| 1 | /* |
| 2 | * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting |
| 3 | * Copyright (c) 2002-2008 Atheros Communications, Inc. |
| 4 | * |
| 5 | * Permission to use, copy, modify, and/or distribute this software for any |
| 6 | * purpose with or without fee is hereby granted, provided that the above |
| 7 | * copyright notice and this permission notice appear in all copies. |
| 8 | * |
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 | * |
| 17 | * $Id: ar2316.c,v 1.3 2013/09/12 11:44:08 martin Exp $ |
| 18 | */ |
| 19 | #include "opt_ah.h" |
| 20 | |
| 21 | #include "ah.h" |
| 22 | #include "ah_internal.h" |
| 23 | |
| 24 | #include "ar5212/ar5212.h" |
| 25 | #include "ar5212/ar5212reg.h" |
| 26 | #include "ar5212/ar5212phy.h" |
| 27 | |
| 28 | #include "ah_eeprom_v3.h" |
| 29 | |
| 30 | #define AH_5212_2316 |
| 31 | #include "ar5212/ar5212.ini" |
| 32 | |
| 33 | #define N(a) (sizeof(a)/sizeof(a[0])) |
| 34 | |
| 35 | typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316; |
| 36 | typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316; |
| 37 | #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413 |
| 38 | |
| 39 | struct ar2316State { |
| 40 | RF_HAL_FUNCS base; /* public state, must be first */ |
| 41 | uint16_t pcdacTable[PWR_TABLE_SIZE_2316]; |
| 42 | |
| 43 | uint32_t Bank1Data[N(ar5212Bank1_2316)]; |
| 44 | uint32_t Bank2Data[N(ar5212Bank2_2316)]; |
| 45 | uint32_t Bank3Data[N(ar5212Bank3_2316)]; |
| 46 | uint32_t Bank6Data[N(ar5212Bank6_2316)]; |
| 47 | uint32_t Bank7Data[N(ar5212Bank7_2316)]; |
| 48 | |
| 49 | /* |
| 50 | * Private state for reduced stack usage. |
| 51 | */ |
| 52 | /* filled out Vpd table for all pdGains (chanL) */ |
| 53 | uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] |
| 54 | [MAX_PWR_RANGE_IN_HALF_DB]; |
| 55 | /* filled out Vpd table for all pdGains (chanR) */ |
| 56 | uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] |
| 57 | [MAX_PWR_RANGE_IN_HALF_DB]; |
| 58 | /* filled out Vpd table for all pdGains (interpolated) */ |
| 59 | uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] |
| 60 | [MAX_PWR_RANGE_IN_HALF_DB]; |
| 61 | }; |
| 62 | #define AR2316(ah) ((struct ar2316State *) AH5212(ah)->ah_rfHal) |
| 63 | |
| 64 | extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, |
| 65 | uint32_t numBits, uint32_t firstBit, uint32_t column); |
| 66 | |
| 67 | static void |
| 68 | ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, |
| 69 | int regWrites) |
| 70 | { |
| 71 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 72 | |
| 73 | HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites); |
| 74 | HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites); |
| 75 | HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites); |
| 76 | |
| 77 | /* For AP51 */ |
| 78 | if (!ahp->ah_cwCalRequire) { |
| 79 | OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2)); |
| 80 | } else { |
| 81 | ahp->ah_cwCalRequire = AH_FALSE; |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | /* |
| 86 | * Take the MHz channel value and set the Channel value |
| 87 | * |
| 88 | * ASSUMES: Writes enabled to analog bus |
| 89 | */ |
| 90 | static HAL_BOOL |
| 91 | ar2316SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) |
| 92 | { |
| 93 | uint32_t channelSel = 0; |
| 94 | uint32_t bModeSynth = 0; |
| 95 | uint32_t aModeRefSel = 0; |
| 96 | uint32_t reg32 = 0; |
| 97 | |
| 98 | OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); |
| 99 | |
| 100 | if (chan->channel < 4800) { |
| 101 | uint32_t txctl; |
| 102 | |
| 103 | if (((chan->channel - 2192) % 5) == 0) { |
| 104 | channelSel = ((chan->channel - 672) * 2 - 3040)/10; |
| 105 | bModeSynth = 0; |
| 106 | } else if (((chan->channel - 2224) % 5) == 0) { |
| 107 | channelSel = ((chan->channel - 704) * 2 - 3040) / 10; |
| 108 | bModeSynth = 1; |
| 109 | } else { |
| 110 | HALDEBUG(ah, HAL_DEBUG_ANY, |
| 111 | "%s: invalid channel %u MHz\n" , |
| 112 | __func__, chan->channel); |
| 113 | return AH_FALSE; |
| 114 | } |
| 115 | |
| 116 | channelSel = (channelSel << 2) & 0xff; |
| 117 | channelSel = ath_hal_reverseBits(channelSel, 8); |
| 118 | |
| 119 | txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); |
| 120 | if (chan->channel == 2484) { |
| 121 | /* Enable channel spreading for channel 14 */ |
| 122 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
| 123 | txctl | AR_PHY_CCK_TX_CTRL_JAPAN); |
| 124 | } else { |
| 125 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
| 126 | txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); |
| 127 | } |
| 128 | } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { |
| 129 | channelSel = ath_hal_reverseBits( |
| 130 | ((chan->channel - 4800) / 20 << 2), 8); |
| 131 | aModeRefSel = ath_hal_reverseBits(3, 2); |
| 132 | } else if ((chan->channel % 10) == 0) { |
| 133 | channelSel = ath_hal_reverseBits( |
| 134 | ((chan->channel - 4800) / 10 << 1), 8); |
| 135 | aModeRefSel = ath_hal_reverseBits(2, 2); |
| 136 | } else if ((chan->channel % 5) == 0) { |
| 137 | channelSel = ath_hal_reverseBits( |
| 138 | (chan->channel - 4800) / 5, 8); |
| 139 | aModeRefSel = ath_hal_reverseBits(1, 2); |
| 140 | } else { |
| 141 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n" , |
| 142 | __func__, chan->channel); |
| 143 | return AH_FALSE; |
| 144 | } |
| 145 | |
| 146 | reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | |
| 147 | (1 << 12) | 0x1; |
| 148 | OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); |
| 149 | |
| 150 | reg32 >>= 8; |
| 151 | OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); |
| 152 | |
| 153 | AH_PRIVATE(ah)->ah_curchan = chan; |
| 154 | return AH_TRUE; |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * Reads EEPROM header info from device structure and programs |
| 159 | * all rf registers |
| 160 | * |
| 161 | * REQUIRES: Access to the analog rf device |
| 162 | */ |
| 163 | static HAL_BOOL |
| 164 | ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain) |
| 165 | { |
| 166 | #define RF_BANK_SETUP(_priv, _ix, _col) do { \ |
| 167 | int i; \ |
| 168 | for (i = 0; i < N(ar5212Bank##_ix##_2316); i++) \ |
| 169 | (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\ |
| 170 | } while (0) |
| 171 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 172 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
| 173 | uint16_t ob2GHz = 0, db2GHz = 0; |
| 174 | struct ar2316State *priv = AR2316(ah); |
| 175 | int regWrites = 0; |
| 176 | |
| 177 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, |
| 178 | "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n" , |
| 179 | __func__, chan->channel, chan->channelFlags, modesIndex); |
| 180 | |
| 181 | HALASSERT(priv != AH_NULL); |
| 182 | |
| 183 | /* Setup rf parameters */ |
| 184 | switch (chan->channelFlags & CHANNEL_ALL) { |
| 185 | case CHANNEL_B: |
| 186 | ob2GHz = ee->ee_obFor24; |
| 187 | db2GHz = ee->ee_dbFor24; |
| 188 | break; |
| 189 | case CHANNEL_G: |
| 190 | case CHANNEL_108G: |
| 191 | ob2GHz = ee->ee_obFor24g; |
| 192 | db2GHz = ee->ee_dbFor24g; |
| 193 | break; |
| 194 | default: |
| 195 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n" , |
| 196 | __func__, chan->channelFlags); |
| 197 | return AH_FALSE; |
| 198 | } |
| 199 | |
| 200 | /* Bank 1 Write */ |
| 201 | RF_BANK_SETUP(priv, 1, 1); |
| 202 | |
| 203 | /* Bank 2 Write */ |
| 204 | RF_BANK_SETUP(priv, 2, modesIndex); |
| 205 | |
| 206 | /* Bank 3 Write */ |
| 207 | RF_BANK_SETUP(priv, 3, modesIndex); |
| 208 | |
| 209 | /* Bank 6 Write */ |
| 210 | RF_BANK_SETUP(priv, 6, modesIndex); |
| 211 | |
| 212 | ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 178, 0); |
| 213 | ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 175, 0); |
| 214 | |
| 215 | /* Bank 7 Setup */ |
| 216 | RF_BANK_SETUP(priv, 7, modesIndex); |
| 217 | |
| 218 | /* Write Analog registers */ |
| 219 | HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites); |
| 220 | HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites); |
| 221 | HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites); |
| 222 | HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites); |
| 223 | HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites); |
| 224 | |
| 225 | /* Now that we have reprogrammed rfgain value, clear the flag. */ |
| 226 | ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; |
| 227 | |
| 228 | return AH_TRUE; |
| 229 | #undef RF_BANK_SETUP |
| 230 | } |
| 231 | |
| 232 | /* |
| 233 | * Return a reference to the requested RF Bank. |
| 234 | */ |
| 235 | static uint32_t * |
| 236 | ar2316GetRfBank(struct ath_hal *ah, int bank) |
| 237 | { |
| 238 | struct ar2316State *priv = AR2316(ah); |
| 239 | |
| 240 | HALASSERT(priv != AH_NULL); |
| 241 | switch (bank) { |
| 242 | case 1: return priv->Bank1Data; |
| 243 | case 2: return priv->Bank2Data; |
| 244 | case 3: return priv->Bank3Data; |
| 245 | case 6: return priv->Bank6Data; |
| 246 | case 7: return priv->Bank7Data; |
| 247 | } |
| 248 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n" , |
| 249 | __func__, bank); |
| 250 | return AH_NULL; |
| 251 | } |
| 252 | |
| 253 | /* |
| 254 | * Return indices surrounding the value in sorted integer lists. |
| 255 | * |
| 256 | * NB: the input list is assumed to be sorted in ascending order |
| 257 | */ |
| 258 | static void |
| 259 | GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, |
| 260 | uint32_t *vlo, uint32_t *vhi) |
| 261 | { |
| 262 | int16_t target = v; |
| 263 | const int16_t *ep = lp+listSize; |
| 264 | const int16_t *tp; |
| 265 | |
| 266 | /* |
| 267 | * Check first and last elements for out-of-bounds conditions. |
| 268 | */ |
| 269 | if (target < lp[0]) { |
| 270 | *vlo = *vhi = 0; |
| 271 | return; |
| 272 | } |
| 273 | if (target >= ep[-1]) { |
| 274 | *vlo = *vhi = listSize - 1; |
| 275 | return; |
| 276 | } |
| 277 | |
| 278 | /* look for value being near or between 2 values in list */ |
| 279 | for (tp = lp; tp < ep; tp++) { |
| 280 | /* |
| 281 | * If value is close to the current value of the list |
| 282 | * then target is not between values, it is one of the values |
| 283 | */ |
| 284 | if (*tp == target) { |
| 285 | *vlo = *vhi = tp - (const int16_t *) lp; |
| 286 | return; |
| 287 | } |
| 288 | /* |
| 289 | * Look for value being between current value and next value |
| 290 | * if so return these 2 values |
| 291 | */ |
| 292 | if (target < tp[1]) { |
| 293 | *vlo = tp - (const int16_t *) lp; |
| 294 | *vhi = *vlo + 1; |
| 295 | return; |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * Fill the Vpdlist for indices Pmax-Pmin |
| 302 | */ |
| 303 | static HAL_BOOL |
| 304 | ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, |
| 305 | const int16_t *pwrList, const int16_t *VpdList, |
| 306 | uint16_t numIntercepts, uint16_t retVpdList[][64]) |
| 307 | { |
| 308 | uint16_t ii, kk; |
| 309 | int16_t currPwr = (int16_t)(2*Pmin); |
| 310 | /* since Pmin is pwr*2 and pwrList is 4*pwr */ |
| 311 | uint32_t idxL = 0, idxR = 0; |
| 312 | |
| 313 | ii = 0; |
| 314 | |
| 315 | if (numIntercepts < 2) |
| 316 | return AH_FALSE; |
| 317 | |
| 318 | while (ii <= (uint16_t)(Pmax - Pmin)) { |
| 319 | GetLowerUpperIndex(currPwr, pwrList, numIntercepts, |
| 320 | &(idxL), &(idxR)); |
| 321 | if (idxR < 1) |
| 322 | idxR = 1; /* extrapolate below */ |
| 323 | if (idxL == (uint32_t)(numIntercepts - 1)) |
| 324 | idxL = numIntercepts - 2; /* extrapolate above */ |
| 325 | if (pwrList[idxL] == pwrList[idxR]) |
| 326 | kk = VpdList[idxL]; |
| 327 | else |
| 328 | kk = (uint16_t) |
| 329 | (((currPwr - pwrList[idxL])*VpdList[idxR]+ |
| 330 | (pwrList[idxR] - currPwr)*VpdList[idxL])/ |
| 331 | (pwrList[idxR] - pwrList[idxL])); |
| 332 | retVpdList[pdGainIdx][ii] = kk; |
| 333 | ii++; |
| 334 | currPwr += 2; /* half dB steps */ |
| 335 | } |
| 336 | |
| 337 | return AH_TRUE; |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * Returns interpolated or the scaled up interpolated value |
| 342 | */ |
| 343 | static int16_t |
| 344 | interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, |
| 345 | int16_t targetLeft, int16_t targetRight) |
| 346 | { |
| 347 | int16_t rv; |
| 348 | |
| 349 | if (srcRight != srcLeft) { |
| 350 | rv = ((target - srcLeft)*targetRight + |
| 351 | (srcRight - target)*targetLeft) / (srcRight - srcLeft); |
| 352 | } else { |
| 353 | rv = targetLeft; |
| 354 | } |
| 355 | return rv; |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * Uses the data points read from EEPROM to reconstruct the pdadc power table |
| 360 | * Called by ar2316SetPowerTable() |
| 361 | */ |
| 362 | static int |
| 363 | ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, |
| 364 | const RAW_DATA_STRUCT_2316 *pRawDataset, |
| 365 | uint16_t pdGainOverlap_t2, |
| 366 | int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], |
| 367 | uint16_t pPdGainValues[], uint16_t pPDADCValues[]) |
| 368 | { |
| 369 | struct ar2316State *priv = AR2316(ah); |
| 370 | #define VpdTable_L priv->vpdTable_L |
| 371 | #define VpdTable_R priv->vpdTable_R |
| 372 | #define VpdTable_I priv->vpdTable_I |
| 373 | uint32_t ii, jj, kk; |
| 374 | int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ |
| 375 | uint32_t idxL = 0, idxR = 0; |
| 376 | uint32_t numPdGainsUsed = 0; |
| 377 | /* |
| 378 | * If desired to support -ve power levels in future, just |
| 379 | * change pwr_I_0 to signed 5-bits. |
| 380 | */ |
| 381 | int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
| 382 | /* to accomodate -ve power levels later on. */ |
| 383 | int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
| 384 | /* to accomodate -ve power levels later on */ |
| 385 | uint16_t numVpd = 0; |
| 386 | uint16_t Vpd_step; |
| 387 | int16_t tmpVal ; |
| 388 | uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; |
| 389 | |
| 390 | /* Get upper lower index */ |
| 391 | GetLowerUpperIndex(channel, pRawDataset->pChannels, |
| 392 | pRawDataset->numChannels, &(idxL), &(idxR)); |
| 393 | |
| 394 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
| 395 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
| 396 | /* work backwards 'cause highest pdGain for lowest power */ |
| 397 | numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; |
| 398 | if (numVpd > 0) { |
| 399 | pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; |
| 400 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; |
| 401 | if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { |
| 402 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; |
| 403 | } |
| 404 | Pmin_t2[numPdGainsUsed] = (int16_t) |
| 405 | (Pmin_t2[numPdGainsUsed] / 2); |
| 406 | Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
| 407 | if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) |
| 408 | Pmax_t2[numPdGainsUsed] = |
| 409 | pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
| 410 | Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); |
| 411 | ar2316FillVpdTable( |
| 412 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
| 413 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), |
| 414 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L |
| 415 | ); |
| 416 | ar2316FillVpdTable( |
| 417 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
| 418 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), |
| 419 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R |
| 420 | ); |
| 421 | for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { |
| 422 | VpdTable_I[numPdGainsUsed][kk] = |
| 423 | interpolate_signed( |
| 424 | channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], |
| 425 | (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); |
| 426 | } |
| 427 | /* fill VpdTable_I for this pdGain */ |
| 428 | numPdGainsUsed++; |
| 429 | } |
| 430 | /* if this pdGain is used */ |
| 431 | } |
| 432 | |
| 433 | *pMinCalPower = Pmin_t2[0]; |
| 434 | kk = 0; /* index for the final table */ |
| 435 | for (ii = 0; ii < numPdGainsUsed; ii++) { |
| 436 | if (ii == (numPdGainsUsed - 1)) |
| 437 | pPdGainBoundaries[ii] = Pmax_t2[ii] + |
| 438 | PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; |
| 439 | else |
| 440 | pPdGainBoundaries[ii] = (uint16_t) |
| 441 | ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); |
| 442 | if (pPdGainBoundaries[ii] > 63) { |
| 443 | HALDEBUG(ah, HAL_DEBUG_ANY, |
| 444 | "%s: clamp pPdGainBoundaries[%d] %d\n" , |
| 445 | __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ |
| 446 | pPdGainBoundaries[ii] = 63; |
| 447 | } |
| 448 | |
| 449 | /* Find starting index for this pdGain */ |
| 450 | if (ii == 0) |
| 451 | ss = 0; /* for the first pdGain, start from index 0 */ |
| 452 | else |
| 453 | ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - |
| 454 | pdGainOverlap_t2; |
| 455 | Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); |
| 456 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
| 457 | /* |
| 458 | *-ve ss indicates need to extrapolate data below for this pdGain |
| 459 | */ |
| 460 | while (ss < 0) { |
| 461 | tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); |
| 462 | pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); |
| 463 | ss++; |
| 464 | } |
| 465 | |
| 466 | sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; |
| 467 | tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; |
| 468 | maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; |
| 469 | |
| 470 | while (ss < (int16_t)maxIndex) |
| 471 | pPDADCValues[kk++] = VpdTable_I[ii][ss++]; |
| 472 | |
| 473 | Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - |
| 474 | VpdTable_I[ii][sizeCurrVpdTable-2]); |
| 475 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
| 476 | /* |
| 477 | * for last gain, pdGainBoundary == Pmax_t2, so will |
| 478 | * have to extrapolate |
| 479 | */ |
| 480 | if (tgtIndex > maxIndex) { /* need to extrapolate above */ |
| 481 | while(ss < (int16_t)tgtIndex) { |
| 482 | tmpVal = (uint16_t) |
| 483 | (VpdTable_I[ii][sizeCurrVpdTable-1] + |
| 484 | (ss-maxIndex)*Vpd_step); |
| 485 | pPDADCValues[kk++] = (tmpVal > 127) ? |
| 486 | 127 : tmpVal; |
| 487 | ss++; |
| 488 | } |
| 489 | } /* extrapolated above */ |
| 490 | } /* for all pdGainUsed */ |
| 491 | |
| 492 | while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { |
| 493 | pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; |
| 494 | ii++; |
| 495 | } |
| 496 | while (kk < 128) { |
| 497 | pPDADCValues[kk] = pPDADCValues[kk-1]; |
| 498 | kk++; |
| 499 | } |
| 500 | |
| 501 | return numPdGainsUsed; |
| 502 | #undef VpdTable_L |
| 503 | #undef VpdTable_R |
| 504 | #undef VpdTable_I |
| 505 | } |
| 506 | |
| 507 | static HAL_BOOL |
| 508 | ar2316SetPowerTable(struct ath_hal *ah, |
| 509 | int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, |
| 510 | uint16_t *rfXpdGain) |
| 511 | { |
| 512 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 513 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
| 514 | const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL; |
| 515 | uint16_t pdGainOverlap_t2; |
| 516 | int16_t minCalPower2316_t2; |
| 517 | uint16_t *pdadcValues = ahp->ah_pcdacTable; |
| 518 | uint16_t gainBoundaries[4]; |
| 519 | uint32_t reg32, regoffset; |
| 520 | int i, numPdGainsUsed; |
| 521 | #ifndef AH_USE_INIPDGAIN |
| 522 | uint32_t tpcrg1; |
| 523 | #endif |
| 524 | |
| 525 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n" , |
| 526 | __func__, chan->channel,chan->channelFlags); |
| 527 | |
| 528 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
| 529 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
| 530 | else if (IS_CHAN_B(chan)) |
| 531 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
| 532 | else { |
| 533 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n" , __func__); |
| 534 | return AH_FALSE; |
| 535 | } |
| 536 | |
| 537 | pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), |
| 538 | AR_PHY_TPCRG5_PD_GAIN_OVERLAP); |
| 539 | |
| 540 | numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah, |
| 541 | chan->channel, pRawDataset, pdGainOverlap_t2, |
| 542 | &minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues); |
| 543 | HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); |
| 544 | |
| 545 | #ifdef AH_USE_INIPDGAIN |
| 546 | /* |
| 547 | * Use pd_gains curve from eeprom; Atheros always uses |
| 548 | * the default curve from the ini file but some vendors |
| 549 | * (e.g. Zcomax) want to override this curve and not |
| 550 | * honoring their settings results in tx power 5dBm low. |
| 551 | */ |
| 552 | OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
| 553 | (pRawDataset->pDataPerChannel[0].numPdGains - 1)); |
| 554 | #else |
| 555 | tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); |
| 556 | tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) |
| 557 | | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); |
| 558 | switch (numPdGainsUsed) { |
| 559 | case 3: |
| 560 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; |
| 561 | tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); |
| 562 | /* fall thru... */ |
| 563 | case 2: |
| 564 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; |
| 565 | tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); |
| 566 | /* fall thru... */ |
| 567 | case 1: |
| 568 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; |
| 569 | tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); |
| 570 | break; |
| 571 | } |
| 572 | #ifdef AH_DEBUG |
| 573 | if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) |
| 574 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " |
| 575 | "pd_gains (default 0x%x, calculated 0x%x)\n" , |
| 576 | __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); |
| 577 | #endif |
| 578 | OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); |
| 579 | #endif |
| 580 | |
| 581 | /* |
| 582 | * Note the pdadc table may not start at 0 dBm power, could be |
| 583 | * negative or greater than 0. Need to offset the power |
| 584 | * values by the amount of minPower for griffin |
| 585 | */ |
| 586 | if (minCalPower2316_t2 != 0) |
| 587 | ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2); |
| 588 | else |
| 589 | ahp->ah_txPowerIndexOffset = 0; |
| 590 | |
| 591 | /* Finally, write the power values into the baseband power table */ |
| 592 | regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ |
| 593 | for (i = 0; i < 32; i++) { |
| 594 | reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | |
| 595 | ((pdadcValues[4*i + 1] & 0xFF) << 8) | |
| 596 | ((pdadcValues[4*i + 2] & 0xFF) << 16) | |
| 597 | ((pdadcValues[4*i + 3] & 0xFF) << 24) ; |
| 598 | OS_REG_WRITE(ah, regoffset, reg32); |
| 599 | regoffset += 4; |
| 600 | } |
| 601 | |
| 602 | OS_REG_WRITE(ah, AR_PHY_TPCRG5, |
| 603 | SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
| 604 | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
| 605 | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
| 606 | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
| 607 | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
| 608 | |
| 609 | return AH_TRUE; |
| 610 | } |
| 611 | |
| 612 | static int16_t |
| 613 | ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data) |
| 614 | { |
| 615 | uint32_t ii,jj; |
| 616 | uint16_t Pmin=0,numVpd; |
| 617 | |
| 618 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
| 619 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
| 620 | /* work backwards 'cause highest pdGain for lowest power */ |
| 621 | numVpd = data->pDataPerPDGain[jj].numVpd; |
| 622 | if (numVpd > 0) { |
| 623 | Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; |
| 624 | return(Pmin); |
| 625 | } |
| 626 | } |
| 627 | return(Pmin); |
| 628 | } |
| 629 | |
| 630 | static int16_t |
| 631 | ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data) |
| 632 | { |
| 633 | uint32_t ii; |
| 634 | uint16_t Pmax=0,numVpd; |
| 635 | |
| 636 | for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
| 637 | /* work forwards cuase lowest pdGain for highest power */ |
| 638 | numVpd = data->pDataPerPDGain[ii].numVpd; |
| 639 | if (numVpd > 0) { |
| 640 | Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; |
| 641 | return(Pmax); |
| 642 | } |
| 643 | } |
| 644 | return(Pmax); |
| 645 | } |
| 646 | |
| 647 | static HAL_BOOL |
| 648 | ar2316GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, |
| 649 | int16_t *maxPow, int16_t *minPow) |
| 650 | { |
| 651 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
| 652 | const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL; |
| 653 | const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL; |
| 654 | uint16_t numChannels; |
| 655 | int totalD,totalF, totalMin,last, i; |
| 656 | |
| 657 | *maxPow = 0; |
| 658 | |
| 659 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
| 660 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
| 661 | else if (IS_CHAN_B(chan)) |
| 662 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
| 663 | else |
| 664 | return(AH_FALSE); |
| 665 | |
| 666 | numChannels = pRawDataset->numChannels; |
| 667 | data = pRawDataset->pDataPerChannel; |
| 668 | |
| 669 | /* Make sure the channel is in the range of the TP values |
| 670 | * (freq piers) |
| 671 | */ |
| 672 | if (numChannels < 1) |
| 673 | return(AH_FALSE); |
| 674 | |
| 675 | if ((chan->channel < data[0].channelValue) || |
| 676 | (chan->channel > data[numChannels-1].channelValue)) { |
| 677 | if (chan->channel < data[0].channelValue) { |
| 678 | *maxPow = ar2316GetMaxPower(ah, &data[0]); |
| 679 | *minPow = ar2316GetMinPower(ah, &data[0]); |
| 680 | return(AH_TRUE); |
| 681 | } else { |
| 682 | *maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]); |
| 683 | *minPow = ar2316GetMinPower(ah, &data[numChannels - 1]); |
| 684 | return(AH_TRUE); |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | /* Linearly interpolate the power value now */ |
| 689 | for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); |
| 690 | last = i++); |
| 691 | totalD = data[i].channelValue - data[last].channelValue; |
| 692 | if (totalD > 0) { |
| 693 | totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]); |
| 694 | *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + |
| 695 | ar2316GetMaxPower(ah, &data[last])*totalD)/totalD); |
| 696 | totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]); |
| 697 | *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + |
| 698 | ar2316GetMinPower(ah, &data[last])*totalD)/totalD); |
| 699 | return(AH_TRUE); |
| 700 | } else { |
| 701 | if (chan->channel == data[i].channelValue) { |
| 702 | *maxPow = ar2316GetMaxPower(ah, &data[i]); |
| 703 | *minPow = ar2316GetMinPower(ah, &data[i]); |
| 704 | return(AH_TRUE); |
| 705 | } else |
| 706 | return(AH_FALSE); |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * Free memory for analog bank scratch buffers |
| 712 | */ |
| 713 | static void |
| 714 | ar2316RfDetach(struct ath_hal *ah) |
| 715 | { |
| 716 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 717 | |
| 718 | HALASSERT(ahp->ah_rfHal != AH_NULL); |
| 719 | ath_hal_free(ahp->ah_rfHal); |
| 720 | ahp->ah_rfHal = AH_NULL; |
| 721 | } |
| 722 | |
| 723 | /* |
| 724 | * Allocate memory for private state. |
| 725 | * Scratch Buffer will be reinitialized every reset so no need to zero now |
| 726 | */ |
| 727 | static HAL_BOOL |
| 728 | ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status) |
| 729 | { |
| 730 | struct ath_hal_5212 *ahp = AH5212(ah); |
| 731 | struct ar2316State *priv; |
| 732 | |
| 733 | HALASSERT(ah->ah_magic == AR5212_MAGIC); |
| 734 | |
| 735 | HALASSERT(ahp->ah_rfHal == AH_NULL); |
| 736 | priv = ath_hal_malloc(sizeof(struct ar2316State)); |
| 737 | if (priv == AH_NULL) { |
| 738 | HALDEBUG(ah, HAL_DEBUG_ANY, |
| 739 | "%s: cannot allocate private state\n" , __func__); |
| 740 | *status = HAL_ENOMEM; /* XXX */ |
| 741 | return AH_FALSE; |
| 742 | } |
| 743 | priv->base.rfDetach = ar2316RfDetach; |
| 744 | priv->base.writeRegs = ar2316WriteRegs; |
| 745 | priv->base.getRfBank = ar2316GetRfBank; |
| 746 | priv->base.setChannel = ar2316SetChannel; |
| 747 | priv->base.setRfRegs = ar2316SetRfRegs; |
| 748 | priv->base.setPowerTable = ar2316SetPowerTable; |
| 749 | priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower; |
| 750 | priv->base.getNfAdjust = ar5212GetNfAdjust; |
| 751 | |
| 752 | ahp->ah_pcdacTable = priv->pcdacTable; |
| 753 | ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); |
| 754 | ahp->ah_rfHal = &priv->base; |
| 755 | |
| 756 | ahp->ah_cwCalRequire = AH_TRUE; /* force initial cal */ |
| 757 | |
| 758 | return AH_TRUE; |
| 759 | } |
| 760 | |
| 761 | static HAL_BOOL |
| 762 | ar2316Probe(struct ath_hal *ah) |
| 763 | { |
| 764 | return IS_2316(ah); |
| 765 | } |
| 766 | AH_RF(RF2316, ar2316Probe, ar2316RfAttach); |
| 767 | |