| 1 | /* $NetBSD: kern_time.c,v 1.189 2016/11/11 15:29:36 njoly Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Christopher G. Demetriou, and by Andrew Doran. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 29 | * POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | |
| 32 | /* |
| 33 | * Copyright (c) 1982, 1986, 1989, 1993 |
| 34 | * The Regents of the University of California. All rights reserved. |
| 35 | * |
| 36 | * Redistribution and use in source and binary forms, with or without |
| 37 | * modification, are permitted provided that the following conditions |
| 38 | * are met: |
| 39 | * 1. Redistributions of source code must retain the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer. |
| 41 | * 2. Redistributions in binary form must reproduce the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer in the |
| 43 | * documentation and/or other materials provided with the distribution. |
| 44 | * 3. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 |
| 61 | */ |
| 62 | |
| 63 | #include <sys/cdefs.h> |
| 64 | __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189 2016/11/11 15:29:36 njoly Exp $" ); |
| 65 | |
| 66 | #include <sys/param.h> |
| 67 | #include <sys/resourcevar.h> |
| 68 | #include <sys/kernel.h> |
| 69 | #include <sys/systm.h> |
| 70 | #include <sys/proc.h> |
| 71 | #include <sys/vnode.h> |
| 72 | #include <sys/signalvar.h> |
| 73 | #include <sys/syslog.h> |
| 74 | #include <sys/timetc.h> |
| 75 | #include <sys/timex.h> |
| 76 | #include <sys/kauth.h> |
| 77 | #include <sys/mount.h> |
| 78 | #include <sys/syscallargs.h> |
| 79 | #include <sys/cpu.h> |
| 80 | |
| 81 | static void timer_intr(void *); |
| 82 | static void itimerfire(struct ptimer *); |
| 83 | static void itimerfree(struct ptimers *, int); |
| 84 | |
| 85 | kmutex_t timer_lock; |
| 86 | |
| 87 | static void *timer_sih; |
| 88 | static TAILQ_HEAD(, ptimer) timer_queue; |
| 89 | |
| 90 | struct pool ptimer_pool, ptimers_pool; |
| 91 | |
| 92 | #define CLOCK_VIRTUAL_P(clockid) \ |
| 93 | ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF) |
| 94 | |
| 95 | CTASSERT(ITIMER_REAL == CLOCK_REALTIME); |
| 96 | CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL); |
| 97 | CTASSERT(ITIMER_PROF == CLOCK_PROF); |
| 98 | CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC); |
| 99 | |
| 100 | #define DELAYTIMER_MAX 32 |
| 101 | |
| 102 | /* |
| 103 | * Initialize timekeeping. |
| 104 | */ |
| 105 | void |
| 106 | time_init(void) |
| 107 | { |
| 108 | |
| 109 | pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl" , |
| 110 | &pool_allocator_nointr, IPL_NONE); |
| 111 | pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl" , |
| 112 | &pool_allocator_nointr, IPL_NONE); |
| 113 | } |
| 114 | |
| 115 | void |
| 116 | time_init2(void) |
| 117 | { |
| 118 | |
| 119 | TAILQ_INIT(&timer_queue); |
| 120 | mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED); |
| 121 | timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, |
| 122 | timer_intr, NULL); |
| 123 | } |
| 124 | |
| 125 | /* Time of day and interval timer support. |
| 126 | * |
| 127 | * These routines provide the kernel entry points to get and set |
| 128 | * the time-of-day and per-process interval timers. Subroutines |
| 129 | * here provide support for adding and subtracting timeval structures |
| 130 | * and decrementing interval timers, optionally reloading the interval |
| 131 | * timers when they expire. |
| 132 | */ |
| 133 | |
| 134 | /* This function is used by clock_settime and settimeofday */ |
| 135 | static int |
| 136 | settime1(struct proc *p, const struct timespec *ts, bool check_kauth) |
| 137 | { |
| 138 | struct timespec delta, now; |
| 139 | int s; |
| 140 | |
| 141 | /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ |
| 142 | s = splclock(); |
| 143 | nanotime(&now); |
| 144 | timespecsub(ts, &now, &delta); |
| 145 | |
| 146 | if (check_kauth && kauth_authorize_system(kauth_cred_get(), |
| 147 | KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts), |
| 148 | &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) { |
| 149 | splx(s); |
| 150 | return (EPERM); |
| 151 | } |
| 152 | |
| 153 | #ifdef notyet |
| 154 | if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */ |
| 155 | splx(s); |
| 156 | return (EPERM); |
| 157 | } |
| 158 | #endif |
| 159 | |
| 160 | tc_setclock(ts); |
| 161 | |
| 162 | timespecadd(&boottime, &delta, &boottime); |
| 163 | |
| 164 | resettodr(); |
| 165 | splx(s); |
| 166 | |
| 167 | return (0); |
| 168 | } |
| 169 | |
| 170 | int |
| 171 | settime(struct proc *p, struct timespec *ts) |
| 172 | { |
| 173 | return (settime1(p, ts, true)); |
| 174 | } |
| 175 | |
| 176 | /* ARGSUSED */ |
| 177 | int |
| 178 | sys___clock_gettime50(struct lwp *l, |
| 179 | const struct sys___clock_gettime50_args *uap, register_t *retval) |
| 180 | { |
| 181 | /* { |
| 182 | syscallarg(clockid_t) clock_id; |
| 183 | syscallarg(struct timespec *) tp; |
| 184 | } */ |
| 185 | int error; |
| 186 | struct timespec ats; |
| 187 | |
| 188 | error = clock_gettime1(SCARG(uap, clock_id), &ats); |
| 189 | if (error != 0) |
| 190 | return error; |
| 191 | |
| 192 | return copyout(&ats, SCARG(uap, tp), sizeof(ats)); |
| 193 | } |
| 194 | |
| 195 | /* ARGSUSED */ |
| 196 | int |
| 197 | sys___clock_settime50(struct lwp *l, |
| 198 | const struct sys___clock_settime50_args *uap, register_t *retval) |
| 199 | { |
| 200 | /* { |
| 201 | syscallarg(clockid_t) clock_id; |
| 202 | syscallarg(const struct timespec *) tp; |
| 203 | } */ |
| 204 | int error; |
| 205 | struct timespec ats; |
| 206 | |
| 207 | if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) |
| 208 | return error; |
| 209 | |
| 210 | return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true); |
| 211 | } |
| 212 | |
| 213 | |
| 214 | int |
| 215 | clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp, |
| 216 | bool check_kauth) |
| 217 | { |
| 218 | int error; |
| 219 | |
| 220 | switch (clock_id) { |
| 221 | case CLOCK_REALTIME: |
| 222 | if ((error = settime1(p, tp, check_kauth)) != 0) |
| 223 | return (error); |
| 224 | break; |
| 225 | case CLOCK_MONOTONIC: |
| 226 | return (EINVAL); /* read-only clock */ |
| 227 | default: |
| 228 | return (EINVAL); |
| 229 | } |
| 230 | |
| 231 | return 0; |
| 232 | } |
| 233 | |
| 234 | int |
| 235 | sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap, |
| 236 | register_t *retval) |
| 237 | { |
| 238 | /* { |
| 239 | syscallarg(clockid_t) clock_id; |
| 240 | syscallarg(struct timespec *) tp; |
| 241 | } */ |
| 242 | struct timespec ts; |
| 243 | int error; |
| 244 | |
| 245 | if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0) |
| 246 | return error; |
| 247 | |
| 248 | if (SCARG(uap, tp)) |
| 249 | error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); |
| 250 | |
| 251 | return error; |
| 252 | } |
| 253 | |
| 254 | int |
| 255 | clock_getres1(clockid_t clock_id, struct timespec *ts) |
| 256 | { |
| 257 | |
| 258 | switch (clock_id) { |
| 259 | case CLOCK_REALTIME: |
| 260 | case CLOCK_MONOTONIC: |
| 261 | ts->tv_sec = 0; |
| 262 | if (tc_getfrequency() > 1000000000) |
| 263 | ts->tv_nsec = 1; |
| 264 | else |
| 265 | ts->tv_nsec = 1000000000 / tc_getfrequency(); |
| 266 | break; |
| 267 | default: |
| 268 | return EINVAL; |
| 269 | } |
| 270 | |
| 271 | return 0; |
| 272 | } |
| 273 | |
| 274 | /* ARGSUSED */ |
| 275 | int |
| 276 | sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap, |
| 277 | register_t *retval) |
| 278 | { |
| 279 | /* { |
| 280 | syscallarg(struct timespec *) rqtp; |
| 281 | syscallarg(struct timespec *) rmtp; |
| 282 | } */ |
| 283 | struct timespec rmt, rqt; |
| 284 | int error, error1; |
| 285 | |
| 286 | error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); |
| 287 | if (error) |
| 288 | return (error); |
| 289 | |
| 290 | error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt, |
| 291 | SCARG(uap, rmtp) ? &rmt : NULL); |
| 292 | if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) |
| 293 | return error; |
| 294 | |
| 295 | error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); |
| 296 | return error1 ? error1 : error; |
| 297 | } |
| 298 | |
| 299 | /* ARGSUSED */ |
| 300 | int |
| 301 | sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap, |
| 302 | register_t *retval) |
| 303 | { |
| 304 | /* { |
| 305 | syscallarg(clockid_t) clock_id; |
| 306 | syscallarg(int) flags; |
| 307 | syscallarg(struct timespec *) rqtp; |
| 308 | syscallarg(struct timespec *) rmtp; |
| 309 | } */ |
| 310 | struct timespec rmt, rqt; |
| 311 | int error, error1; |
| 312 | |
| 313 | error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); |
| 314 | if (error) |
| 315 | goto out; |
| 316 | |
| 317 | error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt, |
| 318 | SCARG(uap, rmtp) ? &rmt : NULL); |
| 319 | if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) |
| 320 | goto out; |
| 321 | |
| 322 | if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 && |
| 323 | (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0) |
| 324 | error = error1; |
| 325 | out: |
| 326 | *retval = error; |
| 327 | return 0; |
| 328 | } |
| 329 | |
| 330 | int |
| 331 | nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt, |
| 332 | struct timespec *rmt) |
| 333 | { |
| 334 | struct timespec rmtstart; |
| 335 | int error, timo; |
| 336 | |
| 337 | if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) { |
| 338 | if (error == ETIMEDOUT) { |
| 339 | error = 0; |
| 340 | if (rmt != NULL) |
| 341 | rmt->tv_sec = rmt->tv_nsec = 0; |
| 342 | } |
| 343 | return error; |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * Avoid inadvertently sleeping forever |
| 348 | */ |
| 349 | if (timo == 0) |
| 350 | timo = 1; |
| 351 | again: |
| 352 | error = kpause("nanoslp" , true, timo, NULL); |
| 353 | if (rmt != NULL || error == 0) { |
| 354 | struct timespec rmtend; |
| 355 | struct timespec t0; |
| 356 | struct timespec *t; |
| 357 | |
| 358 | (void)clock_gettime1(clock_id, &rmtend); |
| 359 | t = (rmt != NULL) ? rmt : &t0; |
| 360 | if (flags & TIMER_ABSTIME) { |
| 361 | timespecsub(rqt, &rmtend, t); |
| 362 | } else { |
| 363 | timespecsub(&rmtend, &rmtstart, t); |
| 364 | timespecsub(rqt, t, t); |
| 365 | } |
| 366 | if (t->tv_sec < 0) |
| 367 | timespecclear(t); |
| 368 | if (error == 0) { |
| 369 | timo = tstohz(t); |
| 370 | if (timo > 0) |
| 371 | goto again; |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | if (error == ERESTART) |
| 376 | error = EINTR; |
| 377 | if (error == EWOULDBLOCK) |
| 378 | error = 0; |
| 379 | |
| 380 | return error; |
| 381 | } |
| 382 | |
| 383 | int |
| 384 | sys_clock_getcpuclockid2(struct lwp *l, |
| 385 | const struct sys_clock_getcpuclockid2_args *uap, |
| 386 | register_t *retval) |
| 387 | { |
| 388 | /* { |
| 389 | syscallarg(idtype_t idtype; |
| 390 | syscallarg(id_t id); |
| 391 | syscallarg(clockid_t *)clock_id; |
| 392 | } */ |
| 393 | pid_t pid; |
| 394 | lwpid_t lid; |
| 395 | clockid_t clock_id; |
| 396 | id_t id = SCARG(uap, id); |
| 397 | |
| 398 | switch (SCARG(uap, idtype)) { |
| 399 | case P_PID: |
| 400 | pid = id == 0 ? l->l_proc->p_pid : id; |
| 401 | clock_id = CLOCK_PROCESS_CPUTIME_ID | pid; |
| 402 | break; |
| 403 | case P_LWPID: |
| 404 | lid = id == 0 ? l->l_lid : id; |
| 405 | clock_id = CLOCK_THREAD_CPUTIME_ID | lid; |
| 406 | break; |
| 407 | default: |
| 408 | return EINVAL; |
| 409 | } |
| 410 | return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id)); |
| 411 | } |
| 412 | |
| 413 | /* ARGSUSED */ |
| 414 | int |
| 415 | sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap, |
| 416 | register_t *retval) |
| 417 | { |
| 418 | /* { |
| 419 | syscallarg(struct timeval *) tp; |
| 420 | syscallarg(void *) tzp; really "struct timezone *"; |
| 421 | } */ |
| 422 | struct timeval atv; |
| 423 | int error = 0; |
| 424 | struct timezone tzfake; |
| 425 | |
| 426 | if (SCARG(uap, tp)) { |
| 427 | microtime(&atv); |
| 428 | error = copyout(&atv, SCARG(uap, tp), sizeof(atv)); |
| 429 | if (error) |
| 430 | return (error); |
| 431 | } |
| 432 | if (SCARG(uap, tzp)) { |
| 433 | /* |
| 434 | * NetBSD has no kernel notion of time zone, so we just |
| 435 | * fake up a timezone struct and return it if demanded. |
| 436 | */ |
| 437 | tzfake.tz_minuteswest = 0; |
| 438 | tzfake.tz_dsttime = 0; |
| 439 | error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake)); |
| 440 | } |
| 441 | return (error); |
| 442 | } |
| 443 | |
| 444 | /* ARGSUSED */ |
| 445 | int |
| 446 | sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap, |
| 447 | register_t *retval) |
| 448 | { |
| 449 | /* { |
| 450 | syscallarg(const struct timeval *) tv; |
| 451 | syscallarg(const void *) tzp; really "const struct timezone *"; |
| 452 | } */ |
| 453 | |
| 454 | return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true); |
| 455 | } |
| 456 | |
| 457 | int |
| 458 | settimeofday1(const struct timeval *utv, bool userspace, |
| 459 | const void *utzp, struct lwp *l, bool check_kauth) |
| 460 | { |
| 461 | struct timeval atv; |
| 462 | struct timespec ts; |
| 463 | int error; |
| 464 | |
| 465 | /* Verify all parameters before changing time. */ |
| 466 | |
| 467 | /* |
| 468 | * NetBSD has no kernel notion of time zone, and only an |
| 469 | * obsolete program would try to set it, so we log a warning. |
| 470 | */ |
| 471 | if (utzp) |
| 472 | log(LOG_WARNING, "pid %d attempted to set the " |
| 473 | "(obsolete) kernel time zone\n" , l->l_proc->p_pid); |
| 474 | |
| 475 | if (utv == NULL) |
| 476 | return 0; |
| 477 | |
| 478 | if (userspace) { |
| 479 | if ((error = copyin(utv, &atv, sizeof(atv))) != 0) |
| 480 | return error; |
| 481 | utv = &atv; |
| 482 | } |
| 483 | |
| 484 | TIMEVAL_TO_TIMESPEC(utv, &ts); |
| 485 | return settime1(l->l_proc, &ts, check_kauth); |
| 486 | } |
| 487 | |
| 488 | int time_adjusted; /* set if an adjustment is made */ |
| 489 | |
| 490 | /* ARGSUSED */ |
| 491 | int |
| 492 | sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap, |
| 493 | register_t *retval) |
| 494 | { |
| 495 | /* { |
| 496 | syscallarg(const struct timeval *) delta; |
| 497 | syscallarg(struct timeval *) olddelta; |
| 498 | } */ |
| 499 | int error; |
| 500 | struct timeval atv, oldatv; |
| 501 | |
| 502 | if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME, |
| 503 | KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0) |
| 504 | return error; |
| 505 | |
| 506 | if (SCARG(uap, delta)) { |
| 507 | error = copyin(SCARG(uap, delta), &atv, |
| 508 | sizeof(*SCARG(uap, delta))); |
| 509 | if (error) |
| 510 | return (error); |
| 511 | } |
| 512 | adjtime1(SCARG(uap, delta) ? &atv : NULL, |
| 513 | SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc); |
| 514 | if (SCARG(uap, olddelta)) |
| 515 | error = copyout(&oldatv, SCARG(uap, olddelta), |
| 516 | sizeof(*SCARG(uap, olddelta))); |
| 517 | return error; |
| 518 | } |
| 519 | |
| 520 | void |
| 521 | adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p) |
| 522 | { |
| 523 | extern int64_t time_adjtime; /* in kern_ntptime.c */ |
| 524 | |
| 525 | if (olddelta) { |
| 526 | mutex_spin_enter(&timecounter_lock); |
| 527 | olddelta->tv_sec = time_adjtime / 1000000; |
| 528 | olddelta->tv_usec = time_adjtime % 1000000; |
| 529 | if (olddelta->tv_usec < 0) { |
| 530 | olddelta->tv_usec += 1000000; |
| 531 | olddelta->tv_sec--; |
| 532 | } |
| 533 | mutex_spin_exit(&timecounter_lock); |
| 534 | } |
| 535 | |
| 536 | if (delta) { |
| 537 | mutex_spin_enter(&timecounter_lock); |
| 538 | time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec; |
| 539 | |
| 540 | if (time_adjtime) { |
| 541 | /* We need to save the system time during shutdown */ |
| 542 | time_adjusted |= 1; |
| 543 | } |
| 544 | mutex_spin_exit(&timecounter_lock); |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * Interval timer support. Both the BSD getitimer() family and the POSIX |
| 550 | * timer_*() family of routines are supported. |
| 551 | * |
| 552 | * All timers are kept in an array pointed to by p_timers, which is |
| 553 | * allocated on demand - many processes don't use timers at all. The |
| 554 | * first four elements in this array are reserved for the BSD timers: |
| 555 | * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element |
| 556 | * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be |
| 557 | * allocated by the timer_create() syscall. |
| 558 | * |
| 559 | * Realtime timers are kept in the ptimer structure as an absolute |
| 560 | * time; virtual time timers are kept as a linked list of deltas. |
| 561 | * Virtual time timers are processed in the hardclock() routine of |
| 562 | * kern_clock.c. The real time timer is processed by a callout |
| 563 | * routine, called from the softclock() routine. Since a callout may |
| 564 | * be delayed in real time due to interrupt processing in the system, |
| 565 | * it is possible for the real time timeout routine (realtimeexpire, |
| 566 | * given below), to be delayed in real time past when it is supposed |
| 567 | * to occur. It does not suffice, therefore, to reload the real timer |
| 568 | * .it_value from the real time timers .it_interval. Rather, we |
| 569 | * compute the next time in absolute time the timer should go off. */ |
| 570 | |
| 571 | /* Allocate a POSIX realtime timer. */ |
| 572 | int |
| 573 | sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, |
| 574 | register_t *retval) |
| 575 | { |
| 576 | /* { |
| 577 | syscallarg(clockid_t) clock_id; |
| 578 | syscallarg(struct sigevent *) evp; |
| 579 | syscallarg(timer_t *) timerid; |
| 580 | } */ |
| 581 | |
| 582 | return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id), |
| 583 | SCARG(uap, evp), copyin, l); |
| 584 | } |
| 585 | |
| 586 | int |
| 587 | timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp, |
| 588 | copyin_t fetch_event, struct lwp *l) |
| 589 | { |
| 590 | int error; |
| 591 | timer_t timerid; |
| 592 | struct ptimers *pts; |
| 593 | struct ptimer *pt; |
| 594 | struct proc *p; |
| 595 | |
| 596 | p = l->l_proc; |
| 597 | |
| 598 | if ((u_int)id > CLOCK_MONOTONIC) |
| 599 | return (EINVAL); |
| 600 | |
| 601 | if ((pts = p->p_timers) == NULL) |
| 602 | pts = timers_alloc(p); |
| 603 | |
| 604 | pt = pool_get(&ptimer_pool, PR_WAITOK); |
| 605 | if (evp != NULL) { |
| 606 | if (((error = |
| 607 | (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) || |
| 608 | ((pt->pt_ev.sigev_notify < SIGEV_NONE) || |
| 609 | (pt->pt_ev.sigev_notify > SIGEV_SA)) || |
| 610 | (pt->pt_ev.sigev_notify == SIGEV_SIGNAL && |
| 611 | (pt->pt_ev.sigev_signo <= 0 || |
| 612 | pt->pt_ev.sigev_signo >= NSIG))) { |
| 613 | pool_put(&ptimer_pool, pt); |
| 614 | return (error ? error : EINVAL); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | /* Find a free timer slot, skipping those reserved for setitimer(). */ |
| 619 | mutex_spin_enter(&timer_lock); |
| 620 | for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++) |
| 621 | if (pts->pts_timers[timerid] == NULL) |
| 622 | break; |
| 623 | if (timerid == TIMER_MAX) { |
| 624 | mutex_spin_exit(&timer_lock); |
| 625 | pool_put(&ptimer_pool, pt); |
| 626 | return EAGAIN; |
| 627 | } |
| 628 | if (evp == NULL) { |
| 629 | pt->pt_ev.sigev_notify = SIGEV_SIGNAL; |
| 630 | switch (id) { |
| 631 | case CLOCK_REALTIME: |
| 632 | case CLOCK_MONOTONIC: |
| 633 | pt->pt_ev.sigev_signo = SIGALRM; |
| 634 | break; |
| 635 | case CLOCK_VIRTUAL: |
| 636 | pt->pt_ev.sigev_signo = SIGVTALRM; |
| 637 | break; |
| 638 | case CLOCK_PROF: |
| 639 | pt->pt_ev.sigev_signo = SIGPROF; |
| 640 | break; |
| 641 | } |
| 642 | pt->pt_ev.sigev_value.sival_int = timerid; |
| 643 | } |
| 644 | pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo; |
| 645 | pt->pt_info.ksi_errno = 0; |
| 646 | pt->pt_info.ksi_code = 0; |
| 647 | pt->pt_info.ksi_pid = p->p_pid; |
| 648 | pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred); |
| 649 | pt->pt_info.ksi_value = pt->pt_ev.sigev_value; |
| 650 | pt->pt_type = id; |
| 651 | pt->pt_proc = p; |
| 652 | pt->pt_overruns = 0; |
| 653 | pt->pt_poverruns = 0; |
| 654 | pt->pt_entry = timerid; |
| 655 | pt->pt_queued = false; |
| 656 | timespecclear(&pt->pt_time.it_value); |
| 657 | if (!CLOCK_VIRTUAL_P(id)) |
| 658 | callout_init(&pt->pt_ch, CALLOUT_MPSAFE); |
| 659 | else |
| 660 | pt->pt_active = 0; |
| 661 | |
| 662 | pts->pts_timers[timerid] = pt; |
| 663 | mutex_spin_exit(&timer_lock); |
| 664 | |
| 665 | return copyout(&timerid, tid, sizeof(timerid)); |
| 666 | } |
| 667 | |
| 668 | /* Delete a POSIX realtime timer */ |
| 669 | int |
| 670 | sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, |
| 671 | register_t *retval) |
| 672 | { |
| 673 | /* { |
| 674 | syscallarg(timer_t) timerid; |
| 675 | } */ |
| 676 | struct proc *p = l->l_proc; |
| 677 | timer_t timerid; |
| 678 | struct ptimers *pts; |
| 679 | struct ptimer *pt, *ptn; |
| 680 | |
| 681 | timerid = SCARG(uap, timerid); |
| 682 | pts = p->p_timers; |
| 683 | |
| 684 | if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) |
| 685 | return (EINVAL); |
| 686 | |
| 687 | mutex_spin_enter(&timer_lock); |
| 688 | if ((pt = pts->pts_timers[timerid]) == NULL) { |
| 689 | mutex_spin_exit(&timer_lock); |
| 690 | return (EINVAL); |
| 691 | } |
| 692 | if (CLOCK_VIRTUAL_P(pt->pt_type)) { |
| 693 | if (pt->pt_active) { |
| 694 | ptn = LIST_NEXT(pt, pt_list); |
| 695 | LIST_REMOVE(pt, pt_list); |
| 696 | for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) |
| 697 | timespecadd(&pt->pt_time.it_value, |
| 698 | &ptn->pt_time.it_value, |
| 699 | &ptn->pt_time.it_value); |
| 700 | pt->pt_active = 0; |
| 701 | } |
| 702 | } |
| 703 | itimerfree(pts, timerid); |
| 704 | |
| 705 | return (0); |
| 706 | } |
| 707 | |
| 708 | /* |
| 709 | * Set up the given timer. The value in pt->pt_time.it_value is taken |
| 710 | * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and |
| 711 | * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers. |
| 712 | */ |
| 713 | void |
| 714 | timer_settime(struct ptimer *pt) |
| 715 | { |
| 716 | struct ptimer *ptn, *pptn; |
| 717 | struct ptlist *ptl; |
| 718 | |
| 719 | KASSERT(mutex_owned(&timer_lock)); |
| 720 | |
| 721 | if (!CLOCK_VIRTUAL_P(pt->pt_type)) { |
| 722 | callout_halt(&pt->pt_ch, &timer_lock); |
| 723 | if (timespecisset(&pt->pt_time.it_value)) { |
| 724 | /* |
| 725 | * Don't need to check tshzto() return value, here. |
| 726 | * callout_reset() does it for us. |
| 727 | */ |
| 728 | callout_reset(&pt->pt_ch, |
| 729 | pt->pt_type == CLOCK_MONOTONIC ? |
| 730 | tshztoup(&pt->pt_time.it_value) : |
| 731 | tshzto(&pt->pt_time.it_value), |
| 732 | realtimerexpire, pt); |
| 733 | } |
| 734 | } else { |
| 735 | if (pt->pt_active) { |
| 736 | ptn = LIST_NEXT(pt, pt_list); |
| 737 | LIST_REMOVE(pt, pt_list); |
| 738 | for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) |
| 739 | timespecadd(&pt->pt_time.it_value, |
| 740 | &ptn->pt_time.it_value, |
| 741 | &ptn->pt_time.it_value); |
| 742 | } |
| 743 | if (timespecisset(&pt->pt_time.it_value)) { |
| 744 | if (pt->pt_type == CLOCK_VIRTUAL) |
| 745 | ptl = &pt->pt_proc->p_timers->pts_virtual; |
| 746 | else |
| 747 | ptl = &pt->pt_proc->p_timers->pts_prof; |
| 748 | |
| 749 | for (ptn = LIST_FIRST(ptl), pptn = NULL; |
| 750 | ptn && timespeccmp(&pt->pt_time.it_value, |
| 751 | &ptn->pt_time.it_value, >); |
| 752 | pptn = ptn, ptn = LIST_NEXT(ptn, pt_list)) |
| 753 | timespecsub(&pt->pt_time.it_value, |
| 754 | &ptn->pt_time.it_value, |
| 755 | &pt->pt_time.it_value); |
| 756 | |
| 757 | if (pptn) |
| 758 | LIST_INSERT_AFTER(pptn, pt, pt_list); |
| 759 | else |
| 760 | LIST_INSERT_HEAD(ptl, pt, pt_list); |
| 761 | |
| 762 | for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list)) |
| 763 | timespecsub(&ptn->pt_time.it_value, |
| 764 | &pt->pt_time.it_value, |
| 765 | &ptn->pt_time.it_value); |
| 766 | |
| 767 | pt->pt_active = 1; |
| 768 | } else |
| 769 | pt->pt_active = 0; |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | void |
| 774 | timer_gettime(struct ptimer *pt, struct itimerspec *aits) |
| 775 | { |
| 776 | struct timespec now; |
| 777 | struct ptimer *ptn; |
| 778 | |
| 779 | KASSERT(mutex_owned(&timer_lock)); |
| 780 | |
| 781 | *aits = pt->pt_time; |
| 782 | if (!CLOCK_VIRTUAL_P(pt->pt_type)) { |
| 783 | /* |
| 784 | * Convert from absolute to relative time in .it_value |
| 785 | * part of real time timer. If time for real time |
| 786 | * timer has passed return 0, else return difference |
| 787 | * between current time and time for the timer to go |
| 788 | * off. |
| 789 | */ |
| 790 | if (timespecisset(&aits->it_value)) { |
| 791 | if (pt->pt_type == CLOCK_REALTIME) { |
| 792 | getnanotime(&now); |
| 793 | } else { /* CLOCK_MONOTONIC */ |
| 794 | getnanouptime(&now); |
| 795 | } |
| 796 | if (timespeccmp(&aits->it_value, &now, <)) |
| 797 | timespecclear(&aits->it_value); |
| 798 | else |
| 799 | timespecsub(&aits->it_value, &now, |
| 800 | &aits->it_value); |
| 801 | } |
| 802 | } else if (pt->pt_active) { |
| 803 | if (pt->pt_type == CLOCK_VIRTUAL) |
| 804 | ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual); |
| 805 | else |
| 806 | ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof); |
| 807 | for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list)) |
| 808 | timespecadd(&aits->it_value, |
| 809 | &ptn->pt_time.it_value, &aits->it_value); |
| 810 | KASSERT(ptn != NULL); /* pt should be findable on the list */ |
| 811 | } else |
| 812 | timespecclear(&aits->it_value); |
| 813 | } |
| 814 | |
| 815 | |
| 816 | |
| 817 | /* Set and arm a POSIX realtime timer */ |
| 818 | int |
| 819 | sys___timer_settime50(struct lwp *l, |
| 820 | const struct sys___timer_settime50_args *uap, |
| 821 | register_t *retval) |
| 822 | { |
| 823 | /* { |
| 824 | syscallarg(timer_t) timerid; |
| 825 | syscallarg(int) flags; |
| 826 | syscallarg(const struct itimerspec *) value; |
| 827 | syscallarg(struct itimerspec *) ovalue; |
| 828 | } */ |
| 829 | int error; |
| 830 | struct itimerspec value, ovalue, *ovp = NULL; |
| 831 | |
| 832 | if ((error = copyin(SCARG(uap, value), &value, |
| 833 | sizeof(struct itimerspec))) != 0) |
| 834 | return (error); |
| 835 | |
| 836 | if (SCARG(uap, ovalue)) |
| 837 | ovp = &ovalue; |
| 838 | |
| 839 | if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp, |
| 840 | SCARG(uap, flags), l->l_proc)) != 0) |
| 841 | return error; |
| 842 | |
| 843 | if (ovp) |
| 844 | return copyout(&ovalue, SCARG(uap, ovalue), |
| 845 | sizeof(struct itimerspec)); |
| 846 | return 0; |
| 847 | } |
| 848 | |
| 849 | int |
| 850 | dotimer_settime(int timerid, struct itimerspec *value, |
| 851 | struct itimerspec *ovalue, int flags, struct proc *p) |
| 852 | { |
| 853 | struct timespec now; |
| 854 | struct itimerspec val, oval; |
| 855 | struct ptimers *pts; |
| 856 | struct ptimer *pt; |
| 857 | int error; |
| 858 | |
| 859 | pts = p->p_timers; |
| 860 | |
| 861 | if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) |
| 862 | return EINVAL; |
| 863 | val = *value; |
| 864 | if ((error = itimespecfix(&val.it_value)) != 0 || |
| 865 | (error = itimespecfix(&val.it_interval)) != 0) |
| 866 | return error; |
| 867 | |
| 868 | mutex_spin_enter(&timer_lock); |
| 869 | if ((pt = pts->pts_timers[timerid]) == NULL) { |
| 870 | mutex_spin_exit(&timer_lock); |
| 871 | return EINVAL; |
| 872 | } |
| 873 | |
| 874 | oval = pt->pt_time; |
| 875 | pt->pt_time = val; |
| 876 | |
| 877 | /* |
| 878 | * If we've been passed a relative time for a realtime timer, |
| 879 | * convert it to absolute; if an absolute time for a virtual |
| 880 | * timer, convert it to relative and make sure we don't set it |
| 881 | * to zero, which would cancel the timer, or let it go |
| 882 | * negative, which would confuse the comparison tests. |
| 883 | */ |
| 884 | if (timespecisset(&pt->pt_time.it_value)) { |
| 885 | if (!CLOCK_VIRTUAL_P(pt->pt_type)) { |
| 886 | if ((flags & TIMER_ABSTIME) == 0) { |
| 887 | if (pt->pt_type == CLOCK_REALTIME) { |
| 888 | getnanotime(&now); |
| 889 | } else { /* CLOCK_MONOTONIC */ |
| 890 | getnanouptime(&now); |
| 891 | } |
| 892 | timespecadd(&pt->pt_time.it_value, &now, |
| 893 | &pt->pt_time.it_value); |
| 894 | } |
| 895 | } else { |
| 896 | if ((flags & TIMER_ABSTIME) != 0) { |
| 897 | getnanotime(&now); |
| 898 | timespecsub(&pt->pt_time.it_value, &now, |
| 899 | &pt->pt_time.it_value); |
| 900 | if (!timespecisset(&pt->pt_time.it_value) || |
| 901 | pt->pt_time.it_value.tv_sec < 0) { |
| 902 | pt->pt_time.it_value.tv_sec = 0; |
| 903 | pt->pt_time.it_value.tv_nsec = 1; |
| 904 | } |
| 905 | } |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | timer_settime(pt); |
| 910 | mutex_spin_exit(&timer_lock); |
| 911 | |
| 912 | if (ovalue) |
| 913 | *ovalue = oval; |
| 914 | |
| 915 | return (0); |
| 916 | } |
| 917 | |
| 918 | /* Return the time remaining until a POSIX timer fires. */ |
| 919 | int |
| 920 | sys___timer_gettime50(struct lwp *l, |
| 921 | const struct sys___timer_gettime50_args *uap, register_t *retval) |
| 922 | { |
| 923 | /* { |
| 924 | syscallarg(timer_t) timerid; |
| 925 | syscallarg(struct itimerspec *) value; |
| 926 | } */ |
| 927 | struct itimerspec its; |
| 928 | int error; |
| 929 | |
| 930 | if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc, |
| 931 | &its)) != 0) |
| 932 | return error; |
| 933 | |
| 934 | return copyout(&its, SCARG(uap, value), sizeof(its)); |
| 935 | } |
| 936 | |
| 937 | int |
| 938 | dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its) |
| 939 | { |
| 940 | struct ptimer *pt; |
| 941 | struct ptimers *pts; |
| 942 | |
| 943 | pts = p->p_timers; |
| 944 | if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) |
| 945 | return (EINVAL); |
| 946 | mutex_spin_enter(&timer_lock); |
| 947 | if ((pt = pts->pts_timers[timerid]) == NULL) { |
| 948 | mutex_spin_exit(&timer_lock); |
| 949 | return (EINVAL); |
| 950 | } |
| 951 | timer_gettime(pt, its); |
| 952 | mutex_spin_exit(&timer_lock); |
| 953 | |
| 954 | return 0; |
| 955 | } |
| 956 | |
| 957 | /* |
| 958 | * Return the count of the number of times a periodic timer expired |
| 959 | * while a notification was already pending. The counter is reset when |
| 960 | * a timer expires and a notification can be posted. |
| 961 | */ |
| 962 | int |
| 963 | sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, |
| 964 | register_t *retval) |
| 965 | { |
| 966 | /* { |
| 967 | syscallarg(timer_t) timerid; |
| 968 | } */ |
| 969 | struct proc *p = l->l_proc; |
| 970 | struct ptimers *pts; |
| 971 | int timerid; |
| 972 | struct ptimer *pt; |
| 973 | |
| 974 | timerid = SCARG(uap, timerid); |
| 975 | |
| 976 | pts = p->p_timers; |
| 977 | if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) |
| 978 | return (EINVAL); |
| 979 | mutex_spin_enter(&timer_lock); |
| 980 | if ((pt = pts->pts_timers[timerid]) == NULL) { |
| 981 | mutex_spin_exit(&timer_lock); |
| 982 | return (EINVAL); |
| 983 | } |
| 984 | *retval = pt->pt_poverruns; |
| 985 | if (*retval >= DELAYTIMER_MAX) |
| 986 | *retval = DELAYTIMER_MAX; |
| 987 | mutex_spin_exit(&timer_lock); |
| 988 | |
| 989 | return (0); |
| 990 | } |
| 991 | |
| 992 | /* |
| 993 | * Real interval timer expired: |
| 994 | * send process whose timer expired an alarm signal. |
| 995 | * If time is not set up to reload, then just return. |
| 996 | * Else compute next time timer should go off which is > current time. |
| 997 | * This is where delay in processing this timeout causes multiple |
| 998 | * SIGALRM calls to be compressed into one. |
| 999 | */ |
| 1000 | void |
| 1001 | realtimerexpire(void *arg) |
| 1002 | { |
| 1003 | uint64_t last_val, next_val, interval, now_ns; |
| 1004 | struct timespec now, next; |
| 1005 | struct ptimer *pt; |
| 1006 | int backwards; |
| 1007 | |
| 1008 | pt = arg; |
| 1009 | |
| 1010 | mutex_spin_enter(&timer_lock); |
| 1011 | itimerfire(pt); |
| 1012 | |
| 1013 | if (!timespecisset(&pt->pt_time.it_interval)) { |
| 1014 | timespecclear(&pt->pt_time.it_value); |
| 1015 | mutex_spin_exit(&timer_lock); |
| 1016 | return; |
| 1017 | } |
| 1018 | |
| 1019 | if (pt->pt_type == CLOCK_MONOTONIC) { |
| 1020 | getnanouptime(&now); |
| 1021 | } else { |
| 1022 | getnanotime(&now); |
| 1023 | } |
| 1024 | backwards = (timespeccmp(&pt->pt_time.it_value, &now, >)); |
| 1025 | timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next); |
| 1026 | /* Handle the easy case of non-overflown timers first. */ |
| 1027 | if (!backwards && timespeccmp(&next, &now, >)) { |
| 1028 | pt->pt_time.it_value = next; |
| 1029 | } else { |
| 1030 | now_ns = timespec2ns(&now); |
| 1031 | last_val = timespec2ns(&pt->pt_time.it_value); |
| 1032 | interval = timespec2ns(&pt->pt_time.it_interval); |
| 1033 | |
| 1034 | next_val = now_ns + |
| 1035 | (now_ns - last_val + interval - 1) % interval; |
| 1036 | |
| 1037 | if (backwards) |
| 1038 | next_val += interval; |
| 1039 | else |
| 1040 | pt->pt_overruns += (now_ns - last_val) / interval; |
| 1041 | |
| 1042 | pt->pt_time.it_value.tv_sec = next_val / 1000000000; |
| 1043 | pt->pt_time.it_value.tv_nsec = next_val % 1000000000; |
| 1044 | } |
| 1045 | |
| 1046 | /* |
| 1047 | * Don't need to check tshzto() return value, here. |
| 1048 | * callout_reset() does it for us. |
| 1049 | */ |
| 1050 | callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ? |
| 1051 | tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value), |
| 1052 | realtimerexpire, pt); |
| 1053 | mutex_spin_exit(&timer_lock); |
| 1054 | } |
| 1055 | |
| 1056 | /* BSD routine to get the value of an interval timer. */ |
| 1057 | /* ARGSUSED */ |
| 1058 | int |
| 1059 | sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap, |
| 1060 | register_t *retval) |
| 1061 | { |
| 1062 | /* { |
| 1063 | syscallarg(int) which; |
| 1064 | syscallarg(struct itimerval *) itv; |
| 1065 | } */ |
| 1066 | struct proc *p = l->l_proc; |
| 1067 | struct itimerval aitv; |
| 1068 | int error; |
| 1069 | |
| 1070 | error = dogetitimer(p, SCARG(uap, which), &aitv); |
| 1071 | if (error) |
| 1072 | return error; |
| 1073 | return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval))); |
| 1074 | } |
| 1075 | |
| 1076 | int |
| 1077 | dogetitimer(struct proc *p, int which, struct itimerval *itvp) |
| 1078 | { |
| 1079 | struct ptimers *pts; |
| 1080 | struct ptimer *pt; |
| 1081 | struct itimerspec its; |
| 1082 | |
| 1083 | if ((u_int)which > ITIMER_MONOTONIC) |
| 1084 | return (EINVAL); |
| 1085 | |
| 1086 | mutex_spin_enter(&timer_lock); |
| 1087 | pts = p->p_timers; |
| 1088 | if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) { |
| 1089 | timerclear(&itvp->it_value); |
| 1090 | timerclear(&itvp->it_interval); |
| 1091 | } else { |
| 1092 | timer_gettime(pt, &its); |
| 1093 | TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value); |
| 1094 | TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval); |
| 1095 | } |
| 1096 | mutex_spin_exit(&timer_lock); |
| 1097 | |
| 1098 | return 0; |
| 1099 | } |
| 1100 | |
| 1101 | /* BSD routine to set/arm an interval timer. */ |
| 1102 | /* ARGSUSED */ |
| 1103 | int |
| 1104 | sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap, |
| 1105 | register_t *retval) |
| 1106 | { |
| 1107 | /* { |
| 1108 | syscallarg(int) which; |
| 1109 | syscallarg(const struct itimerval *) itv; |
| 1110 | syscallarg(struct itimerval *) oitv; |
| 1111 | } */ |
| 1112 | struct proc *p = l->l_proc; |
| 1113 | int which = SCARG(uap, which); |
| 1114 | struct sys___getitimer50_args getargs; |
| 1115 | const struct itimerval *itvp; |
| 1116 | struct itimerval aitv; |
| 1117 | int error; |
| 1118 | |
| 1119 | if ((u_int)which > ITIMER_MONOTONIC) |
| 1120 | return (EINVAL); |
| 1121 | itvp = SCARG(uap, itv); |
| 1122 | if (itvp && |
| 1123 | (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0) |
| 1124 | return (error); |
| 1125 | if (SCARG(uap, oitv) != NULL) { |
| 1126 | SCARG(&getargs, which) = which; |
| 1127 | SCARG(&getargs, itv) = SCARG(uap, oitv); |
| 1128 | if ((error = sys___getitimer50(l, &getargs, retval)) != 0) |
| 1129 | return (error); |
| 1130 | } |
| 1131 | if (itvp == 0) |
| 1132 | return (0); |
| 1133 | |
| 1134 | return dosetitimer(p, which, &aitv); |
| 1135 | } |
| 1136 | |
| 1137 | int |
| 1138 | dosetitimer(struct proc *p, int which, struct itimerval *itvp) |
| 1139 | { |
| 1140 | struct timespec now; |
| 1141 | struct ptimers *pts; |
| 1142 | struct ptimer *pt, *spare; |
| 1143 | |
| 1144 | KASSERT((u_int)which <= CLOCK_MONOTONIC); |
| 1145 | if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval)) |
| 1146 | return (EINVAL); |
| 1147 | |
| 1148 | /* |
| 1149 | * Don't bother allocating data structures if the process just |
| 1150 | * wants to clear the timer. |
| 1151 | */ |
| 1152 | spare = NULL; |
| 1153 | pts = p->p_timers; |
| 1154 | retry: |
| 1155 | if (!timerisset(&itvp->it_value) && (pts == NULL || |
| 1156 | pts->pts_timers[which] == NULL)) |
| 1157 | return (0); |
| 1158 | if (pts == NULL) |
| 1159 | pts = timers_alloc(p); |
| 1160 | mutex_spin_enter(&timer_lock); |
| 1161 | pt = pts->pts_timers[which]; |
| 1162 | if (pt == NULL) { |
| 1163 | if (spare == NULL) { |
| 1164 | mutex_spin_exit(&timer_lock); |
| 1165 | spare = pool_get(&ptimer_pool, PR_WAITOK); |
| 1166 | goto retry; |
| 1167 | } |
| 1168 | pt = spare; |
| 1169 | spare = NULL; |
| 1170 | pt->pt_ev.sigev_notify = SIGEV_SIGNAL; |
| 1171 | pt->pt_ev.sigev_value.sival_int = which; |
| 1172 | pt->pt_overruns = 0; |
| 1173 | pt->pt_proc = p; |
| 1174 | pt->pt_type = which; |
| 1175 | pt->pt_entry = which; |
| 1176 | pt->pt_queued = false; |
| 1177 | if (pt->pt_type == CLOCK_REALTIME) |
| 1178 | callout_init(&pt->pt_ch, CALLOUT_MPSAFE); |
| 1179 | else |
| 1180 | pt->pt_active = 0; |
| 1181 | |
| 1182 | switch (which) { |
| 1183 | case ITIMER_REAL: |
| 1184 | case ITIMER_MONOTONIC: |
| 1185 | pt->pt_ev.sigev_signo = SIGALRM; |
| 1186 | break; |
| 1187 | case ITIMER_VIRTUAL: |
| 1188 | pt->pt_ev.sigev_signo = SIGVTALRM; |
| 1189 | break; |
| 1190 | case ITIMER_PROF: |
| 1191 | pt->pt_ev.sigev_signo = SIGPROF; |
| 1192 | break; |
| 1193 | } |
| 1194 | pts->pts_timers[which] = pt; |
| 1195 | } |
| 1196 | |
| 1197 | TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value); |
| 1198 | TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval); |
| 1199 | |
| 1200 | if (timespecisset(&pt->pt_time.it_value)) { |
| 1201 | /* Convert to absolute time */ |
| 1202 | /* XXX need to wrap in splclock for timecounters case? */ |
| 1203 | switch (which) { |
| 1204 | case ITIMER_REAL: |
| 1205 | getnanotime(&now); |
| 1206 | timespecadd(&pt->pt_time.it_value, &now, |
| 1207 | &pt->pt_time.it_value); |
| 1208 | break; |
| 1209 | case ITIMER_MONOTONIC: |
| 1210 | getnanouptime(&now); |
| 1211 | timespecadd(&pt->pt_time.it_value, &now, |
| 1212 | &pt->pt_time.it_value); |
| 1213 | break; |
| 1214 | default: |
| 1215 | break; |
| 1216 | } |
| 1217 | } |
| 1218 | timer_settime(pt); |
| 1219 | mutex_spin_exit(&timer_lock); |
| 1220 | if (spare != NULL) |
| 1221 | pool_put(&ptimer_pool, spare); |
| 1222 | |
| 1223 | return (0); |
| 1224 | } |
| 1225 | |
| 1226 | /* Utility routines to manage the array of pointers to timers. */ |
| 1227 | struct ptimers * |
| 1228 | timers_alloc(struct proc *p) |
| 1229 | { |
| 1230 | struct ptimers *pts; |
| 1231 | int i; |
| 1232 | |
| 1233 | pts = pool_get(&ptimers_pool, PR_WAITOK); |
| 1234 | LIST_INIT(&pts->pts_virtual); |
| 1235 | LIST_INIT(&pts->pts_prof); |
| 1236 | for (i = 0; i < TIMER_MAX; i++) |
| 1237 | pts->pts_timers[i] = NULL; |
| 1238 | mutex_spin_enter(&timer_lock); |
| 1239 | if (p->p_timers == NULL) { |
| 1240 | p->p_timers = pts; |
| 1241 | mutex_spin_exit(&timer_lock); |
| 1242 | return pts; |
| 1243 | } |
| 1244 | mutex_spin_exit(&timer_lock); |
| 1245 | pool_put(&ptimers_pool, pts); |
| 1246 | return p->p_timers; |
| 1247 | } |
| 1248 | |
| 1249 | /* |
| 1250 | * Clean up the per-process timers. If "which" is set to TIMERS_ALL, |
| 1251 | * then clean up all timers and free all the data structures. If |
| 1252 | * "which" is set to TIMERS_POSIX, only clean up the timers allocated |
| 1253 | * by timer_create(), not the BSD setitimer() timers, and only free the |
| 1254 | * structure if none of those remain. |
| 1255 | */ |
| 1256 | void |
| 1257 | timers_free(struct proc *p, int which) |
| 1258 | { |
| 1259 | struct ptimers *pts; |
| 1260 | struct ptimer *ptn; |
| 1261 | struct timespec ts; |
| 1262 | int i; |
| 1263 | |
| 1264 | if (p->p_timers == NULL) |
| 1265 | return; |
| 1266 | |
| 1267 | pts = p->p_timers; |
| 1268 | mutex_spin_enter(&timer_lock); |
| 1269 | if (which == TIMERS_ALL) { |
| 1270 | p->p_timers = NULL; |
| 1271 | i = 0; |
| 1272 | } else { |
| 1273 | timespecclear(&ts); |
| 1274 | for (ptn = LIST_FIRST(&pts->pts_virtual); |
| 1275 | ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL]; |
| 1276 | ptn = LIST_NEXT(ptn, pt_list)) { |
| 1277 | KASSERT(ptn->pt_type == CLOCK_VIRTUAL); |
| 1278 | timespecadd(&ts, &ptn->pt_time.it_value, &ts); |
| 1279 | } |
| 1280 | LIST_FIRST(&pts->pts_virtual) = NULL; |
| 1281 | if (ptn) { |
| 1282 | KASSERT(ptn->pt_type == CLOCK_VIRTUAL); |
| 1283 | timespecadd(&ts, &ptn->pt_time.it_value, |
| 1284 | &ptn->pt_time.it_value); |
| 1285 | LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list); |
| 1286 | } |
| 1287 | timespecclear(&ts); |
| 1288 | for (ptn = LIST_FIRST(&pts->pts_prof); |
| 1289 | ptn && ptn != pts->pts_timers[ITIMER_PROF]; |
| 1290 | ptn = LIST_NEXT(ptn, pt_list)) { |
| 1291 | KASSERT(ptn->pt_type == CLOCK_PROF); |
| 1292 | timespecadd(&ts, &ptn->pt_time.it_value, &ts); |
| 1293 | } |
| 1294 | LIST_FIRST(&pts->pts_prof) = NULL; |
| 1295 | if (ptn) { |
| 1296 | KASSERT(ptn->pt_type == CLOCK_PROF); |
| 1297 | timespecadd(&ts, &ptn->pt_time.it_value, |
| 1298 | &ptn->pt_time.it_value); |
| 1299 | LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list); |
| 1300 | } |
| 1301 | i = TIMER_MIN; |
| 1302 | } |
| 1303 | for ( ; i < TIMER_MAX; i++) { |
| 1304 | if (pts->pts_timers[i] != NULL) { |
| 1305 | itimerfree(pts, i); |
| 1306 | mutex_spin_enter(&timer_lock); |
| 1307 | } |
| 1308 | } |
| 1309 | if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL && |
| 1310 | pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) { |
| 1311 | p->p_timers = NULL; |
| 1312 | mutex_spin_exit(&timer_lock); |
| 1313 | pool_put(&ptimers_pool, pts); |
| 1314 | } else |
| 1315 | mutex_spin_exit(&timer_lock); |
| 1316 | } |
| 1317 | |
| 1318 | static void |
| 1319 | itimerfree(struct ptimers *pts, int index) |
| 1320 | { |
| 1321 | struct ptimer *pt; |
| 1322 | |
| 1323 | KASSERT(mutex_owned(&timer_lock)); |
| 1324 | |
| 1325 | pt = pts->pts_timers[index]; |
| 1326 | pts->pts_timers[index] = NULL; |
| 1327 | if (!CLOCK_VIRTUAL_P(pt->pt_type)) |
| 1328 | callout_halt(&pt->pt_ch, &timer_lock); |
| 1329 | if (pt->pt_queued) |
| 1330 | TAILQ_REMOVE(&timer_queue, pt, pt_chain); |
| 1331 | mutex_spin_exit(&timer_lock); |
| 1332 | if (!CLOCK_VIRTUAL_P(pt->pt_type)) |
| 1333 | callout_destroy(&pt->pt_ch); |
| 1334 | pool_put(&ptimer_pool, pt); |
| 1335 | } |
| 1336 | |
| 1337 | /* |
| 1338 | * Decrement an interval timer by a specified number |
| 1339 | * of nanoseconds, which must be less than a second, |
| 1340 | * i.e. < 1000000000. If the timer expires, then reload |
| 1341 | * it. In this case, carry over (nsec - old value) to |
| 1342 | * reduce the value reloaded into the timer so that |
| 1343 | * the timer does not drift. This routine assumes |
| 1344 | * that it is called in a context where the timers |
| 1345 | * on which it is operating cannot change in value. |
| 1346 | */ |
| 1347 | static int |
| 1348 | itimerdecr(struct ptimer *pt, int nsec) |
| 1349 | { |
| 1350 | struct itimerspec *itp; |
| 1351 | |
| 1352 | KASSERT(mutex_owned(&timer_lock)); |
| 1353 | KASSERT(CLOCK_VIRTUAL_P(pt->pt_type)); |
| 1354 | |
| 1355 | itp = &pt->pt_time; |
| 1356 | if (itp->it_value.tv_nsec < nsec) { |
| 1357 | if (itp->it_value.tv_sec == 0) { |
| 1358 | /* expired, and already in next interval */ |
| 1359 | nsec -= itp->it_value.tv_nsec; |
| 1360 | goto expire; |
| 1361 | } |
| 1362 | itp->it_value.tv_nsec += 1000000000; |
| 1363 | itp->it_value.tv_sec--; |
| 1364 | } |
| 1365 | itp->it_value.tv_nsec -= nsec; |
| 1366 | nsec = 0; |
| 1367 | if (timespecisset(&itp->it_value)) |
| 1368 | return (1); |
| 1369 | /* expired, exactly at end of interval */ |
| 1370 | expire: |
| 1371 | if (timespecisset(&itp->it_interval)) { |
| 1372 | itp->it_value = itp->it_interval; |
| 1373 | itp->it_value.tv_nsec -= nsec; |
| 1374 | if (itp->it_value.tv_nsec < 0) { |
| 1375 | itp->it_value.tv_nsec += 1000000000; |
| 1376 | itp->it_value.tv_sec--; |
| 1377 | } |
| 1378 | timer_settime(pt); |
| 1379 | } else |
| 1380 | itp->it_value.tv_nsec = 0; /* sec is already 0 */ |
| 1381 | return (0); |
| 1382 | } |
| 1383 | |
| 1384 | static void |
| 1385 | itimerfire(struct ptimer *pt) |
| 1386 | { |
| 1387 | |
| 1388 | KASSERT(mutex_owned(&timer_lock)); |
| 1389 | |
| 1390 | /* |
| 1391 | * XXX Can overrun, but we don't do signal queueing yet, anyway. |
| 1392 | * XXX Relying on the clock interrupt is stupid. |
| 1393 | */ |
| 1394 | if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) { |
| 1395 | return; |
| 1396 | } |
| 1397 | TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain); |
| 1398 | pt->pt_queued = true; |
| 1399 | softint_schedule(timer_sih); |
| 1400 | } |
| 1401 | |
| 1402 | void |
| 1403 | timer_tick(lwp_t *l, bool user) |
| 1404 | { |
| 1405 | struct ptimers *pts; |
| 1406 | struct ptimer *pt; |
| 1407 | proc_t *p; |
| 1408 | |
| 1409 | p = l->l_proc; |
| 1410 | if (p->p_timers == NULL) |
| 1411 | return; |
| 1412 | |
| 1413 | mutex_spin_enter(&timer_lock); |
| 1414 | if ((pts = l->l_proc->p_timers) != NULL) { |
| 1415 | /* |
| 1416 | * Run current process's virtual and profile time, as needed. |
| 1417 | */ |
| 1418 | if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL) |
| 1419 | if (itimerdecr(pt, tick * 1000) == 0) |
| 1420 | itimerfire(pt); |
| 1421 | if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL) |
| 1422 | if (itimerdecr(pt, tick * 1000) == 0) |
| 1423 | itimerfire(pt); |
| 1424 | } |
| 1425 | mutex_spin_exit(&timer_lock); |
| 1426 | } |
| 1427 | |
| 1428 | static void |
| 1429 | timer_intr(void *cookie) |
| 1430 | { |
| 1431 | ksiginfo_t ksi; |
| 1432 | struct ptimer *pt; |
| 1433 | proc_t *p; |
| 1434 | |
| 1435 | mutex_enter(proc_lock); |
| 1436 | mutex_spin_enter(&timer_lock); |
| 1437 | while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) { |
| 1438 | TAILQ_REMOVE(&timer_queue, pt, pt_chain); |
| 1439 | KASSERT(pt->pt_queued); |
| 1440 | pt->pt_queued = false; |
| 1441 | |
| 1442 | if (pt->pt_proc->p_timers == NULL) { |
| 1443 | /* Process is dying. */ |
| 1444 | continue; |
| 1445 | } |
| 1446 | p = pt->pt_proc; |
| 1447 | if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) { |
| 1448 | continue; |
| 1449 | } |
| 1450 | if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) { |
| 1451 | pt->pt_overruns++; |
| 1452 | continue; |
| 1453 | } |
| 1454 | |
| 1455 | KSI_INIT(&ksi); |
| 1456 | ksi.ksi_signo = pt->pt_ev.sigev_signo; |
| 1457 | ksi.ksi_code = SI_TIMER; |
| 1458 | ksi.ksi_value = pt->pt_ev.sigev_value; |
| 1459 | pt->pt_poverruns = pt->pt_overruns; |
| 1460 | pt->pt_overruns = 0; |
| 1461 | mutex_spin_exit(&timer_lock); |
| 1462 | kpsignal(p, &ksi, NULL); |
| 1463 | mutex_spin_enter(&timer_lock); |
| 1464 | } |
| 1465 | mutex_spin_exit(&timer_lock); |
| 1466 | mutex_exit(proc_lock); |
| 1467 | } |
| 1468 | |
| 1469 | /* |
| 1470 | * Check if the time will wrap if set to ts. |
| 1471 | * |
| 1472 | * ts - timespec describing the new time |
| 1473 | * delta - the delta between the current time and ts |
| 1474 | */ |
| 1475 | bool |
| 1476 | time_wraps(struct timespec *ts, struct timespec *delta) |
| 1477 | { |
| 1478 | |
| 1479 | /* |
| 1480 | * Don't allow the time to be set forward so far it |
| 1481 | * will wrap and become negative, thus allowing an |
| 1482 | * attacker to bypass the next check below. The |
| 1483 | * cutoff is 1 year before rollover occurs, so even |
| 1484 | * if the attacker uses adjtime(2) to move the time |
| 1485 | * past the cutoff, it will take a very long time |
| 1486 | * to get to the wrap point. |
| 1487 | */ |
| 1488 | if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) || |
| 1489 | (delta->tv_sec < 0 || delta->tv_nsec < 0)) |
| 1490 | return true; |
| 1491 | |
| 1492 | return false; |
| 1493 | } |
| 1494 | |