| 1 | /* $NetBSD: subr_vmem.c,v 1.95 2016/07/07 06:55:43 msaitoh Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi, |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * 1. Redistributions of source code must retain the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer. |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 17 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 20 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 21 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 22 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 23 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 24 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 25 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 26 | * SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * reference: |
| 31 | * - Magazines and Vmem: Extending the Slab Allocator |
| 32 | * to Many CPUs and Arbitrary Resources |
| 33 | * http://www.usenix.org/event/usenix01/bonwick.html |
| 34 | * |
| 35 | * locking & the boundary tag pool: |
| 36 | * - A pool(9) is used for vmem boundary tags |
| 37 | * - During a pool get call the global vmem_btag_refill_lock is taken, |
| 38 | * to serialize access to the allocation reserve, but no other |
| 39 | * vmem arena locks. |
| 40 | * - During pool_put calls no vmem mutexes are locked. |
| 41 | * - pool_drain doesn't hold the pool's mutex while releasing memory to |
| 42 | * its backing therefore no interferance with any vmem mutexes. |
| 43 | * - The boundary tag pool is forced to put page headers into pool pages |
| 44 | * (PR_PHINPAGE) and not off page to avoid pool recursion. |
| 45 | * (due to sizeof(bt_t) it should be the case anyway) |
| 46 | */ |
| 47 | |
| 48 | #include <sys/cdefs.h> |
| 49 | __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.95 2016/07/07 06:55:43 msaitoh Exp $" ); |
| 50 | |
| 51 | #if defined(_KERNEL) && defined(_KERNEL_OPT) |
| 52 | #include "opt_ddb.h" |
| 53 | #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */ |
| 54 | |
| 55 | #include <sys/param.h> |
| 56 | #include <sys/hash.h> |
| 57 | #include <sys/queue.h> |
| 58 | #include <sys/bitops.h> |
| 59 | |
| 60 | #if defined(_KERNEL) |
| 61 | #include <sys/systm.h> |
| 62 | #include <sys/kernel.h> /* hz */ |
| 63 | #include <sys/callout.h> |
| 64 | #include <sys/kmem.h> |
| 65 | #include <sys/pool.h> |
| 66 | #include <sys/vmem.h> |
| 67 | #include <sys/vmem_impl.h> |
| 68 | #include <sys/workqueue.h> |
| 69 | #include <sys/atomic.h> |
| 70 | #include <uvm/uvm.h> |
| 71 | #include <uvm/uvm_extern.h> |
| 72 | #include <uvm/uvm_km.h> |
| 73 | #include <uvm/uvm_page.h> |
| 74 | #include <uvm/uvm_pdaemon.h> |
| 75 | #else /* defined(_KERNEL) */ |
| 76 | #include <stdio.h> |
| 77 | #include <errno.h> |
| 78 | #include <assert.h> |
| 79 | #include <stdlib.h> |
| 80 | #include <string.h> |
| 81 | #include "../sys/vmem.h" |
| 82 | #include "../sys/vmem_impl.h" |
| 83 | #endif /* defined(_KERNEL) */ |
| 84 | |
| 85 | |
| 86 | #if defined(_KERNEL) |
| 87 | #include <sys/evcnt.h> |
| 88 | #define VMEM_EVCNT_DEFINE(name) \ |
| 89 | struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \ |
| 90 | "vmem", #name); \ |
| 91 | EVCNT_ATTACH_STATIC(vmem_evcnt_##name); |
| 92 | #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++ |
| 93 | #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count-- |
| 94 | |
| 95 | VMEM_EVCNT_DEFINE(static_bt_count) |
| 96 | VMEM_EVCNT_DEFINE(static_bt_inuse) |
| 97 | |
| 98 | #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan) |
| 99 | #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv) |
| 100 | #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock) |
| 101 | #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv) |
| 102 | |
| 103 | #else /* defined(_KERNEL) */ |
| 104 | |
| 105 | #define VMEM_EVCNT_INCR(ev) /* nothing */ |
| 106 | #define VMEM_EVCNT_DECR(ev) /* nothing */ |
| 107 | |
| 108 | #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */ |
| 109 | #define VMEM_CONDVAR_DESTROY(vm) /* nothing */ |
| 110 | #define VMEM_CONDVAR_WAIT(vm) /* nothing */ |
| 111 | #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */ |
| 112 | |
| 113 | #define UNITTEST |
| 114 | #define KASSERT(a) assert(a) |
| 115 | #define mutex_init(a, b, c) /* nothing */ |
| 116 | #define mutex_destroy(a) /* nothing */ |
| 117 | #define mutex_enter(a) /* nothing */ |
| 118 | #define mutex_tryenter(a) true |
| 119 | #define mutex_exit(a) /* nothing */ |
| 120 | #define mutex_owned(a) /* nothing */ |
| 121 | #define ASSERT_SLEEPABLE() /* nothing */ |
| 122 | #define panic(...) printf(__VA_ARGS__); abort() |
| 123 | #endif /* defined(_KERNEL) */ |
| 124 | |
| 125 | #if defined(VMEM_SANITY) |
| 126 | static void vmem_check(vmem_t *); |
| 127 | #else /* defined(VMEM_SANITY) */ |
| 128 | #define vmem_check(vm) /* nothing */ |
| 129 | #endif /* defined(VMEM_SANITY) */ |
| 130 | |
| 131 | #define VMEM_HASHSIZE_MIN 1 /* XXX */ |
| 132 | #define VMEM_HASHSIZE_MAX 65536 /* XXX */ |
| 133 | #define VMEM_HASHSIZE_INIT 1 |
| 134 | |
| 135 | #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT) |
| 136 | |
| 137 | #if defined(_KERNEL) |
| 138 | static bool vmem_bootstrapped = false; |
| 139 | static kmutex_t vmem_list_lock; |
| 140 | static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list); |
| 141 | #endif /* defined(_KERNEL) */ |
| 142 | |
| 143 | /* ---- misc */ |
| 144 | |
| 145 | #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock) |
| 146 | #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock) |
| 147 | #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock) |
| 148 | #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl) |
| 149 | #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock) |
| 150 | #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock)) |
| 151 | |
| 152 | #define VMEM_ALIGNUP(addr, align) \ |
| 153 | (-(-(addr) & -(align))) |
| 154 | |
| 155 | #define VMEM_CROSS_P(addr1, addr2, boundary) \ |
| 156 | ((((addr1) ^ (addr2)) & -(boundary)) != 0) |
| 157 | |
| 158 | #define ORDER2SIZE(order) ((vmem_size_t)1 << (order)) |
| 159 | #define SIZE2ORDER(size) ((int)ilog2(size)) |
| 160 | |
| 161 | #if !defined(_KERNEL) |
| 162 | #define xmalloc(sz, flags) malloc(sz) |
| 163 | #define xfree(p, sz) free(p) |
| 164 | #define bt_alloc(vm, flags) malloc(sizeof(bt_t)) |
| 165 | #define bt_free(vm, bt) free(bt) |
| 166 | #else /* defined(_KERNEL) */ |
| 167 | |
| 168 | #define xmalloc(sz, flags) \ |
| 169 | kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); |
| 170 | #define xfree(p, sz) kmem_free(p, sz); |
| 171 | |
| 172 | /* |
| 173 | * BT_RESERVE calculation: |
| 174 | * we allocate memory for boundry tags with vmem, therefor we have |
| 175 | * to keep a reserve of bts used to allocated memory for bts. |
| 176 | * This reserve is 4 for each arena involved in allocating vmems memory. |
| 177 | * BT_MAXFREE: don't cache excessive counts of bts in arenas |
| 178 | */ |
| 179 | #define STATIC_BT_COUNT 200 |
| 180 | #define BT_MINRESERVE 4 |
| 181 | #define BT_MAXFREE 64 |
| 182 | |
| 183 | static struct vmem_btag static_bts[STATIC_BT_COUNT]; |
| 184 | static int static_bt_count = STATIC_BT_COUNT; |
| 185 | |
| 186 | static struct vmem kmem_va_meta_arena_store; |
| 187 | vmem_t *kmem_va_meta_arena; |
| 188 | static struct vmem kmem_meta_arena_store; |
| 189 | vmem_t *kmem_meta_arena = NULL; |
| 190 | |
| 191 | static kmutex_t vmem_btag_refill_lock; |
| 192 | static kmutex_t vmem_btag_lock; |
| 193 | static LIST_HEAD(, vmem_btag) vmem_btag_freelist; |
| 194 | static size_t vmem_btag_freelist_count = 0; |
| 195 | static struct pool vmem_btag_pool; |
| 196 | |
| 197 | static void |
| 198 | vmem_kick_pdaemon(void) |
| 199 | { |
| 200 | #if defined(_KERNEL) |
| 201 | mutex_spin_enter(&uvm_fpageqlock); |
| 202 | uvm_kick_pdaemon(); |
| 203 | mutex_spin_exit(&uvm_fpageqlock); |
| 204 | #endif |
| 205 | } |
| 206 | |
| 207 | /* ---- boundary tag */ |
| 208 | |
| 209 | static int bt_refill(vmem_t *vm); |
| 210 | |
| 211 | static void * |
| 212 | pool_page_alloc_vmem_meta(struct pool *pp, int flags) |
| 213 | { |
| 214 | const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; |
| 215 | vmem_addr_t va; |
| 216 | int ret; |
| 217 | |
| 218 | ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, |
| 219 | (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va); |
| 220 | |
| 221 | return ret ? NULL : (void *)va; |
| 222 | } |
| 223 | |
| 224 | static void |
| 225 | pool_page_free_vmem_meta(struct pool *pp, void *v) |
| 226 | { |
| 227 | |
| 228 | vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); |
| 229 | } |
| 230 | |
| 231 | /* allocator for vmem-pool metadata */ |
| 232 | struct pool_allocator pool_allocator_vmem_meta = { |
| 233 | .pa_alloc = pool_page_alloc_vmem_meta, |
| 234 | .pa_free = pool_page_free_vmem_meta, |
| 235 | .pa_pagesz = 0 |
| 236 | }; |
| 237 | |
| 238 | static int |
| 239 | bt_refill(vmem_t *vm) |
| 240 | { |
| 241 | bt_t *bt; |
| 242 | |
| 243 | VMEM_LOCK(vm); |
| 244 | if (vm->vm_nfreetags > BT_MINRESERVE) { |
| 245 | VMEM_UNLOCK(vm); |
| 246 | return 0; |
| 247 | } |
| 248 | |
| 249 | mutex_enter(&vmem_btag_lock); |
| 250 | while (!LIST_EMPTY(&vmem_btag_freelist) && |
| 251 | vm->vm_nfreetags <= BT_MINRESERVE) { |
| 252 | bt = LIST_FIRST(&vmem_btag_freelist); |
| 253 | LIST_REMOVE(bt, bt_freelist); |
| 254 | LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); |
| 255 | vm->vm_nfreetags++; |
| 256 | vmem_btag_freelist_count--; |
| 257 | VMEM_EVCNT_INCR(static_bt_inuse); |
| 258 | } |
| 259 | mutex_exit(&vmem_btag_lock); |
| 260 | |
| 261 | while (vm->vm_nfreetags <= BT_MINRESERVE) { |
| 262 | VMEM_UNLOCK(vm); |
| 263 | mutex_enter(&vmem_btag_refill_lock); |
| 264 | bt = pool_get(&vmem_btag_pool, PR_NOWAIT); |
| 265 | mutex_exit(&vmem_btag_refill_lock); |
| 266 | VMEM_LOCK(vm); |
| 267 | if (bt == NULL) |
| 268 | break; |
| 269 | LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); |
| 270 | vm->vm_nfreetags++; |
| 271 | } |
| 272 | |
| 273 | if (vm->vm_nfreetags <= BT_MINRESERVE) { |
| 274 | VMEM_UNLOCK(vm); |
| 275 | return ENOMEM; |
| 276 | } |
| 277 | |
| 278 | VMEM_UNLOCK(vm); |
| 279 | |
| 280 | if (kmem_meta_arena != NULL) { |
| 281 | (void)bt_refill(kmem_arena); |
| 282 | (void)bt_refill(kmem_va_meta_arena); |
| 283 | (void)bt_refill(kmem_meta_arena); |
| 284 | } |
| 285 | |
| 286 | return 0; |
| 287 | } |
| 288 | |
| 289 | static bt_t * |
| 290 | bt_alloc(vmem_t *vm, vm_flag_t flags) |
| 291 | { |
| 292 | bt_t *bt; |
| 293 | VMEM_LOCK(vm); |
| 294 | while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) { |
| 295 | VMEM_UNLOCK(vm); |
| 296 | if (bt_refill(vm)) { |
| 297 | if ((flags & VM_NOSLEEP) != 0) { |
| 298 | return NULL; |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * It would be nice to wait for something specific here |
| 303 | * but there are multiple ways that a retry could |
| 304 | * succeed and we can't wait for multiple things |
| 305 | * simultaneously. So we'll just sleep for an arbitrary |
| 306 | * short period of time and retry regardless. |
| 307 | * This should be a very rare case. |
| 308 | */ |
| 309 | |
| 310 | vmem_kick_pdaemon(); |
| 311 | kpause("btalloc" , false, 1, NULL); |
| 312 | } |
| 313 | VMEM_LOCK(vm); |
| 314 | } |
| 315 | bt = LIST_FIRST(&vm->vm_freetags); |
| 316 | LIST_REMOVE(bt, bt_freelist); |
| 317 | vm->vm_nfreetags--; |
| 318 | VMEM_UNLOCK(vm); |
| 319 | |
| 320 | return bt; |
| 321 | } |
| 322 | |
| 323 | static void |
| 324 | bt_free(vmem_t *vm, bt_t *bt) |
| 325 | { |
| 326 | |
| 327 | VMEM_LOCK(vm); |
| 328 | LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); |
| 329 | vm->vm_nfreetags++; |
| 330 | VMEM_UNLOCK(vm); |
| 331 | } |
| 332 | |
| 333 | static void |
| 334 | bt_freetrim(vmem_t *vm, int freelimit) |
| 335 | { |
| 336 | bt_t *t; |
| 337 | LIST_HEAD(, vmem_btag) tofree; |
| 338 | |
| 339 | LIST_INIT(&tofree); |
| 340 | |
| 341 | VMEM_LOCK(vm); |
| 342 | while (vm->vm_nfreetags > freelimit) { |
| 343 | bt_t *bt = LIST_FIRST(&vm->vm_freetags); |
| 344 | LIST_REMOVE(bt, bt_freelist); |
| 345 | vm->vm_nfreetags--; |
| 346 | if (bt >= static_bts |
| 347 | && bt < &static_bts[STATIC_BT_COUNT]) { |
| 348 | mutex_enter(&vmem_btag_lock); |
| 349 | LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist); |
| 350 | vmem_btag_freelist_count++; |
| 351 | mutex_exit(&vmem_btag_lock); |
| 352 | VMEM_EVCNT_DECR(static_bt_inuse); |
| 353 | } else { |
| 354 | LIST_INSERT_HEAD(&tofree, bt, bt_freelist); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | VMEM_UNLOCK(vm); |
| 359 | while (!LIST_EMPTY(&tofree)) { |
| 360 | t = LIST_FIRST(&tofree); |
| 361 | LIST_REMOVE(t, bt_freelist); |
| 362 | pool_put(&vmem_btag_pool, t); |
| 363 | } |
| 364 | } |
| 365 | #endif /* defined(_KERNEL) */ |
| 366 | |
| 367 | /* |
| 368 | * freelist[0] ... [1, 1] |
| 369 | * freelist[1] ... [2, 3] |
| 370 | * freelist[2] ... [4, 7] |
| 371 | * freelist[3] ... [8, 15] |
| 372 | * : |
| 373 | * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1] |
| 374 | * : |
| 375 | */ |
| 376 | |
| 377 | static struct vmem_freelist * |
| 378 | bt_freehead_tofree(vmem_t *vm, vmem_size_t size) |
| 379 | { |
| 380 | const vmem_size_t qsize = size >> vm->vm_quantum_shift; |
| 381 | const int idx = SIZE2ORDER(qsize); |
| 382 | |
| 383 | KASSERT(size != 0 && qsize != 0); |
| 384 | KASSERT((size & vm->vm_quantum_mask) == 0); |
| 385 | KASSERT(idx >= 0); |
| 386 | KASSERT(idx < VMEM_MAXORDER); |
| 387 | |
| 388 | return &vm->vm_freelist[idx]; |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * bt_freehead_toalloc: return the freelist for the given size and allocation |
| 393 | * strategy. |
| 394 | * |
| 395 | * for VM_INSTANTFIT, return the list in which any blocks are large enough |
| 396 | * for the requested size. otherwise, return the list which can have blocks |
| 397 | * large enough for the requested size. |
| 398 | */ |
| 399 | |
| 400 | static struct vmem_freelist * |
| 401 | bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat) |
| 402 | { |
| 403 | const vmem_size_t qsize = size >> vm->vm_quantum_shift; |
| 404 | int idx = SIZE2ORDER(qsize); |
| 405 | |
| 406 | KASSERT(size != 0 && qsize != 0); |
| 407 | KASSERT((size & vm->vm_quantum_mask) == 0); |
| 408 | |
| 409 | if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) { |
| 410 | idx++; |
| 411 | /* check too large request? */ |
| 412 | } |
| 413 | KASSERT(idx >= 0); |
| 414 | KASSERT(idx < VMEM_MAXORDER); |
| 415 | |
| 416 | return &vm->vm_freelist[idx]; |
| 417 | } |
| 418 | |
| 419 | /* ---- boundary tag hash */ |
| 420 | |
| 421 | static struct vmem_hashlist * |
| 422 | bt_hashhead(vmem_t *vm, vmem_addr_t addr) |
| 423 | { |
| 424 | struct vmem_hashlist *list; |
| 425 | unsigned int hash; |
| 426 | |
| 427 | hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT); |
| 428 | list = &vm->vm_hashlist[hash % vm->vm_hashsize]; |
| 429 | |
| 430 | return list; |
| 431 | } |
| 432 | |
| 433 | static bt_t * |
| 434 | bt_lookupbusy(vmem_t *vm, vmem_addr_t addr) |
| 435 | { |
| 436 | struct vmem_hashlist *list; |
| 437 | bt_t *bt; |
| 438 | |
| 439 | list = bt_hashhead(vm, addr); |
| 440 | LIST_FOREACH(bt, list, bt_hashlist) { |
| 441 | if (bt->bt_start == addr) { |
| 442 | break; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | return bt; |
| 447 | } |
| 448 | |
| 449 | static void |
| 450 | bt_rembusy(vmem_t *vm, bt_t *bt) |
| 451 | { |
| 452 | |
| 453 | KASSERT(vm->vm_nbusytag > 0); |
| 454 | vm->vm_inuse -= bt->bt_size; |
| 455 | vm->vm_nbusytag--; |
| 456 | LIST_REMOVE(bt, bt_hashlist); |
| 457 | } |
| 458 | |
| 459 | static void |
| 460 | bt_insbusy(vmem_t *vm, bt_t *bt) |
| 461 | { |
| 462 | struct vmem_hashlist *list; |
| 463 | |
| 464 | KASSERT(bt->bt_type == BT_TYPE_BUSY); |
| 465 | |
| 466 | list = bt_hashhead(vm, bt->bt_start); |
| 467 | LIST_INSERT_HEAD(list, bt, bt_hashlist); |
| 468 | vm->vm_nbusytag++; |
| 469 | vm->vm_inuse += bt->bt_size; |
| 470 | } |
| 471 | |
| 472 | /* ---- boundary tag list */ |
| 473 | |
| 474 | static void |
| 475 | bt_remseg(vmem_t *vm, bt_t *bt) |
| 476 | { |
| 477 | |
| 478 | TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist); |
| 479 | } |
| 480 | |
| 481 | static void |
| 482 | bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev) |
| 483 | { |
| 484 | |
| 485 | TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist); |
| 486 | } |
| 487 | |
| 488 | static void |
| 489 | bt_insseg_tail(vmem_t *vm, bt_t *bt) |
| 490 | { |
| 491 | |
| 492 | TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist); |
| 493 | } |
| 494 | |
| 495 | static void |
| 496 | bt_remfree(vmem_t *vm, bt_t *bt) |
| 497 | { |
| 498 | |
| 499 | KASSERT(bt->bt_type == BT_TYPE_FREE); |
| 500 | |
| 501 | LIST_REMOVE(bt, bt_freelist); |
| 502 | } |
| 503 | |
| 504 | static void |
| 505 | bt_insfree(vmem_t *vm, bt_t *bt) |
| 506 | { |
| 507 | struct vmem_freelist *list; |
| 508 | |
| 509 | list = bt_freehead_tofree(vm, bt->bt_size); |
| 510 | LIST_INSERT_HEAD(list, bt, bt_freelist); |
| 511 | } |
| 512 | |
| 513 | /* ---- vmem internal functions */ |
| 514 | |
| 515 | #if defined(QCACHE) |
| 516 | static inline vm_flag_t |
| 517 | prf_to_vmf(int prflags) |
| 518 | { |
| 519 | vm_flag_t vmflags; |
| 520 | |
| 521 | KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0); |
| 522 | if ((prflags & PR_WAITOK) != 0) { |
| 523 | vmflags = VM_SLEEP; |
| 524 | } else { |
| 525 | vmflags = VM_NOSLEEP; |
| 526 | } |
| 527 | return vmflags; |
| 528 | } |
| 529 | |
| 530 | static inline int |
| 531 | vmf_to_prf(vm_flag_t vmflags) |
| 532 | { |
| 533 | int prflags; |
| 534 | |
| 535 | if ((vmflags & VM_SLEEP) != 0) { |
| 536 | prflags = PR_WAITOK; |
| 537 | } else { |
| 538 | prflags = PR_NOWAIT; |
| 539 | } |
| 540 | return prflags; |
| 541 | } |
| 542 | |
| 543 | static size_t |
| 544 | qc_poolpage_size(size_t qcache_max) |
| 545 | { |
| 546 | int i; |
| 547 | |
| 548 | for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) { |
| 549 | /* nothing */ |
| 550 | } |
| 551 | return ORDER2SIZE(i); |
| 552 | } |
| 553 | |
| 554 | static void * |
| 555 | qc_poolpage_alloc(struct pool *pool, int prflags) |
| 556 | { |
| 557 | qcache_t *qc = QC_POOL_TO_QCACHE(pool); |
| 558 | vmem_t *vm = qc->qc_vmem; |
| 559 | vmem_addr_t addr; |
| 560 | |
| 561 | if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz, |
| 562 | prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0) |
| 563 | return NULL; |
| 564 | return (void *)addr; |
| 565 | } |
| 566 | |
| 567 | static void |
| 568 | qc_poolpage_free(struct pool *pool, void *addr) |
| 569 | { |
| 570 | qcache_t *qc = QC_POOL_TO_QCACHE(pool); |
| 571 | vmem_t *vm = qc->qc_vmem; |
| 572 | |
| 573 | vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz); |
| 574 | } |
| 575 | |
| 576 | static void |
| 577 | qc_init(vmem_t *vm, size_t qcache_max, int ipl) |
| 578 | { |
| 579 | qcache_t *prevqc; |
| 580 | struct pool_allocator *pa; |
| 581 | int qcache_idx_max; |
| 582 | int i; |
| 583 | |
| 584 | KASSERT((qcache_max & vm->vm_quantum_mask) == 0); |
| 585 | if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) { |
| 586 | qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift; |
| 587 | } |
| 588 | vm->vm_qcache_max = qcache_max; |
| 589 | pa = &vm->vm_qcache_allocator; |
| 590 | memset(pa, 0, sizeof(*pa)); |
| 591 | pa->pa_alloc = qc_poolpage_alloc; |
| 592 | pa->pa_free = qc_poolpage_free; |
| 593 | pa->pa_pagesz = qc_poolpage_size(qcache_max); |
| 594 | |
| 595 | qcache_idx_max = qcache_max >> vm->vm_quantum_shift; |
| 596 | prevqc = NULL; |
| 597 | for (i = qcache_idx_max; i > 0; i--) { |
| 598 | qcache_t *qc = &vm->vm_qcache_store[i - 1]; |
| 599 | size_t size = i << vm->vm_quantum_shift; |
| 600 | pool_cache_t pc; |
| 601 | |
| 602 | qc->qc_vmem = vm; |
| 603 | snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu" , |
| 604 | vm->vm_name, size); |
| 605 | |
| 606 | pc = pool_cache_init(size, |
| 607 | ORDER2SIZE(vm->vm_quantum_shift), 0, |
| 608 | PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */, |
| 609 | qc->qc_name, pa, ipl, NULL, NULL, NULL); |
| 610 | |
| 611 | KASSERT(pc); |
| 612 | |
| 613 | qc->qc_cache = pc; |
| 614 | KASSERT(qc->qc_cache != NULL); /* XXX */ |
| 615 | if (prevqc != NULL && |
| 616 | qc->qc_cache->pc_pool.pr_itemsperpage == |
| 617 | prevqc->qc_cache->pc_pool.pr_itemsperpage) { |
| 618 | pool_cache_destroy(qc->qc_cache); |
| 619 | vm->vm_qcache[i - 1] = prevqc; |
| 620 | continue; |
| 621 | } |
| 622 | qc->qc_cache->pc_pool.pr_qcache = qc; |
| 623 | vm->vm_qcache[i - 1] = qc; |
| 624 | prevqc = qc; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | static void |
| 629 | qc_destroy(vmem_t *vm) |
| 630 | { |
| 631 | const qcache_t *prevqc; |
| 632 | int i; |
| 633 | int qcache_idx_max; |
| 634 | |
| 635 | qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift; |
| 636 | prevqc = NULL; |
| 637 | for (i = 0; i < qcache_idx_max; i++) { |
| 638 | qcache_t *qc = vm->vm_qcache[i]; |
| 639 | |
| 640 | if (prevqc == qc) { |
| 641 | continue; |
| 642 | } |
| 643 | pool_cache_destroy(qc->qc_cache); |
| 644 | prevqc = qc; |
| 645 | } |
| 646 | } |
| 647 | #endif |
| 648 | |
| 649 | #if defined(_KERNEL) |
| 650 | static void |
| 651 | vmem_bootstrap(void) |
| 652 | { |
| 653 | |
| 654 | mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM); |
| 655 | mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM); |
| 656 | mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM); |
| 657 | |
| 658 | while (static_bt_count-- > 0) { |
| 659 | bt_t *bt = &static_bts[static_bt_count]; |
| 660 | LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist); |
| 661 | VMEM_EVCNT_INCR(static_bt_count); |
| 662 | vmem_btag_freelist_count++; |
| 663 | } |
| 664 | vmem_bootstrapped = TRUE; |
| 665 | } |
| 666 | |
| 667 | void |
| 668 | vmem_subsystem_init(vmem_t *vm) |
| 669 | { |
| 670 | |
| 671 | kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va" , |
| 672 | 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm, |
| 673 | 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT, |
| 674 | IPL_VM); |
| 675 | |
| 676 | kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta" , |
| 677 | 0, 0, PAGE_SIZE, |
| 678 | uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena, |
| 679 | 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM); |
| 680 | |
| 681 | pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE, |
| 682 | "vmembt" , &pool_allocator_vmem_meta, IPL_VM); |
| 683 | } |
| 684 | #endif /* defined(_KERNEL) */ |
| 685 | |
| 686 | static int |
| 687 | vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags, |
| 688 | int spanbttype) |
| 689 | { |
| 690 | bt_t *btspan; |
| 691 | bt_t *btfree; |
| 692 | |
| 693 | KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); |
| 694 | KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); |
| 695 | KASSERT(spanbttype == BT_TYPE_SPAN || |
| 696 | spanbttype == BT_TYPE_SPAN_STATIC); |
| 697 | |
| 698 | btspan = bt_alloc(vm, flags); |
| 699 | if (btspan == NULL) { |
| 700 | return ENOMEM; |
| 701 | } |
| 702 | btfree = bt_alloc(vm, flags); |
| 703 | if (btfree == NULL) { |
| 704 | bt_free(vm, btspan); |
| 705 | return ENOMEM; |
| 706 | } |
| 707 | |
| 708 | btspan->bt_type = spanbttype; |
| 709 | btspan->bt_start = addr; |
| 710 | btspan->bt_size = size; |
| 711 | |
| 712 | btfree->bt_type = BT_TYPE_FREE; |
| 713 | btfree->bt_start = addr; |
| 714 | btfree->bt_size = size; |
| 715 | |
| 716 | VMEM_LOCK(vm); |
| 717 | bt_insseg_tail(vm, btspan); |
| 718 | bt_insseg(vm, btfree, btspan); |
| 719 | bt_insfree(vm, btfree); |
| 720 | vm->vm_size += size; |
| 721 | VMEM_UNLOCK(vm); |
| 722 | |
| 723 | return 0; |
| 724 | } |
| 725 | |
| 726 | static void |
| 727 | vmem_destroy1(vmem_t *vm) |
| 728 | { |
| 729 | |
| 730 | #if defined(QCACHE) |
| 731 | qc_destroy(vm); |
| 732 | #endif /* defined(QCACHE) */ |
| 733 | if (vm->vm_hashlist != NULL) { |
| 734 | int i; |
| 735 | |
| 736 | for (i = 0; i < vm->vm_hashsize; i++) { |
| 737 | bt_t *bt; |
| 738 | |
| 739 | while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) { |
| 740 | KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC); |
| 741 | bt_free(vm, bt); |
| 742 | } |
| 743 | } |
| 744 | if (vm->vm_hashlist != &vm->vm_hash0) { |
| 745 | xfree(vm->vm_hashlist, |
| 746 | sizeof(struct vmem_hashlist *) * vm->vm_hashsize); |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | bt_freetrim(vm, 0); |
| 751 | |
| 752 | VMEM_CONDVAR_DESTROY(vm); |
| 753 | VMEM_LOCK_DESTROY(vm); |
| 754 | xfree(vm, sizeof(*vm)); |
| 755 | } |
| 756 | |
| 757 | static int |
| 758 | vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags) |
| 759 | { |
| 760 | vmem_addr_t addr; |
| 761 | int rc; |
| 762 | |
| 763 | if (vm->vm_importfn == NULL) { |
| 764 | return EINVAL; |
| 765 | } |
| 766 | |
| 767 | if (vm->vm_flags & VM_LARGEIMPORT) { |
| 768 | size *= 16; |
| 769 | } |
| 770 | |
| 771 | if (vm->vm_flags & VM_XIMPORT) { |
| 772 | rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size, |
| 773 | &size, flags, &addr); |
| 774 | } else { |
| 775 | rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr); |
| 776 | } |
| 777 | if (rc) { |
| 778 | return ENOMEM; |
| 779 | } |
| 780 | |
| 781 | if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) { |
| 782 | (*vm->vm_releasefn)(vm->vm_arg, addr, size); |
| 783 | return ENOMEM; |
| 784 | } |
| 785 | |
| 786 | return 0; |
| 787 | } |
| 788 | |
| 789 | static int |
| 790 | vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags) |
| 791 | { |
| 792 | bt_t *bt; |
| 793 | int i; |
| 794 | struct vmem_hashlist *newhashlist; |
| 795 | struct vmem_hashlist *oldhashlist; |
| 796 | size_t oldhashsize; |
| 797 | |
| 798 | KASSERT(newhashsize > 0); |
| 799 | |
| 800 | newhashlist = |
| 801 | xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags); |
| 802 | if (newhashlist == NULL) { |
| 803 | return ENOMEM; |
| 804 | } |
| 805 | for (i = 0; i < newhashsize; i++) { |
| 806 | LIST_INIT(&newhashlist[i]); |
| 807 | } |
| 808 | |
| 809 | if (!VMEM_TRYLOCK(vm)) { |
| 810 | xfree(newhashlist, |
| 811 | sizeof(struct vmem_hashlist *) * newhashsize); |
| 812 | return EBUSY; |
| 813 | } |
| 814 | oldhashlist = vm->vm_hashlist; |
| 815 | oldhashsize = vm->vm_hashsize; |
| 816 | vm->vm_hashlist = newhashlist; |
| 817 | vm->vm_hashsize = newhashsize; |
| 818 | if (oldhashlist == NULL) { |
| 819 | VMEM_UNLOCK(vm); |
| 820 | return 0; |
| 821 | } |
| 822 | for (i = 0; i < oldhashsize; i++) { |
| 823 | while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) { |
| 824 | bt_rembusy(vm, bt); /* XXX */ |
| 825 | bt_insbusy(vm, bt); |
| 826 | } |
| 827 | } |
| 828 | VMEM_UNLOCK(vm); |
| 829 | |
| 830 | if (oldhashlist != &vm->vm_hash0) { |
| 831 | xfree(oldhashlist, |
| 832 | sizeof(struct vmem_hashlist *) * oldhashsize); |
| 833 | } |
| 834 | |
| 835 | return 0; |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * vmem_fit: check if a bt can satisfy the given restrictions. |
| 840 | * |
| 841 | * it's a caller's responsibility to ensure the region is big enough |
| 842 | * before calling us. |
| 843 | */ |
| 844 | |
| 845 | static int |
| 846 | vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, |
| 847 | vmem_size_t phase, vmem_size_t nocross, |
| 848 | vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp) |
| 849 | { |
| 850 | vmem_addr_t start; |
| 851 | vmem_addr_t end; |
| 852 | |
| 853 | KASSERT(size > 0); |
| 854 | KASSERT(bt->bt_size >= size); /* caller's responsibility */ |
| 855 | |
| 856 | /* |
| 857 | * XXX assumption: vmem_addr_t and vmem_size_t are |
| 858 | * unsigned integer of the same size. |
| 859 | */ |
| 860 | |
| 861 | start = bt->bt_start; |
| 862 | if (start < minaddr) { |
| 863 | start = minaddr; |
| 864 | } |
| 865 | end = BT_END(bt); |
| 866 | if (end > maxaddr) { |
| 867 | end = maxaddr; |
| 868 | } |
| 869 | if (start > end) { |
| 870 | return ENOMEM; |
| 871 | } |
| 872 | |
| 873 | start = VMEM_ALIGNUP(start - phase, align) + phase; |
| 874 | if (start < bt->bt_start) { |
| 875 | start += align; |
| 876 | } |
| 877 | if (VMEM_CROSS_P(start, start + size - 1, nocross)) { |
| 878 | KASSERT(align < nocross); |
| 879 | start = VMEM_ALIGNUP(start - phase, nocross) + phase; |
| 880 | } |
| 881 | if (start <= end && end - start >= size - 1) { |
| 882 | KASSERT((start & (align - 1)) == phase); |
| 883 | KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross)); |
| 884 | KASSERT(minaddr <= start); |
| 885 | KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr); |
| 886 | KASSERT(bt->bt_start <= start); |
| 887 | KASSERT(BT_END(bt) - start >= size - 1); |
| 888 | *addrp = start; |
| 889 | return 0; |
| 890 | } |
| 891 | return ENOMEM; |
| 892 | } |
| 893 | |
| 894 | /* ---- vmem API */ |
| 895 | |
| 896 | /* |
| 897 | * vmem_create_internal: creates a vmem arena. |
| 898 | */ |
| 899 | |
| 900 | vmem_t * |
| 901 | vmem_init(vmem_t *vm, const char *name, |
| 902 | vmem_addr_t base, vmem_size_t size, vmem_size_t quantum, |
| 903 | vmem_import_t *importfn, vmem_release_t *releasefn, |
| 904 | vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl) |
| 905 | { |
| 906 | int i; |
| 907 | |
| 908 | KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); |
| 909 | KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); |
| 910 | KASSERT(quantum > 0); |
| 911 | |
| 912 | #if defined(_KERNEL) |
| 913 | /* XXX: SMP, we get called early... */ |
| 914 | if (!vmem_bootstrapped) { |
| 915 | vmem_bootstrap(); |
| 916 | } |
| 917 | #endif /* defined(_KERNEL) */ |
| 918 | |
| 919 | if (vm == NULL) { |
| 920 | vm = xmalloc(sizeof(*vm), flags); |
| 921 | } |
| 922 | if (vm == NULL) { |
| 923 | return NULL; |
| 924 | } |
| 925 | |
| 926 | VMEM_CONDVAR_INIT(vm, "vmem" ); |
| 927 | VMEM_LOCK_INIT(vm, ipl); |
| 928 | vm->vm_flags = flags; |
| 929 | vm->vm_nfreetags = 0; |
| 930 | LIST_INIT(&vm->vm_freetags); |
| 931 | strlcpy(vm->vm_name, name, sizeof(vm->vm_name)); |
| 932 | vm->vm_quantum_mask = quantum - 1; |
| 933 | vm->vm_quantum_shift = SIZE2ORDER(quantum); |
| 934 | KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum); |
| 935 | vm->vm_importfn = importfn; |
| 936 | vm->vm_releasefn = releasefn; |
| 937 | vm->vm_arg = arg; |
| 938 | vm->vm_nbusytag = 0; |
| 939 | vm->vm_size = 0; |
| 940 | vm->vm_inuse = 0; |
| 941 | #if defined(QCACHE) |
| 942 | qc_init(vm, qcache_max, ipl); |
| 943 | #endif /* defined(QCACHE) */ |
| 944 | |
| 945 | TAILQ_INIT(&vm->vm_seglist); |
| 946 | for (i = 0; i < VMEM_MAXORDER; i++) { |
| 947 | LIST_INIT(&vm->vm_freelist[i]); |
| 948 | } |
| 949 | memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist)); |
| 950 | vm->vm_hashsize = 1; |
| 951 | vm->vm_hashlist = &vm->vm_hash0; |
| 952 | |
| 953 | if (size != 0) { |
| 954 | if (vmem_add(vm, base, size, flags) != 0) { |
| 955 | vmem_destroy1(vm); |
| 956 | return NULL; |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | #if defined(_KERNEL) |
| 961 | if (flags & VM_BOOTSTRAP) { |
| 962 | bt_refill(vm); |
| 963 | } |
| 964 | |
| 965 | mutex_enter(&vmem_list_lock); |
| 966 | LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist); |
| 967 | mutex_exit(&vmem_list_lock); |
| 968 | #endif /* defined(_KERNEL) */ |
| 969 | |
| 970 | return vm; |
| 971 | } |
| 972 | |
| 973 | |
| 974 | |
| 975 | /* |
| 976 | * vmem_create: create an arena. |
| 977 | * |
| 978 | * => must not be called from interrupt context. |
| 979 | */ |
| 980 | |
| 981 | vmem_t * |
| 982 | vmem_create(const char *name, vmem_addr_t base, vmem_size_t size, |
| 983 | vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn, |
| 984 | vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl) |
| 985 | { |
| 986 | |
| 987 | KASSERT((flags & (VM_XIMPORT)) == 0); |
| 988 | |
| 989 | return vmem_init(NULL, name, base, size, quantum, |
| 990 | importfn, releasefn, source, qcache_max, flags, ipl); |
| 991 | } |
| 992 | |
| 993 | /* |
| 994 | * vmem_xcreate: create an arena takes alternative import func. |
| 995 | * |
| 996 | * => must not be called from interrupt context. |
| 997 | */ |
| 998 | |
| 999 | vmem_t * |
| 1000 | vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size, |
| 1001 | vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn, |
| 1002 | vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl) |
| 1003 | { |
| 1004 | |
| 1005 | KASSERT((flags & (VM_XIMPORT)) == 0); |
| 1006 | |
| 1007 | return vmem_init(NULL, name, base, size, quantum, |
| 1008 | (vmem_import_t *)importfn, releasefn, source, |
| 1009 | qcache_max, flags | VM_XIMPORT, ipl); |
| 1010 | } |
| 1011 | |
| 1012 | void |
| 1013 | vmem_destroy(vmem_t *vm) |
| 1014 | { |
| 1015 | |
| 1016 | #if defined(_KERNEL) |
| 1017 | mutex_enter(&vmem_list_lock); |
| 1018 | LIST_REMOVE(vm, vm_alllist); |
| 1019 | mutex_exit(&vmem_list_lock); |
| 1020 | #endif /* defined(_KERNEL) */ |
| 1021 | |
| 1022 | vmem_destroy1(vm); |
| 1023 | } |
| 1024 | |
| 1025 | vmem_size_t |
| 1026 | vmem_roundup_size(vmem_t *vm, vmem_size_t size) |
| 1027 | { |
| 1028 | |
| 1029 | return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask; |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * vmem_alloc: allocate resource from the arena. |
| 1034 | */ |
| 1035 | |
| 1036 | int |
| 1037 | vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp) |
| 1038 | { |
| 1039 | const vm_flag_t strat __diagused = flags & VM_FITMASK; |
| 1040 | |
| 1041 | KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); |
| 1042 | KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); |
| 1043 | |
| 1044 | KASSERT(size > 0); |
| 1045 | KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT); |
| 1046 | if ((flags & VM_SLEEP) != 0) { |
| 1047 | ASSERT_SLEEPABLE(); |
| 1048 | } |
| 1049 | |
| 1050 | #if defined(QCACHE) |
| 1051 | if (size <= vm->vm_qcache_max) { |
| 1052 | void *p; |
| 1053 | int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift; |
| 1054 | qcache_t *qc = vm->vm_qcache[qidx - 1]; |
| 1055 | |
| 1056 | p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags)); |
| 1057 | if (addrp != NULL) |
| 1058 | *addrp = (vmem_addr_t)p; |
| 1059 | return (p == NULL) ? ENOMEM : 0; |
| 1060 | } |
| 1061 | #endif /* defined(QCACHE) */ |
| 1062 | |
| 1063 | return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, |
| 1064 | flags, addrp); |
| 1065 | } |
| 1066 | |
| 1067 | int |
| 1068 | vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align, |
| 1069 | const vmem_size_t phase, const vmem_size_t nocross, |
| 1070 | const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags, |
| 1071 | vmem_addr_t *addrp) |
| 1072 | { |
| 1073 | struct vmem_freelist *list; |
| 1074 | struct vmem_freelist *first; |
| 1075 | struct vmem_freelist *end; |
| 1076 | bt_t *bt; |
| 1077 | bt_t *btnew; |
| 1078 | bt_t *btnew2; |
| 1079 | const vmem_size_t size = vmem_roundup_size(vm, size0); |
| 1080 | vm_flag_t strat = flags & VM_FITMASK; |
| 1081 | vmem_addr_t start; |
| 1082 | int rc; |
| 1083 | |
| 1084 | KASSERT(size0 > 0); |
| 1085 | KASSERT(size > 0); |
| 1086 | KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT); |
| 1087 | if ((flags & VM_SLEEP) != 0) { |
| 1088 | ASSERT_SLEEPABLE(); |
| 1089 | } |
| 1090 | KASSERT((align & vm->vm_quantum_mask) == 0); |
| 1091 | KASSERT((align & (align - 1)) == 0); |
| 1092 | KASSERT((phase & vm->vm_quantum_mask) == 0); |
| 1093 | KASSERT((nocross & vm->vm_quantum_mask) == 0); |
| 1094 | KASSERT((nocross & (nocross - 1)) == 0); |
| 1095 | KASSERT((align == 0 && phase == 0) || phase < align); |
| 1096 | KASSERT(nocross == 0 || nocross >= size); |
| 1097 | KASSERT(minaddr <= maxaddr); |
| 1098 | KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross)); |
| 1099 | |
| 1100 | if (align == 0) { |
| 1101 | align = vm->vm_quantum_mask + 1; |
| 1102 | } |
| 1103 | |
| 1104 | /* |
| 1105 | * allocate boundary tags before acquiring the vmem lock. |
| 1106 | */ |
| 1107 | btnew = bt_alloc(vm, flags); |
| 1108 | if (btnew == NULL) { |
| 1109 | return ENOMEM; |
| 1110 | } |
| 1111 | btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */ |
| 1112 | if (btnew2 == NULL) { |
| 1113 | bt_free(vm, btnew); |
| 1114 | return ENOMEM; |
| 1115 | } |
| 1116 | |
| 1117 | /* |
| 1118 | * choose a free block from which we allocate. |
| 1119 | */ |
| 1120 | retry_strat: |
| 1121 | first = bt_freehead_toalloc(vm, size, strat); |
| 1122 | end = &vm->vm_freelist[VMEM_MAXORDER]; |
| 1123 | retry: |
| 1124 | bt = NULL; |
| 1125 | VMEM_LOCK(vm); |
| 1126 | vmem_check(vm); |
| 1127 | if (strat == VM_INSTANTFIT) { |
| 1128 | /* |
| 1129 | * just choose the first block which satisfies our restrictions. |
| 1130 | * |
| 1131 | * note that we don't need to check the size of the blocks |
| 1132 | * because any blocks found on these list should be larger than |
| 1133 | * the given size. |
| 1134 | */ |
| 1135 | for (list = first; list < end; list++) { |
| 1136 | bt = LIST_FIRST(list); |
| 1137 | if (bt != NULL) { |
| 1138 | rc = vmem_fit(bt, size, align, phase, |
| 1139 | nocross, minaddr, maxaddr, &start); |
| 1140 | if (rc == 0) { |
| 1141 | goto gotit; |
| 1142 | } |
| 1143 | /* |
| 1144 | * don't bother to follow the bt_freelist link |
| 1145 | * here. the list can be very long and we are |
| 1146 | * told to run fast. blocks from the later free |
| 1147 | * lists are larger and have better chances to |
| 1148 | * satisfy our restrictions. |
| 1149 | */ |
| 1150 | } |
| 1151 | } |
| 1152 | } else { /* VM_BESTFIT */ |
| 1153 | /* |
| 1154 | * we assume that, for space efficiency, it's better to |
| 1155 | * allocate from a smaller block. thus we will start searching |
| 1156 | * from the lower-order list than VM_INSTANTFIT. |
| 1157 | * however, don't bother to find the smallest block in a free |
| 1158 | * list because the list can be very long. we can revisit it |
| 1159 | * if/when it turns out to be a problem. |
| 1160 | * |
| 1161 | * note that the 'first' list can contain blocks smaller than |
| 1162 | * the requested size. thus we need to check bt_size. |
| 1163 | */ |
| 1164 | for (list = first; list < end; list++) { |
| 1165 | LIST_FOREACH(bt, list, bt_freelist) { |
| 1166 | if (bt->bt_size >= size) { |
| 1167 | rc = vmem_fit(bt, size, align, phase, |
| 1168 | nocross, minaddr, maxaddr, &start); |
| 1169 | if (rc == 0) { |
| 1170 | goto gotit; |
| 1171 | } |
| 1172 | } |
| 1173 | } |
| 1174 | } |
| 1175 | } |
| 1176 | VMEM_UNLOCK(vm); |
| 1177 | #if 1 |
| 1178 | if (strat == VM_INSTANTFIT) { |
| 1179 | strat = VM_BESTFIT; |
| 1180 | goto retry_strat; |
| 1181 | } |
| 1182 | #endif |
| 1183 | if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) { |
| 1184 | |
| 1185 | /* |
| 1186 | * XXX should try to import a region large enough to |
| 1187 | * satisfy restrictions? |
| 1188 | */ |
| 1189 | |
| 1190 | goto fail; |
| 1191 | } |
| 1192 | /* XXX eeek, minaddr & maxaddr not respected */ |
| 1193 | if (vmem_import(vm, size, flags) == 0) { |
| 1194 | goto retry; |
| 1195 | } |
| 1196 | /* XXX */ |
| 1197 | |
| 1198 | if ((flags & VM_SLEEP) != 0) { |
| 1199 | vmem_kick_pdaemon(); |
| 1200 | VMEM_LOCK(vm); |
| 1201 | VMEM_CONDVAR_WAIT(vm); |
| 1202 | VMEM_UNLOCK(vm); |
| 1203 | goto retry; |
| 1204 | } |
| 1205 | fail: |
| 1206 | bt_free(vm, btnew); |
| 1207 | bt_free(vm, btnew2); |
| 1208 | return ENOMEM; |
| 1209 | |
| 1210 | gotit: |
| 1211 | KASSERT(bt->bt_type == BT_TYPE_FREE); |
| 1212 | KASSERT(bt->bt_size >= size); |
| 1213 | bt_remfree(vm, bt); |
| 1214 | vmem_check(vm); |
| 1215 | if (bt->bt_start != start) { |
| 1216 | btnew2->bt_type = BT_TYPE_FREE; |
| 1217 | btnew2->bt_start = bt->bt_start; |
| 1218 | btnew2->bt_size = start - bt->bt_start; |
| 1219 | bt->bt_start = start; |
| 1220 | bt->bt_size -= btnew2->bt_size; |
| 1221 | bt_insfree(vm, btnew2); |
| 1222 | bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist)); |
| 1223 | btnew2 = NULL; |
| 1224 | vmem_check(vm); |
| 1225 | } |
| 1226 | KASSERT(bt->bt_start == start); |
| 1227 | if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) { |
| 1228 | /* split */ |
| 1229 | btnew->bt_type = BT_TYPE_BUSY; |
| 1230 | btnew->bt_start = bt->bt_start; |
| 1231 | btnew->bt_size = size; |
| 1232 | bt->bt_start = bt->bt_start + size; |
| 1233 | bt->bt_size -= size; |
| 1234 | bt_insfree(vm, bt); |
| 1235 | bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist)); |
| 1236 | bt_insbusy(vm, btnew); |
| 1237 | vmem_check(vm); |
| 1238 | VMEM_UNLOCK(vm); |
| 1239 | } else { |
| 1240 | bt->bt_type = BT_TYPE_BUSY; |
| 1241 | bt_insbusy(vm, bt); |
| 1242 | vmem_check(vm); |
| 1243 | VMEM_UNLOCK(vm); |
| 1244 | bt_free(vm, btnew); |
| 1245 | btnew = bt; |
| 1246 | } |
| 1247 | if (btnew2 != NULL) { |
| 1248 | bt_free(vm, btnew2); |
| 1249 | } |
| 1250 | KASSERT(btnew->bt_size >= size); |
| 1251 | btnew->bt_type = BT_TYPE_BUSY; |
| 1252 | |
| 1253 | if (addrp != NULL) |
| 1254 | *addrp = btnew->bt_start; |
| 1255 | return 0; |
| 1256 | } |
| 1257 | |
| 1258 | /* |
| 1259 | * vmem_free: free the resource to the arena. |
| 1260 | */ |
| 1261 | |
| 1262 | void |
| 1263 | vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) |
| 1264 | { |
| 1265 | |
| 1266 | KASSERT(size > 0); |
| 1267 | |
| 1268 | #if defined(QCACHE) |
| 1269 | if (size <= vm->vm_qcache_max) { |
| 1270 | int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift; |
| 1271 | qcache_t *qc = vm->vm_qcache[qidx - 1]; |
| 1272 | |
| 1273 | pool_cache_put(qc->qc_cache, (void *)addr); |
| 1274 | return; |
| 1275 | } |
| 1276 | #endif /* defined(QCACHE) */ |
| 1277 | |
| 1278 | vmem_xfree(vm, addr, size); |
| 1279 | } |
| 1280 | |
| 1281 | void |
| 1282 | vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) |
| 1283 | { |
| 1284 | bt_t *bt; |
| 1285 | bt_t *t; |
| 1286 | LIST_HEAD(, vmem_btag) tofree; |
| 1287 | |
| 1288 | LIST_INIT(&tofree); |
| 1289 | |
| 1290 | KASSERT(size > 0); |
| 1291 | |
| 1292 | VMEM_LOCK(vm); |
| 1293 | |
| 1294 | bt = bt_lookupbusy(vm, addr); |
| 1295 | KASSERT(bt != NULL); |
| 1296 | KASSERT(bt->bt_start == addr); |
| 1297 | KASSERT(bt->bt_size == vmem_roundup_size(vm, size) || |
| 1298 | bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask); |
| 1299 | KASSERT(bt->bt_type == BT_TYPE_BUSY); |
| 1300 | bt_rembusy(vm, bt); |
| 1301 | bt->bt_type = BT_TYPE_FREE; |
| 1302 | |
| 1303 | /* coalesce */ |
| 1304 | t = TAILQ_NEXT(bt, bt_seglist); |
| 1305 | if (t != NULL && t->bt_type == BT_TYPE_FREE) { |
| 1306 | KASSERT(BT_END(bt) < t->bt_start); /* YYY */ |
| 1307 | bt_remfree(vm, t); |
| 1308 | bt_remseg(vm, t); |
| 1309 | bt->bt_size += t->bt_size; |
| 1310 | LIST_INSERT_HEAD(&tofree, t, bt_freelist); |
| 1311 | } |
| 1312 | t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); |
| 1313 | if (t != NULL && t->bt_type == BT_TYPE_FREE) { |
| 1314 | KASSERT(BT_END(t) < bt->bt_start); /* YYY */ |
| 1315 | bt_remfree(vm, t); |
| 1316 | bt_remseg(vm, t); |
| 1317 | bt->bt_size += t->bt_size; |
| 1318 | bt->bt_start = t->bt_start; |
| 1319 | LIST_INSERT_HEAD(&tofree, t, bt_freelist); |
| 1320 | } |
| 1321 | |
| 1322 | t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); |
| 1323 | KASSERT(t != NULL); |
| 1324 | KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY); |
| 1325 | if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN && |
| 1326 | t->bt_size == bt->bt_size) { |
| 1327 | vmem_addr_t spanaddr; |
| 1328 | vmem_size_t spansize; |
| 1329 | |
| 1330 | KASSERT(t->bt_start == bt->bt_start); |
| 1331 | spanaddr = bt->bt_start; |
| 1332 | spansize = bt->bt_size; |
| 1333 | bt_remseg(vm, bt); |
| 1334 | LIST_INSERT_HEAD(&tofree, bt, bt_freelist); |
| 1335 | bt_remseg(vm, t); |
| 1336 | LIST_INSERT_HEAD(&tofree, t, bt_freelist); |
| 1337 | vm->vm_size -= spansize; |
| 1338 | VMEM_CONDVAR_BROADCAST(vm); |
| 1339 | VMEM_UNLOCK(vm); |
| 1340 | (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize); |
| 1341 | } else { |
| 1342 | bt_insfree(vm, bt); |
| 1343 | VMEM_CONDVAR_BROADCAST(vm); |
| 1344 | VMEM_UNLOCK(vm); |
| 1345 | } |
| 1346 | |
| 1347 | while (!LIST_EMPTY(&tofree)) { |
| 1348 | t = LIST_FIRST(&tofree); |
| 1349 | LIST_REMOVE(t, bt_freelist); |
| 1350 | bt_free(vm, t); |
| 1351 | } |
| 1352 | |
| 1353 | bt_freetrim(vm, BT_MAXFREE); |
| 1354 | } |
| 1355 | |
| 1356 | /* |
| 1357 | * vmem_add: |
| 1358 | * |
| 1359 | * => caller must ensure appropriate spl, |
| 1360 | * if the arena can be accessed from interrupt context. |
| 1361 | */ |
| 1362 | |
| 1363 | int |
| 1364 | vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags) |
| 1365 | { |
| 1366 | |
| 1367 | return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC); |
| 1368 | } |
| 1369 | |
| 1370 | /* |
| 1371 | * vmem_size: information about arenas size |
| 1372 | * |
| 1373 | * => return free/allocated size in arena |
| 1374 | */ |
| 1375 | vmem_size_t |
| 1376 | vmem_size(vmem_t *vm, int typemask) |
| 1377 | { |
| 1378 | |
| 1379 | switch (typemask) { |
| 1380 | case VMEM_ALLOC: |
| 1381 | return vm->vm_inuse; |
| 1382 | case VMEM_FREE: |
| 1383 | return vm->vm_size - vm->vm_inuse; |
| 1384 | case VMEM_FREE|VMEM_ALLOC: |
| 1385 | return vm->vm_size; |
| 1386 | default: |
| 1387 | panic("vmem_size" ); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | /* ---- rehash */ |
| 1392 | |
| 1393 | #if defined(_KERNEL) |
| 1394 | static struct callout vmem_rehash_ch; |
| 1395 | static int vmem_rehash_interval; |
| 1396 | static struct workqueue *vmem_rehash_wq; |
| 1397 | static struct work vmem_rehash_wk; |
| 1398 | |
| 1399 | static void |
| 1400 | vmem_rehash_all(struct work *wk, void *dummy) |
| 1401 | { |
| 1402 | vmem_t *vm; |
| 1403 | |
| 1404 | KASSERT(wk == &vmem_rehash_wk); |
| 1405 | mutex_enter(&vmem_list_lock); |
| 1406 | LIST_FOREACH(vm, &vmem_list, vm_alllist) { |
| 1407 | size_t desired; |
| 1408 | size_t current; |
| 1409 | |
| 1410 | if (!VMEM_TRYLOCK(vm)) { |
| 1411 | continue; |
| 1412 | } |
| 1413 | desired = vm->vm_nbusytag; |
| 1414 | current = vm->vm_hashsize; |
| 1415 | VMEM_UNLOCK(vm); |
| 1416 | |
| 1417 | if (desired > VMEM_HASHSIZE_MAX) { |
| 1418 | desired = VMEM_HASHSIZE_MAX; |
| 1419 | } else if (desired < VMEM_HASHSIZE_MIN) { |
| 1420 | desired = VMEM_HASHSIZE_MIN; |
| 1421 | } |
| 1422 | if (desired > current * 2 || desired * 2 < current) { |
| 1423 | vmem_rehash(vm, desired, VM_NOSLEEP); |
| 1424 | } |
| 1425 | } |
| 1426 | mutex_exit(&vmem_list_lock); |
| 1427 | |
| 1428 | callout_schedule(&vmem_rehash_ch, vmem_rehash_interval); |
| 1429 | } |
| 1430 | |
| 1431 | static void |
| 1432 | vmem_rehash_all_kick(void *dummy) |
| 1433 | { |
| 1434 | |
| 1435 | workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL); |
| 1436 | } |
| 1437 | |
| 1438 | void |
| 1439 | vmem_rehash_start(void) |
| 1440 | { |
| 1441 | int error; |
| 1442 | |
| 1443 | error = workqueue_create(&vmem_rehash_wq, "vmem_rehash" , |
| 1444 | vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE); |
| 1445 | if (error) { |
| 1446 | panic("%s: workqueue_create %d\n" , __func__, error); |
| 1447 | } |
| 1448 | callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE); |
| 1449 | callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL); |
| 1450 | |
| 1451 | vmem_rehash_interval = hz * 10; |
| 1452 | callout_schedule(&vmem_rehash_ch, vmem_rehash_interval); |
| 1453 | } |
| 1454 | #endif /* defined(_KERNEL) */ |
| 1455 | |
| 1456 | /* ---- debug */ |
| 1457 | |
| 1458 | #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) |
| 1459 | |
| 1460 | static void bt_dump(const bt_t *, void (*)(const char *, ...) |
| 1461 | __printflike(1, 2)); |
| 1462 | |
| 1463 | static const char * |
| 1464 | bt_type_string(int type) |
| 1465 | { |
| 1466 | static const char * const table[] = { |
| 1467 | [BT_TYPE_BUSY] = "busy" , |
| 1468 | [BT_TYPE_FREE] = "free" , |
| 1469 | [BT_TYPE_SPAN] = "span" , |
| 1470 | [BT_TYPE_SPAN_STATIC] = "static span" , |
| 1471 | }; |
| 1472 | |
| 1473 | if (type >= __arraycount(table)) { |
| 1474 | return "BOGUS" ; |
| 1475 | } |
| 1476 | return table[type]; |
| 1477 | } |
| 1478 | |
| 1479 | static void |
| 1480 | bt_dump(const bt_t *bt, void (*pr)(const char *, ...)) |
| 1481 | { |
| 1482 | |
| 1483 | (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n" , |
| 1484 | bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size, |
| 1485 | bt->bt_type, bt_type_string(bt->bt_type)); |
| 1486 | } |
| 1487 | |
| 1488 | static void |
| 1489 | vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2)) |
| 1490 | { |
| 1491 | const bt_t *bt; |
| 1492 | int i; |
| 1493 | |
| 1494 | (*pr)("vmem %p '%s'\n" , vm, vm->vm_name); |
| 1495 | TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { |
| 1496 | bt_dump(bt, pr); |
| 1497 | } |
| 1498 | |
| 1499 | for (i = 0; i < VMEM_MAXORDER; i++) { |
| 1500 | const struct vmem_freelist *fl = &vm->vm_freelist[i]; |
| 1501 | |
| 1502 | if (LIST_EMPTY(fl)) { |
| 1503 | continue; |
| 1504 | } |
| 1505 | |
| 1506 | (*pr)("freelist[%d]\n" , i); |
| 1507 | LIST_FOREACH(bt, fl, bt_freelist) { |
| 1508 | bt_dump(bt, pr); |
| 1509 | } |
| 1510 | } |
| 1511 | } |
| 1512 | |
| 1513 | #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */ |
| 1514 | |
| 1515 | #if defined(DDB) |
| 1516 | static bt_t * |
| 1517 | vmem_whatis_lookup(vmem_t *vm, uintptr_t addr) |
| 1518 | { |
| 1519 | bt_t *bt; |
| 1520 | |
| 1521 | TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { |
| 1522 | if (BT_ISSPAN_P(bt)) { |
| 1523 | continue; |
| 1524 | } |
| 1525 | if (bt->bt_start <= addr && addr <= BT_END(bt)) { |
| 1526 | return bt; |
| 1527 | } |
| 1528 | } |
| 1529 | |
| 1530 | return NULL; |
| 1531 | } |
| 1532 | |
| 1533 | void |
| 1534 | vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...)) |
| 1535 | { |
| 1536 | vmem_t *vm; |
| 1537 | |
| 1538 | LIST_FOREACH(vm, &vmem_list, vm_alllist) { |
| 1539 | bt_t *bt; |
| 1540 | |
| 1541 | bt = vmem_whatis_lookup(vm, addr); |
| 1542 | if (bt == NULL) { |
| 1543 | continue; |
| 1544 | } |
| 1545 | (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n" , |
| 1546 | (void *)addr, (void *)bt->bt_start, |
| 1547 | (size_t)(addr - bt->bt_start), vm->vm_name, |
| 1548 | (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free" ); |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | void |
| 1553 | vmem_printall(const char *modif, void (*pr)(const char *, ...)) |
| 1554 | { |
| 1555 | const vmem_t *vm; |
| 1556 | |
| 1557 | LIST_FOREACH(vm, &vmem_list, vm_alllist) { |
| 1558 | vmem_dump(vm, pr); |
| 1559 | } |
| 1560 | } |
| 1561 | |
| 1562 | void |
| 1563 | vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...)) |
| 1564 | { |
| 1565 | const vmem_t *vm = (const void *)addr; |
| 1566 | |
| 1567 | vmem_dump(vm, pr); |
| 1568 | } |
| 1569 | #endif /* defined(DDB) */ |
| 1570 | |
| 1571 | #if defined(_KERNEL) |
| 1572 | #define vmem_printf printf |
| 1573 | #else |
| 1574 | #include <stdio.h> |
| 1575 | #include <stdarg.h> |
| 1576 | |
| 1577 | static void |
| 1578 | vmem_printf(const char *fmt, ...) |
| 1579 | { |
| 1580 | va_list ap; |
| 1581 | va_start(ap, fmt); |
| 1582 | vprintf(fmt, ap); |
| 1583 | va_end(ap); |
| 1584 | } |
| 1585 | #endif |
| 1586 | |
| 1587 | #if defined(VMEM_SANITY) |
| 1588 | |
| 1589 | static bool |
| 1590 | vmem_check_sanity(vmem_t *vm) |
| 1591 | { |
| 1592 | const bt_t *bt, *bt2; |
| 1593 | |
| 1594 | KASSERT(vm != NULL); |
| 1595 | |
| 1596 | TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { |
| 1597 | if (bt->bt_start > BT_END(bt)) { |
| 1598 | printf("corrupted tag\n" ); |
| 1599 | bt_dump(bt, vmem_printf); |
| 1600 | return false; |
| 1601 | } |
| 1602 | } |
| 1603 | TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { |
| 1604 | TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) { |
| 1605 | if (bt == bt2) { |
| 1606 | continue; |
| 1607 | } |
| 1608 | if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) { |
| 1609 | continue; |
| 1610 | } |
| 1611 | if (bt->bt_start <= BT_END(bt2) && |
| 1612 | bt2->bt_start <= BT_END(bt)) { |
| 1613 | printf("overwrapped tags\n" ); |
| 1614 | bt_dump(bt, vmem_printf); |
| 1615 | bt_dump(bt2, vmem_printf); |
| 1616 | return false; |
| 1617 | } |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | return true; |
| 1622 | } |
| 1623 | |
| 1624 | static void |
| 1625 | vmem_check(vmem_t *vm) |
| 1626 | { |
| 1627 | |
| 1628 | if (!vmem_check_sanity(vm)) { |
| 1629 | panic("insanity vmem %p" , vm); |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | #endif /* defined(VMEM_SANITY) */ |
| 1634 | |
| 1635 | #if defined(UNITTEST) |
| 1636 | int |
| 1637 | main(void) |
| 1638 | { |
| 1639 | int rc; |
| 1640 | vmem_t *vm; |
| 1641 | vmem_addr_t p; |
| 1642 | struct reg { |
| 1643 | vmem_addr_t p; |
| 1644 | vmem_size_t sz; |
| 1645 | bool x; |
| 1646 | } *reg = NULL; |
| 1647 | int nreg = 0; |
| 1648 | int nalloc = 0; |
| 1649 | int nfree = 0; |
| 1650 | vmem_size_t total = 0; |
| 1651 | #if 1 |
| 1652 | vm_flag_t strat = VM_INSTANTFIT; |
| 1653 | #else |
| 1654 | vm_flag_t strat = VM_BESTFIT; |
| 1655 | #endif |
| 1656 | |
| 1657 | vm = vmem_create("test" , 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP, |
| 1658 | #ifdef _KERNEL |
| 1659 | IPL_NONE |
| 1660 | #else |
| 1661 | 0 |
| 1662 | #endif |
| 1663 | ); |
| 1664 | if (vm == NULL) { |
| 1665 | printf("vmem_create\n" ); |
| 1666 | exit(EXIT_FAILURE); |
| 1667 | } |
| 1668 | vmem_dump(vm, vmem_printf); |
| 1669 | |
| 1670 | rc = vmem_add(vm, 0, 50, VM_SLEEP); |
| 1671 | assert(rc == 0); |
| 1672 | rc = vmem_add(vm, 100, 200, VM_SLEEP); |
| 1673 | assert(rc == 0); |
| 1674 | rc = vmem_add(vm, 2000, 1, VM_SLEEP); |
| 1675 | assert(rc == 0); |
| 1676 | rc = vmem_add(vm, 40000, 65536, VM_SLEEP); |
| 1677 | assert(rc == 0); |
| 1678 | rc = vmem_add(vm, 10000, 10000, VM_SLEEP); |
| 1679 | assert(rc == 0); |
| 1680 | rc = vmem_add(vm, 500, 1000, VM_SLEEP); |
| 1681 | assert(rc == 0); |
| 1682 | rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP); |
| 1683 | assert(rc == 0); |
| 1684 | rc = vmem_xalloc(vm, 0x101, 0, 0, 0, |
| 1685 | 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p); |
| 1686 | assert(rc != 0); |
| 1687 | rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p); |
| 1688 | assert(rc == 0 && p == 0); |
| 1689 | vmem_xfree(vm, p, 50); |
| 1690 | rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p); |
| 1691 | assert(rc == 0 && p == 0); |
| 1692 | rc = vmem_xalloc(vm, 0x100, 0, 0, 0, |
| 1693 | 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p); |
| 1694 | assert(rc != 0); |
| 1695 | rc = vmem_xalloc(vm, 0x100, 0, 0, 0, |
| 1696 | 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p); |
| 1697 | assert(rc != 0); |
| 1698 | rc = vmem_xalloc(vm, 0x100, 0, 0, 0, |
| 1699 | 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p); |
| 1700 | assert(rc == 0); |
| 1701 | vmem_dump(vm, vmem_printf); |
| 1702 | for (;;) { |
| 1703 | struct reg *r; |
| 1704 | int t = rand() % 100; |
| 1705 | |
| 1706 | if (t > 45) { |
| 1707 | /* alloc */ |
| 1708 | vmem_size_t sz = rand() % 500 + 1; |
| 1709 | bool x; |
| 1710 | vmem_size_t align, phase, nocross; |
| 1711 | vmem_addr_t minaddr, maxaddr; |
| 1712 | |
| 1713 | if (t > 70) { |
| 1714 | x = true; |
| 1715 | /* XXX */ |
| 1716 | align = 1 << (rand() % 15); |
| 1717 | phase = rand() % 65536; |
| 1718 | nocross = 1 << (rand() % 15); |
| 1719 | if (align <= phase) { |
| 1720 | phase = 0; |
| 1721 | } |
| 1722 | if (VMEM_CROSS_P(phase, phase + sz - 1, |
| 1723 | nocross)) { |
| 1724 | nocross = 0; |
| 1725 | } |
| 1726 | do { |
| 1727 | minaddr = rand() % 50000; |
| 1728 | maxaddr = rand() % 70000; |
| 1729 | } while (minaddr > maxaddr); |
| 1730 | printf("=== xalloc %" PRIu64 |
| 1731 | " align=%" PRIu64 ", phase=%" PRIu64 |
| 1732 | ", nocross=%" PRIu64 ", min=%" PRIu64 |
| 1733 | ", max=%" PRIu64 "\n" , |
| 1734 | (uint64_t)sz, |
| 1735 | (uint64_t)align, |
| 1736 | (uint64_t)phase, |
| 1737 | (uint64_t)nocross, |
| 1738 | (uint64_t)minaddr, |
| 1739 | (uint64_t)maxaddr); |
| 1740 | rc = vmem_xalloc(vm, sz, align, phase, nocross, |
| 1741 | minaddr, maxaddr, strat|VM_SLEEP, &p); |
| 1742 | } else { |
| 1743 | x = false; |
| 1744 | printf("=== alloc %" PRIu64 "\n" , (uint64_t)sz); |
| 1745 | rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p); |
| 1746 | } |
| 1747 | printf("-> %" PRIu64 "\n" , (uint64_t)p); |
| 1748 | vmem_dump(vm, vmem_printf); |
| 1749 | if (rc != 0) { |
| 1750 | if (x) { |
| 1751 | continue; |
| 1752 | } |
| 1753 | break; |
| 1754 | } |
| 1755 | nreg++; |
| 1756 | reg = realloc(reg, sizeof(*reg) * nreg); |
| 1757 | r = ®[nreg - 1]; |
| 1758 | r->p = p; |
| 1759 | r->sz = sz; |
| 1760 | r->x = x; |
| 1761 | total += sz; |
| 1762 | nalloc++; |
| 1763 | } else if (nreg != 0) { |
| 1764 | /* free */ |
| 1765 | r = ®[rand() % nreg]; |
| 1766 | printf("=== free %" PRIu64 ", %" PRIu64 "\n" , |
| 1767 | (uint64_t)r->p, (uint64_t)r->sz); |
| 1768 | if (r->x) { |
| 1769 | vmem_xfree(vm, r->p, r->sz); |
| 1770 | } else { |
| 1771 | vmem_free(vm, r->p, r->sz); |
| 1772 | } |
| 1773 | total -= r->sz; |
| 1774 | vmem_dump(vm, vmem_printf); |
| 1775 | *r = reg[nreg - 1]; |
| 1776 | nreg--; |
| 1777 | nfree++; |
| 1778 | } |
| 1779 | printf("total=%" PRIu64 "\n" , (uint64_t)total); |
| 1780 | } |
| 1781 | fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n" , |
| 1782 | (uint64_t)total, nalloc, nfree); |
| 1783 | exit(EXIT_SUCCESS); |
| 1784 | } |
| 1785 | #endif /* defined(UNITTEST) */ |
| 1786 | |