| 1 | /* $NetBSD: x86_machdep.c,v 1.76 2016/11/15 15:00:56 maxv Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi, |
| 5 | * Copyright (c) 2005, 2008, 2009 The NetBSD Foundation, Inc. |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * This code is derived from software contributed to The NetBSD Foundation |
| 9 | * by Julio M. Merino Vidal. |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or without |
| 12 | * modification, are permitted provided that the following conditions |
| 13 | * are met: |
| 14 | * 1. Redistributions of source code must retain the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer. |
| 16 | * 2. Redistributions in binary form must reproduce the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer in the |
| 18 | * documentation and/or other materials provided with the distribution. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | #include <sys/cdefs.h> |
| 34 | __KERNEL_RCSID(0, "$NetBSD: x86_machdep.c,v 1.76 2016/11/15 15:00:56 maxv Exp $" ); |
| 35 | |
| 36 | #include "opt_modular.h" |
| 37 | #include "opt_physmem.h" |
| 38 | #include "opt_splash.h" |
| 39 | |
| 40 | #include <sys/types.h> |
| 41 | #include <sys/param.h> |
| 42 | #include <sys/systm.h> |
| 43 | #include <sys/kcore.h> |
| 44 | #include <sys/errno.h> |
| 45 | #include <sys/kauth.h> |
| 46 | #include <sys/mutex.h> |
| 47 | #include <sys/cpu.h> |
| 48 | #include <sys/intr.h> |
| 49 | #include <sys/atomic.h> |
| 50 | #include <sys/module.h> |
| 51 | #include <sys/sysctl.h> |
| 52 | #include <sys/extent.h> |
| 53 | #include <sys/rnd.h> |
| 54 | |
| 55 | #include <x86/cpuvar.h> |
| 56 | #include <x86/cputypes.h> |
| 57 | #include <x86/machdep.h> |
| 58 | #include <x86/nmi.h> |
| 59 | #include <x86/pio.h> |
| 60 | |
| 61 | #include <dev/splash/splash.h> |
| 62 | #include <dev/isa/isareg.h> |
| 63 | #include <dev/ic/i8042reg.h> |
| 64 | #include <dev/mm.h> |
| 65 | |
| 66 | #include <machine/bootinfo.h> |
| 67 | #include <machine/vmparam.h> |
| 68 | |
| 69 | #include <uvm/uvm_extern.h> |
| 70 | |
| 71 | #include "acpica.h" |
| 72 | #if NACPICA > 0 |
| 73 | #include <dev/acpi/acpivar.h> |
| 74 | #endif |
| 75 | |
| 76 | #include "opt_md.h" |
| 77 | #if defined(MEMORY_DISK_HOOKS) && defined(MEMORY_DISK_DYNAMIC) |
| 78 | #include <dev/md.h> |
| 79 | #endif |
| 80 | |
| 81 | void (*x86_cpu_idle)(void); |
| 82 | static bool x86_cpu_idle_ipi; |
| 83 | static char x86_cpu_idle_text[16]; |
| 84 | |
| 85 | #ifdef XEN |
| 86 | char module_machine_amd64_xen[] = "amd64-xen" ; |
| 87 | char module_machine_i386_xen[] = "i386-xen" ; |
| 88 | char module_machine_i386pae_xen[] = "i386pae-xen" ; |
| 89 | #endif |
| 90 | |
| 91 | |
| 92 | /* --------------------------------------------------------------------- */ |
| 93 | |
| 94 | /* |
| 95 | * Main bootinfo structure. This is filled in by the bootstrap process |
| 96 | * done in locore.S based on the information passed by the boot loader. |
| 97 | */ |
| 98 | struct bootinfo bootinfo; |
| 99 | |
| 100 | /* --------------------------------------------------------------------- */ |
| 101 | |
| 102 | static kauth_listener_t x86_listener; |
| 103 | |
| 104 | /* |
| 105 | * Given the type of a bootinfo entry, looks for a matching item inside |
| 106 | * the bootinfo structure. If found, returns a pointer to it (which must |
| 107 | * then be casted to the appropriate bootinfo_* type); otherwise, returns |
| 108 | * NULL. |
| 109 | */ |
| 110 | void * |
| 111 | lookup_bootinfo(int type) |
| 112 | { |
| 113 | bool found; |
| 114 | int i; |
| 115 | struct btinfo_common *bic; |
| 116 | |
| 117 | bic = (struct btinfo_common *)(bootinfo.bi_data); |
| 118 | found = FALSE; |
| 119 | for (i = 0; i < bootinfo.bi_nentries && !found; i++) { |
| 120 | if (bic->type == type) |
| 121 | found = TRUE; |
| 122 | else |
| 123 | bic = (struct btinfo_common *) |
| 124 | ((uint8_t *)bic + bic->len); |
| 125 | } |
| 126 | |
| 127 | return found ? bic : NULL; |
| 128 | } |
| 129 | |
| 130 | #ifdef notyet |
| 131 | /* |
| 132 | * List the available bootinfo entries. |
| 133 | */ |
| 134 | static const char *btinfo_str[] = { |
| 135 | BTINFO_STR |
| 136 | }; |
| 137 | |
| 138 | void |
| 139 | aprint_bootinfo(void) |
| 140 | { |
| 141 | int i; |
| 142 | struct btinfo_common *bic; |
| 143 | |
| 144 | aprint_normal("bootinfo:" ); |
| 145 | bic = (struct btinfo_common *)(bootinfo.bi_data); |
| 146 | for (i = 0; i < bootinfo.bi_nentries; i++) { |
| 147 | if (bic->type >= 0 && bic->type < __arraycount(btinfo_str)) |
| 148 | aprint_normal(" %s" , btinfo_str[bic->type]); |
| 149 | else |
| 150 | aprint_normal(" %d" , bic->type); |
| 151 | bic = (struct btinfo_common *) |
| 152 | ((uint8_t *)bic + bic->len); |
| 153 | } |
| 154 | aprint_normal("\n" ); |
| 155 | } |
| 156 | #endif |
| 157 | |
| 158 | /* |
| 159 | * mm_md_physacc: check if given pa is accessible. |
| 160 | */ |
| 161 | int |
| 162 | mm_md_physacc(paddr_t pa, vm_prot_t prot) |
| 163 | { |
| 164 | extern phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; |
| 165 | extern int mem_cluster_cnt; |
| 166 | int i; |
| 167 | |
| 168 | for (i = 0; i < mem_cluster_cnt; i++) { |
| 169 | const phys_ram_seg_t *seg = &mem_clusters[i]; |
| 170 | paddr_t lstart = seg->start; |
| 171 | |
| 172 | if (lstart <= pa && pa - lstart <= seg->size) { |
| 173 | return 0; |
| 174 | } |
| 175 | } |
| 176 | return kauth_authorize_machdep(kauth_cred_get(), |
| 177 | KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL); |
| 178 | } |
| 179 | |
| 180 | #ifdef MODULAR |
| 181 | /* |
| 182 | * Push any modules loaded by the boot loader. |
| 183 | */ |
| 184 | void |
| 185 | module_init_md(void) |
| 186 | { |
| 187 | struct btinfo_modulelist *biml; |
| 188 | struct bi_modulelist_entry *bi, *bimax; |
| 189 | |
| 190 | /* setup module path for XEN kernels */ |
| 191 | #ifdef XEN |
| 192 | #if defined(amd64) |
| 193 | module_machine = module_machine_amd64_xen; |
| 194 | #elif defined(i386) |
| 195 | #ifdef PAE |
| 196 | module_machine = module_machine_i386pae_xen; |
| 197 | #else |
| 198 | module_machine = module_machine_i386_xen; |
| 199 | #endif |
| 200 | #endif |
| 201 | #endif |
| 202 | |
| 203 | biml = lookup_bootinfo(BTINFO_MODULELIST); |
| 204 | if (biml == NULL) { |
| 205 | aprint_debug("No module info at boot\n" ); |
| 206 | return; |
| 207 | } |
| 208 | |
| 209 | bi = (struct bi_modulelist_entry *)((uint8_t *)biml + sizeof(*biml)); |
| 210 | bimax = bi + biml->num; |
| 211 | for (; bi < bimax; bi++) { |
| 212 | switch (bi->type) { |
| 213 | case BI_MODULE_ELF: |
| 214 | aprint_debug("Prep module path=%s len=%d pa=%x\n" , |
| 215 | bi->path, bi->len, bi->base); |
| 216 | KASSERT(trunc_page(bi->base) == bi->base); |
| 217 | module_prime(bi->path, |
| 218 | (void *)((uintptr_t)bi->base + KERNBASE), |
| 219 | bi->len); |
| 220 | break; |
| 221 | case BI_MODULE_IMAGE: |
| 222 | #ifdef SPLASHSCREEN |
| 223 | aprint_debug("Splash image path=%s len=%d pa=%x\n" , |
| 224 | bi->path, bi->len, bi->base); |
| 225 | KASSERT(trunc_page(bi->base) == bi->base); |
| 226 | splash_setimage( |
| 227 | (void *)((uintptr_t)bi->base + KERNBASE), bi->len); |
| 228 | #endif |
| 229 | break; |
| 230 | case BI_MODULE_RND: |
| 231 | aprint_debug("Random seed data path=%s len=%d pa=%x\n" , |
| 232 | bi->path, bi->len, bi->base); |
| 233 | KASSERT(trunc_page(bi->base) == bi->base); |
| 234 | rnd_seed( |
| 235 | (void *)((uintptr_t)bi->base + KERNBASE), |
| 236 | bi->len); |
| 237 | break; |
| 238 | case BI_MODULE_FS: |
| 239 | aprint_debug("File-system image path=%s len=%d pa=%x\n" , |
| 240 | bi->path, bi->len, bi->base); |
| 241 | KASSERT(trunc_page(bi->base) == bi->base); |
| 242 | #if defined(MEMORY_DISK_HOOKS) && defined(MEMORY_DISK_DYNAMIC) |
| 243 | md_root_setconf((void *)((uintptr_t)bi->base + KERNBASE), |
| 244 | bi->len); |
| 245 | #endif |
| 246 | break; |
| 247 | default: |
| 248 | aprint_debug("Skipping non-ELF module\n" ); |
| 249 | break; |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | #endif /* MODULAR */ |
| 254 | |
| 255 | void |
| 256 | cpu_need_resched(struct cpu_info *ci, int flags) |
| 257 | { |
| 258 | struct cpu_info *cur; |
| 259 | lwp_t *l; |
| 260 | |
| 261 | KASSERT(kpreempt_disabled()); |
| 262 | cur = curcpu(); |
| 263 | l = ci->ci_data.cpu_onproc; |
| 264 | ci->ci_want_resched |= flags; |
| 265 | |
| 266 | if (__predict_false((l->l_pflag & LP_INTR) != 0)) { |
| 267 | /* |
| 268 | * No point doing anything, it will switch soon. |
| 269 | * Also here to prevent an assertion failure in |
| 270 | * kpreempt() due to preemption being set on a |
| 271 | * soft interrupt LWP. |
| 272 | */ |
| 273 | return; |
| 274 | } |
| 275 | |
| 276 | if (l == ci->ci_data.cpu_idlelwp) { |
| 277 | if (ci == cur) |
| 278 | return; |
| 279 | if (x86_cpu_idle_ipi != false) { |
| 280 | cpu_kick(ci); |
| 281 | } |
| 282 | return; |
| 283 | } |
| 284 | |
| 285 | if ((flags & RESCHED_KPREEMPT) != 0) { |
| 286 | #ifdef __HAVE_PREEMPTION |
| 287 | atomic_or_uint(&l->l_dopreempt, DOPREEMPT_ACTIVE); |
| 288 | if (ci == cur) { |
| 289 | softint_trigger(1 << SIR_PREEMPT); |
| 290 | } else { |
| 291 | x86_send_ipi(ci, X86_IPI_KPREEMPT); |
| 292 | } |
| 293 | return; |
| 294 | #endif |
| 295 | } |
| 296 | |
| 297 | aston(l, X86_AST_PREEMPT); |
| 298 | if (ci == cur) { |
| 299 | return; |
| 300 | } |
| 301 | if ((flags & RESCHED_IMMED) != 0) { |
| 302 | cpu_kick(ci); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | void |
| 307 | cpu_signotify(struct lwp *l) |
| 308 | { |
| 309 | |
| 310 | KASSERT(kpreempt_disabled()); |
| 311 | aston(l, X86_AST_GENERIC); |
| 312 | if (l->l_cpu != curcpu()) |
| 313 | cpu_kick(l->l_cpu); |
| 314 | } |
| 315 | |
| 316 | void |
| 317 | cpu_need_proftick(struct lwp *l) |
| 318 | { |
| 319 | |
| 320 | KASSERT(kpreempt_disabled()); |
| 321 | KASSERT(l->l_cpu == curcpu()); |
| 322 | |
| 323 | l->l_pflag |= LP_OWEUPC; |
| 324 | aston(l, X86_AST_GENERIC); |
| 325 | } |
| 326 | |
| 327 | bool |
| 328 | cpu_intr_p(void) |
| 329 | { |
| 330 | int idepth; |
| 331 | |
| 332 | kpreempt_disable(); |
| 333 | idepth = curcpu()->ci_idepth; |
| 334 | kpreempt_enable(); |
| 335 | return (idepth >= 0); |
| 336 | } |
| 337 | |
| 338 | #ifdef __HAVE_PREEMPTION |
| 339 | /* |
| 340 | * Called to check MD conditions that would prevent preemption, and to |
| 341 | * arrange for those conditions to be rechecked later. |
| 342 | */ |
| 343 | bool |
| 344 | cpu_kpreempt_enter(uintptr_t where, int s) |
| 345 | { |
| 346 | struct pcb *pcb; |
| 347 | lwp_t *l; |
| 348 | |
| 349 | KASSERT(kpreempt_disabled()); |
| 350 | l = curlwp; |
| 351 | |
| 352 | /* |
| 353 | * If SPL raised, can't go. Note this implies that spin |
| 354 | * mutexes at IPL_NONE are _not_ valid to use. |
| 355 | */ |
| 356 | if (s > IPL_PREEMPT) { |
| 357 | softint_trigger(1 << SIR_PREEMPT); |
| 358 | aston(l, X86_AST_PREEMPT); /* paranoid */ |
| 359 | return false; |
| 360 | } |
| 361 | |
| 362 | /* Must save cr2 or it could be clobbered. */ |
| 363 | pcb = lwp_getpcb(l); |
| 364 | pcb->pcb_cr2 = rcr2(); |
| 365 | |
| 366 | return true; |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Called after returning from a kernel preemption, and called with |
| 371 | * preemption disabled. |
| 372 | */ |
| 373 | void |
| 374 | cpu_kpreempt_exit(uintptr_t where) |
| 375 | { |
| 376 | extern char x86_copyfunc_start, x86_copyfunc_end; |
| 377 | struct pcb *pcb; |
| 378 | |
| 379 | KASSERT(kpreempt_disabled()); |
| 380 | |
| 381 | /* |
| 382 | * If we interrupted any of the copy functions we must reload |
| 383 | * the pmap when resuming, as they cannot tolerate it being |
| 384 | * swapped out. |
| 385 | */ |
| 386 | if (where >= (uintptr_t)&x86_copyfunc_start && |
| 387 | where < (uintptr_t)&x86_copyfunc_end) { |
| 388 | pmap_load(); |
| 389 | } |
| 390 | |
| 391 | /* Restore cr2 only after the pmap, as pmap_load can block. */ |
| 392 | pcb = lwp_getpcb(curlwp); |
| 393 | lcr2(pcb->pcb_cr2); |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * Return true if preemption is disabled for MD reasons. Must be called |
| 398 | * with preemption disabled, and thus is only for diagnostic checks. |
| 399 | */ |
| 400 | bool |
| 401 | cpu_kpreempt_disabled(void) |
| 402 | { |
| 403 | |
| 404 | return curcpu()->ci_ilevel > IPL_NONE; |
| 405 | } |
| 406 | #endif /* __HAVE_PREEMPTION */ |
| 407 | |
| 408 | SYSCTL_SETUP(sysctl_machdep_cpu_idle, "sysctl machdep cpu_idle" ) |
| 409 | { |
| 410 | const struct sysctlnode *mnode, *node; |
| 411 | |
| 412 | sysctl_createv(NULL, 0, NULL, &mnode, |
| 413 | CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep" , NULL, |
| 414 | NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL); |
| 415 | |
| 416 | sysctl_createv(NULL, 0, &mnode, &node, |
| 417 | CTLFLAG_PERMANENT, CTLTYPE_STRING, "idle-mechanism" , |
| 418 | SYSCTL_DESCR("Mechanism used for the idle loop." ), |
| 419 | NULL, 0, x86_cpu_idle_text, 0, |
| 420 | CTL_CREATE, CTL_EOL); |
| 421 | } |
| 422 | |
| 423 | void |
| 424 | x86_cpu_idle_init(void) |
| 425 | { |
| 426 | |
| 427 | #ifndef XEN |
| 428 | if ((cpu_feature[1] & CPUID2_MONITOR) == 0 || |
| 429 | cpu_vendor == CPUVENDOR_AMD) |
| 430 | x86_cpu_idle_set(x86_cpu_idle_halt, "halt" , true); |
| 431 | else |
| 432 | x86_cpu_idle_set(x86_cpu_idle_mwait, "mwait" , false); |
| 433 | #else |
| 434 | x86_cpu_idle_set(x86_cpu_idle_xen, "xen" , true); |
| 435 | #endif |
| 436 | } |
| 437 | |
| 438 | void |
| 439 | x86_cpu_idle_get(void (**func)(void), char *text, size_t len) |
| 440 | { |
| 441 | |
| 442 | *func = x86_cpu_idle; |
| 443 | |
| 444 | (void)strlcpy(text, x86_cpu_idle_text, len); |
| 445 | } |
| 446 | |
| 447 | void |
| 448 | x86_cpu_idle_set(void (*func)(void), const char *text, bool ipi) |
| 449 | { |
| 450 | |
| 451 | x86_cpu_idle = func; |
| 452 | x86_cpu_idle_ipi = ipi; |
| 453 | |
| 454 | (void)strlcpy(x86_cpu_idle_text, text, sizeof(x86_cpu_idle_text)); |
| 455 | } |
| 456 | |
| 457 | #ifndef XEN |
| 458 | |
| 459 | #define KBTOB(x) ((size_t)(x) * 1024UL) |
| 460 | #define MBTOB(x) ((size_t)(x) * 1024UL * 1024UL) |
| 461 | |
| 462 | static struct { |
| 463 | int freelist; |
| 464 | uint64_t limit; |
| 465 | } x86_freelists[VM_NFREELIST] = { |
| 466 | { VM_FREELIST_DEFAULT, 0 }, |
| 467 | #ifdef VM_FREELIST_FIRST1T |
| 468 | /* 40-bit addresses needed for modern graphics. */ |
| 469 | { VM_FREELIST_FIRST1T, 1ULL * 1024 * 1024 * 1024 * 1024 }, |
| 470 | #endif |
| 471 | #ifdef VM_FREELIST_FIRST64G |
| 472 | /* 36-bit addresses needed for oldish graphics. */ |
| 473 | { VM_FREELIST_FIRST64G, 64ULL * 1024 * 1024 * 1024 }, |
| 474 | #endif |
| 475 | #ifdef VM_FREELIST_FIRST4G |
| 476 | /* 32-bit addresses needed for PCI 32-bit DMA and old graphics. */ |
| 477 | { VM_FREELIST_FIRST4G, 4ULL * 1024 * 1024 * 1024 }, |
| 478 | #endif |
| 479 | /* 30-bit addresses needed for ancient graphics. */ |
| 480 | { VM_FREELIST_FIRST1G, 1ULL * 1024 * 1024 * 1024 }, |
| 481 | /* 24-bit addresses needed for ISA DMA. */ |
| 482 | { VM_FREELIST_FIRST16, 16 * 1024 * 1024 }, |
| 483 | }; |
| 484 | |
| 485 | extern paddr_t avail_start, avail_end; |
| 486 | |
| 487 | int |
| 488 | x86_select_freelist(uint64_t maxaddr) |
| 489 | { |
| 490 | unsigned int i; |
| 491 | |
| 492 | if (avail_end <= maxaddr) |
| 493 | return VM_NFREELIST; |
| 494 | |
| 495 | for (i = 0; i < __arraycount(x86_freelists); i++) { |
| 496 | if ((x86_freelists[i].limit - 1) <= maxaddr) |
| 497 | return x86_freelists[i].freelist; |
| 498 | } |
| 499 | |
| 500 | panic("no freelist for maximum address %" PRIx64, maxaddr); |
| 501 | } |
| 502 | |
| 503 | static int |
| 504 | x86_add_cluster(struct extent *iomem_ex, uint64_t seg_start, uint64_t seg_end, |
| 505 | uint32_t type) |
| 506 | { |
| 507 | uint64_t new_physmem = 0; |
| 508 | phys_ram_seg_t *cluster; |
| 509 | int i; |
| 510 | |
| 511 | #ifdef i386 |
| 512 | #ifdef PAE |
| 513 | #define TOPLIMIT 0x1000000000ULL /* 64GB */ |
| 514 | #else |
| 515 | #define TOPLIMIT 0x100000000ULL /* 4GB */ |
| 516 | #endif |
| 517 | #else |
| 518 | #define TOPLIMIT 0x100000000000ULL /* 16TB */ |
| 519 | #endif |
| 520 | |
| 521 | if (seg_end > TOPLIMIT) { |
| 522 | aprint_verbose("WARNING: skipping large memory map entry: " |
| 523 | "0x%" PRIx64"/0x%" PRIx64"/0x%x\n" , |
| 524 | seg_start, (seg_end - seg_start), type); |
| 525 | return 0; |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * XXX: Chop the last page off the size so that it can fit in avail_end. |
| 530 | */ |
| 531 | if (seg_end == TOPLIMIT) |
| 532 | seg_end -= PAGE_SIZE; |
| 533 | |
| 534 | if (seg_end <= seg_start) |
| 535 | return 0; |
| 536 | |
| 537 | for (i = 0; i < mem_cluster_cnt; i++) { |
| 538 | cluster = &mem_clusters[i]; |
| 539 | if ((cluster->start == round_page(seg_start)) && |
| 540 | (cluster->size == trunc_page(seg_end) - cluster->start)) { |
| 541 | #ifdef DEBUG_MEMLOAD |
| 542 | printf("WARNING: skipping duplicate segment entry\n" ); |
| 543 | #endif |
| 544 | return 0; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * Allocate the physical addresses used by RAM from the iomem extent |
| 550 | * map. This is done before the addresses are page rounded just to make |
| 551 | * sure we get them all. |
| 552 | */ |
| 553 | if (seg_start < 0x100000000ULL) { |
| 554 | uint64_t io_end; |
| 555 | |
| 556 | if (seg_end > 0x100000000ULL) |
| 557 | io_end = 0x100000000ULL; |
| 558 | else |
| 559 | io_end = seg_end; |
| 560 | |
| 561 | if (iomem_ex != NULL && extent_alloc_region(iomem_ex, seg_start, |
| 562 | io_end - seg_start, EX_NOWAIT)) { |
| 563 | /* XXX What should we do? */ |
| 564 | printf("WARNING: CAN't ALLOCATE MEMORY SEGMENT " |
| 565 | "(0x%" PRIx64"/0x%" PRIx64"/0x%x) FROM " |
| 566 | "IOMEM EXTENT MAP!\n" , |
| 567 | seg_start, seg_end - seg_start, type); |
| 568 | return 0; |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | /* If it's not free memory, skip it. */ |
| 573 | if (type != BIM_Memory) |
| 574 | return 0; |
| 575 | |
| 576 | if (mem_cluster_cnt >= VM_PHYSSEG_MAX) { |
| 577 | panic("%s: too many memory segments (increase VM_PHYSSEG_MAX)" , |
| 578 | __func__); |
| 579 | } |
| 580 | |
| 581 | #ifdef PHYSMEM_MAX_ADDR |
| 582 | if (seg_start >= MBTOB(PHYSMEM_MAX_ADDR)) |
| 583 | return 0; |
| 584 | if (seg_end > MBTOB(PHYSMEM_MAX_ADDR)) |
| 585 | seg_end = MBTOB(PHYSMEM_MAX_ADDR); |
| 586 | #endif |
| 587 | |
| 588 | seg_start = round_page(seg_start); |
| 589 | seg_end = trunc_page(seg_end); |
| 590 | |
| 591 | if (seg_start == seg_end) |
| 592 | return 0; |
| 593 | |
| 594 | cluster = &mem_clusters[mem_cluster_cnt]; |
| 595 | cluster->start = seg_start; |
| 596 | if (iomem_ex != NULL) |
| 597 | new_physmem = physmem + atop(seg_end - seg_start); |
| 598 | |
| 599 | #ifdef PHYSMEM_MAX_SIZE |
| 600 | if (iomem_ex != NULL) { |
| 601 | if (physmem >= atop(MBTOB(PHYSMEM_MAX_SIZE))) |
| 602 | return 0; |
| 603 | if (new_physmem > atop(MBTOB(PHYSMEM_MAX_SIZE))) { |
| 604 | seg_end = seg_start + MBTOB(PHYSMEM_MAX_SIZE) - ptoa(physmem); |
| 605 | new_physmem = atop(MBTOB(PHYSMEM_MAX_SIZE)); |
| 606 | } |
| 607 | } |
| 608 | #endif |
| 609 | |
| 610 | cluster->size = seg_end - seg_start; |
| 611 | |
| 612 | if (iomem_ex != NULL) { |
| 613 | if (avail_end < seg_end) |
| 614 | avail_end = seg_end; |
| 615 | physmem = new_physmem; |
| 616 | } |
| 617 | mem_cluster_cnt++; |
| 618 | |
| 619 | return 0; |
| 620 | } |
| 621 | |
| 622 | static int |
| 623 | x86_parse_clusters(struct btinfo_memmap *bim, struct extent *iomem_ex) |
| 624 | { |
| 625 | uint64_t seg_start, seg_end; |
| 626 | uint64_t addr, size; |
| 627 | uint32_t type; |
| 628 | int x; |
| 629 | |
| 630 | KASSERT(bim != NULL); |
| 631 | KASSERT(bim->num > 0); |
| 632 | |
| 633 | #ifdef DEBUG_MEMLOAD |
| 634 | printf("BIOS MEMORY MAP (%d ENTRIES):\n" , bim->num); |
| 635 | #endif |
| 636 | |
| 637 | for (x = 0; x < bim->num; x++) { |
| 638 | addr = bim->entry[x].addr; |
| 639 | size = bim->entry[x].size; |
| 640 | type = bim->entry[x].type; |
| 641 | #ifdef DEBUG_MEMLOAD |
| 642 | printf(" addr 0x%" PRIx64" size 0x%" PRIx64" type 0x%x\n" , |
| 643 | addr, size, type); |
| 644 | #endif |
| 645 | |
| 646 | /* If the segment is not memory, skip it. */ |
| 647 | switch (type) { |
| 648 | case BIM_Memory: |
| 649 | case BIM_ACPI: |
| 650 | case BIM_NVS: |
| 651 | break; |
| 652 | default: |
| 653 | continue; |
| 654 | } |
| 655 | |
| 656 | /* If the segment is smaller than a page, skip it. */ |
| 657 | if (size < PAGE_SIZE) |
| 658 | continue; |
| 659 | |
| 660 | seg_start = addr; |
| 661 | seg_end = addr + size; |
| 662 | |
| 663 | /* |
| 664 | * XXX XXX: Avoid compatibility holes. |
| 665 | * |
| 666 | * Holes within memory space that allow access to be directed |
| 667 | * to the PC-compatible frame buffer (0xa0000-0xbffff), to |
| 668 | * adapter ROM space (0xc0000-0xdffff), and to system BIOS |
| 669 | * space (0xe0000-0xfffff). |
| 670 | * |
| 671 | * Some laptop (for example, Toshiba Satellite2550X) report |
| 672 | * this area and occurred problems, so we avoid this area. |
| 673 | */ |
| 674 | if (seg_start < 0x100000 && seg_end > 0xa0000) { |
| 675 | printf("WARNING: memory map entry overlaps " |
| 676 | "with ``Compatibility Holes'': " |
| 677 | "0x%" PRIx64"/0x%" PRIx64"/0x%x\n" , seg_start, |
| 678 | seg_end - seg_start, type); |
| 679 | |
| 680 | x86_add_cluster(iomem_ex, seg_start, 0xa0000, type); |
| 681 | x86_add_cluster(iomem_ex, 0x100000, seg_end, type); |
| 682 | } else { |
| 683 | x86_add_cluster(iomem_ex, seg_start, seg_end, type); |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | return 0; |
| 688 | } |
| 689 | |
| 690 | static int |
| 691 | x86_fake_clusters(struct extent *iomem_ex) |
| 692 | { |
| 693 | phys_ram_seg_t *cluster; |
| 694 | KASSERT(mem_cluster_cnt == 0); |
| 695 | |
| 696 | /* |
| 697 | * Allocate the physical addresses used by RAM from the iomem extent |
| 698 | * map. This is done before the addresses are page rounded just to make |
| 699 | * sure we get them all. |
| 700 | */ |
| 701 | if (extent_alloc_region(iomem_ex, 0, KBTOB(biosbasemem), EX_NOWAIT)) { |
| 702 | /* XXX What should we do? */ |
| 703 | printf("WARNING: CAN'T ALLOCATE BASE MEMORY FROM " |
| 704 | "IOMEM EXTENT MAP!\n" ); |
| 705 | } |
| 706 | |
| 707 | cluster = &mem_clusters[0]; |
| 708 | cluster->start = 0; |
| 709 | cluster->size = trunc_page(KBTOB(biosbasemem)); |
| 710 | physmem += atop(cluster->size); |
| 711 | |
| 712 | if (extent_alloc_region(iomem_ex, IOM_END, KBTOB(biosextmem), |
| 713 | EX_NOWAIT)) { |
| 714 | /* XXX What should we do? */ |
| 715 | printf("WARNING: CAN'T ALLOCATE EXTENDED MEMORY FROM " |
| 716 | "IOMEM EXTENT MAP!\n" ); |
| 717 | } |
| 718 | |
| 719 | #if NISADMA > 0 |
| 720 | /* |
| 721 | * Some motherboards/BIOSes remap the 384K of RAM that would |
| 722 | * normally be covered by the ISA hole to the end of memory |
| 723 | * so that it can be used. However, on a 16M system, this |
| 724 | * would cause bounce buffers to be allocated and used. |
| 725 | * This is not desirable behaviour, as more than 384K of |
| 726 | * bounce buffers might be allocated. As a work-around, |
| 727 | * we round memory down to the nearest 1M boundary if |
| 728 | * we're using any isadma devices and the remapped memory |
| 729 | * is what puts us over 16M. |
| 730 | */ |
| 731 | if (biosextmem > (15*1024) && biosextmem < (16*1024)) { |
| 732 | char pbuf[9]; |
| 733 | |
| 734 | format_bytes(pbuf, sizeof(pbuf), biosextmem - (15*1024)); |
| 735 | printf("Warning: ignoring %s of remapped memory\n" , pbuf); |
| 736 | biosextmem = (15*1024); |
| 737 | } |
| 738 | #endif |
| 739 | |
| 740 | cluster = &mem_clusters[1]; |
| 741 | cluster->start = IOM_END; |
| 742 | cluster->size = trunc_page(KBTOB(biosextmem)); |
| 743 | physmem += atop(cluster->size); |
| 744 | |
| 745 | mem_cluster_cnt = 2; |
| 746 | |
| 747 | avail_end = IOM_END + trunc_page(KBTOB(biosextmem)); |
| 748 | |
| 749 | return 0; |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * x86_load_region: load the physical memory region from seg_start to seg_end |
| 754 | * into the VM system. |
| 755 | */ |
| 756 | static void |
| 757 | x86_load_region(uint64_t seg_start, uint64_t seg_end) |
| 758 | { |
| 759 | unsigned int i; |
| 760 | uint64_t tmp; |
| 761 | |
| 762 | i = __arraycount(x86_freelists); |
| 763 | while (i--) { |
| 764 | if (x86_freelists[i].limit <= seg_start) |
| 765 | continue; |
| 766 | if (x86_freelists[i].freelist == VM_FREELIST_DEFAULT) |
| 767 | continue; |
| 768 | tmp = MIN(x86_freelists[i].limit, seg_end); |
| 769 | if (tmp == seg_start) |
| 770 | continue; |
| 771 | |
| 772 | #ifdef DEBUG_MEMLOAD |
| 773 | printf("loading freelist %d 0x%" PRIx64"-0x%" PRIx64 |
| 774 | " (0x%" PRIx64"-0x%" PRIx64")\n" , x86_freelists[i].freelist, |
| 775 | seg_start, tmp, (uint64_t)atop(seg_start), |
| 776 | (uint64_t)atop(tmp)); |
| 777 | #endif |
| 778 | |
| 779 | uvm_page_physload(atop(seg_start), atop(tmp), atop(seg_start), |
| 780 | atop(tmp), x86_freelists[i].freelist); |
| 781 | seg_start = tmp; |
| 782 | } |
| 783 | |
| 784 | if (seg_start != seg_end) { |
| 785 | #ifdef DEBUG_MEMLOAD |
| 786 | printf("loading default 0x%" PRIx64"-0x%" PRIx64 |
| 787 | " (0x%" PRIx64"-0x%" PRIx64")\n" , seg_start, seg_end, |
| 788 | (uint64_t)atop(seg_start), (uint64_t)atop(seg_end)); |
| 789 | #endif |
| 790 | uvm_page_physload(atop(seg_start), atop(seg_end), |
| 791 | atop(seg_start), atop(seg_end), VM_FREELIST_DEFAULT); |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * init_x86_clusters: retrieve the memory clusters provided by the BIOS, and |
| 797 | * initialize mem_clusters. |
| 798 | */ |
| 799 | void |
| 800 | init_x86_clusters(void) |
| 801 | { |
| 802 | extern struct extent *iomem_ex; |
| 803 | struct btinfo_memmap *bim; |
| 804 | |
| 805 | /* |
| 806 | * Check to see if we have a memory map from the BIOS (passed to us by |
| 807 | * the boot program). |
| 808 | */ |
| 809 | #ifdef i386 |
| 810 | extern int biosmem_implicit; |
| 811 | bim = lookup_bootinfo(BTINFO_MEMMAP); |
| 812 | if ((biosmem_implicit || (biosbasemem == 0 && biosextmem == 0)) && |
| 813 | bim != NULL && bim->num > 0) |
| 814 | x86_parse_clusters(bim, iomem_ex); |
| 815 | #else |
| 816 | #if !defined(REALBASEMEM) && !defined(REALEXTMEM) |
| 817 | bim = lookup_bootinfo(BTINFO_MEMMAP); |
| 818 | if (bim != NULL && bim->num > 0) |
| 819 | x86_parse_clusters(bim, iomem_ex); |
| 820 | #else |
| 821 | (void)bim, (void)iomem_ex; |
| 822 | #endif |
| 823 | #endif |
| 824 | |
| 825 | if (mem_cluster_cnt == 0) { |
| 826 | /* |
| 827 | * If x86_parse_clusters didn't find any valid segment, create |
| 828 | * fake clusters. |
| 829 | */ |
| 830 | x86_fake_clusters(iomem_ex); |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | /* |
| 835 | * init_x86_vm: initialize the VM system on x86. We basically internalize as |
| 836 | * many physical pages as we can, starting at avail_start, but we don't |
| 837 | * internalize the kernel physical pages (from IOM_END to pa_kend). |
| 838 | */ |
| 839 | int |
| 840 | init_x86_vm(paddr_t pa_kend) |
| 841 | { |
| 842 | uint64_t seg_start, seg_end; |
| 843 | uint64_t seg_start1, seg_end1; |
| 844 | int x; |
| 845 | unsigned i; |
| 846 | |
| 847 | for (i = 0; i < __arraycount(x86_freelists); i++) { |
| 848 | if (avail_end < x86_freelists[i].limit) |
| 849 | x86_freelists[i].freelist = VM_FREELIST_DEFAULT; |
| 850 | } |
| 851 | |
| 852 | #ifdef amd64 |
| 853 | extern vaddr_t kern_end; |
| 854 | extern vaddr_t module_start, module_end; |
| 855 | |
| 856 | module_start = kern_end; |
| 857 | module_end = KERNBASE + NKL2_KIMG_ENTRIES * NBPD_L2; |
| 858 | #endif |
| 859 | |
| 860 | /* |
| 861 | * Now, load the memory clusters (which have already been rounded and |
| 862 | * truncated) into the VM system. |
| 863 | * |
| 864 | * NOTE: we assume that memory starts at 0 and that the kernel is |
| 865 | * loaded at IOM_END (1MB). |
| 866 | */ |
| 867 | for (x = 0; x < mem_cluster_cnt; x++) { |
| 868 | const phys_ram_seg_t *cluster = &mem_clusters[x]; |
| 869 | |
| 870 | seg_start = cluster->start; |
| 871 | seg_end = cluster->start + cluster->size; |
| 872 | seg_start1 = 0; |
| 873 | seg_end1 = 0; |
| 874 | |
| 875 | /* Skip memory before our available starting point. */ |
| 876 | if (seg_end <= avail_start) |
| 877 | continue; |
| 878 | |
| 879 | if (seg_start <= avail_start && avail_start < seg_end) { |
| 880 | seg_start = avail_start; |
| 881 | if (seg_start == seg_end) |
| 882 | continue; |
| 883 | } |
| 884 | |
| 885 | /* |
| 886 | * If this segment contains the kernel, split it in two, around |
| 887 | * the kernel. |
| 888 | */ |
| 889 | if (seg_start <= IOM_END && pa_kend <= seg_end) { |
| 890 | seg_start1 = pa_kend; |
| 891 | seg_end1 = seg_end; |
| 892 | seg_end = IOM_END; |
| 893 | KASSERT(seg_end < seg_end1); |
| 894 | } |
| 895 | |
| 896 | /* First hunk */ |
| 897 | if (seg_start != seg_end) { |
| 898 | x86_load_region(seg_start, seg_end); |
| 899 | } |
| 900 | |
| 901 | /* Second hunk */ |
| 902 | if (seg_start1 != seg_end1) { |
| 903 | x86_load_region(seg_start1, seg_end1); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | return 0; |
| 908 | } |
| 909 | |
| 910 | #endif /* !XEN */ |
| 911 | |
| 912 | void |
| 913 | x86_reset(void) |
| 914 | { |
| 915 | uint8_t b; |
| 916 | |
| 917 | #if NACPICA > 0 |
| 918 | /* |
| 919 | * If ACPI is active, try to reset using the reset register |
| 920 | * defined in the FADT. |
| 921 | */ |
| 922 | if (acpi_active) { |
| 923 | if (acpi_reset() == 0) { |
| 924 | delay(500000); /* wait 0.5 sec to see if that did it */ |
| 925 | } |
| 926 | } |
| 927 | #endif |
| 928 | |
| 929 | /* |
| 930 | * The keyboard controller has 4 random output pins, one of which is |
| 931 | * connected to the RESET pin on the CPU in many PCs. We tell the |
| 932 | * keyboard controller to pulse this line a couple of times. |
| 933 | */ |
| 934 | outb(IO_KBD + KBCMDP, KBC_PULSE0); |
| 935 | delay(100000); |
| 936 | outb(IO_KBD + KBCMDP, KBC_PULSE0); |
| 937 | delay(100000); |
| 938 | |
| 939 | /* |
| 940 | * Attempt to force a reset via the Reset Control register at |
| 941 | * I/O port 0xcf9. Bit 2 forces a system reset when it |
| 942 | * transitions from 0 to 1. Bit 1 selects the type of reset |
| 943 | * to attempt: 0 selects a "soft" reset, and 1 selects a |
| 944 | * "hard" reset. We try a "hard" reset. The first write sets |
| 945 | * bit 1 to select a "hard" reset and clears bit 2. The |
| 946 | * second write forces a 0 -> 1 transition in bit 2 to trigger |
| 947 | * a reset. |
| 948 | */ |
| 949 | outb(0xcf9, 0x2); |
| 950 | outb(0xcf9, 0x6); |
| 951 | DELAY(500000); /* wait 0.5 sec to see if that did it */ |
| 952 | |
| 953 | /* |
| 954 | * Attempt to force a reset via the Fast A20 and Init register |
| 955 | * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. |
| 956 | * Bit 0 asserts INIT# when set to 1. We are careful to only |
| 957 | * preserve bit 1 while setting bit 0. We also must clear bit |
| 958 | * 0 before setting it if it isn't already clear. |
| 959 | */ |
| 960 | b = inb(0x92); |
| 961 | if (b != 0xff) { |
| 962 | if ((b & 0x1) != 0) |
| 963 | outb(0x92, b & 0xfe); |
| 964 | outb(0x92, b | 0x1); |
| 965 | DELAY(500000); /* wait 0.5 sec to see if that did it */ |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | static int |
| 970 | x86_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, |
| 971 | void *arg0, void *arg1, void *arg2, void *arg3) |
| 972 | { |
| 973 | int result; |
| 974 | |
| 975 | result = KAUTH_RESULT_DEFER; |
| 976 | |
| 977 | switch (action) { |
| 978 | case KAUTH_MACHDEP_IOPERM_GET: |
| 979 | case KAUTH_MACHDEP_LDT_GET: |
| 980 | case KAUTH_MACHDEP_LDT_SET: |
| 981 | case KAUTH_MACHDEP_MTRR_GET: |
| 982 | result = KAUTH_RESULT_ALLOW; |
| 983 | |
| 984 | break; |
| 985 | |
| 986 | default: |
| 987 | break; |
| 988 | } |
| 989 | |
| 990 | return result; |
| 991 | } |
| 992 | |
| 993 | void |
| 994 | machdep_init(void) |
| 995 | { |
| 996 | |
| 997 | x86_listener = kauth_listen_scope(KAUTH_SCOPE_MACHDEP, |
| 998 | x86_listener_cb, NULL); |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * x86_startup: x86 common startup routine |
| 1003 | * |
| 1004 | * called by cpu_startup. |
| 1005 | */ |
| 1006 | |
| 1007 | void |
| 1008 | x86_startup(void) |
| 1009 | { |
| 1010 | |
| 1011 | #if !defined(XEN) |
| 1012 | nmi_init(); |
| 1013 | #endif /* !defined(XEN) */ |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * machine dependent system variables. |
| 1018 | */ |
| 1019 | static int |
| 1020 | sysctl_machdep_booted_kernel(SYSCTLFN_ARGS) |
| 1021 | { |
| 1022 | struct btinfo_bootpath *bibp; |
| 1023 | struct sysctlnode node; |
| 1024 | |
| 1025 | bibp = lookup_bootinfo(BTINFO_BOOTPATH); |
| 1026 | if(!bibp) |
| 1027 | return ENOENT; /* ??? */ |
| 1028 | |
| 1029 | node = *rnode; |
| 1030 | node.sysctl_data = bibp->bootpath; |
| 1031 | node.sysctl_size = sizeof(bibp->bootpath); |
| 1032 | return sysctl_lookup(SYSCTLFN_CALL(&node)); |
| 1033 | } |
| 1034 | |
| 1035 | static int |
| 1036 | sysctl_machdep_diskinfo(SYSCTLFN_ARGS) |
| 1037 | { |
| 1038 | struct sysctlnode node; |
| 1039 | extern struct bi_devmatch *x86_alldisks; |
| 1040 | extern int x86_ndisks; |
| 1041 | |
| 1042 | if (x86_alldisks == NULL) |
| 1043 | return EOPNOTSUPP; |
| 1044 | |
| 1045 | node = *rnode; |
| 1046 | node.sysctl_data = x86_alldisks; |
| 1047 | node.sysctl_size = sizeof(struct disklist) + |
| 1048 | (x86_ndisks - 1) * sizeof(struct nativedisk_info); |
| 1049 | return sysctl_lookup(SYSCTLFN_CALL(&node)); |
| 1050 | } |
| 1051 | |
| 1052 | static void |
| 1053 | const_sysctl(struct sysctllog **clog, const char *name, int type, |
| 1054 | u_quad_t value, int tag) |
| 1055 | { |
| 1056 | (sysctl_createv)(clog, 0, NULL, NULL, |
| 1057 | CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE, |
| 1058 | type, name, NULL, NULL, value, NULL, 0, |
| 1059 | CTL_MACHDEP, tag, CTL_EOL); |
| 1060 | } |
| 1061 | |
| 1062 | SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup" ) |
| 1063 | { |
| 1064 | extern uint64_t tsc_freq; |
| 1065 | extern int sparse_dump; |
| 1066 | |
| 1067 | sysctl_createv(clog, 0, NULL, NULL, |
| 1068 | CTLFLAG_PERMANENT, |
| 1069 | CTLTYPE_NODE, "machdep" , NULL, |
| 1070 | NULL, 0, NULL, 0, |
| 1071 | CTL_MACHDEP, CTL_EOL); |
| 1072 | |
| 1073 | sysctl_createv(clog, 0, NULL, NULL, |
| 1074 | CTLFLAG_PERMANENT, |
| 1075 | CTLTYPE_STRUCT, "console_device" , NULL, |
| 1076 | sysctl_consdev, 0, NULL, sizeof(dev_t), |
| 1077 | CTL_MACHDEP, CPU_CONSDEV, CTL_EOL); |
| 1078 | sysctl_createv(clog, 0, NULL, NULL, |
| 1079 | CTLFLAG_PERMANENT, |
| 1080 | CTLTYPE_STRING, "booted_kernel" , NULL, |
| 1081 | sysctl_machdep_booted_kernel, 0, NULL, 0, |
| 1082 | CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL); |
| 1083 | sysctl_createv(clog, 0, NULL, NULL, |
| 1084 | CTLFLAG_PERMANENT, |
| 1085 | CTLTYPE_STRUCT, "diskinfo" , NULL, |
| 1086 | sysctl_machdep_diskinfo, 0, NULL, 0, |
| 1087 | CTL_MACHDEP, CPU_DISKINFO, CTL_EOL); |
| 1088 | |
| 1089 | sysctl_createv(clog, 0, NULL, NULL, |
| 1090 | CTLFLAG_PERMANENT, |
| 1091 | CTLTYPE_STRING, "cpu_brand" , NULL, |
| 1092 | NULL, 0, cpu_brand_string, 0, |
| 1093 | CTL_MACHDEP, CTL_CREATE, CTL_EOL); |
| 1094 | sysctl_createv(clog, 0, NULL, NULL, |
| 1095 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 1096 | CTLTYPE_INT, "sparse_dump" , NULL, |
| 1097 | NULL, 0, &sparse_dump, 0, |
| 1098 | CTL_MACHDEP, CTL_CREATE, CTL_EOL); |
| 1099 | sysctl_createv(clog, 0, NULL, NULL, |
| 1100 | CTLFLAG_PERMANENT, |
| 1101 | CTLTYPE_QUAD, "tsc_freq" , NULL, |
| 1102 | NULL, 0, &tsc_freq, 0, |
| 1103 | CTL_MACHDEP, CTL_CREATE, CTL_EOL); |
| 1104 | sysctl_createv(clog, 0, NULL, NULL, |
| 1105 | CTLFLAG_PERMANENT, |
| 1106 | CTLTYPE_INT, "pae" , |
| 1107 | SYSCTL_DESCR("Whether the kernel uses PAE" ), |
| 1108 | NULL, 0, &use_pae, 0, |
| 1109 | CTL_MACHDEP, CTL_CREATE, CTL_EOL); |
| 1110 | |
| 1111 | /* None of these can ever change once the system has booted */ |
| 1112 | const_sysctl(clog, "fpu_present" , CTLTYPE_INT, i386_fpu_present, |
| 1113 | CPU_FPU_PRESENT); |
| 1114 | const_sysctl(clog, "osfxsr" , CTLTYPE_INT, i386_use_fxsave, |
| 1115 | CPU_OSFXSR); |
| 1116 | const_sysctl(clog, "sse" , CTLTYPE_INT, i386_has_sse, |
| 1117 | CPU_SSE); |
| 1118 | const_sysctl(clog, "sse2" , CTLTYPE_INT, i386_has_sse2, |
| 1119 | CPU_SSE2); |
| 1120 | |
| 1121 | const_sysctl(clog, "fpu_save" , CTLTYPE_INT, x86_fpu_save, |
| 1122 | CTL_CREATE); |
| 1123 | const_sysctl(clog, "fpu_save_size" , CTLTYPE_INT, x86_fpu_save_size, |
| 1124 | CTL_CREATE); |
| 1125 | const_sysctl(clog, "xsave_features" , CTLTYPE_QUAD, x86_xsave_features, |
| 1126 | CTL_CREATE); |
| 1127 | |
| 1128 | #ifndef XEN |
| 1129 | const_sysctl(clog, "biosbasemem" , CTLTYPE_INT, biosbasemem, |
| 1130 | CPU_BIOSBASEMEM); |
| 1131 | const_sysctl(clog, "biosextmem" , CTLTYPE_INT, biosextmem, |
| 1132 | CPU_BIOSEXTMEM); |
| 1133 | #endif |
| 1134 | } |
| 1135 | |