| 1 | /* $NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $ */ |
| 2 | /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */ |
| 3 | |
| 4 | /* |
| 5 | * sha2.c |
| 6 | * |
| 7 | * Version 1.0.0beta1 |
| 8 | * |
| 9 | * Written by Aaron D. Gifford <me@aarongifford.com> |
| 10 | * |
| 11 | * Copyright 2000 Aaron D. Gifford. All rights reserved. |
| 12 | * |
| 13 | * Redistribution and use in source and binary forms, with or without |
| 14 | * modification, are permitted provided that the following conditions |
| 15 | * are met: |
| 16 | * 1. Redistributions of source code must retain the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer. |
| 18 | * 2. Redistributions in binary form must reproduce the above copyright |
| 19 | * notice, this list of conditions and the following disclaimer in the |
| 20 | * documentation and/or other materials provided with the distribution. |
| 21 | * 3. Neither the name of the copyright holder nor the names of contributors |
| 22 | * may be used to endorse or promote products derived from this software |
| 23 | * without specific prior written permission. |
| 24 | * |
| 25 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND |
| 26 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 27 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 28 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE |
| 29 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 30 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 31 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 32 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 33 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 34 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 35 | * SUCH DAMAGE. |
| 36 | * |
| 37 | */ |
| 38 | |
| 39 | #if HAVE_NBTOOL_CONFIG_H |
| 40 | #include "nbtool_config.h" |
| 41 | #endif |
| 42 | |
| 43 | #include <sys/cdefs.h> |
| 44 | |
| 45 | #if defined(_KERNEL) || defined(_STANDALONE) |
| 46 | __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $" ); |
| 47 | |
| 48 | #include <sys/param.h> /* XXX: to pull <machine/macros.h> for vax memset(9) */ |
| 49 | #include <lib/libkern/libkern.h> |
| 50 | |
| 51 | #else |
| 52 | |
| 53 | #if defined(LIBC_SCCS) && !defined(lint) |
| 54 | __RCSID("$NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $" ); |
| 55 | #endif /* LIBC_SCCS and not lint */ |
| 56 | |
| 57 | #include "namespace.h" |
| 58 | #include <string.h> |
| 59 | |
| 60 | #endif |
| 61 | |
| 62 | #include <sys/types.h> |
| 63 | #include <sys/sha2.h> |
| 64 | |
| 65 | #if HAVE_SYS_ENDIAN_H |
| 66 | # include <sys/endian.h> |
| 67 | #endif |
| 68 | |
| 69 | /*** SHA-256/384/512 Various Length Definitions ***********************/ |
| 70 | /* NOTE: Most of these are in sha2.h */ |
| 71 | #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
| 72 | #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
| 73 | #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
| 74 | |
| 75 | /* |
| 76 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
| 77 | * unsigned 128-bit integer (represented using a two-element array of |
| 78 | * 64-bit words): |
| 79 | */ |
| 80 | #define ADDINC128(w,n) { \ |
| 81 | (w)[0] += (uint64_t)(n); \ |
| 82 | if ((w)[0] < (n)) { \ |
| 83 | (w)[1]++; \ |
| 84 | } \ |
| 85 | } |
| 86 | |
| 87 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
| 88 | /* |
| 89 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
| 90 | * |
| 91 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
| 92 | * S is a ROTATION) because the SHA-256/384/512 description document |
| 93 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
| 94 | * same "backwards" definition. |
| 95 | */ |
| 96 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
| 97 | #define R(b,x) ((x) >> (b)) |
| 98 | /* 32-bit Rotate-right (used in SHA-256): */ |
| 99 | #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
| 100 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
| 101 | #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
| 102 | |
| 103 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
| 104 | #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
| 105 | #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| 106 | |
| 107 | /* Four of six logical functions used in SHA-256: */ |
| 108 | #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
| 109 | #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
| 110 | #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
| 111 | #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
| 112 | |
| 113 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
| 114 | #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
| 115 | #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
| 116 | #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
| 117 | #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
| 118 | |
| 119 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
| 120 | /* NOTE: These should not be accessed directly from outside this |
| 121 | * library -- they are intended for private internal visibility/use |
| 122 | * only. |
| 123 | */ |
| 124 | static void SHA512_Last(SHA512_CTX *); |
| 125 | void SHA224_Transform(SHA224_CTX *, const uint32_t*); |
| 126 | void SHA256_Transform(SHA256_CTX *, const uint32_t*); |
| 127 | void SHA384_Transform(SHA384_CTX *, const uint64_t*); |
| 128 | void SHA512_Transform(SHA512_CTX *, const uint64_t*); |
| 129 | |
| 130 | |
| 131 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
| 132 | /* Hash constant words K for SHA-256: */ |
| 133 | static const uint32_t K256[64] = { |
| 134 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
| 135 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
| 136 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
| 137 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
| 138 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 139 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
| 140 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
| 141 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
| 142 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
| 143 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 144 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
| 145 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
| 146 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
| 147 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
| 148 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 149 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
| 150 | }; |
| 151 | |
| 152 | /* Initial hash value H for SHA-224: */ |
| 153 | static const uint32_t sha224_initial_hash_value[8] = { |
| 154 | 0xc1059ed8UL, |
| 155 | 0x367cd507UL, |
| 156 | 0x3070dd17UL, |
| 157 | 0xf70e5939UL, |
| 158 | 0xffc00b31UL, |
| 159 | 0x68581511UL, |
| 160 | 0x64f98fa7UL, |
| 161 | 0xbefa4fa4UL |
| 162 | }; |
| 163 | |
| 164 | /* Initial hash value H for SHA-256: */ |
| 165 | static const uint32_t sha256_initial_hash_value[8] = { |
| 166 | 0x6a09e667UL, |
| 167 | 0xbb67ae85UL, |
| 168 | 0x3c6ef372UL, |
| 169 | 0xa54ff53aUL, |
| 170 | 0x510e527fUL, |
| 171 | 0x9b05688cUL, |
| 172 | 0x1f83d9abUL, |
| 173 | 0x5be0cd19UL |
| 174 | }; |
| 175 | |
| 176 | /* Hash constant words K for SHA-384 and SHA-512: */ |
| 177 | static const uint64_t K512[80] = { |
| 178 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
| 179 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
| 180 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
| 181 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
| 182 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
| 183 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
| 184 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
| 185 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
| 186 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
| 187 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
| 188 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
| 189 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
| 190 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
| 191 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
| 192 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
| 193 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
| 194 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
| 195 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
| 196 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
| 197 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
| 198 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
| 199 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
| 200 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
| 201 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
| 202 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
| 203 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
| 204 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
| 205 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
| 206 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
| 207 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
| 208 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
| 209 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
| 210 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
| 211 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
| 212 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
| 213 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
| 214 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
| 215 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
| 216 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
| 217 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
| 218 | }; |
| 219 | |
| 220 | /* Initial hash value H for SHA-384 */ |
| 221 | static const uint64_t sha384_initial_hash_value[8] = { |
| 222 | 0xcbbb9d5dc1059ed8ULL, |
| 223 | 0x629a292a367cd507ULL, |
| 224 | 0x9159015a3070dd17ULL, |
| 225 | 0x152fecd8f70e5939ULL, |
| 226 | 0x67332667ffc00b31ULL, |
| 227 | 0x8eb44a8768581511ULL, |
| 228 | 0xdb0c2e0d64f98fa7ULL, |
| 229 | 0x47b5481dbefa4fa4ULL |
| 230 | }; |
| 231 | |
| 232 | /* Initial hash value H for SHA-512 */ |
| 233 | static const uint64_t sha512_initial_hash_value[8] = { |
| 234 | 0x6a09e667f3bcc908ULL, |
| 235 | 0xbb67ae8584caa73bULL, |
| 236 | 0x3c6ef372fe94f82bULL, |
| 237 | 0xa54ff53a5f1d36f1ULL, |
| 238 | 0x510e527fade682d1ULL, |
| 239 | 0x9b05688c2b3e6c1fULL, |
| 240 | 0x1f83d9abfb41bd6bULL, |
| 241 | 0x5be0cd19137e2179ULL |
| 242 | }; |
| 243 | |
| 244 | #if !defined(_KERNEL) && !defined(_STANDALONE) |
| 245 | #if defined(__weak_alias) |
| 246 | __weak_alias(SHA224_Init,_SHA224_Init) |
| 247 | __weak_alias(SHA224_Update,_SHA224_Update) |
| 248 | __weak_alias(SHA224_Final,_SHA224_Final) |
| 249 | __weak_alias(SHA224_Transform,_SHA224_Transform) |
| 250 | |
| 251 | __weak_alias(SHA256_Init,_SHA256_Init) |
| 252 | __weak_alias(SHA256_Update,_SHA256_Update) |
| 253 | __weak_alias(SHA256_Final,_SHA256_Final) |
| 254 | __weak_alias(SHA256_Transform,_SHA256_Transform) |
| 255 | |
| 256 | __weak_alias(SHA384_Init,_SHA384_Init) |
| 257 | __weak_alias(SHA384_Update,_SHA384_Update) |
| 258 | __weak_alias(SHA384_Final,_SHA384_Final) |
| 259 | __weak_alias(SHA384_Transform,_SHA384_Transform) |
| 260 | |
| 261 | __weak_alias(SHA512_Init,_SHA512_Init) |
| 262 | __weak_alias(SHA512_Update,_SHA512_Update) |
| 263 | __weak_alias(SHA512_Final,_SHA512_Final) |
| 264 | __weak_alias(SHA512_Transform,_SHA512_Transform) |
| 265 | #endif |
| 266 | #endif |
| 267 | |
| 268 | /*** SHA-256: *********************************************************/ |
| 269 | int |
| 270 | SHA256_Init(SHA256_CTX *context) |
| 271 | { |
| 272 | if (context == NULL) |
| 273 | return 1; |
| 274 | |
| 275 | memcpy(context->state, sha256_initial_hash_value, |
| 276 | (size_t)(SHA256_DIGEST_LENGTH)); |
| 277 | memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); |
| 278 | context->bitcount = 0; |
| 279 | |
| 280 | return 1; |
| 281 | } |
| 282 | |
| 283 | #ifdef SHA2_UNROLL_TRANSFORM |
| 284 | |
| 285 | /* Unrolled SHA-256 round macros: */ |
| 286 | |
| 287 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
| 288 | W256[j] = be32dec(data); \ |
| 289 | ++data; \ |
| 290 | T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ |
| 291 | K256[j] + W256[j]; \ |
| 292 | (d) += T1; \ |
| 293 | (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
| 294 | j++ |
| 295 | |
| 296 | #define ROUND256(a,b,c,d,e,f,g,h) \ |
| 297 | s0 = W256[(j+1)&0x0f]; \ |
| 298 | s0 = sigma0_256(s0); \ |
| 299 | s1 = W256[(j+14)&0x0f]; \ |
| 300 | s1 = sigma1_256(s1); \ |
| 301 | T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ |
| 302 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
| 303 | (d) += T1; \ |
| 304 | (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
| 305 | j++ |
| 306 | |
| 307 | void |
| 308 | SHA256_Transform(SHA256_CTX *context, const uint32_t *data) |
| 309 | { |
| 310 | uint32_t a, b, c, d, e, f, g, h, s0, s1; |
| 311 | uint32_t T1, *W256; |
| 312 | int j; |
| 313 | |
| 314 | W256 = (uint32_t *)context->buffer; |
| 315 | |
| 316 | /* Initialize registers with the prev. intermediate value */ |
| 317 | a = context->state[0]; |
| 318 | b = context->state[1]; |
| 319 | c = context->state[2]; |
| 320 | d = context->state[3]; |
| 321 | e = context->state[4]; |
| 322 | f = context->state[5]; |
| 323 | g = context->state[6]; |
| 324 | h = context->state[7]; |
| 325 | |
| 326 | j = 0; |
| 327 | do { |
| 328 | /* Rounds 0 to 15 (unrolled): */ |
| 329 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
| 330 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
| 331 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
| 332 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
| 333 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
| 334 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
| 335 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
| 336 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
| 337 | } while (j < 16); |
| 338 | |
| 339 | /* Now for the remaining rounds to 64: */ |
| 340 | do { |
| 341 | ROUND256(a,b,c,d,e,f,g,h); |
| 342 | ROUND256(h,a,b,c,d,e,f,g); |
| 343 | ROUND256(g,h,a,b,c,d,e,f); |
| 344 | ROUND256(f,g,h,a,b,c,d,e); |
| 345 | ROUND256(e,f,g,h,a,b,c,d); |
| 346 | ROUND256(d,e,f,g,h,a,b,c); |
| 347 | ROUND256(c,d,e,f,g,h,a,b); |
| 348 | ROUND256(b,c,d,e,f,g,h,a); |
| 349 | } while (j < 64); |
| 350 | |
| 351 | /* Compute the current intermediate hash value */ |
| 352 | context->state[0] += a; |
| 353 | context->state[1] += b; |
| 354 | context->state[2] += c; |
| 355 | context->state[3] += d; |
| 356 | context->state[4] += e; |
| 357 | context->state[5] += f; |
| 358 | context->state[6] += g; |
| 359 | context->state[7] += h; |
| 360 | |
| 361 | /* Clean up */ |
| 362 | a = b = c = d = e = f = g = h = T1 = 0; |
| 363 | } |
| 364 | |
| 365 | #else /* SHA2_UNROLL_TRANSFORM */ |
| 366 | |
| 367 | void |
| 368 | SHA256_Transform(SHA256_CTX *context, const uint32_t *data) |
| 369 | { |
| 370 | uint32_t a, b, c, d, e, f, g, h, s0, s1; |
| 371 | uint32_t T1, T2, *W256; |
| 372 | int j; |
| 373 | |
| 374 | W256 = (uint32_t *)(void *)context->buffer; |
| 375 | |
| 376 | /* Initialize registers with the prev. intermediate value */ |
| 377 | a = context->state[0]; |
| 378 | b = context->state[1]; |
| 379 | c = context->state[2]; |
| 380 | d = context->state[3]; |
| 381 | e = context->state[4]; |
| 382 | f = context->state[5]; |
| 383 | g = context->state[6]; |
| 384 | h = context->state[7]; |
| 385 | |
| 386 | j = 0; |
| 387 | do { |
| 388 | W256[j] = be32dec(data); |
| 389 | ++data; |
| 390 | /* Apply the SHA-256 compression function to update a..h */ |
| 391 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
| 392 | T2 = Sigma0_256(a) + Maj(a, b, c); |
| 393 | h = g; |
| 394 | g = f; |
| 395 | f = e; |
| 396 | e = d + T1; |
| 397 | d = c; |
| 398 | c = b; |
| 399 | b = a; |
| 400 | a = T1 + T2; |
| 401 | |
| 402 | j++; |
| 403 | } while (j < 16); |
| 404 | |
| 405 | do { |
| 406 | /* Part of the message block expansion: */ |
| 407 | s0 = W256[(j+1)&0x0f]; |
| 408 | s0 = sigma0_256(s0); |
| 409 | s1 = W256[(j+14)&0x0f]; |
| 410 | s1 = sigma1_256(s1); |
| 411 | |
| 412 | /* Apply the SHA-256 compression function to update a..h */ |
| 413 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
| 414 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
| 415 | T2 = Sigma0_256(a) + Maj(a, b, c); |
| 416 | h = g; |
| 417 | g = f; |
| 418 | f = e; |
| 419 | e = d + T1; |
| 420 | d = c; |
| 421 | c = b; |
| 422 | b = a; |
| 423 | a = T1 + T2; |
| 424 | |
| 425 | j++; |
| 426 | } while (j < 64); |
| 427 | |
| 428 | /* Compute the current intermediate hash value */ |
| 429 | context->state[0] += a; |
| 430 | context->state[1] += b; |
| 431 | context->state[2] += c; |
| 432 | context->state[3] += d; |
| 433 | context->state[4] += e; |
| 434 | context->state[5] += f; |
| 435 | context->state[6] += g; |
| 436 | context->state[7] += h; |
| 437 | |
| 438 | /* Clean up */ |
| 439 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| 440 | } |
| 441 | |
| 442 | #endif /* SHA2_UNROLL_TRANSFORM */ |
| 443 | |
| 444 | int |
| 445 | SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len) |
| 446 | { |
| 447 | unsigned int freespace, usedspace; |
| 448 | |
| 449 | if (len == 0) { |
| 450 | /* Calling with no data is valid - we do nothing */ |
| 451 | return 1; |
| 452 | } |
| 453 | |
| 454 | usedspace = (unsigned int)((context->bitcount >> 3) % |
| 455 | SHA256_BLOCK_LENGTH); |
| 456 | if (usedspace > 0) { |
| 457 | /* Calculate how much free space is available in the buffer */ |
| 458 | freespace = SHA256_BLOCK_LENGTH - usedspace; |
| 459 | |
| 460 | if (len >= freespace) { |
| 461 | /* Fill the buffer completely and process it */ |
| 462 | memcpy(&context->buffer[usedspace], data, |
| 463 | (size_t)(freespace)); |
| 464 | context->bitcount += freespace << 3; |
| 465 | len -= freespace; |
| 466 | data += freespace; |
| 467 | SHA256_Transform(context, |
| 468 | (uint32_t *)(void *)context->buffer); |
| 469 | } else { |
| 470 | /* The buffer is not yet full */ |
| 471 | memcpy(&context->buffer[usedspace], data, len); |
| 472 | context->bitcount += len << 3; |
| 473 | /* Clean up: */ |
| 474 | usedspace = freespace = 0; |
| 475 | return 1; |
| 476 | } |
| 477 | } |
| 478 | /* |
| 479 | * Process as many complete blocks as possible. |
| 480 | * |
| 481 | * Check alignment of the data pointer. If it is 32bit aligned, |
| 482 | * SHA256_Transform can be called directly on the data stream, |
| 483 | * otherwise enforce the alignment by copy into the buffer. |
| 484 | */ |
| 485 | if ((uintptr_t)data % 4 == 0) { |
| 486 | while (len >= SHA256_BLOCK_LENGTH) { |
| 487 | SHA256_Transform(context, |
| 488 | (const uint32_t *)(const void *)data); |
| 489 | context->bitcount += SHA256_BLOCK_LENGTH << 3; |
| 490 | len -= SHA256_BLOCK_LENGTH; |
| 491 | data += SHA256_BLOCK_LENGTH; |
| 492 | } |
| 493 | } else { |
| 494 | while (len >= SHA256_BLOCK_LENGTH) { |
| 495 | memcpy(context->buffer, data, SHA256_BLOCK_LENGTH); |
| 496 | SHA256_Transform(context, |
| 497 | (const uint32_t *)(const void *)context->buffer); |
| 498 | context->bitcount += SHA256_BLOCK_LENGTH << 3; |
| 499 | len -= SHA256_BLOCK_LENGTH; |
| 500 | data += SHA256_BLOCK_LENGTH; |
| 501 | } |
| 502 | } |
| 503 | if (len > 0) { |
| 504 | /* There's left-overs, so save 'em */ |
| 505 | memcpy(context->buffer, data, len); |
| 506 | context->bitcount += len << 3; |
| 507 | } |
| 508 | /* Clean up: */ |
| 509 | usedspace = freespace = 0; |
| 510 | |
| 511 | return 1; |
| 512 | } |
| 513 | |
| 514 | static int |
| 515 | SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len) |
| 516 | { |
| 517 | unsigned int usedspace; |
| 518 | size_t i; |
| 519 | |
| 520 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 521 | if (digest != NULL) { |
| 522 | usedspace = (unsigned int)((context->bitcount >> 3) % |
| 523 | SHA256_BLOCK_LENGTH); |
| 524 | context->bitcount = htobe64(context->bitcount); |
| 525 | if (usedspace > 0) { |
| 526 | /* Begin padding with a 1 bit: */ |
| 527 | context->buffer[usedspace++] = 0x80; |
| 528 | |
| 529 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { |
| 530 | /* Set-up for the last transform: */ |
| 531 | memset(&context->buffer[usedspace], 0, |
| 532 | (size_t)(SHA256_SHORT_BLOCK_LENGTH - |
| 533 | usedspace)); |
| 534 | } else { |
| 535 | if (usedspace < SHA256_BLOCK_LENGTH) { |
| 536 | memset(&context->buffer[usedspace], 0, |
| 537 | (size_t)(SHA256_BLOCK_LENGTH - |
| 538 | usedspace)); |
| 539 | } |
| 540 | /* Do second-to-last transform: */ |
| 541 | SHA256_Transform(context, |
| 542 | (uint32_t *)(void *)context->buffer); |
| 543 | |
| 544 | /* And set-up for the last transform: */ |
| 545 | memset(context->buffer, 0, |
| 546 | (size_t)(SHA256_SHORT_BLOCK_LENGTH)); |
| 547 | } |
| 548 | } else { |
| 549 | /* Set-up for the last transform: */ |
| 550 | memset(context->buffer, 0, |
| 551 | (size_t)(SHA256_SHORT_BLOCK_LENGTH)); |
| 552 | |
| 553 | /* Begin padding with a 1 bit: */ |
| 554 | *context->buffer = 0x80; |
| 555 | } |
| 556 | /* Set the bit count: */ |
| 557 | memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], |
| 558 | &context->bitcount, sizeof(context->bitcount)); |
| 559 | |
| 560 | /* Final transform: */ |
| 561 | SHA256_Transform(context, (uint32_t *)(void *)context->buffer); |
| 562 | |
| 563 | for (i = 0; i < len / 4; i++) |
| 564 | be32enc(digest + 4 * i, context->state[i]); |
| 565 | } |
| 566 | |
| 567 | /* Clean up state data: */ |
| 568 | memset(context, 0, sizeof(*context)); |
| 569 | usedspace = 0; |
| 570 | |
| 571 | return 1; |
| 572 | } |
| 573 | |
| 574 | int |
| 575 | SHA256_Final(uint8_t digest[], SHA256_CTX *context) |
| 576 | { |
| 577 | return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH); |
| 578 | } |
| 579 | |
| 580 | /*** SHA-224: *********************************************************/ |
| 581 | int |
| 582 | SHA224_Init(SHA224_CTX *context) |
| 583 | { |
| 584 | if (context == NULL) |
| 585 | return 1; |
| 586 | |
| 587 | /* The state and buffer size are driven by SHA256, not by SHA224. */ |
| 588 | memcpy(context->state, sha224_initial_hash_value, |
| 589 | (size_t)(SHA256_DIGEST_LENGTH)); |
| 590 | memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); |
| 591 | context->bitcount = 0; |
| 592 | |
| 593 | return 1; |
| 594 | } |
| 595 | |
| 596 | int |
| 597 | SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len) |
| 598 | { |
| 599 | return SHA256_Update((SHA256_CTX *)context, data, len); |
| 600 | } |
| 601 | |
| 602 | void |
| 603 | SHA224_Transform(SHA224_CTX *context, const uint32_t *data) |
| 604 | { |
| 605 | SHA256_Transform((SHA256_CTX *)context, data); |
| 606 | } |
| 607 | |
| 608 | int |
| 609 | SHA224_Final(uint8_t digest[], SHA224_CTX *context) |
| 610 | { |
| 611 | return SHA224_256_Final(digest, (SHA256_CTX *)context, |
| 612 | SHA224_DIGEST_LENGTH); |
| 613 | } |
| 614 | |
| 615 | /*** SHA-512: *********************************************************/ |
| 616 | int |
| 617 | SHA512_Init(SHA512_CTX *context) |
| 618 | { |
| 619 | if (context == NULL) |
| 620 | return 1; |
| 621 | |
| 622 | memcpy(context->state, sha512_initial_hash_value, |
| 623 | (size_t)(SHA512_DIGEST_LENGTH)); |
| 624 | memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH)); |
| 625 | context->bitcount[0] = context->bitcount[1] = 0; |
| 626 | |
| 627 | return 1; |
| 628 | } |
| 629 | |
| 630 | #ifdef SHA2_UNROLL_TRANSFORM |
| 631 | |
| 632 | /* Unrolled SHA-512 round macros: */ |
| 633 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
| 634 | W512[j] = be64dec(data); \ |
| 635 | ++data; \ |
| 636 | T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ |
| 637 | K512[j] + W512[j]; \ |
| 638 | (d) += T1, \ |
| 639 | (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ |
| 640 | j++ |
| 641 | |
| 642 | #define ROUND512(a,b,c,d,e,f,g,h) \ |
| 643 | s0 = W512[(j+1)&0x0f]; \ |
| 644 | s0 = sigma0_512(s0); \ |
| 645 | s1 = W512[(j+14)&0x0f]; \ |
| 646 | s1 = sigma1_512(s1); \ |
| 647 | T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ |
| 648 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
| 649 | (d) += T1; \ |
| 650 | (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ |
| 651 | j++ |
| 652 | |
| 653 | void |
| 654 | SHA512_Transform(SHA512_CTX *context, const uint64_t *data) |
| 655 | { |
| 656 | uint64_t a, b, c, d, e, f, g, h, s0, s1; |
| 657 | uint64_t T1, *W512 = (uint64_t *)context->buffer; |
| 658 | int j; |
| 659 | |
| 660 | /* Initialize registers with the prev. intermediate value */ |
| 661 | a = context->state[0]; |
| 662 | b = context->state[1]; |
| 663 | c = context->state[2]; |
| 664 | d = context->state[3]; |
| 665 | e = context->state[4]; |
| 666 | f = context->state[5]; |
| 667 | g = context->state[6]; |
| 668 | h = context->state[7]; |
| 669 | |
| 670 | j = 0; |
| 671 | do { |
| 672 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
| 673 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
| 674 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
| 675 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
| 676 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
| 677 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
| 678 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
| 679 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
| 680 | } while (j < 16); |
| 681 | |
| 682 | /* Now for the remaining rounds up to 79: */ |
| 683 | do { |
| 684 | ROUND512(a,b,c,d,e,f,g,h); |
| 685 | ROUND512(h,a,b,c,d,e,f,g); |
| 686 | ROUND512(g,h,a,b,c,d,e,f); |
| 687 | ROUND512(f,g,h,a,b,c,d,e); |
| 688 | ROUND512(e,f,g,h,a,b,c,d); |
| 689 | ROUND512(d,e,f,g,h,a,b,c); |
| 690 | ROUND512(c,d,e,f,g,h,a,b); |
| 691 | ROUND512(b,c,d,e,f,g,h,a); |
| 692 | } while (j < 80); |
| 693 | |
| 694 | /* Compute the current intermediate hash value */ |
| 695 | context->state[0] += a; |
| 696 | context->state[1] += b; |
| 697 | context->state[2] += c; |
| 698 | context->state[3] += d; |
| 699 | context->state[4] += e; |
| 700 | context->state[5] += f; |
| 701 | context->state[6] += g; |
| 702 | context->state[7] += h; |
| 703 | |
| 704 | /* Clean up */ |
| 705 | a = b = c = d = e = f = g = h = T1 = 0; |
| 706 | } |
| 707 | |
| 708 | #else /* SHA2_UNROLL_TRANSFORM */ |
| 709 | |
| 710 | void |
| 711 | SHA512_Transform(SHA512_CTX *context, const uint64_t *data) |
| 712 | { |
| 713 | uint64_t a, b, c, d, e, f, g, h, s0, s1; |
| 714 | uint64_t T1, T2, *W512 = (void *)context->buffer; |
| 715 | int j; |
| 716 | |
| 717 | /* Initialize registers with the prev. intermediate value */ |
| 718 | a = context->state[0]; |
| 719 | b = context->state[1]; |
| 720 | c = context->state[2]; |
| 721 | d = context->state[3]; |
| 722 | e = context->state[4]; |
| 723 | f = context->state[5]; |
| 724 | g = context->state[6]; |
| 725 | h = context->state[7]; |
| 726 | |
| 727 | j = 0; |
| 728 | do { |
| 729 | W512[j] = be64dec(data); |
| 730 | ++data; |
| 731 | /* Apply the SHA-512 compression function to update a..h */ |
| 732 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; |
| 733 | T2 = Sigma0_512(a) + Maj(a, b, c); |
| 734 | h = g; |
| 735 | g = f; |
| 736 | f = e; |
| 737 | e = d + T1; |
| 738 | d = c; |
| 739 | c = b; |
| 740 | b = a; |
| 741 | a = T1 + T2; |
| 742 | |
| 743 | j++; |
| 744 | } while (j < 16); |
| 745 | |
| 746 | do { |
| 747 | /* Part of the message block expansion: */ |
| 748 | s0 = W512[(j+1)&0x0f]; |
| 749 | s0 = sigma0_512(s0); |
| 750 | s1 = W512[(j+14)&0x0f]; |
| 751 | s1 = sigma1_512(s1); |
| 752 | |
| 753 | /* Apply the SHA-512 compression function to update a..h */ |
| 754 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + |
| 755 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
| 756 | T2 = Sigma0_512(a) + Maj(a, b, c); |
| 757 | h = g; |
| 758 | g = f; |
| 759 | f = e; |
| 760 | e = d + T1; |
| 761 | d = c; |
| 762 | c = b; |
| 763 | b = a; |
| 764 | a = T1 + T2; |
| 765 | |
| 766 | j++; |
| 767 | } while (j < 80); |
| 768 | |
| 769 | /* Compute the current intermediate hash value */ |
| 770 | context->state[0] += a; |
| 771 | context->state[1] += b; |
| 772 | context->state[2] += c; |
| 773 | context->state[3] += d; |
| 774 | context->state[4] += e; |
| 775 | context->state[5] += f; |
| 776 | context->state[6] += g; |
| 777 | context->state[7] += h; |
| 778 | |
| 779 | /* Clean up */ |
| 780 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| 781 | } |
| 782 | |
| 783 | #endif /* SHA2_UNROLL_TRANSFORM */ |
| 784 | |
| 785 | int |
| 786 | SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len) |
| 787 | { |
| 788 | unsigned int freespace, usedspace; |
| 789 | |
| 790 | if (len == 0) { |
| 791 | /* Calling with no data is valid - we do nothing */ |
| 792 | return 1; |
| 793 | } |
| 794 | |
| 795 | usedspace = (unsigned int)((context->bitcount[0] >> 3) % |
| 796 | SHA512_BLOCK_LENGTH); |
| 797 | if (usedspace > 0) { |
| 798 | /* Calculate how much free space is available in the buffer */ |
| 799 | freespace = SHA512_BLOCK_LENGTH - usedspace; |
| 800 | |
| 801 | if (len >= freespace) { |
| 802 | /* Fill the buffer completely and process it */ |
| 803 | memcpy(&context->buffer[usedspace], data, |
| 804 | (size_t)(freespace)); |
| 805 | ADDINC128(context->bitcount, freespace << 3); |
| 806 | len -= freespace; |
| 807 | data += freespace; |
| 808 | SHA512_Transform(context, |
| 809 | (uint64_t *)(void *)context->buffer); |
| 810 | } else { |
| 811 | /* The buffer is not yet full */ |
| 812 | memcpy(&context->buffer[usedspace], data, len); |
| 813 | ADDINC128(context->bitcount, len << 3); |
| 814 | /* Clean up: */ |
| 815 | usedspace = freespace = 0; |
| 816 | return 1; |
| 817 | } |
| 818 | } |
| 819 | /* |
| 820 | * Process as many complete blocks as possible. |
| 821 | * |
| 822 | * Check alignment of the data pointer. If it is 64bit aligned, |
| 823 | * SHA512_Transform can be called directly on the data stream, |
| 824 | * otherwise enforce the alignment by copy into the buffer. |
| 825 | */ |
| 826 | if ((uintptr_t)data % 8 == 0) { |
| 827 | while (len >= SHA512_BLOCK_LENGTH) { |
| 828 | SHA512_Transform(context, |
| 829 | (const uint64_t*)(const void *)data); |
| 830 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
| 831 | len -= SHA512_BLOCK_LENGTH; |
| 832 | data += SHA512_BLOCK_LENGTH; |
| 833 | } |
| 834 | } else { |
| 835 | while (len >= SHA512_BLOCK_LENGTH) { |
| 836 | memcpy(context->buffer, data, SHA512_BLOCK_LENGTH); |
| 837 | SHA512_Transform(context, |
| 838 | (const void *)context->buffer); |
| 839 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
| 840 | len -= SHA512_BLOCK_LENGTH; |
| 841 | data += SHA512_BLOCK_LENGTH; |
| 842 | } |
| 843 | } |
| 844 | if (len > 0) { |
| 845 | /* There's left-overs, so save 'em */ |
| 846 | memcpy(context->buffer, data, len); |
| 847 | ADDINC128(context->bitcount, len << 3); |
| 848 | } |
| 849 | /* Clean up: */ |
| 850 | usedspace = freespace = 0; |
| 851 | |
| 852 | return 1; |
| 853 | } |
| 854 | |
| 855 | static void |
| 856 | SHA512_Last(SHA512_CTX *context) |
| 857 | { |
| 858 | unsigned int usedspace; |
| 859 | |
| 860 | usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH); |
| 861 | context->bitcount[0] = htobe64(context->bitcount[0]); |
| 862 | context->bitcount[1] = htobe64(context->bitcount[1]); |
| 863 | if (usedspace > 0) { |
| 864 | /* Begin padding with a 1 bit: */ |
| 865 | context->buffer[usedspace++] = 0x80; |
| 866 | |
| 867 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { |
| 868 | /* Set-up for the last transform: */ |
| 869 | memset(&context->buffer[usedspace], 0, |
| 870 | (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace)); |
| 871 | } else { |
| 872 | if (usedspace < SHA512_BLOCK_LENGTH) { |
| 873 | memset(&context->buffer[usedspace], 0, |
| 874 | (size_t)(SHA512_BLOCK_LENGTH - usedspace)); |
| 875 | } |
| 876 | /* Do second-to-last transform: */ |
| 877 | SHA512_Transform(context, |
| 878 | (uint64_t *)(void *)context->buffer); |
| 879 | |
| 880 | /* And set-up for the last transform: */ |
| 881 | memset(context->buffer, 0, |
| 882 | (size_t)(SHA512_BLOCK_LENGTH - 2)); |
| 883 | } |
| 884 | } else { |
| 885 | /* Prepare for final transform: */ |
| 886 | memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH)); |
| 887 | |
| 888 | /* Begin padding with a 1 bit: */ |
| 889 | *context->buffer = 0x80; |
| 890 | } |
| 891 | /* Store the length of input data (in bits): */ |
| 892 | memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], |
| 893 | &context->bitcount[1], sizeof(context->bitcount[1])); |
| 894 | memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], |
| 895 | &context->bitcount[0], sizeof(context->bitcount[0])); |
| 896 | |
| 897 | /* Final transform: */ |
| 898 | SHA512_Transform(context, (uint64_t *)(void *)context->buffer); |
| 899 | } |
| 900 | |
| 901 | int |
| 902 | SHA512_Final(uint8_t digest[], SHA512_CTX *context) |
| 903 | { |
| 904 | size_t i; |
| 905 | |
| 906 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 907 | if (digest != NULL) { |
| 908 | SHA512_Last(context); |
| 909 | |
| 910 | /* Save the hash data for output: */ |
| 911 | for (i = 0; i < 8; ++i) |
| 912 | be64enc(digest + 8 * i, context->state[i]); |
| 913 | } |
| 914 | |
| 915 | /* Zero out state data */ |
| 916 | memset(context, 0, sizeof(*context)); |
| 917 | |
| 918 | return 1; |
| 919 | } |
| 920 | |
| 921 | /*** SHA-384: *********************************************************/ |
| 922 | int |
| 923 | SHA384_Init(SHA384_CTX *context) |
| 924 | { |
| 925 | if (context == NULL) |
| 926 | return 1; |
| 927 | |
| 928 | memcpy(context->state, sha384_initial_hash_value, |
| 929 | (size_t)(SHA512_DIGEST_LENGTH)); |
| 930 | memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH)); |
| 931 | context->bitcount[0] = context->bitcount[1] = 0; |
| 932 | |
| 933 | return 1; |
| 934 | } |
| 935 | |
| 936 | int |
| 937 | SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len) |
| 938 | { |
| 939 | return SHA512_Update((SHA512_CTX *)context, data, len); |
| 940 | } |
| 941 | |
| 942 | void |
| 943 | SHA384_Transform(SHA512_CTX *context, const uint64_t *data) |
| 944 | { |
| 945 | SHA512_Transform((SHA512_CTX *)context, data); |
| 946 | } |
| 947 | |
| 948 | int |
| 949 | SHA384_Final(uint8_t digest[], SHA384_CTX *context) |
| 950 | { |
| 951 | size_t i; |
| 952 | |
| 953 | /* If no digest buffer is passed, we don't bother doing this: */ |
| 954 | if (digest != NULL) { |
| 955 | SHA512_Last((SHA512_CTX *)context); |
| 956 | |
| 957 | /* Save the hash data for output: */ |
| 958 | for (i = 0; i < 6; ++i) |
| 959 | be64enc(digest + 8 * i, context->state[i]); |
| 960 | } |
| 961 | |
| 962 | /* Zero out state data */ |
| 963 | memset(context, 0, sizeof(*context)); |
| 964 | |
| 965 | return 1; |
| 966 | } |
| 967 | |