| 1 | /* $NetBSD: acpi_srat.c,v 1.3 2010/03/05 14:00:17 jruoho Exp $ */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (c) 2009 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Christoph Egger. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 29 | * POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | |
| 32 | #include <sys/cdefs.h> |
| 33 | __KERNEL_RCSID(0, "$NetBSD: acpi_srat.c,v 1.3 2010/03/05 14:00:17 jruoho Exp $" ); |
| 34 | |
| 35 | #include <sys/param.h> |
| 36 | #include <sys/kmem.h> |
| 37 | #include <sys/systm.h> |
| 38 | |
| 39 | #include <dev/acpi/acpivar.h> |
| 40 | #include <dev/acpi/acpi_srat.h> |
| 41 | |
| 42 | static ACPI_TABLE_SRAT *srat; |
| 43 | |
| 44 | struct acpisrat_node { |
| 45 | acpisrat_nodeid_t nodeid; |
| 46 | uint32_t ncpus; /* Number of cpus in this node */ |
| 47 | struct acpisrat_cpu **cpu; /* Array of cpus */ |
| 48 | uint32_t nmems; /* Number of memory ranges in this node */ |
| 49 | struct acpisrat_mem **mem; /* Array of memory ranges */ |
| 50 | }; |
| 51 | |
| 52 | static uint32_t nnodes; /* Number of NUMA nodes */ |
| 53 | static struct acpisrat_node *node_array; /* Array of NUMA nodes */ |
| 54 | static uint32_t ncpus; /* Number of CPUs */ |
| 55 | static struct acpisrat_cpu *cpu_array; /* Array of cpus */ |
| 56 | static uint32_t nmems; /* Number of Memory ranges */ |
| 57 | static struct acpisrat_mem *mem_array; |
| 58 | |
| 59 | |
| 60 | struct cpulist { |
| 61 | struct acpisrat_cpu cpu; |
| 62 | TAILQ_ENTRY(cpulist) entry; |
| 63 | }; |
| 64 | |
| 65 | static TAILQ_HEAD(, cpulist) cpulisthead; |
| 66 | |
| 67 | #define CPU_INIT TAILQ_INIT(&cpulisthead); |
| 68 | #define CPU_FOREACH(cpu) TAILQ_FOREACH(cpu, &cpulisthead, entry) |
| 69 | #define CPU_ADD(cpu) TAILQ_INSERT_TAIL(&cpulisthead, cpu, entry) |
| 70 | #define CPU_REM(cpu) TAILQ_REMOVE(&cpulisthead, cpu, entry) |
| 71 | #define CPU_FIRST TAILQ_FIRST(&cpulisthead) |
| 72 | |
| 73 | |
| 74 | struct memlist { |
| 75 | struct acpisrat_mem mem; |
| 76 | TAILQ_ENTRY(memlist) entry; |
| 77 | }; |
| 78 | |
| 79 | static TAILQ_HEAD(, memlist) memlisthead; |
| 80 | |
| 81 | #define MEM_INIT TAILQ_INIT(&memlisthead) |
| 82 | #define MEM_FOREACH(mem) TAILQ_FOREACH(mem, &memlisthead, entry) |
| 83 | #define MEM_ADD(mem) TAILQ_INSERT_TAIL(&memlisthead, mem, entry) |
| 84 | #define MEM_ADD_BEFORE(mem, b) TAILQ_INSERT_BEFORE(b, mem, entry) |
| 85 | #define MEM_REM(mem) TAILQ_REMOVE(&memlisthead, mem, entry) |
| 86 | #define MEM_FIRST TAILQ_FIRST(&memlisthead) |
| 87 | |
| 88 | |
| 89 | static struct cpulist * |
| 90 | cpu_alloc(void) |
| 91 | { |
| 92 | return kmem_zalloc(sizeof(struct cpulist), KM_NOSLEEP); |
| 93 | } |
| 94 | |
| 95 | static void |
| 96 | cpu_free(struct cpulist *c) |
| 97 | { |
| 98 | kmem_free(c, sizeof(struct cpulist)); |
| 99 | } |
| 100 | |
| 101 | #if 0 |
| 102 | static struct cpulist * |
| 103 | cpu_get(acpisrat_nodeid_t nodeid) |
| 104 | { |
| 105 | struct cpulist *tmp; |
| 106 | |
| 107 | CPU_FOREACH(tmp) { |
| 108 | if (tmp->cpu.nodeid == nodeid) |
| 109 | return tmp; |
| 110 | } |
| 111 | |
| 112 | return NULL; |
| 113 | } |
| 114 | #endif |
| 115 | |
| 116 | static struct memlist * |
| 117 | mem_alloc(void) |
| 118 | { |
| 119 | return kmem_zalloc(sizeof(struct memlist), KM_NOSLEEP); |
| 120 | } |
| 121 | |
| 122 | static void |
| 123 | mem_free(struct memlist *m) |
| 124 | { |
| 125 | kmem_free(m, sizeof(struct memlist)); |
| 126 | } |
| 127 | |
| 128 | static struct memlist * |
| 129 | mem_get(acpisrat_nodeid_t nodeid) |
| 130 | { |
| 131 | struct memlist *tmp; |
| 132 | |
| 133 | MEM_FOREACH(tmp) { |
| 134 | if (tmp->mem.nodeid == nodeid) |
| 135 | return tmp; |
| 136 | } |
| 137 | |
| 138 | return NULL; |
| 139 | } |
| 140 | |
| 141 | |
| 142 | bool |
| 143 | acpisrat_exist(void) |
| 144 | { |
| 145 | ACPI_TABLE_HEADER *table; |
| 146 | ACPI_STATUS rv; |
| 147 | |
| 148 | rv = AcpiGetTable(ACPI_SIG_SRAT, 1, (ACPI_TABLE_HEADER **)&table); |
| 149 | if (ACPI_FAILURE(rv)) |
| 150 | return false; |
| 151 | |
| 152 | /* Check if header is valid */ |
| 153 | if (table == NULL) |
| 154 | return false; |
| 155 | |
| 156 | if (table->Length == 0xffffffff) |
| 157 | return false; |
| 158 | |
| 159 | srat = (ACPI_TABLE_SRAT *)table; |
| 160 | |
| 161 | return true; |
| 162 | } |
| 163 | |
| 164 | static int |
| 165 | acpisrat_parse(void) |
| 166 | { |
| 167 | ACPI_SUBTABLE_HEADER *subtable; |
| 168 | ACPI_SRAT_CPU_AFFINITY *srat_cpu; |
| 169 | ACPI_SRAT_MEM_AFFINITY *srat_mem; |
| 170 | ACPI_SRAT_X2APIC_CPU_AFFINITY *srat_x2apic; |
| 171 | |
| 172 | acpisrat_nodeid_t nodeid; |
| 173 | struct cpulist *cpuentry = NULL; |
| 174 | struct memlist *mementry; |
| 175 | uint32_t srat_pos; |
| 176 | bool ignore_cpu_affinity = false; |
| 177 | |
| 178 | KASSERT(srat != NULL); |
| 179 | |
| 180 | /* Content starts right after the header */ |
| 181 | srat_pos = sizeof(ACPI_TABLE_SRAT); |
| 182 | |
| 183 | while (srat_pos < srat->Header.Length) { |
| 184 | subtable = (ACPI_SUBTABLE_HEADER *)((char *)srat + srat_pos); |
| 185 | srat_pos += subtable->Length; |
| 186 | |
| 187 | switch (subtable->Type) { |
| 188 | case ACPI_SRAT_TYPE_CPU_AFFINITY: |
| 189 | if (ignore_cpu_affinity) |
| 190 | continue; |
| 191 | |
| 192 | srat_cpu = (ACPI_SRAT_CPU_AFFINITY *)subtable; |
| 193 | nodeid = (srat_cpu->ProximityDomainHi[2] << 24) | |
| 194 | (srat_cpu->ProximityDomainHi[1] << 16) | |
| 195 | (srat_cpu->ProximityDomainHi[0] << 8) | |
| 196 | (srat_cpu->ProximityDomainLo); |
| 197 | |
| 198 | cpuentry = cpu_alloc(); |
| 199 | if (cpuentry == NULL) |
| 200 | return ENOMEM; |
| 201 | CPU_ADD(cpuentry); |
| 202 | |
| 203 | cpuentry->cpu.nodeid = nodeid; |
| 204 | cpuentry->cpu.apicid = srat_cpu->ApicId; |
| 205 | cpuentry->cpu.sapiceid = srat_cpu->LocalSapicEid; |
| 206 | cpuentry->cpu.flags = srat_cpu->Flags; |
| 207 | cpuentry->cpu.clockdomain = srat_cpu->ClockDomain; |
| 208 | break; |
| 209 | |
| 210 | case ACPI_SRAT_TYPE_MEMORY_AFFINITY: |
| 211 | srat_mem = (ACPI_SRAT_MEM_AFFINITY *)subtable; |
| 212 | nodeid = srat_mem->ProximityDomain; |
| 213 | |
| 214 | mementry = mem_alloc(); |
| 215 | if (mementry == NULL) |
| 216 | return ENOMEM; |
| 217 | MEM_ADD(mementry); |
| 218 | |
| 219 | mementry->mem.nodeid = nodeid; |
| 220 | mementry->mem.baseaddress = srat_mem->BaseAddress; |
| 221 | mementry->mem.length = srat_mem->Length; |
| 222 | mementry->mem.flags = srat_mem->Flags; |
| 223 | break; |
| 224 | |
| 225 | case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: |
| 226 | srat_x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)subtable; |
| 227 | nodeid = srat_x2apic->ProximityDomain; |
| 228 | |
| 229 | /* This table entry overrides |
| 230 | * ACPI_SRAT_TYPE_CPU_AFFINITY. |
| 231 | */ |
| 232 | if (!ignore_cpu_affinity) { |
| 233 | struct cpulist *citer; |
| 234 | while ((citer = CPU_FIRST) != NULL) { |
| 235 | CPU_REM(citer); |
| 236 | cpu_free(citer); |
| 237 | } |
| 238 | ignore_cpu_affinity = true; |
| 239 | } |
| 240 | |
| 241 | cpuentry = cpu_alloc(); |
| 242 | if (cpuentry == NULL) |
| 243 | return ENOMEM; |
| 244 | CPU_ADD(cpuentry); |
| 245 | |
| 246 | cpuentry->cpu.nodeid = nodeid; |
| 247 | cpuentry->cpu.apicid = srat_x2apic->ApicId; |
| 248 | cpuentry->cpu.clockdomain = srat_x2apic->ClockDomain; |
| 249 | cpuentry->cpu.flags = srat_x2apic->Flags; |
| 250 | break; |
| 251 | |
| 252 | case ACPI_SRAT_TYPE_RESERVED: |
| 253 | printf("ACPI SRAT subtable reserved, length: 0x%x\n" , |
| 254 | subtable->Length); |
| 255 | break; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | static int |
| 263 | acpisrat_quirks(void) |
| 264 | { |
| 265 | struct cpulist *citer; |
| 266 | struct memlist *mem, *miter; |
| 267 | |
| 268 | /* Some sanity checks. */ |
| 269 | |
| 270 | /* Deal with holes in the memory nodes. |
| 271 | * BIOS doesn't enlist memory nodes which |
| 272 | * don't have any memory modules plugged in. |
| 273 | * This behaviour has been observed on AMD machines. |
| 274 | * |
| 275 | * Do that by searching for CPUs in NUMA nodes |
| 276 | * which don't exist in the memory and then insert |
| 277 | * a zero memory range for the missing node. |
| 278 | */ |
| 279 | CPU_FOREACH(citer) { |
| 280 | mem = mem_get(citer->cpu.nodeid); |
| 281 | if (mem != NULL) |
| 282 | continue; |
| 283 | mem = mem_alloc(); |
| 284 | if (mem == NULL) |
| 285 | return ENOMEM; |
| 286 | mem->mem.nodeid = citer->cpu.nodeid; |
| 287 | /* all other fields are already zero filled */ |
| 288 | |
| 289 | MEM_FOREACH(miter) { |
| 290 | if (miter->mem.nodeid < citer->cpu.nodeid) |
| 291 | continue; |
| 292 | MEM_ADD_BEFORE(mem, miter); |
| 293 | break; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | return 0; |
| 298 | } |
| 299 | |
| 300 | int |
| 301 | acpisrat_init(void) |
| 302 | { |
| 303 | if (!acpisrat_exist()) |
| 304 | return EEXIST; |
| 305 | return acpisrat_refresh(); |
| 306 | } |
| 307 | |
| 308 | int |
| 309 | acpisrat_refresh(void) |
| 310 | { |
| 311 | int rc, i, j, k; |
| 312 | struct cpulist *citer; |
| 313 | struct memlist *miter; |
| 314 | uint32_t cnodes = 0, mnodes = 0; |
| 315 | |
| 316 | CPU_INIT; |
| 317 | MEM_INIT; |
| 318 | |
| 319 | rc = acpisrat_parse(); |
| 320 | if (rc) |
| 321 | return rc; |
| 322 | |
| 323 | rc = acpisrat_quirks(); |
| 324 | if (rc) |
| 325 | return rc; |
| 326 | |
| 327 | /* cleanup resources */ |
| 328 | rc = acpisrat_exit(); |
| 329 | if (rc) |
| 330 | return rc; |
| 331 | |
| 332 | nnodes = 0; |
| 333 | ncpus = 0; |
| 334 | CPU_FOREACH(citer) { |
| 335 | cnodes = MAX(citer->cpu.nodeid, cnodes); |
| 336 | ncpus++; |
| 337 | } |
| 338 | |
| 339 | nmems = 0; |
| 340 | MEM_FOREACH(miter) { |
| 341 | mnodes = MAX(miter->mem.nodeid, mnodes); |
| 342 | nmems++; |
| 343 | } |
| 344 | |
| 345 | nnodes = MAX(cnodes, mnodes) + 1; |
| 346 | |
| 347 | node_array = kmem_zalloc(nnodes * sizeof(struct acpisrat_node), |
| 348 | KM_NOSLEEP); |
| 349 | if (node_array == NULL) |
| 350 | return ENOMEM; |
| 351 | |
| 352 | cpu_array = kmem_zalloc(ncpus * sizeof(struct acpisrat_cpu), |
| 353 | KM_NOSLEEP); |
| 354 | if (cpu_array == NULL) |
| 355 | return ENOMEM; |
| 356 | |
| 357 | mem_array = kmem_zalloc(nmems * sizeof(struct acpisrat_mem), |
| 358 | KM_NOSLEEP); |
| 359 | if (mem_array == NULL) |
| 360 | return ENOMEM; |
| 361 | |
| 362 | i = 0; |
| 363 | CPU_FOREACH(citer) { |
| 364 | memcpy(&cpu_array[i], &citer->cpu, sizeof(struct acpisrat_cpu)); |
| 365 | i++; |
| 366 | node_array[citer->cpu.nodeid].ncpus++; |
| 367 | } |
| 368 | |
| 369 | i = 0; |
| 370 | MEM_FOREACH(miter) { |
| 371 | memcpy(&mem_array[i], &miter->mem, sizeof(struct acpisrat_mem)); |
| 372 | i++; |
| 373 | node_array[miter->mem.nodeid].nmems++; |
| 374 | } |
| 375 | |
| 376 | for (i = 0; i < nnodes; i++) { |
| 377 | node_array[i].nodeid = i; |
| 378 | |
| 379 | node_array[i].cpu = kmem_zalloc(node_array[i].ncpus * |
| 380 | sizeof(struct acpisrat_cpu *), KM_NOSLEEP); |
| 381 | node_array[i].mem = kmem_zalloc(node_array[i].nmems * |
| 382 | sizeof(struct acpisrat_mem *), KM_NOSLEEP); |
| 383 | |
| 384 | k = 0; |
| 385 | for (j = 0; j < ncpus; j++) { |
| 386 | if (cpu_array[j].nodeid != i) |
| 387 | continue; |
| 388 | node_array[i].cpu[k] = &cpu_array[j]; |
| 389 | k++; |
| 390 | } |
| 391 | |
| 392 | k = 0; |
| 393 | for (j = 0; j < nmems; j++) { |
| 394 | if (mem_array[j].nodeid != i) |
| 395 | continue; |
| 396 | node_array[i].mem[k] = &mem_array[j]; |
| 397 | k++; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | while ((citer = CPU_FIRST) != NULL) { |
| 402 | CPU_REM(citer); |
| 403 | cpu_free(citer); |
| 404 | } |
| 405 | |
| 406 | while ((miter = MEM_FIRST) != NULL) { |
| 407 | MEM_REM(miter); |
| 408 | mem_free(miter); |
| 409 | } |
| 410 | |
| 411 | return 0; |
| 412 | } |
| 413 | |
| 414 | |
| 415 | int |
| 416 | acpisrat_exit(void) |
| 417 | { |
| 418 | int i; |
| 419 | |
| 420 | if (node_array) { |
| 421 | for (i = 0; i < nnodes; i++) { |
| 422 | if (node_array[i].cpu) |
| 423 | kmem_free(node_array[i].cpu, |
| 424 | node_array[i].ncpus * sizeof(struct acpisrat_cpu *)); |
| 425 | if (node_array[i].mem) |
| 426 | kmem_free(node_array[i].mem, |
| 427 | node_array[i].nmems * sizeof(struct acpisrat_mem *)); |
| 428 | } |
| 429 | kmem_free(node_array, nnodes * sizeof(struct acpisrat_node)); |
| 430 | } |
| 431 | node_array = NULL; |
| 432 | |
| 433 | if (cpu_array) |
| 434 | kmem_free(cpu_array, ncpus * sizeof(struct acpisrat_cpu)); |
| 435 | cpu_array = NULL; |
| 436 | |
| 437 | if (mem_array) |
| 438 | kmem_free(mem_array, nmems * sizeof(struct acpisrat_mem)); |
| 439 | mem_array = NULL; |
| 440 | |
| 441 | nnodes = 0; |
| 442 | ncpus = 0; |
| 443 | nmems = 0; |
| 444 | |
| 445 | return 0; |
| 446 | } |
| 447 | |
| 448 | |
| 449 | void |
| 450 | acpisrat_dump(void) |
| 451 | { |
| 452 | uint32_t i, j, nn, nc, nm; |
| 453 | struct acpisrat_cpu c; |
| 454 | struct acpisrat_mem m; |
| 455 | |
| 456 | nn = acpisrat_nodes(); |
| 457 | aprint_debug("SRAT: %u NUMA nodes\n" , nn); |
| 458 | for (i = 0; i < nn; i++) { |
| 459 | nc = acpisrat_node_cpus(i); |
| 460 | for (j = 0; j < nc; j++) { |
| 461 | acpisrat_cpu(i, j, &c); |
| 462 | aprint_debug("SRAT: node %u cpu %u " |
| 463 | "(apic %u, sapic %u, flags %u, clockdomain %u)\n" , |
| 464 | c.nodeid, j, c.apicid, c.sapiceid, c.flags, |
| 465 | c.clockdomain); |
| 466 | } |
| 467 | |
| 468 | nm = acpisrat_node_memoryranges(i); |
| 469 | for (j = 0; j < nm; j++) { |
| 470 | acpisrat_mem(i, j, &m); |
| 471 | aprint_debug("SRAT: node %u memory range %u (0x%" |
| 472 | PRIx64" - 0x%" PRIx64" flags %u)\n" , |
| 473 | m.nodeid, j, m.baseaddress, |
| 474 | m.baseaddress + m.length, m.flags); |
| 475 | } |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | uint32_t |
| 480 | acpisrat_nodes(void) |
| 481 | { |
| 482 | return nnodes; |
| 483 | } |
| 484 | |
| 485 | uint32_t |
| 486 | acpisrat_node_cpus(acpisrat_nodeid_t nodeid) |
| 487 | { |
| 488 | return node_array[nodeid].ncpus; |
| 489 | } |
| 490 | |
| 491 | uint32_t |
| 492 | acpisrat_node_memoryranges(acpisrat_nodeid_t nodeid) |
| 493 | { |
| 494 | return node_array[nodeid].nmems; |
| 495 | } |
| 496 | |
| 497 | void |
| 498 | acpisrat_cpu(acpisrat_nodeid_t nodeid, uint32_t cpunum, |
| 499 | struct acpisrat_cpu *c) |
| 500 | { |
| 501 | memcpy(c, node_array[nodeid].cpu[cpunum], |
| 502 | sizeof(struct acpisrat_cpu)); |
| 503 | } |
| 504 | |
| 505 | void |
| 506 | acpisrat_mem(acpisrat_nodeid_t nodeid, uint32_t memrange, |
| 507 | struct acpisrat_mem *mem) |
| 508 | { |
| 509 | memcpy(mem, node_array[nodeid].mem[memrange], |
| 510 | sizeof(struct acpisrat_mem)); |
| 511 | } |
| 512 | |