| 1 | /* $NetBSD: if_arp.c,v 1.232 2016/11/05 20:03:15 roy Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Public Access Networks Corporation ("Panix"). It was developed under |
| 9 | * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or without |
| 12 | * modification, are permitted provided that the following conditions |
| 13 | * are met: |
| 14 | * 1. Redistributions of source code must retain the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer. |
| 16 | * 2. Redistributions in binary form must reproduce the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer in the |
| 18 | * documentation and/or other materials provided with the distribution. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | /* |
| 34 | * Copyright (c) 1982, 1986, 1988, 1993 |
| 35 | * The Regents of the University of California. All rights reserved. |
| 36 | * |
| 37 | * Redistribution and use in source and binary forms, with or without |
| 38 | * modification, are permitted provided that the following conditions |
| 39 | * are met: |
| 40 | * 1. Redistributions of source code must retain the above copyright |
| 41 | * notice, this list of conditions and the following disclaimer. |
| 42 | * 2. Redistributions in binary form must reproduce the above copyright |
| 43 | * notice, this list of conditions and the following disclaimer in the |
| 44 | * documentation and/or other materials provided with the distribution. |
| 45 | * 3. Neither the name of the University nor the names of its contributors |
| 46 | * may be used to endorse or promote products derived from this software |
| 47 | * without specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 59 | * SUCH DAMAGE. |
| 60 | * |
| 61 | * @(#)if_ether.c 8.2 (Berkeley) 9/26/94 |
| 62 | */ |
| 63 | |
| 64 | /* |
| 65 | * Ethernet address resolution protocol. |
| 66 | * TODO: |
| 67 | * add "inuse/lock" bit (or ref. count) along with valid bit |
| 68 | */ |
| 69 | |
| 70 | #include <sys/cdefs.h> |
| 71 | __KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.232 2016/11/05 20:03:15 roy Exp $" ); |
| 72 | |
| 73 | #ifdef _KERNEL_OPT |
| 74 | #include "opt_ddb.h" |
| 75 | #include "opt_inet.h" |
| 76 | #include "opt_net_mpsafe.h" |
| 77 | #endif |
| 78 | |
| 79 | #ifdef INET |
| 80 | |
| 81 | #include "arp.h" |
| 82 | #include "bridge.h" |
| 83 | |
| 84 | #include <sys/param.h> |
| 85 | #include <sys/systm.h> |
| 86 | #include <sys/callout.h> |
| 87 | #include <sys/malloc.h> |
| 88 | #include <sys/mbuf.h> |
| 89 | #include <sys/socket.h> |
| 90 | #include <sys/time.h> |
| 91 | #include <sys/timetc.h> |
| 92 | #include <sys/kernel.h> |
| 93 | #include <sys/errno.h> |
| 94 | #include <sys/ioctl.h> |
| 95 | #include <sys/syslog.h> |
| 96 | #include <sys/proc.h> |
| 97 | #include <sys/protosw.h> |
| 98 | #include <sys/domain.h> |
| 99 | #include <sys/sysctl.h> |
| 100 | #include <sys/socketvar.h> |
| 101 | #include <sys/percpu.h> |
| 102 | #include <sys/cprng.h> |
| 103 | #include <sys/kmem.h> |
| 104 | |
| 105 | #include <net/ethertypes.h> |
| 106 | #include <net/if.h> |
| 107 | #include <net/if_dl.h> |
| 108 | #include <net/if_token.h> |
| 109 | #include <net/if_types.h> |
| 110 | #include <net/if_ether.h> |
| 111 | #include <net/if_llatbl.h> |
| 112 | #include <net/net_osdep.h> |
| 113 | #include <net/route.h> |
| 114 | #include <net/net_stats.h> |
| 115 | |
| 116 | #include <netinet/in.h> |
| 117 | #include <netinet/in_systm.h> |
| 118 | #include <netinet/in_var.h> |
| 119 | #include <netinet/ip.h> |
| 120 | #include <netinet/if_inarp.h> |
| 121 | |
| 122 | #include "arcnet.h" |
| 123 | #if NARCNET > 0 |
| 124 | #include <net/if_arc.h> |
| 125 | #endif |
| 126 | #include "fddi.h" |
| 127 | #if NFDDI > 0 |
| 128 | #include <net/if_fddi.h> |
| 129 | #endif |
| 130 | #include "token.h" |
| 131 | #include "carp.h" |
| 132 | #if NCARP > 0 |
| 133 | #include <netinet/ip_carp.h> |
| 134 | #endif |
| 135 | |
| 136 | #define SIN(s) ((struct sockaddr_in *)s) |
| 137 | #define SRP(s) ((struct sockaddr_inarp *)s) |
| 138 | |
| 139 | /* |
| 140 | * ARP trailer negotiation. Trailer protocol is not IP specific, |
| 141 | * but ARP request/response use IP addresses. |
| 142 | */ |
| 143 | #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL |
| 144 | |
| 145 | /* timer values */ |
| 146 | static int arpt_keep = (20*60); /* once resolved, good for 20 more minutes */ |
| 147 | static int arpt_down = 20; /* once declared down, don't send for 20 secs */ |
| 148 | static int arp_maxhold = 1; /* number of packets to hold per ARP entry */ |
| 149 | #define rt_expire rt_rmx.rmx_expire |
| 150 | #define rt_pksent rt_rmx.rmx_pksent |
| 151 | |
| 152 | int ip_dad_count = PROBE_NUM; |
| 153 | #ifdef ARP_DEBUG |
| 154 | int arp_debug = 1; |
| 155 | #else |
| 156 | int arp_debug = 0; |
| 157 | #endif |
| 158 | |
| 159 | static void arp_init(void); |
| 160 | |
| 161 | static void arprequest(struct ifnet *, |
| 162 | const struct in_addr *, const struct in_addr *, |
| 163 | const u_int8_t *); |
| 164 | static void arpannounce1(struct ifaddr *); |
| 165 | static struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *, |
| 166 | const struct sockaddr *); |
| 167 | static void arptimer(void *); |
| 168 | static void arp_settimer(struct llentry *, int); |
| 169 | static struct llentry *arplookup(struct ifnet *, struct mbuf *, |
| 170 | const struct in_addr *, const struct sockaddr *, int); |
| 171 | static struct llentry *arpcreate(struct ifnet *, struct mbuf *, |
| 172 | const struct in_addr *, const struct sockaddr *, int); |
| 173 | static void in_arpinput(struct mbuf *); |
| 174 | static void in_revarpinput(struct mbuf *); |
| 175 | static void revarprequest(struct ifnet *); |
| 176 | |
| 177 | static void arp_drainstub(void); |
| 178 | |
| 179 | static void arp_dad_timer(struct ifaddr *); |
| 180 | static void arp_dad_start(struct ifaddr *); |
| 181 | static void arp_dad_stop(struct ifaddr *); |
| 182 | static void arp_dad_duplicated(struct ifaddr *, const char *); |
| 183 | |
| 184 | static void arp_init_llentry(struct ifnet *, struct llentry *); |
| 185 | #if NTOKEN > 0 |
| 186 | static void arp_free_llentry_tokenring(struct llentry *); |
| 187 | #endif |
| 188 | |
| 189 | struct ifqueue arpintrq = { |
| 190 | .ifq_head = NULL, |
| 191 | .ifq_tail = NULL, |
| 192 | .ifq_len = 0, |
| 193 | .ifq_maxlen = 50, |
| 194 | .ifq_drops = 0, |
| 195 | }; |
| 196 | static int arp_maxtries = 5; |
| 197 | static int useloopback = 1; /* use loopback interface for local traffic */ |
| 198 | |
| 199 | static percpu_t *arpstat_percpu; |
| 200 | |
| 201 | #define ARP_STAT_GETREF() _NET_STAT_GETREF(arpstat_percpu) |
| 202 | #define ARP_STAT_PUTREF() _NET_STAT_PUTREF(arpstat_percpu) |
| 203 | |
| 204 | #define ARP_STATINC(x) _NET_STATINC(arpstat_percpu, x) |
| 205 | #define ARP_STATADD(x, v) _NET_STATADD(arpstat_percpu, x, v) |
| 206 | |
| 207 | /* revarp state */ |
| 208 | static struct in_addr myip, srv_ip; |
| 209 | static int myip_initialized = 0; |
| 210 | static int revarp_in_progress = 0; |
| 211 | static struct ifnet *myip_ifp = NULL; |
| 212 | |
| 213 | static int arp_drainwanted; |
| 214 | |
| 215 | static int log_movements = 1; |
| 216 | static int log_permanent_modify = 1; |
| 217 | static int log_wrong_iface = 1; |
| 218 | static int log_unknown_network = 1; |
| 219 | |
| 220 | /* |
| 221 | * this should be elsewhere. |
| 222 | */ |
| 223 | |
| 224 | static char * |
| 225 | lla_snprintf(u_int8_t *, int); |
| 226 | |
| 227 | static char * |
| 228 | lla_snprintf(u_int8_t *adrp, int len) |
| 229 | { |
| 230 | #define NUMBUFS 3 |
| 231 | static char buf[NUMBUFS][16*3]; |
| 232 | static int bnum = 0; |
| 233 | |
| 234 | int i; |
| 235 | char *p; |
| 236 | |
| 237 | p = buf[bnum]; |
| 238 | |
| 239 | *p++ = hexdigits[(*adrp)>>4]; |
| 240 | *p++ = hexdigits[(*adrp++)&0xf]; |
| 241 | |
| 242 | for (i=1; i<len && i<16; i++) { |
| 243 | *p++ = ':'; |
| 244 | *p++ = hexdigits[(*adrp)>>4]; |
| 245 | *p++ = hexdigits[(*adrp++)&0xf]; |
| 246 | } |
| 247 | |
| 248 | *p = 0; |
| 249 | p = buf[bnum]; |
| 250 | bnum = (bnum + 1) % NUMBUFS; |
| 251 | return p; |
| 252 | } |
| 253 | |
| 254 | DOMAIN_DEFINE(arpdomain); /* forward declare and add to link set */ |
| 255 | |
| 256 | static void |
| 257 | arp_fasttimo(void) |
| 258 | { |
| 259 | if (arp_drainwanted) { |
| 260 | arp_drain(); |
| 261 | arp_drainwanted = 0; |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | const struct protosw arpsw[] = { |
| 266 | { .pr_type = 0, |
| 267 | .pr_domain = &arpdomain, |
| 268 | .pr_protocol = 0, |
| 269 | .pr_flags = 0, |
| 270 | .pr_input = 0, |
| 271 | .pr_ctlinput = 0, |
| 272 | .pr_ctloutput = 0, |
| 273 | .pr_usrreqs = 0, |
| 274 | .pr_init = arp_init, |
| 275 | .pr_fasttimo = arp_fasttimo, |
| 276 | .pr_slowtimo = 0, |
| 277 | .pr_drain = arp_drainstub, |
| 278 | } |
| 279 | }; |
| 280 | |
| 281 | struct domain arpdomain = { |
| 282 | .dom_family = PF_ARP, |
| 283 | .dom_name = "arp" , |
| 284 | .dom_protosw = arpsw, |
| 285 | .dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)], |
| 286 | }; |
| 287 | |
| 288 | static void sysctl_net_inet_arp_setup(struct sysctllog **); |
| 289 | |
| 290 | void |
| 291 | arp_init(void) |
| 292 | { |
| 293 | |
| 294 | sysctl_net_inet_arp_setup(NULL); |
| 295 | arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS); |
| 296 | IFQ_LOCK_INIT(&arpintrq); |
| 297 | } |
| 298 | |
| 299 | static void |
| 300 | arp_drainstub(void) |
| 301 | { |
| 302 | arp_drainwanted = 1; |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * ARP protocol drain routine. Called when memory is in short supply. |
| 307 | * Called at splvm(); don't acquire softnet_lock as can be called from |
| 308 | * hardware interrupt handlers. |
| 309 | */ |
| 310 | void |
| 311 | arp_drain(void) |
| 312 | { |
| 313 | |
| 314 | lltable_drain(AF_INET); |
| 315 | } |
| 316 | |
| 317 | static void |
| 318 | arptimer(void *arg) |
| 319 | { |
| 320 | struct llentry *lle = arg; |
| 321 | struct ifnet *ifp; |
| 322 | |
| 323 | if (lle == NULL) |
| 324 | return; |
| 325 | |
| 326 | if (lle->la_flags & LLE_STATIC) |
| 327 | return; |
| 328 | |
| 329 | LLE_WLOCK(lle); |
| 330 | if (callout_pending(&lle->la_timer)) { |
| 331 | /* |
| 332 | * Here we are a bit odd here in the treatment of |
| 333 | * active/pending. If the pending bit is set, it got |
| 334 | * rescheduled before I ran. The active |
| 335 | * bit we ignore, since if it was stopped |
| 336 | * in ll_tablefree() and was currently running |
| 337 | * it would have return 0 so the code would |
| 338 | * not have deleted it since the callout could |
| 339 | * not be stopped so we want to go through |
| 340 | * with the delete here now. If the callout |
| 341 | * was restarted, the pending bit will be back on and |
| 342 | * we just want to bail since the callout_reset would |
| 343 | * return 1 and our reference would have been removed |
| 344 | * by arpresolve() below. |
| 345 | */ |
| 346 | LLE_WUNLOCK(lle); |
| 347 | return; |
| 348 | } |
| 349 | ifp = lle->lle_tbl->llt_ifp; |
| 350 | |
| 351 | callout_stop(&lle->la_timer); |
| 352 | |
| 353 | /* XXX: LOR avoidance. We still have ref on lle. */ |
| 354 | LLE_WUNLOCK(lle); |
| 355 | |
| 356 | IF_AFDATA_LOCK(ifp); |
| 357 | LLE_WLOCK(lle); |
| 358 | |
| 359 | /* Guard against race with other llentry_free(). */ |
| 360 | if (lle->la_flags & LLE_LINKED) { |
| 361 | size_t pkts_dropped; |
| 362 | |
| 363 | LLE_REMREF(lle); |
| 364 | pkts_dropped = llentry_free(lle); |
| 365 | ARP_STATADD(ARP_STAT_DFRDROPPED, pkts_dropped); |
| 366 | ARP_STATADD(ARP_STAT_DFRTOTAL, pkts_dropped); |
| 367 | } else { |
| 368 | LLE_FREE_LOCKED(lle); |
| 369 | } |
| 370 | |
| 371 | IF_AFDATA_UNLOCK(ifp); |
| 372 | } |
| 373 | |
| 374 | static void |
| 375 | arp_settimer(struct llentry *la, int sec) |
| 376 | { |
| 377 | |
| 378 | LLE_WLOCK_ASSERT(la); |
| 379 | LLE_ADDREF(la); |
| 380 | callout_reset(&la->la_timer, hz * sec, arptimer, la); |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * We set the gateway for RTF_CLONING routes to a "prototype" |
| 385 | * link-layer sockaddr whose interface type (if_type) and interface |
| 386 | * index (if_index) fields are prepared. |
| 387 | */ |
| 388 | static struct sockaddr * |
| 389 | arp_setgate(struct rtentry *rt, struct sockaddr *gate, |
| 390 | const struct sockaddr *netmask) |
| 391 | { |
| 392 | const struct ifnet *ifp = rt->rt_ifp; |
| 393 | uint8_t namelen = strlen(ifp->if_xname); |
| 394 | uint8_t addrlen = ifp->if_addrlen; |
| 395 | |
| 396 | /* |
| 397 | * XXX: If this is a manually added route to interface |
| 398 | * such as older version of routed or gated might provide, |
| 399 | * restore cloning bit. |
| 400 | */ |
| 401 | if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL && |
| 402 | satocsin(netmask)->sin_addr.s_addr != 0xffffffff) |
| 403 | rt->rt_flags |= RTF_CONNECTED; |
| 404 | |
| 405 | if ((rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL))) { |
| 406 | union { |
| 407 | struct sockaddr sa; |
| 408 | struct sockaddr_storage ss; |
| 409 | struct sockaddr_dl sdl; |
| 410 | } u; |
| 411 | /* |
| 412 | * Case 1: This route should come from a route to iface. |
| 413 | */ |
| 414 | sockaddr_dl_init(&u.sdl, sizeof(u.ss), |
| 415 | ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen); |
| 416 | rt_setgate(rt, &u.sa); |
| 417 | gate = rt->rt_gateway; |
| 418 | } |
| 419 | return gate; |
| 420 | } |
| 421 | |
| 422 | static void |
| 423 | arp_init_llentry(struct ifnet *ifp, struct llentry *lle) |
| 424 | { |
| 425 | |
| 426 | switch (ifp->if_type) { |
| 427 | #if NTOKEN > 0 |
| 428 | case IFT_ISO88025: |
| 429 | lle->la_opaque = kmem_intr_alloc(sizeof(struct token_rif), |
| 430 | KM_NOSLEEP); |
| 431 | lle->lle_ll_free = arp_free_llentry_tokenring; |
| 432 | break; |
| 433 | #endif |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | #if NTOKEN > 0 |
| 438 | static void |
| 439 | arp_free_llentry_tokenring(struct llentry *lle) |
| 440 | { |
| 441 | |
| 442 | kmem_intr_free(lle->la_opaque, sizeof(struct token_rif)); |
| 443 | } |
| 444 | #endif |
| 445 | |
| 446 | /* |
| 447 | * Parallel to llc_rtrequest. |
| 448 | */ |
| 449 | void |
| 450 | arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) |
| 451 | { |
| 452 | struct sockaddr *gate = rt->rt_gateway; |
| 453 | struct in_ifaddr *ia; |
| 454 | struct ifaddr *ifa; |
| 455 | struct ifnet *ifp = rt->rt_ifp; |
| 456 | int bound; |
| 457 | int s; |
| 458 | |
| 459 | if (req == RTM_LLINFO_UPD) { |
| 460 | if ((ifa = info->rti_ifa) != NULL) |
| 461 | arpannounce1(ifa); |
| 462 | return; |
| 463 | } |
| 464 | |
| 465 | if ((rt->rt_flags & RTF_GATEWAY) != 0) { |
| 466 | if (req != RTM_ADD) |
| 467 | return; |
| 468 | |
| 469 | /* |
| 470 | * linklayers with particular link MTU limitation. |
| 471 | */ |
| 472 | switch(ifp->if_type) { |
| 473 | #if NFDDI > 0 |
| 474 | case IFT_FDDI: |
| 475 | if (ifp->if_mtu > FDDIIPMTU) |
| 476 | rt->rt_rmx.rmx_mtu = FDDIIPMTU; |
| 477 | break; |
| 478 | #endif |
| 479 | #if NARCNET > 0 |
| 480 | case IFT_ARCNET: |
| 481 | { |
| 482 | int arcipifmtu; |
| 483 | |
| 484 | if (ifp->if_flags & IFF_LINK0) |
| 485 | arcipifmtu = arc_ipmtu; |
| 486 | else |
| 487 | arcipifmtu = ARCMTU; |
| 488 | if (ifp->if_mtu > arcipifmtu) |
| 489 | rt->rt_rmx.rmx_mtu = arcipifmtu; |
| 490 | break; |
| 491 | } |
| 492 | #endif |
| 493 | } |
| 494 | return; |
| 495 | } |
| 496 | |
| 497 | switch (req) { |
| 498 | case RTM_SETGATE: |
| 499 | gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]); |
| 500 | break; |
| 501 | case RTM_ADD: |
| 502 | gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]); |
| 503 | if (gate == NULL) { |
| 504 | log(LOG_ERR, "%s: arp_setgate failed\n" , __func__); |
| 505 | break; |
| 506 | } |
| 507 | if ((rt->rt_flags & RTF_CONNECTED) || |
| 508 | (rt->rt_flags & RTF_LOCAL)) { |
| 509 | /* |
| 510 | * Give this route an expiration time, even though |
| 511 | * it's a "permanent" route, so that routes cloned |
| 512 | * from it do not need their expiration time set. |
| 513 | */ |
| 514 | KASSERT(time_uptime != 0); |
| 515 | rt->rt_expire = time_uptime; |
| 516 | /* |
| 517 | * linklayers with particular link MTU limitation. |
| 518 | */ |
| 519 | switch (ifp->if_type) { |
| 520 | #if NFDDI > 0 |
| 521 | case IFT_FDDI: |
| 522 | if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && |
| 523 | (rt->rt_rmx.rmx_mtu > FDDIIPMTU || |
| 524 | (rt->rt_rmx.rmx_mtu == 0 && |
| 525 | ifp->if_mtu > FDDIIPMTU))) |
| 526 | rt->rt_rmx.rmx_mtu = FDDIIPMTU; |
| 527 | break; |
| 528 | #endif |
| 529 | #if NARCNET > 0 |
| 530 | case IFT_ARCNET: |
| 531 | { |
| 532 | int arcipifmtu; |
| 533 | if (ifp->if_flags & IFF_LINK0) |
| 534 | arcipifmtu = arc_ipmtu; |
| 535 | else |
| 536 | arcipifmtu = ARCMTU; |
| 537 | |
| 538 | if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && |
| 539 | (rt->rt_rmx.rmx_mtu > arcipifmtu || |
| 540 | (rt->rt_rmx.rmx_mtu == 0 && |
| 541 | ifp->if_mtu > arcipifmtu))) |
| 542 | rt->rt_rmx.rmx_mtu = arcipifmtu; |
| 543 | break; |
| 544 | } |
| 545 | #endif |
| 546 | } |
| 547 | if (rt->rt_flags & RTF_CONNECTED) |
| 548 | break; |
| 549 | } |
| 550 | |
| 551 | bound = curlwp_bind(); |
| 552 | /* Announce a new entry if requested. */ |
| 553 | if (rt->rt_flags & RTF_ANNOUNCE) { |
| 554 | struct psref psref; |
| 555 | ia = in_get_ia_on_iface_psref( |
| 556 | satocsin(rt_getkey(rt))->sin_addr, ifp, &psref); |
| 557 | if (ia != NULL) { |
| 558 | arpannounce(ifp, &ia->ia_ifa, |
| 559 | CLLADDR(satocsdl(gate))); |
| 560 | ia4_release(ia, &psref); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | if (gate->sa_family != AF_LINK || |
| 565 | gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) { |
| 566 | log(LOG_DEBUG, "%s: bad gateway value\n" , __func__); |
| 567 | goto out; |
| 568 | } |
| 569 | |
| 570 | satosdl(gate)->sdl_type = ifp->if_type; |
| 571 | satosdl(gate)->sdl_index = ifp->if_index; |
| 572 | |
| 573 | /* If the route is for a broadcast address mark it as such. |
| 574 | * This way we can avoid an expensive call to in_broadcast() |
| 575 | * in ip_output() most of the time (because the route passed |
| 576 | * to ip_output() is almost always a host route). */ |
| 577 | if (rt->rt_flags & RTF_HOST && |
| 578 | !(rt->rt_flags & RTF_BROADCAST) && |
| 579 | in_broadcast(satocsin(rt_getkey(rt))->sin_addr, rt->rt_ifp)) |
| 580 | rt->rt_flags |= RTF_BROADCAST; |
| 581 | /* There is little point in resolving the broadcast address */ |
| 582 | if (rt->rt_flags & RTF_BROADCAST) |
| 583 | goto out; |
| 584 | |
| 585 | /* |
| 586 | * When called from rt_ifa_addlocal, we cannot depend on that |
| 587 | * the address (rt_getkey(rt)) exits in the address list of the |
| 588 | * interface. So check RTF_LOCAL instead. |
| 589 | */ |
| 590 | if (rt->rt_flags & RTF_LOCAL) { |
| 591 | rt->rt_expire = 0; |
| 592 | if (useloopback) { |
| 593 | rt->rt_ifp = lo0ifp; |
| 594 | rt->rt_rmx.rmx_mtu = 0; |
| 595 | } |
| 596 | goto out; |
| 597 | } |
| 598 | |
| 599 | s = pserialize_read_enter(); |
| 600 | ia = in_get_ia_on_iface(satocsin(rt_getkey(rt))->sin_addr, ifp); |
| 601 | if (ia == NULL) { |
| 602 | pserialize_read_exit(s); |
| 603 | goto out; |
| 604 | } |
| 605 | |
| 606 | rt->rt_expire = 0; |
| 607 | if (useloopback) { |
| 608 | rt->rt_ifp = lo0ifp; |
| 609 | rt->rt_rmx.rmx_mtu = 0; |
| 610 | } |
| 611 | rt->rt_flags |= RTF_LOCAL; |
| 612 | /* |
| 613 | * make sure to set rt->rt_ifa to the interface |
| 614 | * address we are using, otherwise we will have trouble |
| 615 | * with source address selection. |
| 616 | */ |
| 617 | ifa = &ia->ia_ifa; |
| 618 | if (ifa != rt->rt_ifa) |
| 619 | /* Assume it doesn't sleep */ |
| 620 | rt_replace_ifa(rt, ifa); |
| 621 | pserialize_read_exit(s); |
| 622 | out: |
| 623 | curlwp_bindx(bound); |
| 624 | break; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * Broadcast an ARP request. Caller specifies: |
| 630 | * - arp header source ip address |
| 631 | * - arp header target ip address |
| 632 | * - arp header source ethernet address |
| 633 | */ |
| 634 | static void |
| 635 | arprequest(struct ifnet *ifp, |
| 636 | const struct in_addr *sip, const struct in_addr *tip, |
| 637 | const u_int8_t *enaddr) |
| 638 | { |
| 639 | struct mbuf *m; |
| 640 | struct arphdr *ah; |
| 641 | struct sockaddr sa; |
| 642 | uint64_t *arps; |
| 643 | |
| 644 | KASSERT(sip != NULL); |
| 645 | KASSERT(tip != NULL); |
| 646 | KASSERT(enaddr != NULL); |
| 647 | |
| 648 | if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) |
| 649 | return; |
| 650 | MCLAIM(m, &arpdomain.dom_mowner); |
| 651 | switch (ifp->if_type) { |
| 652 | case IFT_IEEE1394: |
| 653 | m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + |
| 654 | ifp->if_addrlen; |
| 655 | break; |
| 656 | default: |
| 657 | m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + |
| 658 | 2 * ifp->if_addrlen; |
| 659 | break; |
| 660 | } |
| 661 | m->m_pkthdr.len = m->m_len; |
| 662 | MH_ALIGN(m, m->m_len); |
| 663 | ah = mtod(m, struct arphdr *); |
| 664 | memset(ah, 0, m->m_len); |
| 665 | switch (ifp->if_type) { |
| 666 | case IFT_IEEE1394: /* RFC2734 */ |
| 667 | /* fill it now for ar_tpa computation */ |
| 668 | ah->ar_hrd = htons(ARPHRD_IEEE1394); |
| 669 | break; |
| 670 | default: |
| 671 | /* ifp->if_output will fill ar_hrd */ |
| 672 | break; |
| 673 | } |
| 674 | ah->ar_pro = htons(ETHERTYPE_IP); |
| 675 | ah->ar_hln = ifp->if_addrlen; /* hardware address length */ |
| 676 | ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ |
| 677 | ah->ar_op = htons(ARPOP_REQUEST); |
| 678 | memcpy(ar_sha(ah), enaddr, ah->ar_hln); |
| 679 | memcpy(ar_spa(ah), sip, ah->ar_pln); |
| 680 | memcpy(ar_tpa(ah), tip, ah->ar_pln); |
| 681 | sa.sa_family = AF_ARP; |
| 682 | sa.sa_len = 2; |
| 683 | m->m_flags |= M_BCAST; |
| 684 | arps = ARP_STAT_GETREF(); |
| 685 | arps[ARP_STAT_SNDTOTAL]++; |
| 686 | arps[ARP_STAT_SENDREQUEST]++; |
| 687 | ARP_STAT_PUTREF(); |
| 688 | if_output_lock(ifp, ifp, m, &sa, NULL); |
| 689 | } |
| 690 | |
| 691 | void |
| 692 | arpannounce(struct ifnet *ifp, struct ifaddr *ifa, const uint8_t *enaddr) |
| 693 | { |
| 694 | struct in_ifaddr *ia = ifatoia(ifa); |
| 695 | struct in_addr *ip = &IA_SIN(ifa)->sin_addr; |
| 696 | |
| 697 | if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) { |
| 698 | arplog(LOG_DEBUG, "%s not ready\n" , in_fmtaddr(*ip)); |
| 699 | return; |
| 700 | } |
| 701 | arprequest(ifp, ip, ip, enaddr); |
| 702 | } |
| 703 | |
| 704 | static void |
| 705 | arpannounce1(struct ifaddr *ifa) |
| 706 | { |
| 707 | |
| 708 | arpannounce(ifa->ifa_ifp, ifa, CLLADDR(ifa->ifa_ifp->if_sadl)); |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * Resolve an IP address into an ethernet address. If success, |
| 713 | * desten is filled in. If there is no entry in arptab, |
| 714 | * set one up and broadcast a request for the IP address. |
| 715 | * Hold onto this mbuf and resend it once the address |
| 716 | * is finally resolved. A return value of 0 indicates |
| 717 | * that desten has been filled in and the packet should be sent |
| 718 | * normally; a return value of EWOULDBLOCK indicates that the packet has been |
| 719 | * held pending resolution. |
| 720 | * Any other value indicates an error. |
| 721 | */ |
| 722 | int |
| 723 | arpresolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m, |
| 724 | const struct sockaddr *dst, void *desten, size_t destlen) |
| 725 | { |
| 726 | struct llentry *la; |
| 727 | const char *create_lookup; |
| 728 | bool renew; |
| 729 | int error; |
| 730 | |
| 731 | KASSERT(m != NULL); |
| 732 | |
| 733 | la = arplookup(ifp, m, NULL, dst, 0); |
| 734 | if (la == NULL) |
| 735 | goto notfound; |
| 736 | |
| 737 | if ((la->la_flags & LLE_VALID) && |
| 738 | ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) { |
| 739 | KASSERT(destlen >= ifp->if_addrlen); |
| 740 | memcpy(desten, &la->ll_addr, ifp->if_addrlen); |
| 741 | LLE_RUNLOCK(la); |
| 742 | return 0; |
| 743 | } |
| 744 | |
| 745 | notfound: |
| 746 | #ifdef IFF_STATICARP /* FreeBSD */ |
| 747 | #define _IFF_NOARP (IFF_NOARP | IFF_STATICARP) |
| 748 | #else |
| 749 | #define _IFF_NOARP IFF_NOARP |
| 750 | #endif |
| 751 | if (ifp->if_flags & _IFF_NOARP) { |
| 752 | if (la != NULL) |
| 753 | LLE_RUNLOCK(la); |
| 754 | error = ENOTSUP; |
| 755 | goto bad; |
| 756 | } |
| 757 | #undef _IFF_NOARP |
| 758 | if (la == NULL) { |
| 759 | create_lookup = "create" ; |
| 760 | IF_AFDATA_WLOCK(ifp); |
| 761 | la = lla_create(LLTABLE(ifp), LLE_EXCLUSIVE, dst); |
| 762 | IF_AFDATA_WUNLOCK(ifp); |
| 763 | if (la == NULL) |
| 764 | ARP_STATINC(ARP_STAT_ALLOCFAIL); |
| 765 | else |
| 766 | arp_init_llentry(ifp, la); |
| 767 | } else if (LLE_TRY_UPGRADE(la) == 0) { |
| 768 | create_lookup = "lookup" ; |
| 769 | LLE_RUNLOCK(la); |
| 770 | IF_AFDATA_RLOCK(ifp); |
| 771 | la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); |
| 772 | IF_AFDATA_RUNLOCK(ifp); |
| 773 | } |
| 774 | |
| 775 | error = EINVAL; |
| 776 | if (la == NULL) { |
| 777 | log(LOG_DEBUG, |
| 778 | "%s: failed to %s llentry for %s on %s\n" , |
| 779 | __func__, create_lookup, inet_ntoa(satocsin(dst)->sin_addr), |
| 780 | ifp->if_xname); |
| 781 | goto bad; |
| 782 | } |
| 783 | |
| 784 | if ((la->la_flags & LLE_VALID) && |
| 785 | ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) |
| 786 | { |
| 787 | KASSERT(destlen >= ifp->if_addrlen); |
| 788 | memcpy(desten, &la->ll_addr, ifp->if_addrlen); |
| 789 | renew = false; |
| 790 | /* |
| 791 | * If entry has an expiry time and it is approaching, |
| 792 | * see if we need to send an ARP request within this |
| 793 | * arpt_down interval. |
| 794 | */ |
| 795 | if (!(la->la_flags & LLE_STATIC) && |
| 796 | time_uptime + la->la_preempt > la->la_expire) |
| 797 | { |
| 798 | renew = true; |
| 799 | la->la_preempt--; |
| 800 | } |
| 801 | |
| 802 | LLE_WUNLOCK(la); |
| 803 | |
| 804 | if (renew) { |
| 805 | const u_int8_t *enaddr = |
| 806 | #if NCARP > 0 |
| 807 | (ifp->if_type == IFT_CARP) ? |
| 808 | CLLADDR(ifp->if_sadl): |
| 809 | #endif |
| 810 | CLLADDR(ifp->if_sadl); |
| 811 | arprequest(ifp, |
| 812 | &satocsin(rt->rt_ifa->ifa_addr)->sin_addr, |
| 813 | &satocsin(dst)->sin_addr, enaddr); |
| 814 | } |
| 815 | |
| 816 | return 0; |
| 817 | } |
| 818 | |
| 819 | if (la->la_flags & LLE_STATIC) { /* should not happen! */ |
| 820 | LLE_RUNLOCK(la); |
| 821 | log(LOG_DEBUG, "%s: ouch, empty static llinfo for %s\n" , |
| 822 | __func__, inet_ntoa(satocsin(dst)->sin_addr)); |
| 823 | error = EINVAL; |
| 824 | goto bad; |
| 825 | } |
| 826 | |
| 827 | renew = (la->la_asked == 0 || la->la_expire != time_uptime); |
| 828 | |
| 829 | /* |
| 830 | * There is an arptab entry, but no ethernet address |
| 831 | * response yet. Add the mbuf to the list, dropping |
| 832 | * the oldest packet if we have exceeded the system |
| 833 | * setting. |
| 834 | */ |
| 835 | LLE_WLOCK_ASSERT(la); |
| 836 | if (la->la_numheld >= arp_maxhold) { |
| 837 | if (la->la_hold != NULL) { |
| 838 | struct mbuf *next = la->la_hold->m_nextpkt; |
| 839 | m_freem(la->la_hold); |
| 840 | la->la_hold = next; |
| 841 | la->la_numheld--; |
| 842 | ARP_STATINC(ARP_STAT_DFRDROPPED); |
| 843 | ARP_STATINC(ARP_STAT_DFRTOTAL); |
| 844 | } |
| 845 | } |
| 846 | if (la->la_hold != NULL) { |
| 847 | struct mbuf *curr = la->la_hold; |
| 848 | while (curr->m_nextpkt != NULL) |
| 849 | curr = curr->m_nextpkt; |
| 850 | curr->m_nextpkt = m; |
| 851 | } else |
| 852 | la->la_hold = m; |
| 853 | la->la_numheld++; |
| 854 | if (!renew) |
| 855 | LLE_DOWNGRADE(la); |
| 856 | |
| 857 | /* |
| 858 | * Return EWOULDBLOCK if we have tried less than arp_maxtries. It |
| 859 | * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH |
| 860 | * if we have already sent arp_maxtries ARP requests. Retransmit the |
| 861 | * ARP request, but not faster than one request per second. |
| 862 | */ |
| 863 | if (la->la_asked < arp_maxtries) |
| 864 | error = EWOULDBLOCK; /* First request. */ |
| 865 | else |
| 866 | error = (rt != NULL && rt->rt_flags & RTF_GATEWAY) ? |
| 867 | EHOSTUNREACH : EHOSTDOWN; |
| 868 | |
| 869 | if (renew) { |
| 870 | const u_int8_t *enaddr = |
| 871 | #if NCARP > 0 |
| 872 | (rt != NULL && rt->rt_ifp->if_type == IFT_CARP) ? |
| 873 | CLLADDR(rt->rt_ifp->if_sadl): |
| 874 | #endif |
| 875 | CLLADDR(ifp->if_sadl); |
| 876 | la->la_expire = time_uptime; |
| 877 | arp_settimer(la, arpt_down); |
| 878 | la->la_asked++; |
| 879 | LLE_WUNLOCK(la); |
| 880 | |
| 881 | if (rt != NULL) { |
| 882 | arprequest(ifp, &satocsin(rt->rt_ifa->ifa_addr)->sin_addr, |
| 883 | &satocsin(dst)->sin_addr, enaddr); |
| 884 | } else { |
| 885 | struct sockaddr_in sin; |
| 886 | struct rtentry *_rt; |
| 887 | |
| 888 | sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0); |
| 889 | |
| 890 | /* XXX */ |
| 891 | _rt = rtalloc1((struct sockaddr *)&sin, 0); |
| 892 | if (_rt == NULL) |
| 893 | goto bad; |
| 894 | arprequest(ifp, |
| 895 | &satocsin(_rt->rt_ifa->ifa_addr)->sin_addr, |
| 896 | &satocsin(dst)->sin_addr, enaddr); |
| 897 | rtfree(_rt); |
| 898 | } |
| 899 | return error; |
| 900 | } |
| 901 | |
| 902 | LLE_RUNLOCK(la); |
| 903 | return error; |
| 904 | |
| 905 | bad: |
| 906 | m_freem(m); |
| 907 | return error; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * Common length and type checks are done here, |
| 912 | * then the protocol-specific routine is called. |
| 913 | */ |
| 914 | void |
| 915 | arpintr(void) |
| 916 | { |
| 917 | struct mbuf *m; |
| 918 | struct arphdr *ar; |
| 919 | int s; |
| 920 | int arplen; |
| 921 | |
| 922 | #ifndef NET_MPSAFE |
| 923 | mutex_enter(softnet_lock); |
| 924 | KERNEL_LOCK(1, NULL); |
| 925 | #endif |
| 926 | for (;;) { |
| 927 | struct ifnet *rcvif; |
| 928 | |
| 929 | IFQ_LOCK(&arpintrq); |
| 930 | IF_DEQUEUE(&arpintrq, m); |
| 931 | IFQ_UNLOCK(&arpintrq); |
| 932 | if (m == NULL) |
| 933 | goto out; |
| 934 | if ((m->m_flags & M_PKTHDR) == 0) |
| 935 | panic("arpintr" ); |
| 936 | |
| 937 | MCLAIM(m, &arpdomain.dom_mowner); |
| 938 | ARP_STATINC(ARP_STAT_RCVTOTAL); |
| 939 | |
| 940 | /* |
| 941 | * First, make sure we have at least struct arphdr. |
| 942 | */ |
| 943 | if (m->m_len < sizeof(struct arphdr) || |
| 944 | (ar = mtod(m, struct arphdr *)) == NULL) |
| 945 | goto badlen; |
| 946 | |
| 947 | rcvif = m_get_rcvif(m, &s); |
| 948 | switch (rcvif->if_type) { |
| 949 | case IFT_IEEE1394: |
| 950 | arplen = sizeof(struct arphdr) + |
| 951 | ar->ar_hln + 2 * ar->ar_pln; |
| 952 | break; |
| 953 | default: |
| 954 | arplen = sizeof(struct arphdr) + |
| 955 | 2 * ar->ar_hln + 2 * ar->ar_pln; |
| 956 | break; |
| 957 | } |
| 958 | m_put_rcvif(rcvif, &s); |
| 959 | |
| 960 | if (/* XXX ntohs(ar->ar_hrd) == ARPHRD_ETHER && */ |
| 961 | m->m_len >= arplen) |
| 962 | switch (ntohs(ar->ar_pro)) { |
| 963 | case ETHERTYPE_IP: |
| 964 | case ETHERTYPE_IPTRAILERS: |
| 965 | in_arpinput(m); |
| 966 | continue; |
| 967 | default: |
| 968 | ARP_STATINC(ARP_STAT_RCVBADPROTO); |
| 969 | } |
| 970 | else { |
| 971 | badlen: |
| 972 | ARP_STATINC(ARP_STAT_RCVBADLEN); |
| 973 | } |
| 974 | m_freem(m); |
| 975 | } |
| 976 | out: |
| 977 | #ifndef NET_MPSAFE |
| 978 | KERNEL_UNLOCK_ONE(NULL); |
| 979 | mutex_exit(softnet_lock); |
| 980 | #else |
| 981 | return; /* XXX gcc */ |
| 982 | #endif |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * ARP for Internet protocols on 10 Mb/s Ethernet. |
| 987 | * Algorithm is that given in RFC 826. |
| 988 | * In addition, a sanity check is performed on the sender |
| 989 | * protocol address, to catch impersonators. |
| 990 | * We no longer handle negotiations for use of trailer protocol: |
| 991 | * Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent |
| 992 | * along with IP replies if we wanted trailers sent to us, |
| 993 | * and also sent them in response to IP replies. |
| 994 | * This allowed either end to announce the desire to receive |
| 995 | * trailer packets. |
| 996 | * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, |
| 997 | * but formerly didn't normally send requests. |
| 998 | */ |
| 999 | static void |
| 1000 | in_arpinput(struct mbuf *m) |
| 1001 | { |
| 1002 | struct arphdr *ah; |
| 1003 | struct ifnet *ifp, *rcvif = NULL; |
| 1004 | struct llentry *la = NULL; |
| 1005 | struct in_ifaddr *ia = NULL; |
| 1006 | #if NBRIDGE > 0 |
| 1007 | struct in_ifaddr *bridge_ia = NULL; |
| 1008 | #endif |
| 1009 | #if NCARP > 0 |
| 1010 | u_int32_t count = 0, index = 0; |
| 1011 | #endif |
| 1012 | struct sockaddr sa; |
| 1013 | struct in_addr isaddr, itaddr, myaddr; |
| 1014 | int op; |
| 1015 | void *tha; |
| 1016 | uint64_t *arps; |
| 1017 | struct psref psref, psref_ia; |
| 1018 | int s; |
| 1019 | |
| 1020 | if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT))) |
| 1021 | goto out; |
| 1022 | ah = mtod(m, struct arphdr *); |
| 1023 | op = ntohs(ah->ar_op); |
| 1024 | |
| 1025 | rcvif = ifp = m_get_rcvif_psref(m, &psref); |
| 1026 | if (__predict_false(rcvif == NULL)) |
| 1027 | goto drop; |
| 1028 | /* |
| 1029 | * Fix up ah->ar_hrd if necessary, before using ar_tha() or |
| 1030 | * ar_tpa(). |
| 1031 | */ |
| 1032 | switch (ifp->if_type) { |
| 1033 | case IFT_IEEE1394: |
| 1034 | if (ntohs(ah->ar_hrd) == ARPHRD_IEEE1394) |
| 1035 | ; |
| 1036 | else { |
| 1037 | /* XXX this is to make sure we compute ar_tha right */ |
| 1038 | /* XXX check ar_hrd more strictly? */ |
| 1039 | ah->ar_hrd = htons(ARPHRD_IEEE1394); |
| 1040 | } |
| 1041 | break; |
| 1042 | default: |
| 1043 | /* XXX check ar_hrd? */ |
| 1044 | break; |
| 1045 | } |
| 1046 | |
| 1047 | memcpy(&isaddr, ar_spa(ah), sizeof (isaddr)); |
| 1048 | memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr)); |
| 1049 | |
| 1050 | if (m->m_flags & (M_BCAST|M_MCAST)) |
| 1051 | ARP_STATINC(ARP_STAT_RCVMCAST); |
| 1052 | |
| 1053 | |
| 1054 | /* |
| 1055 | * Search for a matching interface address |
| 1056 | * or any address on the interface to use |
| 1057 | * as a dummy address in the rest of this function |
| 1058 | */ |
| 1059 | s = pserialize_read_enter(); |
| 1060 | IN_ADDRHASH_READER_FOREACH(ia, itaddr.s_addr) { |
| 1061 | if (!in_hosteq(ia->ia_addr.sin_addr, itaddr)) |
| 1062 | continue; |
| 1063 | #if NCARP > 0 |
| 1064 | if (ia->ia_ifp->if_type == IFT_CARP && |
| 1065 | ((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) == |
| 1066 | (IFF_UP|IFF_RUNNING))) { |
| 1067 | index++; |
| 1068 | if (ia->ia_ifp == rcvif && |
| 1069 | carp_iamatch(ia, ar_sha(ah), |
| 1070 | &count, index)) { |
| 1071 | break; |
| 1072 | } |
| 1073 | } else |
| 1074 | #endif |
| 1075 | if (ia->ia_ifp == rcvif) |
| 1076 | break; |
| 1077 | #if NBRIDGE > 0 |
| 1078 | /* |
| 1079 | * If the interface we received the packet on |
| 1080 | * is part of a bridge, check to see if we need |
| 1081 | * to "bridge" the packet to ourselves at this |
| 1082 | * layer. Note we still prefer a perfect match, |
| 1083 | * but allow this weaker match if necessary. |
| 1084 | */ |
| 1085 | if (rcvif->if_bridge != NULL && |
| 1086 | rcvif->if_bridge == ia->ia_ifp->if_bridge) |
| 1087 | bridge_ia = ia; |
| 1088 | #endif /* NBRIDGE > 0 */ |
| 1089 | } |
| 1090 | |
| 1091 | #if NBRIDGE > 0 |
| 1092 | if (ia == NULL && bridge_ia != NULL) { |
| 1093 | ia = bridge_ia; |
| 1094 | m_put_rcvif_psref(rcvif, &psref); |
| 1095 | rcvif = NULL; |
| 1096 | /* FIXME */ |
| 1097 | ifp = bridge_ia->ia_ifp; |
| 1098 | } |
| 1099 | #endif |
| 1100 | if (ia != NULL) |
| 1101 | ia4_acquire(ia, &psref_ia); |
| 1102 | pserialize_read_exit(s); |
| 1103 | |
| 1104 | if (ia == NULL) { |
| 1105 | ia = in_get_ia_on_iface_psref(isaddr, rcvif, &psref_ia); |
| 1106 | if (ia == NULL) { |
| 1107 | ia = in_get_ia_from_ifp_psref(ifp, &psref_ia); |
| 1108 | if (ia == NULL) { |
| 1109 | ARP_STATINC(ARP_STAT_RCVNOINT); |
| 1110 | goto out; |
| 1111 | } |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | myaddr = ia->ia_addr.sin_addr; |
| 1116 | |
| 1117 | /* XXX checks for bridge case? */ |
| 1118 | if (!memcmp(ar_sha(ah), CLLADDR(ifp->if_sadl), ifp->if_addrlen)) { |
| 1119 | ARP_STATINC(ARP_STAT_RCVLOCALSHA); |
| 1120 | goto out; /* it's from me, ignore it. */ |
| 1121 | } |
| 1122 | |
| 1123 | /* XXX checks for bridge case? */ |
| 1124 | if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) { |
| 1125 | ARP_STATINC(ARP_STAT_RCVBCASTSHA); |
| 1126 | log(LOG_ERR, |
| 1127 | "%s: arp: link address is broadcast for IP address %s!\n" , |
| 1128 | ifp->if_xname, in_fmtaddr(isaddr)); |
| 1129 | goto out; |
| 1130 | } |
| 1131 | |
| 1132 | /* |
| 1133 | * If the source IP address is zero, this is an RFC 5227 ARP probe |
| 1134 | */ |
| 1135 | if (in_nullhost(isaddr)) |
| 1136 | ARP_STATINC(ARP_STAT_RCVZEROSPA); |
| 1137 | else if (in_hosteq(isaddr, myaddr)) |
| 1138 | ARP_STATINC(ARP_STAT_RCVLOCALSPA); |
| 1139 | |
| 1140 | /* |
| 1141 | * If the target IP address is zero, ignore the packet. |
| 1142 | * This prevents the code below from tring to answer |
| 1143 | * when we are using IP address zero (booting). |
| 1144 | */ |
| 1145 | if (in_nullhost(itaddr)) { |
| 1146 | ARP_STATINC(ARP_STAT_RCVZEROTPA); |
| 1147 | goto out; |
| 1148 | } |
| 1149 | |
| 1150 | /* DAD check, RFC 5227 */ |
| 1151 | if (in_hosteq(isaddr, myaddr) || |
| 1152 | (in_nullhost(isaddr) && in_hosteq(itaddr, myaddr))) |
| 1153 | { |
| 1154 | arp_dad_duplicated((struct ifaddr *)ia, |
| 1155 | lla_snprintf(ar_sha(ah), ah->ar_hln)); |
| 1156 | goto out; |
| 1157 | } |
| 1158 | |
| 1159 | if (in_nullhost(isaddr)) |
| 1160 | goto reply; |
| 1161 | |
| 1162 | if (in_hosteq(itaddr, myaddr)) |
| 1163 | la = arpcreate(ifp, m, &isaddr, NULL, 1); |
| 1164 | else |
| 1165 | la = arplookup(ifp, m, &isaddr, NULL, 1); |
| 1166 | if (la == NULL) |
| 1167 | goto reply; |
| 1168 | |
| 1169 | if ((la->la_flags & LLE_VALID) && |
| 1170 | memcmp(ar_sha(ah), &la->ll_addr, ifp->if_addrlen)) { |
| 1171 | if (la->la_flags & LLE_STATIC) { |
| 1172 | ARP_STATINC(ARP_STAT_RCVOVERPERM); |
| 1173 | if (!log_permanent_modify) |
| 1174 | goto out; |
| 1175 | log(LOG_INFO, |
| 1176 | "%s tried to overwrite permanent arp info" |
| 1177 | " for %s\n" , |
| 1178 | lla_snprintf(ar_sha(ah), ah->ar_hln), |
| 1179 | in_fmtaddr(isaddr)); |
| 1180 | goto out; |
| 1181 | } else if (la->lle_tbl->llt_ifp != ifp) { |
| 1182 | /* XXX should not happen? */ |
| 1183 | ARP_STATINC(ARP_STAT_RCVOVERINT); |
| 1184 | if (!log_wrong_iface) |
| 1185 | goto out; |
| 1186 | log(LOG_INFO, |
| 1187 | "%s on %s tried to overwrite " |
| 1188 | "arp info for %s on %s\n" , |
| 1189 | lla_snprintf(ar_sha(ah), ah->ar_hln), |
| 1190 | ifp->if_xname, in_fmtaddr(isaddr), |
| 1191 | la->lle_tbl->llt_ifp->if_xname); |
| 1192 | goto out; |
| 1193 | } else { |
| 1194 | ARP_STATINC(ARP_STAT_RCVOVER); |
| 1195 | if (log_movements) |
| 1196 | log(LOG_INFO, "arp info overwritten " |
| 1197 | "for %s by %s\n" , |
| 1198 | in_fmtaddr(isaddr), |
| 1199 | lla_snprintf(ar_sha(ah), |
| 1200 | ah->ar_hln)); |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | /* XXX llentry should have addrlen? */ |
| 1205 | #if 0 |
| 1206 | /* |
| 1207 | * sanity check for the address length. |
| 1208 | * XXX this does not work for protocols with variable address |
| 1209 | * length. -is |
| 1210 | */ |
| 1211 | if (sdl->sdl_alen && sdl->sdl_alen != ah->ar_hln) { |
| 1212 | ARP_STATINC(ARP_STAT_RCVLENCHG); |
| 1213 | log(LOG_WARNING, |
| 1214 | "arp from %s: new addr len %d, was %d\n" , |
| 1215 | in_fmtaddr(isaddr), ah->ar_hln, sdl->sdl_alen); |
| 1216 | } |
| 1217 | #endif |
| 1218 | |
| 1219 | if (ifp->if_addrlen != ah->ar_hln) { |
| 1220 | ARP_STATINC(ARP_STAT_RCVBADLEN); |
| 1221 | log(LOG_WARNING, |
| 1222 | "arp from %s: addr len: new %d, i/f %d (ignored)\n" , |
| 1223 | in_fmtaddr(isaddr), ah->ar_hln, |
| 1224 | ifp->if_addrlen); |
| 1225 | goto reply; |
| 1226 | } |
| 1227 | |
| 1228 | #if NTOKEN > 0 |
| 1229 | /* |
| 1230 | * XXX uses m_data and assumes the complete answer including |
| 1231 | * XXX token-ring headers is in the same buf |
| 1232 | */ |
| 1233 | if (ifp->if_type == IFT_ISO88025) { |
| 1234 | struct token_header *trh; |
| 1235 | |
| 1236 | trh = (struct token_header *)M_TRHSTART(m); |
| 1237 | if (trh->token_shost[0] & TOKEN_RI_PRESENT) { |
| 1238 | struct token_rif *rif; |
| 1239 | size_t riflen; |
| 1240 | |
| 1241 | rif = TOKEN_RIF(trh); |
| 1242 | riflen = (ntohs(rif->tr_rcf) & |
| 1243 | TOKEN_RCF_LEN_MASK) >> 8; |
| 1244 | |
| 1245 | if (riflen > 2 && |
| 1246 | riflen < sizeof(struct token_rif) && |
| 1247 | (riflen & 1) == 0) { |
| 1248 | rif->tr_rcf ^= htons(TOKEN_RCF_DIRECTION); |
| 1249 | rif->tr_rcf &= htons(~TOKEN_RCF_BROADCAST_MASK); |
| 1250 | memcpy(TOKEN_RIF_LLE(la), rif, riflen); |
| 1251 | } |
| 1252 | } |
| 1253 | } |
| 1254 | #endif /* NTOKEN > 0 */ |
| 1255 | |
| 1256 | KASSERT(sizeof(la->ll_addr) >= ifp->if_addrlen); |
| 1257 | (void)memcpy(&la->ll_addr, ar_sha(ah), ifp->if_addrlen); |
| 1258 | la->la_flags |= LLE_VALID; |
| 1259 | if ((la->la_flags & LLE_STATIC) == 0) { |
| 1260 | la->la_expire = time_uptime + arpt_keep; |
| 1261 | arp_settimer(la, arpt_keep); |
| 1262 | } |
| 1263 | la->la_asked = 0; |
| 1264 | /* rt->rt_flags &= ~RTF_REJECT; */ |
| 1265 | |
| 1266 | if (la->la_hold != NULL) { |
| 1267 | int n = la->la_numheld; |
| 1268 | struct mbuf *m_hold, *m_hold_next; |
| 1269 | struct sockaddr_in sin; |
| 1270 | |
| 1271 | sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0); |
| 1272 | |
| 1273 | m_hold = la->la_hold; |
| 1274 | la->la_hold = NULL; |
| 1275 | la->la_numheld = 0; |
| 1276 | /* |
| 1277 | * We have to unlock here because if_output would call |
| 1278 | * arpresolve |
| 1279 | */ |
| 1280 | LLE_WUNLOCK(la); |
| 1281 | ARP_STATADD(ARP_STAT_DFRSENT, n); |
| 1282 | ARP_STATADD(ARP_STAT_DFRTOTAL, n); |
| 1283 | for (; m_hold != NULL; m_hold = m_hold_next) { |
| 1284 | m_hold_next = m_hold->m_nextpkt; |
| 1285 | m_hold->m_nextpkt = NULL; |
| 1286 | if_output_lock(ifp, ifp, m_hold, sintosa(&sin), NULL); |
| 1287 | } |
| 1288 | } else |
| 1289 | LLE_WUNLOCK(la); |
| 1290 | la = NULL; |
| 1291 | |
| 1292 | reply: |
| 1293 | if (la != NULL) { |
| 1294 | LLE_WUNLOCK(la); |
| 1295 | la = NULL; |
| 1296 | } |
| 1297 | if (op != ARPOP_REQUEST) { |
| 1298 | if (op == ARPOP_REPLY) |
| 1299 | ARP_STATINC(ARP_STAT_RCVREPLY); |
| 1300 | goto out; |
| 1301 | } |
| 1302 | ARP_STATINC(ARP_STAT_RCVREQUEST); |
| 1303 | if (in_hosteq(itaddr, myaddr)) { |
| 1304 | /* If our address is unuseable, don't reply */ |
| 1305 | if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) |
| 1306 | goto out; |
| 1307 | /* I am the target */ |
| 1308 | tha = ar_tha(ah); |
| 1309 | if (tha) |
| 1310 | memcpy(tha, ar_sha(ah), ah->ar_hln); |
| 1311 | memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln); |
| 1312 | } else { |
| 1313 | /* Proxy ARP */ |
| 1314 | struct llentry *lle = NULL; |
| 1315 | struct sockaddr_in sin; |
| 1316 | #if NCARP > 0 |
| 1317 | struct ifnet *_rcvif = m_get_rcvif(m, &s); |
| 1318 | if (ifp->if_type == IFT_CARP && _rcvif->if_type != IFT_CARP) |
| 1319 | goto out; |
| 1320 | m_put_rcvif(_rcvif, &s); |
| 1321 | #endif |
| 1322 | |
| 1323 | tha = ar_tha(ah); |
| 1324 | |
| 1325 | sockaddr_in_init(&sin, &itaddr, 0); |
| 1326 | |
| 1327 | IF_AFDATA_RLOCK(ifp); |
| 1328 | lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin); |
| 1329 | IF_AFDATA_RUNLOCK(ifp); |
| 1330 | |
| 1331 | if ((lle != NULL) && (lle->la_flags & LLE_PUB)) { |
| 1332 | (void)memcpy(tha, ar_sha(ah), ah->ar_hln); |
| 1333 | (void)memcpy(ar_sha(ah), &lle->ll_addr, ah->ar_hln); |
| 1334 | LLE_RUNLOCK(lle); |
| 1335 | } else { |
| 1336 | if (lle != NULL) |
| 1337 | LLE_RUNLOCK(lle); |
| 1338 | goto drop; |
| 1339 | } |
| 1340 | } |
| 1341 | ia4_release(ia, &psref_ia); |
| 1342 | |
| 1343 | memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln); |
| 1344 | memcpy(ar_spa(ah), &itaddr, ah->ar_pln); |
| 1345 | ah->ar_op = htons(ARPOP_REPLY); |
| 1346 | ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */ |
| 1347 | switch (ifp->if_type) { |
| 1348 | case IFT_IEEE1394: |
| 1349 | /* |
| 1350 | * ieee1394 arp reply is broadcast |
| 1351 | */ |
| 1352 | m->m_flags &= ~M_MCAST; |
| 1353 | m->m_flags |= M_BCAST; |
| 1354 | m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln; |
| 1355 | break; |
| 1356 | default: |
| 1357 | m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */ |
| 1358 | m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln); |
| 1359 | break; |
| 1360 | } |
| 1361 | m->m_pkthdr.len = m->m_len; |
| 1362 | sa.sa_family = AF_ARP; |
| 1363 | sa.sa_len = 2; |
| 1364 | arps = ARP_STAT_GETREF(); |
| 1365 | arps[ARP_STAT_SNDTOTAL]++; |
| 1366 | arps[ARP_STAT_SNDREPLY]++; |
| 1367 | ARP_STAT_PUTREF(); |
| 1368 | if_output_lock(ifp, ifp, m, &sa, NULL); |
| 1369 | if (rcvif != NULL) |
| 1370 | m_put_rcvif_psref(rcvif, &psref); |
| 1371 | return; |
| 1372 | |
| 1373 | out: |
| 1374 | if (la != NULL) |
| 1375 | LLE_WUNLOCK(la); |
| 1376 | drop: |
| 1377 | if (ia != NULL) |
| 1378 | ia4_release(ia, &psref_ia); |
| 1379 | if (rcvif != NULL) |
| 1380 | m_put_rcvif_psref(rcvif, &psref); |
| 1381 | m_freem(m); |
| 1382 | } |
| 1383 | |
| 1384 | /* |
| 1385 | * Lookup or a new address in arptab. |
| 1386 | */ |
| 1387 | static struct llentry * |
| 1388 | arplookup(struct ifnet *ifp, struct mbuf *m, const struct in_addr *addr, |
| 1389 | const struct sockaddr *sa, int wlock) |
| 1390 | { |
| 1391 | struct sockaddr_in sin; |
| 1392 | struct llentry *la; |
| 1393 | int flags = wlock ? LLE_EXCLUSIVE : 0; |
| 1394 | |
| 1395 | |
| 1396 | if (sa == NULL) { |
| 1397 | KASSERT(addr != NULL); |
| 1398 | sockaddr_in_init(&sin, addr, 0); |
| 1399 | sa = sintocsa(&sin); |
| 1400 | } |
| 1401 | |
| 1402 | IF_AFDATA_RLOCK(ifp); |
| 1403 | la = lla_lookup(LLTABLE(ifp), flags, sa); |
| 1404 | IF_AFDATA_RUNLOCK(ifp); |
| 1405 | |
| 1406 | return la; |
| 1407 | } |
| 1408 | |
| 1409 | static struct llentry * |
| 1410 | arpcreate(struct ifnet *ifp, struct mbuf *m, const struct in_addr *addr, |
| 1411 | const struct sockaddr *sa, int wlock) |
| 1412 | { |
| 1413 | struct sockaddr_in sin; |
| 1414 | struct llentry *la; |
| 1415 | int flags = wlock ? LLE_EXCLUSIVE : 0; |
| 1416 | |
| 1417 | if (sa == NULL) { |
| 1418 | KASSERT(addr != NULL); |
| 1419 | sockaddr_in_init(&sin, addr, 0); |
| 1420 | sa = sintocsa(&sin); |
| 1421 | } |
| 1422 | |
| 1423 | la = arplookup(ifp, m, addr, sa, wlock); |
| 1424 | |
| 1425 | if (la == NULL) { |
| 1426 | IF_AFDATA_WLOCK(ifp); |
| 1427 | la = lla_create(LLTABLE(ifp), flags, sa); |
| 1428 | IF_AFDATA_WUNLOCK(ifp); |
| 1429 | |
| 1430 | if (la != NULL) |
| 1431 | arp_init_llentry(ifp, la); |
| 1432 | } |
| 1433 | |
| 1434 | return la; |
| 1435 | } |
| 1436 | |
| 1437 | int |
| 1438 | arpioctl(u_long cmd, void *data) |
| 1439 | { |
| 1440 | |
| 1441 | return EOPNOTSUPP; |
| 1442 | } |
| 1443 | |
| 1444 | void |
| 1445 | arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa) |
| 1446 | { |
| 1447 | struct in_addr *ip; |
| 1448 | struct in_ifaddr *ia = (struct in_ifaddr *)ifa; |
| 1449 | |
| 1450 | /* |
| 1451 | * Warn the user if another station has this IP address, |
| 1452 | * but only if the interface IP address is not zero. |
| 1453 | */ |
| 1454 | ip = &IA_SIN(ifa)->sin_addr; |
| 1455 | if (!in_nullhost(*ip) && |
| 1456 | (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) == 0) { |
| 1457 | struct llentry *lle; |
| 1458 | |
| 1459 | /* |
| 1460 | * interface address is considered static entry |
| 1461 | * because the output of the arp utility shows |
| 1462 | * that L2 entry as permanent |
| 1463 | */ |
| 1464 | IF_AFDATA_WLOCK(ifp); |
| 1465 | lle = lla_create(LLTABLE(ifp), (LLE_IFADDR | LLE_STATIC), |
| 1466 | (struct sockaddr *)IA_SIN(ifa)); |
| 1467 | IF_AFDATA_WUNLOCK(ifp); |
| 1468 | if (lle == NULL) |
| 1469 | log(LOG_INFO, "%s: cannot create arp entry for" |
| 1470 | " interface address\n" , __func__); |
| 1471 | else { |
| 1472 | arp_init_llentry(ifp, lle); |
| 1473 | LLE_RUNLOCK(lle); |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | ifa->ifa_rtrequest = arp_rtrequest; |
| 1478 | ifa->ifa_flags |= RTF_CONNECTED; |
| 1479 | |
| 1480 | /* ARP will handle DAD for this address. */ |
| 1481 | if (in_nullhost(*ip)) { |
| 1482 | if (ia->ia_dad_stop != NULL) /* safety */ |
| 1483 | ia->ia_dad_stop(ifa); |
| 1484 | ia->ia_dad_start = NULL; |
| 1485 | ia->ia_dad_stop = NULL; |
| 1486 | ia->ia4_flags &= ~IN_IFF_TENTATIVE; |
| 1487 | } else { |
| 1488 | ia->ia_dad_start = arp_dad_start; |
| 1489 | ia->ia_dad_stop = arp_dad_stop; |
| 1490 | if (ia->ia4_flags & IN_IFF_TRYTENTATIVE) |
| 1491 | ia->ia4_flags |= IN_IFF_TENTATIVE; |
| 1492 | else |
| 1493 | arpannounce1(ifa); |
| 1494 | } |
| 1495 | } |
| 1496 | |
| 1497 | TAILQ_HEAD(dadq_head, dadq); |
| 1498 | struct dadq { |
| 1499 | TAILQ_ENTRY(dadq) dad_list; |
| 1500 | struct ifaddr *dad_ifa; |
| 1501 | int dad_count; /* max ARP to send */ |
| 1502 | int dad_arp_tcount; /* # of trials to send ARP */ |
| 1503 | int dad_arp_ocount; /* ARP sent so far */ |
| 1504 | int dad_arp_announce; /* max ARP announcements */ |
| 1505 | int dad_arp_acount; /* # of announcements */ |
| 1506 | struct callout dad_timer_ch; |
| 1507 | }; |
| 1508 | MALLOC_JUSTDEFINE(M_IPARP, "ARP DAD" , "ARP DAD Structure" ); |
| 1509 | |
| 1510 | static struct dadq_head dadq; |
| 1511 | static int dad_init = 0; |
| 1512 | static int dad_maxtry = 15; /* max # of *tries* to transmit DAD packet */ |
| 1513 | static kmutex_t arp_dad_lock; |
| 1514 | |
| 1515 | static struct dadq * |
| 1516 | arp_dad_find(struct ifaddr *ifa) |
| 1517 | { |
| 1518 | struct dadq *dp; |
| 1519 | |
| 1520 | KASSERT(mutex_owned(&arp_dad_lock)); |
| 1521 | |
| 1522 | TAILQ_FOREACH(dp, &dadq, dad_list) { |
| 1523 | if (dp->dad_ifa == ifa) |
| 1524 | return dp; |
| 1525 | } |
| 1526 | return NULL; |
| 1527 | } |
| 1528 | |
| 1529 | static void |
| 1530 | arp_dad_starttimer(struct dadq *dp, int ticks) |
| 1531 | { |
| 1532 | |
| 1533 | callout_reset(&dp->dad_timer_ch, ticks, |
| 1534 | (void (*)(void *))arp_dad_timer, (void *)dp->dad_ifa); |
| 1535 | } |
| 1536 | |
| 1537 | static void |
| 1538 | arp_dad_stoptimer(struct dadq *dp) |
| 1539 | { |
| 1540 | |
| 1541 | #ifdef NET_MPSAFE |
| 1542 | callout_halt(&dp->dad_timer_ch, NULL); |
| 1543 | #else |
| 1544 | callout_halt(&dp->dad_timer_ch, softnet_lock); |
| 1545 | #endif |
| 1546 | } |
| 1547 | |
| 1548 | static void |
| 1549 | arp_dad_output(struct dadq *dp, struct ifaddr *ifa) |
| 1550 | { |
| 1551 | struct in_ifaddr *ia = (struct in_ifaddr *)ifa; |
| 1552 | struct ifnet *ifp = ifa->ifa_ifp; |
| 1553 | struct in_addr sip; |
| 1554 | |
| 1555 | dp->dad_arp_tcount++; |
| 1556 | if ((ifp->if_flags & IFF_UP) == 0) |
| 1557 | return; |
| 1558 | if ((ifp->if_flags & IFF_RUNNING) == 0) |
| 1559 | return; |
| 1560 | |
| 1561 | dp->dad_arp_tcount = 0; |
| 1562 | dp->dad_arp_ocount++; |
| 1563 | |
| 1564 | memset(&sip, 0, sizeof(sip)); |
| 1565 | arprequest(ifa->ifa_ifp, &sip, &ia->ia_addr.sin_addr, |
| 1566 | CLLADDR(ifa->ifa_ifp->if_sadl)); |
| 1567 | } |
| 1568 | |
| 1569 | /* |
| 1570 | * Start Duplicate Address Detection (DAD) for specified interface address. |
| 1571 | */ |
| 1572 | static void |
| 1573 | arp_dad_start(struct ifaddr *ifa) |
| 1574 | { |
| 1575 | struct in_ifaddr *ia = (struct in_ifaddr *)ifa; |
| 1576 | struct dadq *dp; |
| 1577 | |
| 1578 | if (!dad_init) { |
| 1579 | TAILQ_INIT(&dadq); |
| 1580 | mutex_init(&arp_dad_lock, MUTEX_DEFAULT, IPL_NONE); |
| 1581 | dad_init++; |
| 1582 | } |
| 1583 | |
| 1584 | /* |
| 1585 | * If we don't need DAD, don't do it. |
| 1586 | * - DAD is disabled (ip_dad_count == 0) |
| 1587 | */ |
| 1588 | if (!(ia->ia4_flags & IN_IFF_TENTATIVE)) { |
| 1589 | log(LOG_DEBUG, |
| 1590 | "%s: called with non-tentative address %s(%s)\n" , __func__, |
| 1591 | in_fmtaddr(ia->ia_addr.sin_addr), |
| 1592 | ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???" ); |
| 1593 | return; |
| 1594 | } |
| 1595 | if (!ip_dad_count) { |
| 1596 | ia->ia4_flags &= ~IN_IFF_TENTATIVE; |
| 1597 | rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); |
| 1598 | arpannounce1(ifa); |
| 1599 | return; |
| 1600 | } |
| 1601 | KASSERT(ifa->ifa_ifp != NULL); |
| 1602 | if (!(ifa->ifa_ifp->if_flags & IFF_UP)) |
| 1603 | return; |
| 1604 | |
| 1605 | mutex_enter(&arp_dad_lock); |
| 1606 | if (arp_dad_find(ifa) != NULL) { |
| 1607 | mutex_exit(&arp_dad_lock); |
| 1608 | /* DAD already in progress */ |
| 1609 | return; |
| 1610 | } |
| 1611 | |
| 1612 | dp = malloc(sizeof(*dp), M_IPARP, M_NOWAIT); |
| 1613 | if (dp == NULL) { |
| 1614 | mutex_exit(&arp_dad_lock); |
| 1615 | log(LOG_ERR, "%s: memory allocation failed for %s(%s)\n" , |
| 1616 | __func__, in_fmtaddr(ia->ia_addr.sin_addr), |
| 1617 | ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???" ); |
| 1618 | return; |
| 1619 | } |
| 1620 | memset(dp, 0, sizeof(*dp)); |
| 1621 | callout_init(&dp->dad_timer_ch, CALLOUT_MPSAFE); |
| 1622 | |
| 1623 | /* |
| 1624 | * Send ARP packet for DAD, ip_dad_count times. |
| 1625 | * Note that we must delay the first transmission. |
| 1626 | */ |
| 1627 | dp->dad_ifa = ifa; |
| 1628 | ifaref(ifa); /* just for safety */ |
| 1629 | dp->dad_count = ip_dad_count; |
| 1630 | dp->dad_arp_announce = 0; /* Will be set when starting to announce */ |
| 1631 | dp->dad_arp_acount = dp->dad_arp_ocount = dp->dad_arp_tcount = 0; |
| 1632 | TAILQ_INSERT_TAIL(&dadq, (struct dadq *)dp, dad_list); |
| 1633 | |
| 1634 | arplog(LOG_DEBUG, "%s: starting DAD for %s\n" , if_name(ifa->ifa_ifp), |
| 1635 | in_fmtaddr(ia->ia_addr.sin_addr)); |
| 1636 | |
| 1637 | arp_dad_starttimer(dp, cprng_fast32() % (PROBE_WAIT * hz)); |
| 1638 | |
| 1639 | mutex_exit(&arp_dad_lock); |
| 1640 | } |
| 1641 | |
| 1642 | /* |
| 1643 | * terminate DAD unconditionally. used for address removals. |
| 1644 | */ |
| 1645 | static void |
| 1646 | arp_dad_stop(struct ifaddr *ifa) |
| 1647 | { |
| 1648 | struct dadq *dp; |
| 1649 | |
| 1650 | if (!dad_init) |
| 1651 | return; |
| 1652 | |
| 1653 | mutex_enter(&arp_dad_lock); |
| 1654 | dp = arp_dad_find(ifa); |
| 1655 | if (dp == NULL) { |
| 1656 | mutex_exit(&arp_dad_lock); |
| 1657 | /* DAD wasn't started yet */ |
| 1658 | return; |
| 1659 | } |
| 1660 | |
| 1661 | /* Prevent the timer from running anymore. */ |
| 1662 | TAILQ_REMOVE(&dadq, dp, dad_list); |
| 1663 | mutex_exit(&arp_dad_lock); |
| 1664 | |
| 1665 | arp_dad_stoptimer(dp); |
| 1666 | |
| 1667 | free(dp, M_IPARP); |
| 1668 | dp = NULL; |
| 1669 | ifafree(ifa); |
| 1670 | } |
| 1671 | |
| 1672 | static void |
| 1673 | arp_dad_timer(struct ifaddr *ifa) |
| 1674 | { |
| 1675 | struct in_ifaddr *ia = (struct in_ifaddr *)ifa; |
| 1676 | struct dadq *dp; |
| 1677 | |
| 1678 | mutex_enter(softnet_lock); |
| 1679 | KERNEL_LOCK(1, NULL); |
| 1680 | mutex_enter(&arp_dad_lock); |
| 1681 | |
| 1682 | /* Sanity check */ |
| 1683 | if (ia == NULL) { |
| 1684 | log(LOG_ERR, "%s: called with null parameter\n" , __func__); |
| 1685 | goto done; |
| 1686 | } |
| 1687 | dp = arp_dad_find(ifa); |
| 1688 | if (dp == NULL) { |
| 1689 | /* DAD seems to be stopping, so do nothing. */ |
| 1690 | goto done; |
| 1691 | } |
| 1692 | if (ia->ia4_flags & IN_IFF_DUPLICATED) { |
| 1693 | log(LOG_ERR, "%s: called with duplicate address %s(%s)\n" , |
| 1694 | __func__, in_fmtaddr(ia->ia_addr.sin_addr), |
| 1695 | ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???" ); |
| 1696 | goto done; |
| 1697 | } |
| 1698 | if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0 && dp->dad_arp_acount == 0) |
| 1699 | { |
| 1700 | log(LOG_ERR, "%s: called with non-tentative address %s(%s)\n" , |
| 1701 | __func__, in_fmtaddr(ia->ia_addr.sin_addr), |
| 1702 | ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???" ); |
| 1703 | goto done; |
| 1704 | } |
| 1705 | |
| 1706 | /* timeouted with IFF_{RUNNING,UP} check */ |
| 1707 | if (dp->dad_arp_tcount > dad_maxtry) { |
| 1708 | arplog(LOG_INFO, "%s: could not run DAD, driver problem?\n" , |
| 1709 | if_name(ifa->ifa_ifp)); |
| 1710 | |
| 1711 | TAILQ_REMOVE(&dadq, dp, dad_list); |
| 1712 | free(dp, M_IPARP); |
| 1713 | dp = NULL; |
| 1714 | ifafree(ifa); |
| 1715 | goto done; |
| 1716 | } |
| 1717 | |
| 1718 | /* Need more checks? */ |
| 1719 | if (dp->dad_arp_ocount < dp->dad_count) { |
| 1720 | int adelay; |
| 1721 | |
| 1722 | /* |
| 1723 | * We have more ARP to go. Send ARP packet for DAD. |
| 1724 | */ |
| 1725 | arp_dad_output(dp, ifa); |
| 1726 | if (dp->dad_arp_ocount < dp->dad_count) |
| 1727 | adelay = (PROBE_MIN * hz) + |
| 1728 | (cprng_fast32() % |
| 1729 | ((PROBE_MAX * hz) - (PROBE_MIN * hz))); |
| 1730 | else |
| 1731 | adelay = ANNOUNCE_WAIT * hz; |
| 1732 | arp_dad_starttimer(dp, adelay); |
| 1733 | goto done; |
| 1734 | } else if (dp->dad_arp_acount == 0) { |
| 1735 | /* |
| 1736 | * We are done with DAD. |
| 1737 | * No duplicate address found. |
| 1738 | */ |
| 1739 | ia->ia4_flags &= ~IN_IFF_TENTATIVE; |
| 1740 | rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); |
| 1741 | arplog(LOG_DEBUG, |
| 1742 | "%s: DAD complete for %s - no duplicates found\n" , |
| 1743 | if_name(ifa->ifa_ifp), |
| 1744 | in_fmtaddr(ia->ia_addr.sin_addr)); |
| 1745 | dp->dad_arp_announce = ANNOUNCE_NUM; |
| 1746 | goto announce; |
| 1747 | } else if (dp->dad_arp_acount < dp->dad_arp_announce) { |
| 1748 | announce: |
| 1749 | /* |
| 1750 | * Announce the address. |
| 1751 | */ |
| 1752 | arpannounce1(ifa); |
| 1753 | dp->dad_arp_acount++; |
| 1754 | if (dp->dad_arp_acount < dp->dad_arp_announce) { |
| 1755 | arp_dad_starttimer(dp, ANNOUNCE_INTERVAL * hz); |
| 1756 | goto done; |
| 1757 | } |
| 1758 | arplog(LOG_DEBUG, |
| 1759 | "%s: ARP announcement complete for %s\n" , |
| 1760 | if_name(ifa->ifa_ifp), |
| 1761 | in_fmtaddr(ia->ia_addr.sin_addr)); |
| 1762 | } |
| 1763 | |
| 1764 | TAILQ_REMOVE(&dadq, dp, dad_list); |
| 1765 | free(dp, M_IPARP); |
| 1766 | dp = NULL; |
| 1767 | ifafree(ifa); |
| 1768 | |
| 1769 | done: |
| 1770 | mutex_exit(&arp_dad_lock); |
| 1771 | KERNEL_UNLOCK_ONE(NULL); |
| 1772 | mutex_exit(softnet_lock); |
| 1773 | } |
| 1774 | |
| 1775 | static void |
| 1776 | arp_dad_duplicated(struct ifaddr *ifa, const char *sha) |
| 1777 | { |
| 1778 | struct in_ifaddr *ia = (struct in_ifaddr *)ifa; |
| 1779 | struct ifnet *ifp = ifa->ifa_ifp; |
| 1780 | const char *iastr = in_fmtaddr(ia->ia_addr.sin_addr); |
| 1781 | |
| 1782 | if (ia->ia4_flags & (IN_IFF_TENTATIVE|IN_IFF_DUPLICATED)) { |
| 1783 | log(LOG_ERR, |
| 1784 | "%s: DAD duplicate address %s from %s\n" , |
| 1785 | if_name(ifp), iastr, sha); |
| 1786 | } else if (ia->ia_dad_defended == 0 || |
| 1787 | ia->ia_dad_defended < time_uptime - DEFEND_INTERVAL) { |
| 1788 | ia->ia_dad_defended = time_uptime; |
| 1789 | arpannounce1(ifa); |
| 1790 | log(LOG_ERR, |
| 1791 | "%s: DAD defended address %s from %s\n" , |
| 1792 | if_name(ifp), iastr, sha); |
| 1793 | return; |
| 1794 | } else { |
| 1795 | /* If DAD is disabled, just report the duplicate. */ |
| 1796 | if (ip_dad_count == 0) { |
| 1797 | log(LOG_ERR, |
| 1798 | "%s: DAD ignoring duplicate address %s from %s\n" , |
| 1799 | if_name(ifp), iastr, sha); |
| 1800 | return; |
| 1801 | } |
| 1802 | log(LOG_ERR, |
| 1803 | "%s: DAD defence failed for %s from %s\n" , |
| 1804 | if_name(ifp), iastr, sha); |
| 1805 | } |
| 1806 | |
| 1807 | arp_dad_stop(ifa); |
| 1808 | |
| 1809 | ia->ia4_flags &= ~IN_IFF_TENTATIVE; |
| 1810 | if ((ia->ia4_flags & IN_IFF_DUPLICATED) == 0) { |
| 1811 | ia->ia4_flags |= IN_IFF_DUPLICATED; |
| 1812 | /* Inform the routing socket of the duplicate address */ |
| 1813 | rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); |
| 1814 | } |
| 1815 | } |
| 1816 | |
| 1817 | /* |
| 1818 | * Called from 10 Mb/s Ethernet interrupt handlers |
| 1819 | * when ether packet type ETHERTYPE_REVARP |
| 1820 | * is received. Common length and type checks are done here, |
| 1821 | * then the protocol-specific routine is called. |
| 1822 | */ |
| 1823 | void |
| 1824 | revarpinput(struct mbuf *m) |
| 1825 | { |
| 1826 | struct arphdr *ar; |
| 1827 | |
| 1828 | if (m->m_len < sizeof(struct arphdr)) |
| 1829 | goto out; |
| 1830 | ar = mtod(m, struct arphdr *); |
| 1831 | #if 0 /* XXX I don't think we need this... and it will prevent other LL */ |
| 1832 | if (ntohs(ar->ar_hrd) != ARPHRD_ETHER) |
| 1833 | goto out; |
| 1834 | #endif |
| 1835 | if (m->m_len < sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln)) |
| 1836 | goto out; |
| 1837 | switch (ntohs(ar->ar_pro)) { |
| 1838 | case ETHERTYPE_IP: |
| 1839 | case ETHERTYPE_IPTRAILERS: |
| 1840 | in_revarpinput(m); |
| 1841 | return; |
| 1842 | |
| 1843 | default: |
| 1844 | break; |
| 1845 | } |
| 1846 | out: |
| 1847 | m_freem(m); |
| 1848 | } |
| 1849 | |
| 1850 | /* |
| 1851 | * RARP for Internet protocols on 10 Mb/s Ethernet. |
| 1852 | * Algorithm is that given in RFC 903. |
| 1853 | * We are only using for bootstrap purposes to get an ip address for one of |
| 1854 | * our interfaces. Thus we support no user-interface. |
| 1855 | * |
| 1856 | * Since the contents of the RARP reply are specific to the interface that |
| 1857 | * sent the request, this code must ensure that they are properly associated. |
| 1858 | * |
| 1859 | * Note: also supports ARP via RARP packets, per the RFC. |
| 1860 | */ |
| 1861 | void |
| 1862 | in_revarpinput(struct mbuf *m) |
| 1863 | { |
| 1864 | struct arphdr *ah; |
| 1865 | void *tha; |
| 1866 | int op; |
| 1867 | struct ifnet *rcvif; |
| 1868 | int s; |
| 1869 | |
| 1870 | ah = mtod(m, struct arphdr *); |
| 1871 | op = ntohs(ah->ar_op); |
| 1872 | |
| 1873 | rcvif = m_get_rcvif(m, &s); |
| 1874 | switch (rcvif->if_type) { |
| 1875 | case IFT_IEEE1394: |
| 1876 | /* ARP without target hardware address is not supported */ |
| 1877 | goto out; |
| 1878 | default: |
| 1879 | break; |
| 1880 | } |
| 1881 | |
| 1882 | switch (op) { |
| 1883 | case ARPOP_REQUEST: |
| 1884 | case ARPOP_REPLY: /* per RFC */ |
| 1885 | m_put_rcvif(rcvif, &s); |
| 1886 | in_arpinput(m); |
| 1887 | return; |
| 1888 | case ARPOP_REVREPLY: |
| 1889 | break; |
| 1890 | case ARPOP_REVREQUEST: /* handled by rarpd(8) */ |
| 1891 | default: |
| 1892 | goto out; |
| 1893 | } |
| 1894 | if (!revarp_in_progress) |
| 1895 | goto out; |
| 1896 | if (rcvif != myip_ifp) /* !same interface */ |
| 1897 | goto out; |
| 1898 | if (myip_initialized) |
| 1899 | goto wake; |
| 1900 | tha = ar_tha(ah); |
| 1901 | if (tha == NULL) |
| 1902 | goto out; |
| 1903 | if (memcmp(tha, CLLADDR(rcvif->if_sadl), rcvif->if_sadl->sdl_alen)) |
| 1904 | goto out; |
| 1905 | memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip)); |
| 1906 | memcpy(&myip, ar_tpa(ah), sizeof(myip)); |
| 1907 | myip_initialized = 1; |
| 1908 | wake: /* Do wakeup every time in case it was missed. */ |
| 1909 | wakeup((void *)&myip); |
| 1910 | |
| 1911 | out: |
| 1912 | m_put_rcvif(rcvif, &s); |
| 1913 | m_freem(m); |
| 1914 | } |
| 1915 | |
| 1916 | /* |
| 1917 | * Send a RARP request for the ip address of the specified interface. |
| 1918 | * The request should be RFC 903-compliant. |
| 1919 | */ |
| 1920 | static void |
| 1921 | revarprequest(struct ifnet *ifp) |
| 1922 | { |
| 1923 | struct sockaddr sa; |
| 1924 | struct mbuf *m; |
| 1925 | struct arphdr *ah; |
| 1926 | void *tha; |
| 1927 | |
| 1928 | if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) |
| 1929 | return; |
| 1930 | MCLAIM(m, &arpdomain.dom_mowner); |
| 1931 | m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) + |
| 1932 | 2*ifp->if_addrlen; |
| 1933 | m->m_pkthdr.len = m->m_len; |
| 1934 | MH_ALIGN(m, m->m_len); |
| 1935 | ah = mtod(m, struct arphdr *); |
| 1936 | memset(ah, 0, m->m_len); |
| 1937 | ah->ar_pro = htons(ETHERTYPE_IP); |
| 1938 | ah->ar_hln = ifp->if_addrlen; /* hardware address length */ |
| 1939 | ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ |
| 1940 | ah->ar_op = htons(ARPOP_REVREQUEST); |
| 1941 | |
| 1942 | memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln); |
| 1943 | tha = ar_tha(ah); |
| 1944 | if (tha == NULL) { |
| 1945 | m_free(m); |
| 1946 | return; |
| 1947 | } |
| 1948 | memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln); |
| 1949 | |
| 1950 | sa.sa_family = AF_ARP; |
| 1951 | sa.sa_len = 2; |
| 1952 | m->m_flags |= M_BCAST; |
| 1953 | |
| 1954 | if_output_lock(ifp, ifp, m, &sa, NULL); |
| 1955 | } |
| 1956 | |
| 1957 | /* |
| 1958 | * RARP for the ip address of the specified interface, but also |
| 1959 | * save the ip address of the server that sent the answer. |
| 1960 | * Timeout if no response is received. |
| 1961 | */ |
| 1962 | int |
| 1963 | revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in, |
| 1964 | struct in_addr *clnt_in) |
| 1965 | { |
| 1966 | int result, count = 20; |
| 1967 | |
| 1968 | myip_initialized = 0; |
| 1969 | myip_ifp = ifp; |
| 1970 | |
| 1971 | revarp_in_progress = 1; |
| 1972 | while (count--) { |
| 1973 | revarprequest(ifp); |
| 1974 | result = tsleep((void *)&myip, PSOCK, "revarp" , hz/2); |
| 1975 | if (result != EWOULDBLOCK) |
| 1976 | break; |
| 1977 | } |
| 1978 | revarp_in_progress = 0; |
| 1979 | |
| 1980 | if (!myip_initialized) |
| 1981 | return ENETUNREACH; |
| 1982 | |
| 1983 | memcpy(serv_in, &srv_ip, sizeof(*serv_in)); |
| 1984 | memcpy(clnt_in, &myip, sizeof(*clnt_in)); |
| 1985 | return 0; |
| 1986 | } |
| 1987 | |
| 1988 | void |
| 1989 | arp_stat_add(int type, uint64_t count) |
| 1990 | { |
| 1991 | ARP_STATADD(type, count); |
| 1992 | } |
| 1993 | |
| 1994 | static int |
| 1995 | sysctl_net_inet_arp_stats(SYSCTLFN_ARGS) |
| 1996 | { |
| 1997 | |
| 1998 | return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS); |
| 1999 | } |
| 2000 | |
| 2001 | static void |
| 2002 | sysctl_net_inet_arp_setup(struct sysctllog **clog) |
| 2003 | { |
| 2004 | const struct sysctlnode *node; |
| 2005 | |
| 2006 | sysctl_createv(clog, 0, NULL, NULL, |
| 2007 | CTLFLAG_PERMANENT, |
| 2008 | CTLTYPE_NODE, "inet" , NULL, |
| 2009 | NULL, 0, NULL, 0, |
| 2010 | CTL_NET, PF_INET, CTL_EOL); |
| 2011 | sysctl_createv(clog, 0, NULL, &node, |
| 2012 | CTLFLAG_PERMANENT, |
| 2013 | CTLTYPE_NODE, "arp" , |
| 2014 | SYSCTL_DESCR("Address Resolution Protocol" ), |
| 2015 | NULL, 0, NULL, 0, |
| 2016 | CTL_NET, PF_INET, CTL_CREATE, CTL_EOL); |
| 2017 | |
| 2018 | sysctl_createv(clog, 0, NULL, NULL, |
| 2019 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2020 | CTLTYPE_INT, "keep" , |
| 2021 | SYSCTL_DESCR("Valid ARP entry lifetime in seconds" ), |
| 2022 | NULL, 0, &arpt_keep, 0, |
| 2023 | CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); |
| 2024 | |
| 2025 | sysctl_createv(clog, 0, NULL, NULL, |
| 2026 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2027 | CTLTYPE_INT, "down" , |
| 2028 | SYSCTL_DESCR("Failed ARP entry lifetime in seconds" ), |
| 2029 | NULL, 0, &arpt_down, 0, |
| 2030 | CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); |
| 2031 | |
| 2032 | sysctl_createv(clog, 0, NULL, NULL, |
| 2033 | CTLFLAG_PERMANENT, |
| 2034 | CTLTYPE_STRUCT, "stats" , |
| 2035 | SYSCTL_DESCR("ARP statistics" ), |
| 2036 | sysctl_net_inet_arp_stats, 0, NULL, 0, |
| 2037 | CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); |
| 2038 | |
| 2039 | sysctl_createv(clog, 0, NULL, NULL, |
| 2040 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2041 | CTLTYPE_INT, "log_movements" , |
| 2042 | SYSCTL_DESCR("log ARP replies from MACs different than" |
| 2043 | " the one in the cache" ), |
| 2044 | NULL, 0, &log_movements, 0, |
| 2045 | CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); |
| 2046 | |
| 2047 | sysctl_createv(clog, 0, NULL, NULL, |
| 2048 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2049 | CTLTYPE_INT, "log_permanent_modify" , |
| 2050 | SYSCTL_DESCR("log ARP replies from MACs different than" |
| 2051 | " the one in the permanent arp entry" ), |
| 2052 | NULL, 0, &log_permanent_modify, 0, |
| 2053 | CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); |
| 2054 | |
| 2055 | sysctl_createv(clog, 0, NULL, NULL, |
| 2056 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2057 | CTLTYPE_INT, "log_wrong_iface" , |
| 2058 | SYSCTL_DESCR("log ARP packets arriving on the wrong" |
| 2059 | " interface" ), |
| 2060 | NULL, 0, &log_wrong_iface, 0, |
| 2061 | CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); |
| 2062 | |
| 2063 | sysctl_createv(clog, 0, NULL, NULL, |
| 2064 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2065 | CTLTYPE_INT, "log_unknown_network" , |
| 2066 | SYSCTL_DESCR("log ARP packets from non-local network" ), |
| 2067 | NULL, 0, &log_unknown_network, 0, |
| 2068 | CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); |
| 2069 | |
| 2070 | sysctl_createv(clog, 0, NULL, NULL, |
| 2071 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
| 2072 | CTLTYPE_INT, "debug" , |
| 2073 | SYSCTL_DESCR("Enable ARP DAD debug output" ), |
| 2074 | NULL, 0, &arp_debug, 0, |
| 2075 | CTL_NET, PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); |
| 2076 | } |
| 2077 | |
| 2078 | #endif /* INET */ |
| 2079 | |