
| 246 | if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) { |
| 247 | localaddr = 1; |
| 248 | break; |
| 249 | } |
| 250 | } |
| 251 | } |
| 252 | pserialize_read_exit(s); |
| 253 | |
| 254 | return localaddr; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Determine whether an IP address is in a reserved set of addresses |
| 259 | * that may not be forwarded, or whether datagrams to that destination |
| 260 | * may be forwarded. |
| 261 | */ |
| 262 | int |
| 263 | in_canforward(struct in_addr in) |
| 264 | { |
| 265 | u_int32_t net; |
| 266 | |
| 267 | if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr)) |
| 268 | return (0); |
| 269 | if (IN_CLASSA(in.s_addr)) { |
| 270 | net = in.s_addr & IN_CLASSA_NET; |
| 271 | if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT)) |
| 272 | return (0); |
| 273 | } |
| 274 | return (1); |
| 275 | } |
| 276 | |
| 277 | /* |
| 278 | * Trim a mask in a sockaddr |
| 279 | */ |
| 280 | void |
| 281 | in_socktrim(struct sockaddr_in *ap) |
| 282 | { |
| 283 | char *cplim = (char *) &ap->sin_addr; |
| 284 | char *cp = (char *) (&ap->sin_addr + 1); |
| 285 | |
| 286 | ap->sin_len = 0; |
| 287 | while (--cp >= cplim) |
| 288 | if (*cp) { |
| 289 | (ap)->sin_len = cp - (char *) (ap) + 1; |
| 290 | break; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * Routine to take an Internet address and convert into a |
| 296 | * "dotted quad" representation for printing. |
| 297 | */ |
| 298 | const char * |
| 299 | in_fmtaddr(struct in_addr addr) |
| 300 | { |
| 301 | static char buf[sizeof("123.456.789.123" )]; |
| 302 | |
| 303 | addr.s_addr = ntohl(addr.s_addr); |
| 304 | |
| 305 | snprintf(buf, sizeof(buf), "%d.%d.%d.%d" , |
| 306 | (addr.s_addr >> 24) & 0xFF, |
| 307 | (addr.s_addr >> 16) & 0xFF, |
| 308 | (addr.s_addr >> 8) & 0xFF, |
| 309 | (addr.s_addr >> 0) & 0xFF); |
| 310 | return buf; |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Maintain the "in_maxmtu" variable, which is the largest |
| 315 | * mtu for non-local interfaces with AF_INET addresses assigned |
| 316 | * to them that are up. |
| 317 | */ |
| 318 | unsigned long in_maxmtu; |
| 319 | |
| 320 | void |
| 321 | in_setmaxmtu(void) |
| 322 | { |
| 323 | struct in_ifaddr *ia; |
| 324 | struct ifnet *ifp; |
| 325 | unsigned long maxmtu = 0; |
| 326 | int s = pserialize_read_enter(); |
| 327 | |
| 328 | IN_ADDRLIST_READER_FOREACH(ia) { |
| 329 | if ((ifp = ia->ia_ifp) == 0) |
| 330 | continue; |
| 331 | if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP) |
| 332 | continue; |
| 333 | if (ifp->if_mtu > maxmtu) |
| 334 | maxmtu = ifp->if_mtu; |
| 335 | } |
| 336 | if (maxmtu) |
| 337 | in_maxmtu = maxmtu; |
| 338 | pserialize_read_exit(s); |
| 339 | } |
| 340 | |
| 341 | static u_int |
| 342 | in_mask2len(struct in_addr *mask) |
| 343 | { |
| 344 | u_int x, y; |
| 345 | u_char *p; |
| 346 | |
| 347 | p = (u_char *)mask; |
| 348 | for (x = 0; x < sizeof(*mask); x++) { |
| 349 | if (p[x] != 0xff) |
| 350 | break; |
| 351 | } |
| 352 | y = 0; |
| 353 | if (x < sizeof(*mask)) { |
| 354 | for (y = 0; y < NBBY; y++) { |
| 355 | if ((p[x] & (0x80 >> y)) == 0) |
| 356 | break; |
| 357 | } |
| 358 | } |
| 359 | return x * NBBY + y; |
| 360 | } |
| 361 | |
| 362 | static void |
| 363 | in_len2mask(struct in_addr *mask, u_int len) |
| 364 | { |
| 365 | u_int i; |
| 366 | u_char *p; |
| 367 | |
| 368 | p = (u_char *)mask; |
| 369 | memset(mask, 0, sizeof(*mask)); |
| 370 | for (i = 0; i < len / NBBY; i++) |
| 371 | p[i] = 0xff; |
| 372 | if (len % NBBY) |
| 373 | p[i] = (0xff00 >> (len % NBBY)) & 0xff; |
| 374 | } |
| 375 | |
| 376 | /* |
| 377 | * Generic internet control operations (ioctl's). |
| 378 | * Ifp is 0 if not an interface-specific ioctl. |
| 379 | */ |
| 380 | /* ARGSUSED */ |
| 381 | static int |
| 382 | in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) |
| 383 | { |
| 384 | struct ifreq *ifr = (struct ifreq *)data; |
| 385 | struct in_ifaddr *ia = NULL; |
| 386 | struct in_aliasreq *ifra = (struct in_aliasreq *)data; |
| 387 | struct sockaddr_in oldaddr, *new_dstaddr; |
| 388 | int error, hostIsNew, maskIsNew; |
| 389 | int newifaddr = 0; |
| 390 | bool run_hook = false; |
| 391 | bool need_reinsert = false; |
| 392 | struct psref psref; |
| 393 | int bound; |
| 394 | |
| 395 | switch (cmd) { |
| 396 | case SIOCALIFADDR: |
| 397 | case SIOCDLIFADDR: |
| 398 | case SIOCGLIFADDR: |
| 399 | if (ifp == NULL) |
| 400 | return EINVAL; |
| 401 | return in_lifaddr_ioctl(so, cmd, data, ifp); |
| 402 | case SIOCGIFADDRPREF: |
| 403 | case SIOCSIFADDRPREF: |
| 404 | if (ifp == NULL) |
| 405 | return EINVAL; |
| 406 | return ifaddrpref_ioctl(so, cmd, data, ifp); |
| 407 | } |
| 408 | |
| 409 | bound = curlwp_bind(); |
| 410 | /* |
| 411 | * Find address for this interface, if it exists. |
| 412 | */ |
| 413 | if (ifp != NULL) |
| 414 | ia = in_get_ia_from_ifp_psref(ifp, &psref); |
| 415 | |
| 416 | hostIsNew = 1; /* moved here to appease gcc */ |
| 417 | switch (cmd) { |
| 418 | case SIOCAIFADDR: |
| 419 | case SIOCDIFADDR: |
| 420 | case SIOCGIFALIAS: |
| 421 | case SIOCGIFAFLAG_IN: |
| 422 | if (ifra->ifra_addr.sin_family == AF_INET) { |
| 423 | int s; |
| 424 | |
| 425 | if (ia != NULL) |
| 426 | ia4_release(ia, &psref); |
| 427 | s = pserialize_read_enter(); |
| 428 | IN_ADDRHASH_READER_FOREACH(ia, |
| 429 | ifra->ifra_addr.sin_addr.s_addr) { |
| 430 | if (ia->ia_ifp == ifp && |
| 431 | in_hosteq(ia->ia_addr.sin_addr, |
| 432 | ifra->ifra_addr.sin_addr)) |
| 433 | break; |
| 434 | } |
| 435 | if (ia != NULL) |
| 436 | ia4_acquire(ia, &psref); |
| 437 | pserialize_read_exit(s); |
| 438 | } |
| 439 | if ((cmd == SIOCDIFADDR || |
| 440 | cmd == SIOCGIFALIAS || |
| 441 | cmd == SIOCGIFAFLAG_IN) && |
| 442 | ia == NULL) { |
| 443 | error = EADDRNOTAVAIL; |
| 444 | goto out; |
| 445 | } |
| 446 | |
| 447 | if (cmd == SIOCDIFADDR && |
| 448 | ifra->ifra_addr.sin_family == AF_UNSPEC) { |
| 449 | ifra->ifra_addr.sin_family = AF_INET; |
| 450 | } |
| 451 | /* FALLTHROUGH */ |
| 452 | case SIOCSIFADDR: |
| 453 | if (ia == NULL || ia->ia_addr.sin_family != AF_INET) |
| 454 | ; |
| 455 | else if (ifra->ifra_addr.sin_len == 0) { |
| 456 | ifra->ifra_addr = ia->ia_addr; |
| 457 | hostIsNew = 0; |
| 458 | } else if (in_hosteq(ia->ia_addr.sin_addr, |
| 459 | ifra->ifra_addr.sin_addr)) |
| 460 | hostIsNew = 0; |
| 461 | /* FALLTHROUGH */ |
| 462 | case SIOCSIFDSTADDR: |
| 463 | if (ifra->ifra_addr.sin_family != AF_INET) { |
| 464 | error = EAFNOSUPPORT; |
| 465 | goto out; |
| 466 | } |
| 467 | /* FALLTHROUGH */ |
| 468 | case SIOCSIFNETMASK: |
| 469 | if (ifp == NULL) |
| 470 | panic("in_control" ); |
| 471 | |
| 472 | if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN) |
| 473 | break; |
| 474 | |
| 475 | if (ia == NULL && |
| 476 | (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) { |
| 477 | error = EADDRNOTAVAIL; |
| 478 | goto out; |
| 479 | } |
| 480 | |
| 481 | if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, |
| 482 | KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, |
| 483 | NULL) != 0) { |
| 484 | error = EPERM; |
| 485 | goto out; |
| 486 | } |
| 487 | |
| 488 | if (ia == NULL) { |
| 489 | ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO); |
| 490 | if (ia == NULL) { |
| 491 | error = ENOBUFS; |
| 492 | goto out; |
| 493 | } |
| 494 | ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); |
| 495 | ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); |
| 496 | ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask); |
| 497 | #ifdef IPSELSRC |
| 498 | ia->ia_ifa.ifa_getifa = in_getifa; |
| 499 | #else /* IPSELSRC */ |
| 500 | ia->ia_ifa.ifa_getifa = NULL; |
| 501 | #endif /* IPSELSRC */ |
| 502 | ia->ia_sockmask.sin_len = 8; |
| 503 | ia->ia_sockmask.sin_family = AF_INET; |
| 504 | if (ifp->if_flags & IFF_BROADCAST) { |
| 505 | ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr); |
| 506 | ia->ia_broadaddr.sin_family = AF_INET; |
| 507 | } |
| 508 | ia->ia_ifp = ifp; |
| 509 | ia->ia_idsalt = cprng_fast32() % 65535; |
| 510 | LIST_INIT(&ia->ia_multiaddrs); |
| 511 | IN_ADDRHASH_ENTRY_INIT(ia); |
| 512 | IN_ADDRLIST_ENTRY_INIT(ia); |
| 513 | ifa_psref_init(&ia->ia_ifa); |
| 514 | |
| 515 | newifaddr = 1; |
| 516 | } |
| 517 | break; |
| 518 | |
| 519 | case SIOCSIFBRDADDR: |
| 520 | if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, |
| 521 | KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, |
| 522 | NULL) != 0) { |
| 523 | error = EPERM; |
| 524 | goto out; |
| 525 | } |
| 526 | /* FALLTHROUGH */ |
| 527 | |
| 528 | case SIOCGIFADDR: |
| 529 | case SIOCGIFNETMASK: |
| 530 | case SIOCGIFDSTADDR: |
| 531 | case SIOCGIFBRDADDR: |
| 532 | if (ia == NULL) { |
| 533 | error = EADDRNOTAVAIL; |
| 534 | goto out; |
| 535 | } |
| 536 | break; |
| 537 | } |
| 538 | error = 0; |
| 539 | switch (cmd) { |
| 540 | |
| 541 | case SIOCGIFADDR: |
| 542 | ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr)); |
| 543 | break; |
| 544 | |
| 545 | case SIOCGIFBRDADDR: |
| 546 | if ((ifp->if_flags & IFF_BROADCAST) == 0) { |
| 547 | error = EINVAL; |
| 548 | goto out; |
| 549 | } |
| 550 | ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr)); |
| 551 | break; |
| 552 | |
| 553 | case SIOCGIFDSTADDR: |
| 554 | if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { |
| 555 | error = EINVAL; |
| 556 | goto out; |
| 557 | } |
| 558 | ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr)); |
| 559 | break; |
| 560 | |
| 561 | case SIOCGIFNETMASK: |
| 562 | /* |
| 563 | * We keep the number of trailing zero bytes the sin_len field |
| 564 | * of ia_sockmask, so we fix this before we pass it back to |
| 565 | * userland. |
| 566 | */ |
| 567 | oldaddr = ia->ia_sockmask; |
| 568 | oldaddr.sin_len = sizeof(struct sockaddr_in); |
| 569 | ifreq_setaddr(cmd, ifr, (const void *)&oldaddr); |
| 570 | break; |
| 571 | |
| 572 | case SIOCSIFDSTADDR: |
| 573 | if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { |
| 574 | error = EINVAL; |
| 575 | goto out; |
| 576 | } |
| 577 | oldaddr = ia->ia_dstaddr; |
| 578 | ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr)); |
| 579 | if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) { |
| 580 | ia->ia_dstaddr = oldaddr; |
| 581 | goto out; |
| 582 | } |
| 583 | if (ia->ia_flags & IFA_ROUTE) { |
| 584 | ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr); |
| 585 | rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST); |
| 586 | ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); |
| 587 | rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP); |
| 588 | } |
| 589 | break; |
| 590 | |
| 591 | case SIOCSIFBRDADDR: |
| 592 | if ((ifp->if_flags & IFF_BROADCAST) == 0) { |
| 593 | error = EINVAL; |
| 594 | goto out; |
| 595 | } |
| 596 | ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr)); |
| 597 | break; |
| 598 | |
| 599 | case SIOCSIFADDR: |
| 600 | if (!newifaddr) { |
| 601 | mutex_enter(&in_ifaddr_lock); |
| 602 | LIST_REMOVE(ia, ia_hash); |
| 603 | IN_ADDRHASH_WRITER_REMOVE(ia); |
| 604 | mutex_exit(&in_ifaddr_lock); |
| 605 | #ifdef NET_MPSAFE |
| 606 | pserialize_perform(in_ifaddrhash_psz); |
| 607 | #endif |
| 608 | IN_ADDRHASH_ENTRY_DESTROY(ia); |
| 609 | need_reinsert = true; |
| 610 | } |
| 611 | error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)), |
| 612 | NULL, 1); |
| 613 | |
| 614 | run_hook = true; |
| 615 | break; |
| 616 | |
| 617 | case SIOCSIFNETMASK: |
| 618 | in_scrubprefix(ia); |
| 619 | ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr)); |
| 620 | ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr; |
| 621 | if (!newifaddr) { |
| 622 | mutex_enter(&in_ifaddr_lock); |
| 623 | LIST_REMOVE(ia, ia_hash); |
| 624 | IN_ADDRHASH_WRITER_REMOVE(ia); |
| 625 | mutex_exit(&in_ifaddr_lock); |
| 626 | #ifdef NET_MPSAFE |
| 627 | pserialize_perform(in_ifaddrhash_psz); |
| 628 | #endif |
| 629 | IN_ADDRHASH_ENTRY_DESTROY(ia); |
| 630 | need_reinsert = true; |
| 631 | } |
| 632 | error = in_ifinit(ifp, ia, NULL, NULL, 0); |
| 633 | break; |
| 634 | |
| 635 | case SIOCAIFADDR: |
| 636 | maskIsNew = 0; |
| 637 | if (ifra->ifra_mask.sin_len) { |
| 638 | in_scrubprefix(ia); |
| 639 | ia->ia_sockmask = ifra->ifra_mask; |
| 640 | ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr; |
| 641 | maskIsNew = 1; |
| 642 | } |
| 643 | if ((ifp->if_flags & IFF_POINTOPOINT) && |
| 644 | (ifra->ifra_dstaddr.sin_family == AF_INET)) { |
| 645 | new_dstaddr = &ifra->ifra_dstaddr; |
| 646 | maskIsNew = 1; /* We lie; but the effect's the same */ |
| 647 | } else |
| 648 | new_dstaddr = NULL; |
| 649 | if (ifra->ifra_addr.sin_family == AF_INET && |
| 650 | (hostIsNew || maskIsNew)) { |
| 651 | if (!newifaddr) { |
| 652 | mutex_enter(&in_ifaddr_lock); |
| 653 | LIST_REMOVE(ia, ia_hash); |
| 654 | IN_ADDRHASH_WRITER_REMOVE(ia); |
| 655 | mutex_exit(&in_ifaddr_lock); |
| 656 | #ifdef NET_MPSAFE |
| 657 | pserialize_perform(in_ifaddrhash_psz); |
| 658 | #endif |
| 659 | IN_ADDRHASH_ENTRY_DESTROY(ia); |
| 660 | need_reinsert = true; |
| 661 | } |
| 662 | error = in_ifinit(ifp, ia, &ifra->ifra_addr, |
| 663 | new_dstaddr, 0); |
| 664 | } |
| 665 | if ((ifp->if_flags & IFF_BROADCAST) && |
| 666 | (ifra->ifra_broadaddr.sin_family == AF_INET)) |
| 667 | ia->ia_broadaddr = ifra->ifra_broadaddr; |
| 668 | run_hook = true; |
| 669 | break; |
| 670 | |
| 671 | case SIOCGIFALIAS: |
| 672 | ifra->ifra_mask = ia->ia_sockmask; |
| 673 | if ((ifp->if_flags & IFF_POINTOPOINT) && |
| 674 | (ia->ia_dstaddr.sin_family == AF_INET)) |
| 675 | ifra->ifra_dstaddr = ia->ia_dstaddr; |
| 676 | else if ((ifp->if_flags & IFF_BROADCAST) && |
| 677 | (ia->ia_broadaddr.sin_family == AF_INET)) |
| 678 | ifra->ifra_broadaddr = ia->ia_broadaddr; |
| 679 | else |
| 680 | memset(&ifra->ifra_broadaddr, 0, |
| 681 | sizeof(ifra->ifra_broadaddr)); |
| 682 | break; |
| 683 | |
| 684 | case SIOCGIFAFLAG_IN: |
| 685 | ifr->ifr_addrflags = ia->ia4_flags; |
| 686 | break; |
| 687 | |
| 688 | case SIOCDIFADDR: |
| 689 | ia4_release(ia, &psref); |
| 690 | in_purgeaddr(&ia->ia_ifa); |
| 691 | ia = NULL; |
| 692 | run_hook = true; |
| 693 | break; |
| 694 | |
| 695 | #ifdef MROUTING |
| 696 | case SIOCGETVIFCNT: |
| 697 | case SIOCGETSGCNT: |
| 698 | error = mrt_ioctl(so, cmd, data); |
| 699 | break; |
| 700 | #endif /* MROUTING */ |
| 701 | |
| 702 | default: |
| 703 | error = ENOTTY; |
| 704 | goto out; |
| 705 | } |
| 706 | |
| 707 | /* |
| 708 | * XXX insert regardless of error to make in_purgeaddr below work. |
| 709 | * Need to improve. |
| 710 | */ |
| 711 | if (newifaddr) { |
| 712 | ifaref(&ia->ia_ifa); |
| 713 | ifa_insert(ifp, &ia->ia_ifa); |
| 714 | |
| 715 | mutex_enter(&in_ifaddr_lock); |
| 716 | TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list); |
| 717 | IN_ADDRLIST_WRITER_INSERT_TAIL(ia); |
| 718 | LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), |
| 719 | ia, ia_hash); |
| 720 | IN_ADDRHASH_WRITER_INSERT_HEAD(ia); |
| 721 | mutex_exit(&in_ifaddr_lock); |
| 722 | } else if (need_reinsert) { |
| 723 | mutex_enter(&in_ifaddr_lock); |
| 724 | LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), |
| 725 | ia, ia_hash); |
| 726 | IN_ADDRHASH_ENTRY_INIT(ia); |
| 727 | IN_ADDRHASH_WRITER_INSERT_HEAD(ia); |
| 728 | mutex_exit(&in_ifaddr_lock); |
| 729 | } |
| 730 | |
| 731 | if (error == 0) { |
| 732 | if (run_hook) |
| 733 | (void)pfil_run_hooks(if_pfil, |
| 734 | (struct mbuf **)cmd, ifp, PFIL_IFADDR); |
| 735 | } else if (newifaddr) { |
| 736 | KASSERT(ia != NULL); |
| 737 | in_purgeaddr(&ia->ia_ifa); |
| 738 | ia = NULL; |
| 739 | } |
| 740 | |
| 741 | out: |
| 742 | if (!newifaddr && ia != NULL) |
| 743 | ia4_release(ia, &psref); |
| 744 | curlwp_bindx(bound); |
| 745 | return error; |
| 746 | } |
| 747 | |
| 748 | int |
| 749 | in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) |
| 750 | { |
| 751 | int error; |
| 752 | |
| 753 | #ifndef NET_MPSAFE |
| 754 | mutex_enter(softnet_lock); |
| 755 | #endif |
| 756 | error = in_control0(so, cmd, data, ifp); |
| 757 | #ifndef NET_MPSAFE |
| 758 | mutex_exit(softnet_lock); |
| 759 | #endif |
| 760 | |
| 761 | return error; |
| 762 | } |
| 763 | |
| 764 | /* Add ownaddr as loopback rtentry. */ |
| 765 | static void |
| 766 | in_ifaddlocal(struct ifaddr *ifa) |
| 767 | { |
| 768 | struct in_ifaddr *ia; |
| 769 | |
| 770 | ia = (struct in_ifaddr *)ifa; |
| 771 | if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY || |
| 772 | (ia->ia_ifp->if_flags & IFF_POINTOPOINT && |
| 773 | in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr))) |
| 774 | { |
| 775 | rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); |
| 776 | return; |
| 777 | } |
| 778 | |
| 779 | rt_ifa_addlocal(ifa); |
| 780 | } |
| 781 | |
| 782 | /* Remove loopback entry of ownaddr */ |
| 783 | static void |
| 784 | in_ifremlocal(struct ifaddr *ifa) |
| 785 | { |
| 786 | struct in_ifaddr *ia, *p; |
| 787 | struct ifaddr *alt_ifa = NULL; |
| 788 | int ia_count = 0; |
| 789 | int s; |
| 790 | struct psref psref; |
| 791 | int bound = curlwp_bind(); |
| 792 | |
| 793 | ia = (struct in_ifaddr *)ifa; |
| 794 | /* Delete the entry if exactly one ifaddr matches the |
| 795 | * address, ifa->ifa_addr. */ |
| 796 | s = pserialize_read_enter(); |
| 797 | IN_ADDRLIST_READER_FOREACH(p) { |
| 798 | if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr)) |
| 799 | continue; |
| 800 | if (p->ia_ifp != ia->ia_ifp) |
| 801 | alt_ifa = &p->ia_ifa; |
| 802 | if (++ia_count > 1 && alt_ifa != NULL) |
| 803 | break; |
| 804 | } |
| 805 | if (alt_ifa != NULL && ia_count > 1) |
| 806 | ifa_acquire(alt_ifa, &psref); |
| 807 | pserialize_read_exit(s); |
| 808 | |
| 809 | if (ia_count == 0) |
| 810 | goto out; |
| 811 | |
| 812 | rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa); |
| 813 | if (alt_ifa != NULL && ia_count > 1) |
| 814 | ifa_release(alt_ifa, &psref); |
| 815 | out: |
| 816 | curlwp_bindx(bound); |
| 817 | } |
| 818 | |
| 819 | static void |
| 820 | in_scrubaddr(struct in_ifaddr *ia) |
| 821 | { |
| 822 | |
| 823 | /* stop DAD processing */ |
| 824 | if (ia->ia_dad_stop != NULL) |
| 825 | ia->ia_dad_stop(&ia->ia_ifa); |
| 826 | |
| 827 | in_scrubprefix(ia); |
| 828 | in_ifremlocal(&ia->ia_ifa); |
| 829 | |
| 830 | if (ia->ia_allhosts != NULL) { |
| 831 | in_delmulti(ia->ia_allhosts); |
| 832 | ia->ia_allhosts = NULL; |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | /* |
| 837 | * Depends on it isn't called in concurrent. It should be guaranteed |
| 838 | * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control |
| 839 | * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl |
| 840 | * and the latter is called via ifa->ifa_ifp's if_detach. The functions |
| 841 | * never be executed in concurrent. |
| 842 | */ |
| 843 | void |
| 844 | in_purgeaddr(struct ifaddr *ifa) |
| 845 | { |
| 846 | struct in_ifaddr *ia = (void *) ifa; |
| 847 | struct ifnet *ifp = ifa->ifa_ifp; |
| 848 | |
| 849 | KASSERT(!ifa_held(ifa)); |
| 850 | |
| 851 | in_scrubaddr(ia); |
| 852 | |
| 853 | mutex_enter(&in_ifaddr_lock); |
| 854 | LIST_REMOVE(ia, ia_hash); |
| 855 | IN_ADDRHASH_WRITER_REMOVE(ia); |
| 856 | TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list); |
| 857 | IN_ADDRLIST_WRITER_REMOVE(ia); |
| 858 | ifa_remove(ifp, &ia->ia_ifa); |
| 859 | mutex_exit(&in_ifaddr_lock); |
| 860 | |
| 861 | #ifdef NET_MPSAFE |
| 862 | pserialize_perform(in_ifaddrhash_psz); |
| 863 | #endif |
| 864 | IN_ADDRHASH_ENTRY_DESTROY(ia); |
| 865 | IN_ADDRLIST_ENTRY_DESTROY(ia); |
| 866 | ifafree(&ia->ia_ifa); |
| 867 | in_setmaxmtu(); |
| 868 | } |
| 869 | |
| 870 | void |
| 871 | in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */ |
| 872 | { |
| 873 | if_purgeaddrs(ifp, AF_INET, in_purgeaddr); |
| 874 | igmp_purgeif(ifp); /* manipulates pools */ |
| 875 | #ifdef MROUTING |
| 876 | ip_mrouter_detach(ifp); |
| 877 | #endif |
| 878 | } |
| 879 | |
| 880 | /* |
| 881 | * SIOC[GAD]LIFADDR. |
| 882 | * SIOCGLIFADDR: get first address. (???) |
| 883 | * SIOCGLIFADDR with IFLR_PREFIX: |
| 884 | * get first address that matches the specified prefix. |
| 885 | * SIOCALIFADDR: add the specified address. |
| 886 | * SIOCALIFADDR with IFLR_PREFIX: |
| 887 | * EINVAL since we can't deduce hostid part of the address. |
| 888 | * SIOCDLIFADDR: delete the specified address. |
| 889 | * SIOCDLIFADDR with IFLR_PREFIX: |
| 890 | * delete the first address that matches the specified prefix. |
| 891 | * return values: |
| 892 | * EINVAL on invalid parameters |
| 893 | * EADDRNOTAVAIL on prefix match failed/specified address not found |
| 894 | * other values may be returned from in_ioctl() |
| 895 | */ |
| 896 | static int |
| 897 | in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data, |
| 898 | struct ifnet *ifp) |
| 899 | { |
| 900 | struct if_laddrreq *iflr = (struct if_laddrreq *)data; |
| 901 | struct ifaddr *ifa; |
| 902 | struct sockaddr *sa; |
| 903 | |
| 904 | /* sanity checks */ |
| 905 | if (data == NULL || ifp == NULL) { |
| 906 | panic("invalid argument to in_lifaddr_ioctl" ); |
| 907 | /*NOTRECHED*/ |
| 908 | } |
| 909 | |
| 910 | switch (cmd) { |
| 911 | case SIOCGLIFADDR: |
| 912 | /* address must be specified on GET with IFLR_PREFIX */ |
| 913 | if ((iflr->flags & IFLR_PREFIX) == 0) |
| 914 | break; |
| 915 | /*FALLTHROUGH*/ |
| 916 | case SIOCALIFADDR: |
| 917 | case SIOCDLIFADDR: |
| 918 | /* address must be specified on ADD and DELETE */ |
| 919 | sa = (struct sockaddr *)&iflr->addr; |
| 920 | if (sa->sa_family != AF_INET) |
| 921 | return EINVAL; |
| 922 | if (sa->sa_len != sizeof(struct sockaddr_in)) |
| 923 | return EINVAL; |
| 924 | /* XXX need improvement */ |
| 925 | sa = (struct sockaddr *)&iflr->dstaddr; |
| 926 | if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET) |
| 927 | return EINVAL; |
| 928 | if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in)) |
| 929 | return EINVAL; |
| 930 | break; |
| 931 | default: /*shouldn't happen*/ |
| 932 | #if 0 |
| 933 | panic("invalid cmd to in_lifaddr_ioctl" ); |
| 934 | /*NOTREACHED*/ |
| 935 | #else |
| 936 | return EOPNOTSUPP; |
| 937 | #endif |
| 938 | } |
| 939 | if (sizeof(struct in_addr) * NBBY < iflr->prefixlen) |
| 940 | return EINVAL; |
| 941 | |
| 942 | switch (cmd) { |
| 943 | case SIOCALIFADDR: |
| 944 | { |
| 945 | struct in_aliasreq ifra; |
| 946 | |
| 947 | if (iflr->flags & IFLR_PREFIX) |
| 948 | return EINVAL; |
| 949 | |
| 950 | /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */ |
| 951 | memset(&ifra, 0, sizeof(ifra)); |
| 952 | memcpy(ifra.ifra_name, iflr->iflr_name, |
| 953 | sizeof(ifra.ifra_name)); |
| 954 | |
| 955 | memcpy(&ifra.ifra_addr, &iflr->addr, |
| 956 | ((struct sockaddr *)&iflr->addr)->sa_len); |
| 957 | |
| 958 | if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ |
| 959 | memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr, |
| 960 | ((struct sockaddr *)&iflr->dstaddr)->sa_len); |
| 961 | } |
| 962 | |
| 963 | ifra.ifra_mask.sin_family = AF_INET; |
| 964 | ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in); |
| 965 | in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen); |
| 966 | |
| 967 | return in_control(so, SIOCAIFADDR, &ifra, ifp); |
| 968 | } |
| 969 | case SIOCGLIFADDR: |
| 970 | case SIOCDLIFADDR: |
| 971 | { |
| 972 | struct in_ifaddr *ia; |
| 973 | struct in_addr mask, candidate, match; |
| 974 | struct sockaddr_in *sin; |
| 975 | int cmp, s; |
| 976 | |
| 977 | memset(&mask, 0, sizeof(mask)); |
| 978 | memset(&match, 0, sizeof(match)); /* XXX gcc */ |
| 979 | if (iflr->flags & IFLR_PREFIX) { |
| 980 | /* lookup a prefix rather than address. */ |
| 981 | in_len2mask(&mask, iflr->prefixlen); |
| 982 | |
| 983 | sin = (struct sockaddr_in *)&iflr->addr; |
| 984 | match.s_addr = sin->sin_addr.s_addr; |
| 985 | match.s_addr &= mask.s_addr; |
| 986 | |
| 987 | /* if you set extra bits, that's wrong */ |
| 988 | if (match.s_addr != sin->sin_addr.s_addr) |
| 989 | return EINVAL; |
| 990 | |
| 991 | cmp = 1; |
| 992 | } else { |
| 993 | if (cmd == SIOCGLIFADDR) { |
| 994 | /* on getting an address, take the 1st match */ |
| 995 | cmp = 0; /*XXX*/ |
| 996 | } else { |
| 997 | /* on deleting an address, do exact match */ |
| 998 | in_len2mask(&mask, 32); |
| 999 | sin = (struct sockaddr_in *)&iflr->addr; |
| 1000 | match.s_addr = sin->sin_addr.s_addr; |
| 1001 | |
| 1002 | cmp = 1; |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | s = pserialize_read_enter(); |
| 1007 | IFADDR_READER_FOREACH(ifa, ifp) { |
| 1008 | if (ifa->ifa_addr->sa_family != AF_INET) |
| 1009 | continue; |
| 1010 | if (cmp == 0) |
| 1011 | break; |
| 1012 | candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr; |
| 1013 | candidate.s_addr &= mask.s_addr; |
| 1014 | if (candidate.s_addr == match.s_addr) |
| 1015 | break; |
| 1016 | } |
| 1017 | if (ifa == NULL) { |
| 1018 | pserialize_read_exit(s); |
| 1019 | return EADDRNOTAVAIL; |
| 1020 | } |
| 1021 | ia = (struct in_ifaddr *)ifa; |
| 1022 | |
| 1023 | if (cmd == SIOCGLIFADDR) { |
| 1024 | /* fill in the if_laddrreq structure */ |
| 1025 | memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len); |
| 1026 | |
| 1027 | if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { |
| 1028 | memcpy(&iflr->dstaddr, &ia->ia_dstaddr, |
| 1029 | ia->ia_dstaddr.sin_len); |
| 1030 | } else |
| 1031 | memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr)); |
| 1032 | |
| 1033 | iflr->prefixlen = |
| 1034 | in_mask2len(&ia->ia_sockmask.sin_addr); |
| 1035 | |
| 1036 | iflr->flags = 0; /*XXX*/ |
| 1037 | pserialize_read_exit(s); |
| 1038 | |
| 1039 | return 0; |
| 1040 | } else { |
| 1041 | struct in_aliasreq ifra; |
| 1042 | |
| 1043 | /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */ |
| 1044 | memset(&ifra, 0, sizeof(ifra)); |
| 1045 | memcpy(ifra.ifra_name, iflr->iflr_name, |
| 1046 | sizeof(ifra.ifra_name)); |
| 1047 | |
| 1048 | memcpy(&ifra.ifra_addr, &ia->ia_addr, |
| 1049 | ia->ia_addr.sin_len); |
| 1050 | if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { |
| 1051 | memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr, |
| 1052 | ia->ia_dstaddr.sin_len); |
| 1053 | } |
| 1054 | memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask, |
| 1055 | ia->ia_sockmask.sin_len); |
| 1056 | pserialize_read_exit(s); |
| 1057 | |
| 1058 | return in_control(so, SIOCDIFADDR, &ifra, ifp); |
| 1059 | } |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | return EOPNOTSUPP; /*just for safety*/ |
| 1064 | } |
| 1065 | |
| 1066 | /* |
| 1067 | * Initialize an interface's internet address |
| 1068 | * and routing table entry. |
| 1069 | */ |
| 1070 | int |
| 1071 | in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia, |
| 1072 | const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub) |
| 1073 | { |
| 1074 | u_int32_t i; |
| 1075 | struct sockaddr_in oldaddr, olddst; |
| 1076 | int s, oldflags, flags = RTF_UP, error, hostIsNew; |
| 1077 | |
| 1078 | if (sin == NULL) |
| 1079 | sin = &ia->ia_addr; |
| 1080 | if (dst == NULL) |
| 1081 | dst = &ia->ia_dstaddr; |
| 1082 | |
| 1083 | /* |
| 1084 | * Set up new addresses. |
| 1085 | */ |
| 1086 | oldaddr = ia->ia_addr; |
| 1087 | olddst = ia->ia_dstaddr; |
| 1088 | oldflags = ia->ia4_flags; |
| 1089 | ia->ia_addr = *sin; |
| 1090 | ia->ia_dstaddr = *dst; |
| 1091 | hostIsNew = oldaddr.sin_family != AF_INET || |
| 1092 | !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr); |
| 1093 | if (!scrub) |
| 1094 | scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family || |
| 1095 | !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr); |
| 1096 | |
| 1097 | /* |
| 1098 | * Configure address flags. |
| 1099 | * We need to do this early because they maybe adjusted |
| 1100 | * by if_addr_init depending on the address. |
| 1101 | */ |
| 1102 | if (ia->ia4_flags & IN_IFF_DUPLICATED) { |
| 1103 | ia->ia4_flags &= ~IN_IFF_DUPLICATED; |
| 1104 | hostIsNew = 1; |
| 1105 | } |
| 1106 | if (ifp->if_link_state == LINK_STATE_DOWN) { |
| 1107 | ia->ia4_flags |= IN_IFF_DETACHED; |
| 1108 | ia->ia4_flags &= ~IN_IFF_TENTATIVE; |
| 1109 | } else if (hostIsNew && if_do_dad(ifp)) |
| 1110 | ia->ia4_flags |= IN_IFF_TRYTENTATIVE; |
| 1111 | |
| 1112 | /* |
| 1113 | * Give the interface a chance to initialize |
| 1114 | * if this is its first address, |
| 1115 | * and to validate the address if necessary. |
| 1116 | */ |
| 1117 | s = splnet(); |
| 1118 | error = if_addr_init(ifp, &ia->ia_ifa, true); |
| 1119 | splx(s); |
| 1120 | /* Now clear the try tentative flag, it's job is done. */ |
| 1121 | ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE; |
| 1122 | if (error != 0) { |
| 1123 | ia->ia_addr = oldaddr; |
| 1124 | ia->ia_dstaddr = olddst; |
| 1125 | ia->ia4_flags = oldflags; |
| 1126 | return error; |
| 1127 | } |
| 1128 | |
| 1129 | if (scrub || hostIsNew) { |
| 1130 | int newflags = ia->ia4_flags; |
| 1131 | |
| 1132 | ia->ia_ifa.ifa_addr = sintosa(&oldaddr); |
| 1133 | ia->ia_ifa.ifa_dstaddr = sintosa(&olddst); |
| 1134 | ia->ia4_flags = oldflags; |
| 1135 | if (hostIsNew) |
| 1136 | in_scrubaddr(ia); |
| 1137 | else if (scrub) |
| 1138 | in_scrubprefix(ia); |
| 1139 | ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); |
| 1140 | ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); |
| 1141 | ia->ia4_flags = newflags; |
| 1142 | } |
| 1143 | |
| 1144 | /* Add the local route to the address */ |
| 1145 | in_ifaddlocal(&ia->ia_ifa); |
| 1146 | |
| 1147 | i = ia->ia_addr.sin_addr.s_addr; |
| 1148 | if (ifp->if_flags & IFF_POINTOPOINT) |
| 1149 | ia->ia_netmask = INADDR_BROADCAST; /* default to /32 */ |
| 1150 | else if (IN_CLASSA(i)) |
| 1151 | ia->ia_netmask = IN_CLASSA_NET; |
| 1152 | else if (IN_CLASSB(i)) |
| 1153 | ia->ia_netmask = IN_CLASSB_NET; |
| 1154 | else |
| 1155 | ia->ia_netmask = IN_CLASSC_NET; |
| 1156 | /* |
| 1157 | * The subnet mask usually includes at least the standard network part, |
| 1158 | * but may may be smaller in the case of supernetting. |
| 1159 | * If it is set, we believe it. |
| 1160 | */ |
| 1161 | if (ia->ia_subnetmask == 0) { |
| 1162 | ia->ia_subnetmask = ia->ia_netmask; |
| 1163 | ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask; |
| 1164 | } else |
| 1165 | ia->ia_netmask &= ia->ia_subnetmask; |
| 1166 | |
| 1167 | ia->ia_net = i & ia->ia_netmask; |
| 1168 | ia->ia_subnet = i & ia->ia_subnetmask; |
| 1169 | in_socktrim(&ia->ia_sockmask); |
| 1170 | /* re-calculate the "in_maxmtu" value */ |
| 1171 | in_setmaxmtu(); |
| 1172 | /* |
| 1173 | * Add route for the network. |
| 1174 | */ |
| 1175 | ia->ia_ifa.ifa_metric = ifp->if_metric; |
| 1176 | if (ifp->if_flags & IFF_BROADCAST) { |
| 1177 | ia->ia_broadaddr.sin_addr.s_addr = |
| 1178 | ia->ia_subnet | ~ia->ia_subnetmask; |
| 1179 | ia->ia_netbroadcast.s_addr = |
| 1180 | ia->ia_net | ~ia->ia_netmask; |
| 1181 | } else if (ifp->if_flags & IFF_LOOPBACK) { |
| 1182 | ia->ia_dstaddr = ia->ia_addr; |
| 1183 | flags |= RTF_HOST; |
| 1184 | } else if (ifp->if_flags & IFF_POINTOPOINT) { |
| 1185 | if (ia->ia_dstaddr.sin_family != AF_INET) |
| 1186 | return (0); |
| 1187 | flags |= RTF_HOST; |
| 1188 | } |
| 1189 | error = in_addprefix(ia, flags); |
| 1190 | /* |
| 1191 | * If the interface supports multicast, join the "all hosts" |
| 1192 | * multicast group on that interface. |
| 1193 | */ |
| 1194 | if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) { |
| 1195 | struct in_addr addr; |
| 1196 | |
| 1197 | addr.s_addr = INADDR_ALLHOSTS_GROUP; |
| 1198 | ia->ia_allhosts = in_addmulti(&addr, ifp); |
| 1199 | } |
| 1200 | |
| 1201 | if (hostIsNew && |
| 1202 | ia->ia4_flags & IN_IFF_TENTATIVE && |
| 1203 | if_do_dad(ifp)) |
| 1204 | ia->ia_dad_start((struct ifaddr *)ia); |
| 1205 | |
| 1206 | return error; |
| 1207 | } |
| 1208 | |
| 1209 | #define rtinitflags(x) \ |
| 1210 | ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \ |
| 1211 | ? RTF_HOST : 0) |
| 1212 | |
| 1213 | /* |
| 1214 | * add a route to prefix ("connected route" in cisco terminology). |
| 1215 | * does nothing if there's some interface address with the same prefix already. |
| 1216 | */ |
| 1217 | static int |
| 1218 | in_addprefix(struct in_ifaddr *target, int flags) |
| 1219 | { |
| 1220 | struct in_ifaddr *ia; |
| 1221 | struct in_addr prefix, mask, p; |
| 1222 | int error; |
| 1223 | int s; |
| 1224 | |
| 1225 | if ((flags & RTF_HOST) != 0) |
| 1226 | prefix = target->ia_dstaddr.sin_addr; |
| 1227 | else { |
| 1228 | prefix = target->ia_addr.sin_addr; |
| 1229 | mask = target->ia_sockmask.sin_addr; |
| 1230 | prefix.s_addr &= mask.s_addr; |
| 1231 | } |
| 1232 | |
| 1233 | s = pserialize_read_enter(); |
| 1234 | IN_ADDRLIST_READER_FOREACH(ia) { |
| 1235 | if (rtinitflags(ia)) |
| 1236 | p = ia->ia_dstaddr.sin_addr; |
| 1237 | else { |
| 1238 | p = ia->ia_addr.sin_addr; |
| 1239 | p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; |
| 1240 | } |
| 1241 | |
| 1242 | if (prefix.s_addr != p.s_addr) |
| 1243 | continue; |
| 1244 | |
| 1245 | /* |
| 1246 | * if we got a matching prefix route inserted by other |
| 1247 | * interface address, we don't need to bother |
| 1248 | * |
| 1249 | * XXX RADIX_MPATH implications here? -dyoung |
| 1250 | */ |
| 1251 | if (ia->ia_flags & IFA_ROUTE) { |
| 1252 | pserialize_read_exit(s); |
| 1253 | return 0; |
| 1254 | } |
| 1255 | } |
| 1256 | pserialize_read_exit(s); |
| 1257 | |
| 1258 | /* |
| 1259 | * noone seem to have prefix route. insert it. |
| 1260 | */ |
| 1261 | error = rtinit(&target->ia_ifa, RTM_ADD, flags); |
| 1262 | if (error == 0) |
| 1263 | target->ia_flags |= IFA_ROUTE; |
| 1264 | else if (error == EEXIST) { |
| 1265 | /* |
| 1266 | * the fact the route already exists is not an error. |
| 1267 | */ |
| 1268 | error = 0; |
| 1269 | } |
| 1270 | return error; |
| 1271 | } |
| 1272 | |
| 1273 | /* |
| 1274 | * remove a route to prefix ("connected route" in cisco terminology). |
| 1275 | * re-installs the route by using another interface address, if there's one |
| 1276 | * with the same prefix (otherwise we lose the route mistakenly). |
| 1277 | */ |
| 1278 | static int |
| 1279 | in_scrubprefix(struct in_ifaddr *target) |
| 1280 | { |
| 1281 | struct in_ifaddr *ia; |
| 1282 | struct in_addr prefix, mask, p; |
| 1283 | int error; |
| 1284 | int s; |
| 1285 | |
| 1286 | /* If we don't have IFA_ROUTE we have nothing to do */ |
| 1287 | if ((target->ia_flags & IFA_ROUTE) == 0) |
| 1288 | return 0; |
| 1289 | |
| 1290 | if (rtinitflags(target)) |
| 1291 | prefix = target->ia_dstaddr.sin_addr; |
| 1292 | else { |
| 1293 | prefix = target->ia_addr.sin_addr; |
| 1294 | mask = target->ia_sockmask.sin_addr; |
| 1295 | prefix.s_addr &= mask.s_addr; |
| 1296 | } |
| 1297 | |
| 1298 | s = pserialize_read_enter(); |
| 1299 | IN_ADDRLIST_READER_FOREACH(ia) { |
| 1300 | if (rtinitflags(ia)) |
| 1301 | p = ia->ia_dstaddr.sin_addr; |
| 1302 | else { |
| 1303 | p = ia->ia_addr.sin_addr; |
| 1304 | p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; |
| 1305 | } |
| 1306 | |
| 1307 | if (prefix.s_addr != p.s_addr) |
| 1308 | continue; |
| 1309 | |
| 1310 | /* |
| 1311 | * if we got a matching prefix route, move IFA_ROUTE to him |
| 1312 | */ |
| 1313 | if ((ia->ia_flags & IFA_ROUTE) == 0) { |
| 1314 | struct psref psref; |
| 1315 | int bound = curlwp_bind(); |
| 1316 | |
| 1317 | ia4_acquire(ia, &psref); |
| 1318 | pserialize_read_exit(s); |
| 1319 | |
| 1320 | rtinit(&target->ia_ifa, RTM_DELETE, |
| 1321 | rtinitflags(target)); |
| 1322 | target->ia_flags &= ~IFA_ROUTE; |
| 1323 | |
| 1324 | error = rtinit(&ia->ia_ifa, RTM_ADD, |
| 1325 | rtinitflags(ia) | RTF_UP); |
| 1326 | if (error == 0) |
| 1327 | ia->ia_flags |= IFA_ROUTE; |
| 1328 | |
| 1329 | ia4_release(ia, &psref); |
| 1330 | curlwp_bindx(bound); |
| 1331 | |
| 1332 | return error; |
| 1333 | } |
| 1334 | } |
| 1335 | pserialize_read_exit(s); |
| 1336 | |
| 1337 | /* |
| 1338 | * noone seem to have prefix route. remove it. |
| 1339 | */ |
| 1340 | rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target)); |
| 1341 | target->ia_flags &= ~IFA_ROUTE; |
| 1342 | return 0; |
| 1343 | } |
| 1344 | |
| 1345 | #undef rtinitflags |
| 1346 | |
| 1347 | /* |
| 1348 | * Return 1 if the address might be a local broadcast address. |
| 1349 | */ |
| 1350 | int |
| 1351 | in_broadcast(struct in_addr in, struct ifnet *ifp) |
| 1352 | { |
| 1353 | struct ifaddr *ifa; |
| 1354 | int s; |
| 1355 | |
| 1356 | KASSERT(ifp != NULL); |
| 1357 | |
| 1358 | if (in.s_addr == INADDR_BROADCAST || |
| 1359 | in_nullhost(in)) |
| 1360 | return 1; |
| 1361 | if ((ifp->if_flags & IFF_BROADCAST) == 0) |
| 1362 | return 0; |
| 1363 | /* |
| 1364 | * Look through the list of addresses for a match |
| 1365 | * with a broadcast address. |
| 1366 | */ |
| 1367 | #define ia (ifatoia(ifa)) |
| 1368 | s = pserialize_read_enter(); |
| 1369 | IFADDR_READER_FOREACH(ifa, ifp) { |
| 1370 | if (ifa->ifa_addr->sa_family == AF_INET && |
| 1371 | !in_hosteq(in, ia->ia_addr.sin_addr) && |
| 1372 | (in_hosteq(in, ia->ia_broadaddr.sin_addr) || |
| 1373 | in_hosteq(in, ia->ia_netbroadcast) || |
| 1374 | (hostzeroisbroadcast && |
| 1375 | /* |
| 1376 | * Check for old-style (host 0) broadcast. |
| 1377 | */ |
| 1378 | (in.s_addr == ia->ia_subnet || |
| 1379 | in.s_addr == ia->ia_net)))) { |
| 1380 | pserialize_read_exit(s); |
| 1381 | return 1; |
| 1382 | } |
| 1383 | } |
| 1384 | pserialize_read_exit(s); |
| 1385 | return (0); |
| 1386 | #undef ia |
| 1387 | } |
| 1388 | |
| 1389 | /* |
| 1390 | * perform DAD when interface becomes IFF_UP. |
| 1391 | */ |
| 1392 | void |
| 1393 | in_if_link_up(struct ifnet *ifp) |
| 1394 | { |
| 1395 | struct ifaddr *ifa; |
| 1396 | struct in_ifaddr *ia; |
| 1397 | int s, bound; |
| 1398 | |
| 1399 | /* Ensure it's sane to run DAD */ |
| 1400 | if (ifp->if_link_state == LINK_STATE_DOWN) |
| 1401 | return; |
| 1402 | if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) |
| 1403 | return; |
| 1404 | |
| 1405 | bound = curlwp_bind(); |
| 1406 | s = pserialize_read_enter(); |
| 1407 | IFADDR_READER_FOREACH(ifa, ifp) { |
| 1408 | struct psref psref; |
| 1409 | |
| 1410 | if (ifa->ifa_addr->sa_family != AF_INET) |
| 1411 | continue; |
| 1412 | ifa_acquire(ifa, &psref); |
| 1413 | pserialize_read_exit(s); |
| 1414 | |
| 1415 | ia = (struct in_ifaddr *)ifa; |
| 1416 | |
| 1417 | /* If detached then mark as tentative */ |
| 1418 | if (ia->ia4_flags & IN_IFF_DETACHED) { |
| 1419 | ia->ia4_flags &= ~IN_IFF_DETACHED; |
| 1420 | if (if_do_dad(ifp) && ia->ia_dad_start != NULL) |
| 1421 | ia->ia4_flags |= IN_IFF_TENTATIVE; |
| 1422 | else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0) |
| 1423 | rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); |
| 1424 | } |
| 1425 | |
| 1426 | if (ia->ia4_flags & IN_IFF_TENTATIVE) { |
| 1427 | /* Clear the duplicated flag as we're starting DAD. */ |
| 1428 | ia->ia4_flags &= ~IN_IFF_DUPLICATED; |
| 1429 | ia->ia_dad_start(ifa); |
| 1430 | } |
| 1431 | |
| 1432 | s = pserialize_read_enter(); |
| 1433 | ifa_release(ifa, &psref); |
| 1434 | } |
| 1435 | pserialize_read_exit(s); |
| 1436 | curlwp_bindx(bound); |
| 1437 | } |
| 1438 | |
| 1439 | void |
| 1440 | in_if_up(struct ifnet *ifp) |
| 1441 | { |
| 1442 | |
| 1443 | /* interface may not support link state, so bring it up also */ |
| 1444 | in_if_link_up(ifp); |
| 1445 | } |
| 1446 | |
| 1447 | /* |
| 1448 | * Mark all addresses as detached. |
| 1449 | */ |
| 1450 | void |
| 1451 | in_if_link_down(struct ifnet *ifp) |
| 1452 | { |
| 1453 | struct ifaddr *ifa; |
| 1454 | struct in_ifaddr *ia; |
| 1455 | int s, bound; |
| 1456 | |
| 1457 | bound = curlwp_bind(); |
| 1458 | s = pserialize_read_enter(); |
| 1459 | IFADDR_READER_FOREACH(ifa, ifp) { |
| 1460 | struct psref psref; |
| 1461 | |
| 1462 | if (ifa->ifa_addr->sa_family != AF_INET) |
| 1463 | continue; |
| 1464 | ifa_acquire(ifa, &psref); |
| 1465 | pserialize_read_exit(s); |
| 1466 | |
| 1467 | ia = (struct in_ifaddr *)ifa; |
| 1468 | |
| 1469 | /* Stop DAD processing */ |
| 1470 | if (ia->ia_dad_stop != NULL) |
| 1471 | ia->ia_dad_stop(ifa); |
| 1472 | |
| 1473 | /* |
| 1474 | * Mark the address as detached. |
| 1475 | */ |
| 1476 | if (!(ia->ia4_flags & IN_IFF_DETACHED)) { |
| 1477 | ia->ia4_flags |= IN_IFF_DETACHED; |
| 1478 | ia->ia4_flags &= |
| 1479 | ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED); |
| 1480 | rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); |
| 1481 | } |
| 1482 | |
| 1483 | s = pserialize_read_enter(); |
| 1484 | ifa_release(ifa, &psref); |
| 1485 | } |
| 1486 | pserialize_read_exit(s); |
| 1487 | curlwp_bindx(bound); |
| 1488 | } |
| 1489 | |
| 1490 | void |
| 1491 | in_if_down(struct ifnet *ifp) |
| 1492 | { |
| 1493 | |
| 1494 | in_if_link_down(ifp); |
| 1495 | } |
| 1496 | |
| 1497 | void |
| 1498 | in_if_link_state_change(struct ifnet *ifp, int link_state) |
| 1499 | { |
| 1500 | |
| 1501 | switch (link_state) { |
| 1502 | case LINK_STATE_DOWN: |
| 1503 | in_if_link_down(ifp); |
| 1504 | break; |
| 1505 | case LINK_STATE_UP: |
| 1506 | in_if_link_up(ifp); |
| 1507 | break; |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | /* |
| 1512 | * in_lookup_multi: look up the in_multi record for a given IP |
| 1513 | * multicast address on a given interface. If no matching record is |
| 1514 | * found, return NULL. |
| 1515 | */ |
| 1516 | struct in_multi * |
| 1517 | in_lookup_multi(struct in_addr addr, ifnet_t *ifp) |
| 1518 | { |
| 1519 | struct in_multi *inm; |
| 1520 | |
| 1521 | KASSERT(rw_lock_held(&in_multilock)); |
| 1522 | |
| 1523 | LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) { |
| 1524 | if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp) |
| 1525 | break; |
| 1526 | } |
| 1527 | return inm; |
| 1528 | } |
| 1529 | |
| 1530 | /* |
| 1531 | * in_multi_group: check whether the address belongs to an IP multicast |
| 1532 | * group we are joined on this interface. Returns true or false. |
| 1533 | */ |
| 1534 | bool |
| 1535 | in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags) |
| 1536 | { |
| 1537 | bool ingroup; |
| 1538 | |
| 1539 | if (__predict_true(flags & IP_IGMP_MCAST) == 0) { |
| 1540 | rw_enter(&in_multilock, RW_READER); |
| 1541 | ingroup = in_lookup_multi(addr, ifp) != NULL; |
| 1542 | rw_exit(&in_multilock); |
| 1543 | } else { |
| 1544 | /* XXX Recursive call from ip_output(). */ |
| 1545 | KASSERT(rw_lock_held(&in_multilock)); |
| 1546 | ingroup = in_lookup_multi(addr, ifp) != NULL; |
| 1547 | } |
| 1548 | return ingroup; |
| 1549 | } |
| 1550 | |
| 1551 | /* |
| 1552 | * Add an address to the list of IP multicast addresses for a given interface. |
| 1553 | */ |
| 1554 | struct in_multi * |
| 1555 | in_addmulti(struct in_addr *ap, ifnet_t *ifp) |
| 1556 | { |
| 1557 | struct sockaddr_in sin; |
| 1558 | struct in_multi *inm; |
| 1559 | |
| 1560 | /* |
| 1561 | * See if address already in list. |
| 1562 | */ |
| 1563 | rw_enter(&in_multilock, RW_WRITER); |
| 1564 | inm = in_lookup_multi(*ap, ifp); |
| 1565 | if (inm != NULL) { |
| 1566 | /* |
| 1567 | * Found it; just increment the reference count. |
| 1568 | */ |
| 1569 | inm->inm_refcount++; |
| 1570 | rw_exit(&in_multilock); |
| 1571 | return inm; |
| 1572 | } |
| 1573 | |
| 1574 | /* |
| 1575 | * New address; allocate a new multicast record. |
| 1576 | */ |
| 1577 | inm = pool_get(&inmulti_pool, PR_NOWAIT); |
| 1578 | if (inm == NULL) { |
| 1579 | rw_exit(&in_multilock); |
| 1580 | return NULL; |
| 1581 | } |
| 1582 | inm->inm_addr = *ap; |
| 1583 | inm->inm_ifp = ifp; |
| 1584 | inm->inm_refcount = 1; |
| 1585 | |
| 1586 | /* |
| 1587 | * Ask the network driver to update its multicast reception |
| 1588 | * filter appropriately for the new address. |
| 1589 | */ |
| 1590 | sockaddr_in_init(&sin, ap, 0); |
| 1591 | if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) { |
| 1592 | rw_exit(&in_multilock); |
| 1593 | pool_put(&inmulti_pool, inm); |
| 1594 | return NULL; |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * Let IGMP know that we have joined a new IP multicast group. |
| 1599 | */ |
| 1600 | if (igmp_joingroup(inm) != 0) { |
| 1601 | rw_exit(&in_multilock); |
| 1602 | pool_put(&inmulti_pool, inm); |
| 1603 | return NULL; |
| 1604 | } |
| 1605 | LIST_INSERT_HEAD( |
| 1606 | &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp), |
| 1607 | inm, inm_list); |
| 1608 | in_multientries++; |
| 1609 | rw_exit(&in_multilock); |
| 1610 | |
| 1611 | return inm; |
| 1612 | } |
| 1613 | |
| 1614 | /* |
| 1615 | * Delete a multicast address record. |
| 1616 | */ |
| 1617 | void |
| 1618 | in_delmulti(struct in_multi *inm) |
| 1619 | { |
| 1620 | struct sockaddr_in sin; |
| 1621 | |
| 1622 | rw_enter(&in_multilock, RW_WRITER); |
| 1623 | if (--inm->inm_refcount > 0) { |
| 1624 | rw_exit(&in_multilock); |
| 1625 | return; |
| 1626 | } |
| 1627 | |
| 1628 | /* |
| 1629 | * No remaining claims to this record; let IGMP know that |
| 1630 | * we are leaving the multicast group. |
| 1631 | */ |
| 1632 | igmp_leavegroup(inm); |
| 1633 | |
| 1634 | /* |
| 1635 | * Notify the network driver to update its multicast reception |
| 1636 | * filter. |
| 1637 | */ |
| 1638 | sockaddr_in_init(&sin, &inm->inm_addr, 0); |
| 1639 | if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin)); |
| 1640 | |
| 1641 | /* |
| 1642 | * Unlink from list. |
| 1643 | */ |
| 1644 | LIST_REMOVE(inm, inm_list); |
| 1645 | in_multientries--; |
| 1646 | rw_exit(&in_multilock); |
| 1647 | |
| 1648 | pool_put(&inmulti_pool, inm); |
| 1649 | } |
| 1650 | |
| 1651 | /* |
| 1652 | * in_next_multi: step through all of the in_multi records, one at a time. |
| 1653 | * The current position is remembered in "step", which the caller must |
| 1654 | * provide. in_first_multi(), below, must be called to initialize "step" |
| 1655 | * and get the first record. Both macros return a NULL "inm" when there |
| 1656 | * are no remaining records. |
| 1657 | */ |
| 1658 | struct in_multi * |
| 1659 | in_next_multi(struct in_multistep *step) |
| 1660 | { |
| 1661 | struct in_multi *inm; |
| 1662 | |
| 1663 | KASSERT(rw_lock_held(&in_multilock)); |
| 1664 | |
| 1665 | while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) { |
| 1666 | step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]); |
| 1667 | } |
| 1668 | if ((inm = step->i_inm) != NULL) { |
| 1669 | step->i_inm = LIST_NEXT(inm, inm_list); |
| 1670 | } |
| 1671 | return inm; |
| 1672 | } |
| 1673 | |
| 1674 | struct in_multi * |
| 1675 | in_first_multi(struct in_multistep *step) |
| 1676 | { |
| 1677 | KASSERT(rw_lock_held(&in_multilock)); |
| 1678 | |
| 1679 | step->i_n = 0; |
| 1680 | step->i_inm = LIST_FIRST(&in_multihashtbl[0]); |
| 1681 | return in_next_multi(step); |
| 1682 | } |
| 1683 | |
| 1684 | void |
| 1685 | in_multi_lock(int op) |
| 1686 | { |
| 1687 | rw_enter(&in_multilock, op); |
| 1688 | } |
| 1689 | |
| 1690 | void |
| 1691 | in_multi_unlock(void) |
| 1692 | { |
| 1693 | rw_exit(&in_multilock); |
| 1694 | } |
| 1695 | |
| 1696 | int |
| 1697 | in_multi_lock_held(void) |
| 1698 | { |
| 1699 | return rw_lock_held(&in_multilock); |
| 1700 | } |
| 1701 | |
| 1702 | struct in_ifaddr * |
| 1703 | in_selectsrc(struct sockaddr_in *sin, struct route *ro, |
| 1704 | int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref) |
| 1705 | { |
| 1706 | struct rtentry *rt = NULL; |
| 1707 | struct in_ifaddr *ia = NULL; |
| 1708 | |
| 1709 | KASSERT(ISSET(curlwp->l_pflag, LP_BOUND)); |
| 1710 | /* |
| 1711 | * If route is known or can be allocated now, take the |
| 1712 | * source address from the interface. Otherwise, punt. |
| 1713 | */ |
| 1714 | if ((soopts & SO_DONTROUTE) != 0) |
| 1715 | rtcache_free(ro); |
| 1716 | else { |
| 1717 | union { |
| 1718 | struct sockaddr dst; |
| 1719 | struct sockaddr_in dst4; |
| 1720 | } u; |
| 1721 | |
| 1722 | sockaddr_in_init(&u.dst4, &sin->sin_addr, 0); |
| 1723 | rt = rtcache_lookup(ro, &u.dst); |
| 1724 | } |
| 1725 | /* |
| 1726 | * If we found a route, use the address |
| 1727 | * corresponding to the outgoing interface |
| 1728 | * unless it is the loopback (in case a route |
| 1729 | * to our address on another net goes to loopback). |
| 1730 | * |
| 1731 | * XXX Is this still true? Do we care? |
| 1732 | */ |
| 1733 | if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { |
| 1734 | int s; |
| 1735 | struct ifaddr *ifa; |
| 1736 | /* |
| 1737 | * Just in case. May not need to do this workaround. |
| 1738 | * Revisit when working on rtentry MP-ification. |
| 1739 | */ |
| 1740 | s = pserialize_read_enter(); |
| 1741 | IFADDR_READER_FOREACH(ifa, rt->rt_ifp) { |
| 1742 | if (ifa == rt->rt_ifa) |
| 1743 | break; |
| 1744 | } |
| 1745 | if (ifa != NULL) |
| 1746 | ifa_acquire(ifa, psref); |
| 1747 | pserialize_read_exit(s); |
| 1748 | |
| 1749 | ia = ifatoia(ifa); |
| 1750 | } |
| 1751 | if (ia == NULL) { |
| 1752 | u_int16_t fport = sin->sin_port; |
| 1753 | struct ifaddr *ifa; |
| 1754 | int s; |
| 1755 | |
| 1756 | sin->sin_port = 0; |
| 1757 | ifa = ifa_ifwithladdr_psref(sintosa(sin), psref); |
| 1758 | sin->sin_port = fport; |
| 1759 | if (ifa == NULL) { |
| 1760 | /* Find 1st non-loopback AF_INET address */ |
| 1761 | s = pserialize_read_enter(); |
| 1762 | IN_ADDRLIST_READER_FOREACH(ia) { |
| 1763 | if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK)) |
| 1764 | break; |
| 1765 | } |
| 1766 | if (ia != NULL) |
| 1767 | ia4_acquire(ia, psref); |
| 1768 | pserialize_read_exit(s); |
| 1769 | } else { |
| 1770 | /* ia is already referenced by psref */ |
| 1771 | ia = ifatoia(ifa); |
| 1772 | } |
| 1773 | if (ia == NULL) { |
| 1774 | *errorp = EADDRNOTAVAIL; |
| 1775 | return NULL; |
| 1776 | } |
| 1777 | } |
| 1778 | /* |
| 1779 | * If the destination address is multicast and an outgoing |
| 1780 | * interface has been set as a multicast option, use the |
| 1781 | * address of that interface as our source address. |
| 1782 | */ |
| 1783 | if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) { |
| 1784 | struct ip_moptions *imo; |
| 1785 | |
| 1786 | imo = mopts; |
| 1787 | if (imo->imo_multicast_if_index != 0) { |
| 1788 | struct ifnet *ifp; |
| 1789 | int s; |
| 1790 | |
| 1791 | if (ia != NULL) |
| 1792 | ia4_release(ia, psref); |
| 1793 | s = pserialize_read_enter(); |
| 1794 | ifp = if_byindex(imo->imo_multicast_if_index); |
| 1795 | if (ifp != NULL) { |
| 1796 | /* XXX */ |
| 1797 | ia = in_get_ia_from_ifp_psref(ifp, psref); |
| 1798 | } else |
| 1799 | ia = NULL; |
| 1800 | if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) { |
| 1801 | pserialize_read_exit(s); |
| 1802 | if (ia != NULL) |
| 1803 | ia4_release(ia, psref); |
| 1804 | *errorp = EADDRNOTAVAIL; |
| 1805 | return NULL; |
| 1806 | } |
| 1807 | pserialize_read_exit(s); |
| 1808 | } |
| 1809 | } |
| 1810 | if (ia->ia_ifa.ifa_getifa != NULL) { |
| 1811 | ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa, |
| 1812 | sintosa(sin))); |
| 1813 | if (ia == NULL) { |
| 1814 | *errorp = EADDRNOTAVAIL; |
| 1815 | return NULL; |
| 1816 | } |
| 1817 | /* FIXME NOMPSAFE */ |
| 1818 | ia4_acquire(ia, psref); |
| 1819 | } |
| 1820 | #ifdef GETIFA_DEBUG |
| 1821 | else |
| 1822 | printf("%s: missing ifa_getifa\n" , __func__); |
| 1823 | #endif |
| 1824 | return ia; |
| 1825 | } |
| 1826 | |
| 1827 | #if NARP > 0 |
| 1828 | |
| 1829 | struct in_llentry { |
| 1830 | struct llentry base; |
| 1831 | }; |
| 1832 | |
| 1833 | #define IN_LLTBL_DEFAULT_HSIZE 32 |
| 1834 | #define IN_LLTBL_HASH(k, h) \ |
| 1835 | (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) |
| 1836 | |
| 1837 | /* |
| 1838 | * Do actual deallocation of @lle. |
| 1839 | * Called by LLE_FREE_LOCKED when number of references |
| 1840 | * drops to zero. |
| 1841 | */ |
| 1842 | static void |
| 1843 | in_lltable_destroy_lle(struct llentry *lle) |
| 1844 | { |
| 1845 | |
| 1846 | LLE_WUNLOCK(lle); |
| 1847 | LLE_LOCK_DESTROY(lle); |
| 1848 | kmem_intr_free(lle, sizeof(*lle)); |
| 1849 | } |
| 1850 | |
| 1851 | static struct llentry * |
| 1852 | in_lltable_new(struct in_addr addr4, u_int flags) |
| 1853 | { |
| 1854 | struct in_llentry *lle; |
| 1855 | |
| 1856 | lle = kmem_intr_zalloc(sizeof(*lle), KM_NOSLEEP); |
| 1857 | if (lle == NULL) /* NB: caller generates msg */ |
| 1858 | return NULL; |
| 1859 | |
| 1860 | /* |
| 1861 | * For IPv4 this will trigger "arpresolve" to generate |
| 1862 | * an ARP request. |
| 1863 | */ |
| 1864 | lle->base.la_expire = time_uptime; /* mark expired */ |
| 1865 | lle->base.r_l3addr.addr4 = addr4; |
| 1866 | lle->base.lle_refcnt = 1; |
| 1867 | lle->base.lle_free = in_lltable_destroy_lle; |
| 1868 | LLE_LOCK_INIT(&lle->base); |
| 1869 | callout_init(&lle->base.la_timer, CALLOUT_MPSAFE); |
| 1870 | |
| 1871 | return (&lle->base); |
| 1872 | } |
| 1873 | |
| 1874 | #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ |
| 1875 | (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 ) |
| 1876 | |
| 1877 | static int |
| 1878 | in_lltable_match_prefix(const struct sockaddr *prefix, |
| 1879 | const struct sockaddr *mask, u_int flags, struct llentry *lle) |
| 1880 | { |
| 1881 | const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix; |
| 1882 | const struct sockaddr_in *msk = (const struct sockaddr_in *)mask; |
| 1883 | |
| 1884 | /* |
| 1885 | * (flags & LLE_STATIC) means deleting all entries |
| 1886 | * including static ARP entries. |
| 1887 | */ |
| 1888 | if (IN_ARE_MASKED_ADDR_EQUAL(lle->r_l3addr.addr4, pfx, msk) && |
| 1889 | ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC))) |
| 1890 | return (1); |
| 1891 | |
| 1892 | return (0); |
| 1893 | } |
| 1894 | |
| 1895 | static void |
| 1896 | in_lltable_free_entry(struct lltable *llt, struct llentry *lle) |
| 1897 | { |
| 1898 | struct ifnet *ifp __diagused; |
| 1899 | size_t pkts_dropped; |
| 1900 | |
| 1901 | LLE_WLOCK_ASSERT(lle); |
| 1902 | KASSERT(llt != NULL); |
| 1903 | |
| 1904 | /* Unlink entry from table if not already */ |
| 1905 | if ((lle->la_flags & LLE_LINKED) != 0) { |
| 1906 | ifp = llt->llt_ifp; |
| 1907 | IF_AFDATA_WLOCK_ASSERT(ifp); |
| 1908 | lltable_unlink_entry(llt, lle); |
| 1909 | } |
| 1910 | |
| 1911 | /* cancel timer */ |
| 1912 | if (callout_halt(&lle->lle_timer, &lle->lle_lock)) |
| 1913 | LLE_REMREF(lle); |
| 1914 | |
| 1915 | /* Drop hold queue */ |
| 1916 | pkts_dropped = llentry_free(lle); |
| 1917 | arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped); |
| 1918 | } |
| 1919 | |
| 1920 | static int |
| 1921 | in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr) |
| 1922 | { |
| 1923 | struct rtentry *rt; |
| 1924 | int error = EINVAL; |
| 1925 | |
| 1926 | KASSERTMSG(l3addr->sa_family == AF_INET, |
| 1927 | "sin_family %d" , l3addr->sa_family); |
| 1928 | |
| 1929 | rt = rtalloc1(l3addr, 0); |
| 1930 | if (rt == NULL) |
| 1931 | return error; |
| 1932 | |
| 1933 | /* |
| 1934 | * If the gateway for an existing host route matches the target L3 |
| 1935 | * address, which is a special route inserted by some implementation |
| 1936 | * such as MANET, and the interface is of the correct type, then |
| 1937 | * allow for ARP to proceed. |
| 1938 | */ |
| 1939 | if (rt->rt_flags & RTF_GATEWAY) { |
| 1940 | if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp || |
| 1941 | rt->rt_ifp->if_type != IFT_ETHER || |
| 1942 | #ifdef __FreeBSD__ |
| 1943 | (rt->rt_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 || |
| 1944 | #else |
| 1945 | (rt->rt_ifp->if_flags & IFF_NOARP) != 0 || |
| 1946 | #endif |
| 1947 | memcmp(rt->rt_gateway->sa_data, l3addr->sa_data, |
| 1948 | sizeof(in_addr_t)) != 0) { |
| 1949 | goto error; |
| 1950 | } |
| 1951 | } |
| 1952 | |
| 1953 | /* |
| 1954 | * Make sure that at least the destination address is covered |
| 1955 | * by the route. This is for handling the case where 2 or more |
| 1956 | * interfaces have the same prefix. An incoming packet arrives |
| 1957 | * on one interface and the corresponding outgoing packet leaves |
| 1958 | * another interface. |
| 1959 | */ |
| 1960 | if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) { |
| 1961 | const char *sa, *mask, *addr, *lim; |
| 1962 | int len; |
| 1963 | |
| 1964 | mask = (const char *)rt_mask(rt); |
| 1965 | /* |
| 1966 | * Just being extra cautious to avoid some custom |
| 1967 | * code getting into trouble. |
| 1968 | */ |
| 1969 | if (mask == NULL) |
| 1970 | goto error; |
| 1971 | |
| 1972 | sa = (const char *)rt_getkey(rt); |
| 1973 | addr = (const char *)l3addr; |
| 1974 | len = ((const struct sockaddr_in *)l3addr)->sin_len; |
| 1975 | lim = addr + len; |
| 1976 | |
| 1977 | for ( ; addr < lim; sa++, mask++, addr++) { |
| 1978 | if ((*sa ^ *addr) & *mask) { |
| 1979 | #ifdef DIAGNOSTIC |
| 1980 | log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n" , |
| 1981 | inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr)); |
| 1982 | #endif |
| 1983 | goto error; |
| 1984 | } |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | error = 0; |
| 1989 | error: |
| 1990 | rtfree(rt); |
| 1991 | return error; |
| 1992 | } |
| 1993 | |
| 1994 | static inline uint32_t |
| 1995 | in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize) |
| 1996 | { |
| 1997 | |
| 1998 | return (IN_LLTBL_HASH(dst.s_addr, hsize)); |
| 1999 | } |
| 2000 | |
| 2001 | static uint32_t |
| 2002 | in_lltable_hash(const struct llentry *lle, uint32_t hsize) |
| 2003 | { |
| 2004 | |
| 2005 | return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize)); |
| 2006 | } |
| 2007 | |
| 2008 | static void |
| 2009 | in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) |
| 2010 | { |
| 2011 | struct sockaddr_in *sin; |
| 2012 | |
| 2013 | sin = (struct sockaddr_in *)sa; |
| 2014 | memset(sin, 0, sizeof(*sin)); |
| 2015 | sin->sin_family = AF_INET; |
| 2016 | sin->sin_len = sizeof(*sin); |
| 2017 | sin->sin_addr = lle->r_l3addr.addr4; |
| 2018 | } |
| 2019 | |
| 2020 | static inline struct llentry * |
| 2021 | in_lltable_find_dst(struct lltable *llt, struct in_addr dst) |
| 2022 | { |
| 2023 | struct llentry *lle; |
| 2024 | struct llentries *lleh; |
| 2025 | u_int hashidx; |
| 2026 | |
| 2027 | hashidx = in_lltable_hash_dst(dst, llt->llt_hsize); |
| 2028 | lleh = &llt->lle_head[hashidx]; |
| 2029 | LIST_FOREACH(lle, lleh, lle_next) { |
| 2030 | if (lle->la_flags & LLE_DELETED) |
| 2031 | continue; |
| 2032 | if (lle->r_l3addr.addr4.s_addr == dst.s_addr) |
| 2033 | break; |
| 2034 | } |
| 2035 | |
| 2036 | return (lle); |
| 2037 | } |
| 2038 | |
| 2039 | static int |
| 2040 | in_lltable_delete(struct lltable *llt, u_int flags, |
| 2041 | const struct sockaddr *l3addr) |
| 2042 | { |
| 2043 | const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; |
| 2044 | struct ifnet *ifp __diagused = llt->llt_ifp; |
| 2045 | struct llentry *lle; |
| 2046 | |
| 2047 | IF_AFDATA_WLOCK_ASSERT(ifp); |
| 2048 | KASSERTMSG(l3addr->sa_family == AF_INET, |
| 2049 | "sin_family %d" , l3addr->sa_family); |
| 2050 | |
| 2051 | lle = in_lltable_find_dst(llt, sin->sin_addr); |
| 2052 | if (lle == NULL) { |
| 2053 | #ifdef DIAGNOSTIC |
| 2054 | log(LOG_INFO, "interface address is missing from cache = %p in delete\n" , lle); |
| 2055 | #endif |
| 2056 | return (ENOENT); |
| 2057 | } |
| 2058 | |
| 2059 | LLE_WLOCK(lle); |
| 2060 | lle->la_flags |= LLE_DELETED; |
| 2061 | #ifdef DIAGNOSTIC |
| 2062 | log(LOG_INFO, "ifaddr cache = %p is deleted\n" , lle); |
| 2063 | #endif |
| 2064 | if ((lle->la_flags & (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC) |
| 2065 | llentry_free(lle); |
| 2066 | else |
| 2067 | LLE_WUNLOCK(lle); |
| 2068 | |
| 2069 | return (0); |
| 2070 | } |
| 2071 | |
| 2072 | static struct llentry * |
| 2073 | in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) |
| 2074 | { |
| 2075 | const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; |
| 2076 | struct ifnet *ifp = llt->llt_ifp; |
| 2077 | struct llentry *lle; |
| 2078 | |
| 2079 | IF_AFDATA_WLOCK_ASSERT(ifp); |
| 2080 | KASSERTMSG(l3addr->sa_family == AF_INET, |
| 2081 | "sin_family %d" , l3addr->sa_family); |
| 2082 | |
| 2083 | lle = in_lltable_find_dst(llt, sin->sin_addr); |
| 2084 | |
| 2085 | if (lle != NULL) { |
| 2086 | LLE_WLOCK(lle); |
| 2087 | return (lle); |
| 2088 | } |
| 2089 | |
| 2090 | /* no existing record, we need to create new one */ |
| 2091 | |
| 2092 | /* |
| 2093 | * A route that covers the given address must have |
| 2094 | * been installed 1st because we are doing a resolution, |
| 2095 | * verify this. |
| 2096 | */ |
| 2097 | if (!(flags & LLE_IFADDR) && |
| 2098 | in_lltable_rtcheck(ifp, flags, l3addr) != 0) |
| 2099 | return (NULL); |
| 2100 | |
| 2101 | lle = in_lltable_new(sin->sin_addr, flags); |
| 2102 | if (lle == NULL) { |
| 2103 | log(LOG_INFO, "lla_lookup: new lle malloc failed\n" ); |
| 2104 | return (NULL); |
| 2105 | } |
| 2106 | lle->la_flags = flags; |
| 2107 | if ((flags & LLE_IFADDR) == LLE_IFADDR) { |
| 2108 | memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen); |
| 2109 | lle->la_flags |= (LLE_VALID | LLE_STATIC); |
| 2110 | } |
| 2111 | |
| 2112 | lltable_link_entry(llt, lle); |
| 2113 | LLE_WLOCK(lle); |
| 2114 | |
| 2115 | return (lle); |
| 2116 | } |
| 2117 | |
| 2118 | /* |
| 2119 | * Return NULL if not found or marked for deletion. |
| 2120 | * If found return lle read locked. |
| 2121 | */ |
| 2122 | static struct llentry * |
| 2123 | in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) |
| 2124 | { |
| 2125 | const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; |
| 2126 | struct llentry *lle; |
| 2127 | |
| 2128 | IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); |
| 2129 | KASSERTMSG(l3addr->sa_family == AF_INET, |
| 2130 | "sin_family %d" , l3addr->sa_family); |
| 2131 | |
| 2132 | lle = in_lltable_find_dst(llt, sin->sin_addr); |
| 2133 | |
| 2134 | if (lle == NULL) |
| 2135 | return NULL; |
| 2136 | |
| 2137 | if (flags & LLE_EXCLUSIVE) |
| 2138 | LLE_WLOCK(lle); |
| 2139 | else |
| 2140 | LLE_RLOCK(lle); |
| 2141 | |
| 2142 | return lle; |
| 2143 | } |
| 2144 | |
| 2145 | static int |
| 2146 | in_lltable_dump_entry(struct lltable *llt, struct llentry *lle, |
| 2147 | struct rt_walkarg *w) |
| 2148 | { |
| 2149 | struct sockaddr_in sin; |
| 2150 | |
| 2151 | LLTABLE_LOCK_ASSERT(); |
| 2152 | |
| 2153 | /* skip deleted entries */ |
| 2154 | if (lle->la_flags & LLE_DELETED) |
| 2155 | return 0; |
| 2156 | |
| 2157 | sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0); |
| 2158 | |
| 2159 | return lltable_dump_entry(llt, lle, w, sintosa(&sin)); |
| 2160 | } |
| 2161 | |
| 2162 | #endif /* NARP > 0 */ |
| 2163 | |
| 2164 | static int |
| 2165 | in_multicast_sysctl(SYSCTLFN_ARGS) |
| 2166 | { |
| 2167 | struct ifnet *ifp; |
| 2168 | struct ifaddr *ifa; |
| 2169 | struct in_ifaddr *ifa4; |
| 2170 | struct in_multi *inm; |
| 2171 | uint32_t tmp; |
| 2172 | int error; |
| 2173 | size_t written; |
| 2174 | struct psref psref; |
| 2175 | int bound; |
| 2176 | |
| 2177 | if (namelen != 1) |
| 2178 | return EINVAL; |
| 2179 | |
| 2180 | bound = curlwp_bind(); |
| 2181 | ifp = if_get_byindex(name[0], &psref); |
| 2182 | if (ifp == NULL) { |
| 2183 | curlwp_bindx(bound); |
| 2184 | return ENODEV; |
| 2185 | } |
| 2186 | |
| 2187 | if (oldp == NULL) { |
| 2188 | *oldlenp = 0; |
| 2189 | IFADDR_FOREACH(ifa, ifp) { |
| 2190 | if (ifa->ifa_addr->sa_family != AF_INET) |
| 2191 | continue; |
| 2192 | ifa4 = (void *)ifa; |
| 2193 | LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) { |
| 2194 | *oldlenp += 2 * sizeof(struct in_addr) + |
| 2195 | sizeof(uint32_t); |
| 2196 | } |
| 2197 | } |
| 2198 | if_put(ifp, &psref); |
| 2199 | curlwp_bindx(bound); |
| 2200 | return 0; |
| 2201 | } |
| 2202 | |
| 2203 | error = 0; |
| 2204 | written = 0; |
| 2205 | IFADDR_FOREACH(ifa, ifp) { |
| 2206 | if (ifa->ifa_addr->sa_family != AF_INET) |
| 2207 | continue; |
| 2208 | ifa4 = (void *)ifa; |
| 2209 | LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) { |
| 2210 | if (written + 2 * sizeof(struct in_addr) + |
| 2211 | sizeof(uint32_t) > *oldlenp) |
| 2212 | goto done; |
| 2213 | error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr, |
| 2214 | oldp, sizeof(struct in_addr)); |
| 2215 | if (error) |
| 2216 | goto done; |
| 2217 | oldp = (char *)oldp + sizeof(struct in_addr); |
| 2218 | written += sizeof(struct in_addr); |
| 2219 | error = sysctl_copyout(l, &inm->inm_addr, |
| 2220 | oldp, sizeof(struct in_addr)); |
| 2221 | if (error) |
| 2222 | goto done; |
| 2223 | oldp = (char *)oldp + sizeof(struct in_addr); |
| 2224 | written += sizeof(struct in_addr); |
| 2225 | tmp = inm->inm_refcount; |
| 2226 | error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp)); |
| 2227 | if (error) |
| 2228 | goto done; |
| 2229 | oldp = (char *)oldp + sizeof(tmp); |
| 2230 | written += sizeof(tmp); |
| 2231 | } |
| 2232 | } |
| 2233 | done: |
| 2234 | if_put(ifp, &psref); |
| 2235 | curlwp_bindx(bound); |
| 2236 | *oldlenp = written; |
| 2237 | return error; |
| 2238 | } |
| 2239 | |
| 2240 | static void |
| 2241 | in_sysctl_init(struct sysctllog **clog) |
| 2242 | { |
| 2243 | sysctl_createv(clog, 0, NULL, NULL, |
| 2244 | CTLFLAG_PERMANENT, |
| 2245 | CTLTYPE_NODE, "inet" , |
| 2246 | SYSCTL_DESCR("PF_INET related settings" ), |
| 2247 | NULL, 0, NULL, 0, |
| 2248 | CTL_NET, PF_INET, CTL_EOL); |
| 2249 | sysctl_createv(clog, 0, NULL, NULL, |
| 2250 | CTLFLAG_PERMANENT, |
| 2251 | CTLTYPE_NODE, "multicast" , |
| 2252 | SYSCTL_DESCR("Multicast information" ), |
| 2253 | in_multicast_sysctl, 0, NULL, 0, |
| 2254 | CTL_NET, PF_INET, CTL_CREATE, CTL_EOL); |
| 2255 | sysctl_createv(clog, 0, NULL, NULL, |
| 2256 | CTLFLAG_PERMANENT, |
| 2257 | CTLTYPE_NODE, "ip" , |
| 2258 | SYSCTL_DESCR("IPv4 related settings" ), |
| 2259 | NULL, 0, NULL, 0, |
| 2260 | CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL); |
| 2261 | |
| 2262 | sysctl_createv(clog, 0, NULL, NULL, |
| 2263 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2264 | CTLTYPE_INT, "subnetsarelocal" , |
| 2265 | SYSCTL_DESCR("Whether logical subnets are considered " |
| 2266 | "local" ), |
| 2267 | NULL, 0, &subnetsarelocal, 0, |
| 2268 | CTL_NET, PF_INET, IPPROTO_IP, |
| 2269 | IPCTL_SUBNETSARELOCAL, CTL_EOL); |
| 2270 | sysctl_createv(clog, 0, NULL, NULL, |
| 2271 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2272 | CTLTYPE_INT, "hostzerobroadcast" , |
| 2273 | SYSCTL_DESCR("All zeroes address is broadcast address" ), |
| 2274 | NULL, 0, &hostzeroisbroadcast, 0, |
| 2275 | CTL_NET, PF_INET, IPPROTO_IP, |
| 2276 | IPCTL_HOSTZEROBROADCAST, CTL_EOL); |
| 2277 | } |
| 2278 | |
| 2279 | #if NARP > 0 |
| 2280 | |
| 2281 | static struct lltable * |
| 2282 | in_lltattach(struct ifnet *ifp) |
| 2283 | { |
| 2284 | struct lltable *llt; |
| 2285 | |
| 2286 | llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE); |
| 2287 | llt->llt_af = AF_INET; |
| 2288 | llt->llt_ifp = ifp; |
| 2289 | |
| 2290 | llt->llt_lookup = in_lltable_lookup; |
| 2291 | llt->llt_create = in_lltable_create; |
| 2292 | llt->llt_delete = in_lltable_delete; |
| 2293 | llt->llt_dump_entry = in_lltable_dump_entry; |
| 2294 | llt->llt_hash = in_lltable_hash; |
| 2295 | llt->llt_fill_sa_entry = in_lltable_fill_sa_entry; |
| 2296 | llt->llt_free_entry = in_lltable_free_entry; |
| 2297 | llt->llt_match_prefix = in_lltable_match_prefix; |
| 2298 | lltable_link(llt); |
| 2299 | |
| 2300 | return (llt); |
| 2301 | } |
| 2302 | |
| 2303 | #endif /* NARP > 0 */ |
| 2304 | |
| 2305 | void * |
| 2306 | in_domifattach(struct ifnet *ifp) |
| 2307 | { |
| 2308 | struct in_ifinfo *ii; |
| 2309 | |
| 2310 | ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP); |
| 2311 | KASSERT(ii != NULL); |
| 2312 | |
| 2313 | #if NARP > 0 |
| 2314 | ii->ii_llt = in_lltattach(ifp); |
| 2315 | #endif |
| 2316 | |
| 2317 | #ifdef IPSELSRC |
| 2318 | ii->ii_selsrc = in_selsrc_domifattach(ifp); |
| 2319 | KASSERT(ii->ii_selsrc != NULL); |
| 2320 | #endif |
| 2321 | |
| 2322 | return ii; |
| 2323 | } |
| 2324 | |
| 2325 | void |
| 2326 | in_domifdetach(struct ifnet *ifp, void *aux) |
| 2327 | { |
| 2328 | struct in_ifinfo *ii = aux; |
| 2329 | |
| 2330 | #ifdef IPSELSRC |
| 2331 | in_selsrc_domifdetach(ifp, ii->ii_selsrc); |
| 2332 | #endif |
| 2333 | #if NARP > 0 |
| 2334 | lltable_free(ii->ii_llt); |
| 2335 | #endif |
| 2336 | kmem_free(ii, sizeof(struct in_ifinfo)); |
| 2337 | } |
| 2338 | |