| 1 | /* $NetBSD: rf_reconstruct.c,v 1.121 2014/11/14 14:29:16 oster Exp $ */ |
| 2 | /* |
| 3 | * Copyright (c) 1995 Carnegie-Mellon University. |
| 4 | * All rights reserved. |
| 5 | * |
| 6 | * Author: Mark Holland |
| 7 | * |
| 8 | * Permission to use, copy, modify and distribute this software and |
| 9 | * its documentation is hereby granted, provided that both the copyright |
| 10 | * notice and this permission notice appear in all copies of the |
| 11 | * software, derivative works or modified versions, and any portions |
| 12 | * thereof, and that both notices appear in supporting documentation. |
| 13 | * |
| 14 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 15 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND |
| 16 | * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 17 | * |
| 18 | * Carnegie Mellon requests users of this software to return to |
| 19 | * |
| 20 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 21 | * School of Computer Science |
| 22 | * Carnegie Mellon University |
| 23 | * Pittsburgh PA 15213-3890 |
| 24 | * |
| 25 | * any improvements or extensions that they make and grant Carnegie the |
| 26 | * rights to redistribute these changes. |
| 27 | */ |
| 28 | |
| 29 | /************************************************************ |
| 30 | * |
| 31 | * rf_reconstruct.c -- code to perform on-line reconstruction |
| 32 | * |
| 33 | ************************************************************/ |
| 34 | |
| 35 | #include <sys/cdefs.h> |
| 36 | __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.121 2014/11/14 14:29:16 oster Exp $" ); |
| 37 | |
| 38 | #include <sys/param.h> |
| 39 | #include <sys/time.h> |
| 40 | #include <sys/buf.h> |
| 41 | #include <sys/errno.h> |
| 42 | #include <sys/systm.h> |
| 43 | #include <sys/proc.h> |
| 44 | #include <sys/ioctl.h> |
| 45 | #include <sys/fcntl.h> |
| 46 | #include <sys/vnode.h> |
| 47 | #include <sys/namei.h> /* for pathbuf */ |
| 48 | #include <dev/raidframe/raidframevar.h> |
| 49 | |
| 50 | #include <miscfs/specfs/specdev.h> /* for v_rdev */ |
| 51 | |
| 52 | #include "rf_raid.h" |
| 53 | #include "rf_reconutil.h" |
| 54 | #include "rf_revent.h" |
| 55 | #include "rf_reconbuffer.h" |
| 56 | #include "rf_acctrace.h" |
| 57 | #include "rf_etimer.h" |
| 58 | #include "rf_dag.h" |
| 59 | #include "rf_desc.h" |
| 60 | #include "rf_debugprint.h" |
| 61 | #include "rf_general.h" |
| 62 | #include "rf_driver.h" |
| 63 | #include "rf_utils.h" |
| 64 | #include "rf_shutdown.h" |
| 65 | |
| 66 | #include "rf_kintf.h" |
| 67 | |
| 68 | /* setting these to -1 causes them to be set to their default values if not set by debug options */ |
| 69 | |
| 70 | #if RF_DEBUG_RECON |
| 71 | #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) |
| 72 | #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) |
| 73 | #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) |
| 74 | #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) |
| 75 | #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) |
| 76 | #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) |
| 77 | #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) |
| 78 | #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) |
| 79 | |
| 80 | #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) |
| 81 | #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) |
| 82 | |
| 83 | #else /* RF_DEBUG_RECON */ |
| 84 | |
| 85 | #define Dprintf(s) {} |
| 86 | #define Dprintf1(s,a) {} |
| 87 | #define Dprintf2(s,a,b) {} |
| 88 | #define Dprintf3(s,a,b,c) {} |
| 89 | #define Dprintf4(s,a,b,c,d) {} |
| 90 | #define Dprintf5(s,a,b,c,d,e) {} |
| 91 | #define Dprintf6(s,a,b,c,d,e,f) {} |
| 92 | #define Dprintf7(s,a,b,c,d,e,f,g) {} |
| 93 | |
| 94 | #define DDprintf1(s,a) {} |
| 95 | #define DDprintf2(s,a,b) {} |
| 96 | |
| 97 | #endif /* RF_DEBUG_RECON */ |
| 98 | |
| 99 | #define RF_RECON_DONE_READS 1 |
| 100 | #define RF_RECON_READ_ERROR 2 |
| 101 | #define RF_RECON_WRITE_ERROR 3 |
| 102 | #define RF_RECON_READ_STOPPED 4 |
| 103 | #define RF_RECON_WRITE_DONE 5 |
| 104 | |
| 105 | #define RF_MAX_FREE_RECONBUFFER 32 |
| 106 | #define RF_MIN_FREE_RECONBUFFER 16 |
| 107 | |
| 108 | static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, |
| 109 | RF_RaidDisk_t *, int, RF_RowCol_t); |
| 110 | static void FreeReconDesc(RF_RaidReconDesc_t *); |
| 111 | static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); |
| 112 | static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); |
| 113 | static int TryToRead(RF_Raid_t *, RF_RowCol_t); |
| 114 | static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, |
| 115 | RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, |
| 116 | RF_SectorNum_t *); |
| 117 | static int IssueNextWriteRequest(RF_Raid_t *); |
| 118 | static int ReconReadDoneProc(void *, int); |
| 119 | static int ReconWriteDoneProc(void *, int); |
| 120 | static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); |
| 121 | static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, |
| 122 | RF_RowCol_t, RF_HeadSepLimit_t, |
| 123 | RF_ReconUnitNum_t); |
| 124 | static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, |
| 125 | RF_ReconParityStripeStatus_t *, |
| 126 | RF_PerDiskReconCtrl_t *, |
| 127 | RF_RowCol_t, RF_StripeNum_t, |
| 128 | RF_ReconUnitNum_t); |
| 129 | static void ForceReconReadDoneProc(void *, int); |
| 130 | static void rf_ShutdownReconstruction(void *); |
| 131 | |
| 132 | struct RF_ReconDoneProc_s { |
| 133 | void (*proc) (RF_Raid_t *, void *); |
| 134 | void *arg; |
| 135 | RF_ReconDoneProc_t *next; |
| 136 | }; |
| 137 | |
| 138 | /************************************************************************** |
| 139 | * |
| 140 | * sets up the parameters that will be used by the reconstruction process |
| 141 | * currently there are none, except for those that the layout-specific |
| 142 | * configuration (e.g. rf_ConfigureDeclustered) routine sets up. |
| 143 | * |
| 144 | * in the kernel, we fire off the recon thread. |
| 145 | * |
| 146 | **************************************************************************/ |
| 147 | static void |
| 148 | rf_ShutdownReconstruction(void *ignored) |
| 149 | { |
| 150 | pool_destroy(&rf_pools.reconbuffer); |
| 151 | } |
| 152 | |
| 153 | int |
| 154 | rf_ConfigureReconstruction(RF_ShutdownList_t **listp) |
| 155 | { |
| 156 | |
| 157 | rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), |
| 158 | "rf_reconbuffer_pl" , RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); |
| 159 | rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); |
| 160 | |
| 161 | return (0); |
| 162 | } |
| 163 | |
| 164 | static RF_RaidReconDesc_t * |
| 165 | AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, |
| 166 | RF_RaidDisk_t *spareDiskPtr, int numDisksDone, |
| 167 | RF_RowCol_t scol) |
| 168 | { |
| 169 | |
| 170 | RF_RaidReconDesc_t *reconDesc; |
| 171 | |
| 172 | RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), |
| 173 | (RF_RaidReconDesc_t *)); |
| 174 | reconDesc->raidPtr = raidPtr; |
| 175 | reconDesc->col = col; |
| 176 | reconDesc->spareDiskPtr = spareDiskPtr; |
| 177 | reconDesc->numDisksDone = numDisksDone; |
| 178 | reconDesc->scol = scol; |
| 179 | reconDesc->next = NULL; |
| 180 | |
| 181 | return (reconDesc); |
| 182 | } |
| 183 | |
| 184 | static void |
| 185 | FreeReconDesc(RF_RaidReconDesc_t *reconDesc) |
| 186 | { |
| 187 | #if RF_RECON_STATS > 0 |
| 188 | printf("raid%d: %lu recon event waits, %lu recon delays\n" , |
| 189 | reconDesc->raidPtr->raidid, |
| 190 | (long) reconDesc->numReconEventWaits, |
| 191 | (long) reconDesc->numReconExecDelays); |
| 192 | #endif /* RF_RECON_STATS > 0 */ |
| 193 | printf("raid%d: %lu max exec ticks\n" , |
| 194 | reconDesc->raidPtr->raidid, |
| 195 | (long) reconDesc->maxReconExecTicks); |
| 196 | RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); |
| 197 | } |
| 198 | |
| 199 | |
| 200 | /***************************************************************************** |
| 201 | * |
| 202 | * primary routine to reconstruct a failed disk. This should be called from |
| 203 | * within its own thread. It won't return until reconstruction completes, |
| 204 | * fails, or is aborted. |
| 205 | *****************************************************************************/ |
| 206 | int |
| 207 | rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) |
| 208 | { |
| 209 | const RF_LayoutSW_t *lp; |
| 210 | int rc; |
| 211 | |
| 212 | lp = raidPtr->Layout.map; |
| 213 | if (lp->SubmitReconBuffer) { |
| 214 | /* |
| 215 | * The current infrastructure only supports reconstructing one |
| 216 | * disk at a time for each array. |
| 217 | */ |
| 218 | rf_lock_mutex2(raidPtr->mutex); |
| 219 | while (raidPtr->reconInProgress) { |
| 220 | rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); |
| 221 | } |
| 222 | raidPtr->reconInProgress++; |
| 223 | rf_unlock_mutex2(raidPtr->mutex); |
| 224 | rc = rf_ReconstructFailedDiskBasic(raidPtr, col); |
| 225 | rf_lock_mutex2(raidPtr->mutex); |
| 226 | raidPtr->reconInProgress--; |
| 227 | } else { |
| 228 | RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n" , |
| 229 | lp->parityConfig); |
| 230 | rc = EIO; |
| 231 | rf_lock_mutex2(raidPtr->mutex); |
| 232 | } |
| 233 | rf_signal_cond2(raidPtr->waitForReconCond); |
| 234 | rf_unlock_mutex2(raidPtr->mutex); |
| 235 | return (rc); |
| 236 | } |
| 237 | |
| 238 | int |
| 239 | rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) |
| 240 | { |
| 241 | RF_ComponentLabel_t *c_label; |
| 242 | RF_RaidDisk_t *spareDiskPtr = NULL; |
| 243 | RF_RaidReconDesc_t *reconDesc; |
| 244 | RF_RowCol_t scol; |
| 245 | int numDisksDone = 0, rc; |
| 246 | |
| 247 | /* first look for a spare drive onto which to reconstruct the data */ |
| 248 | /* spare disk descriptors are stored in row 0. This may have to |
| 249 | * change eventually */ |
| 250 | |
| 251 | rf_lock_mutex2(raidPtr->mutex); |
| 252 | RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); |
| 253 | #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 |
| 254 | if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { |
| 255 | if (raidPtr->status != rf_rs_degraded) { |
| 256 | RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n" , col); |
| 257 | rf_unlock_mutex2(raidPtr->mutex); |
| 258 | return (EINVAL); |
| 259 | } |
| 260 | scol = (-1); |
| 261 | } else { |
| 262 | #endif |
| 263 | for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { |
| 264 | if (raidPtr->Disks[scol].status == rf_ds_spare) { |
| 265 | spareDiskPtr = &raidPtr->Disks[scol]; |
| 266 | spareDiskPtr->status = rf_ds_rebuilding_spare; |
| 267 | break; |
| 268 | } |
| 269 | } |
| 270 | if (!spareDiskPtr) { |
| 271 | RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n" , col); |
| 272 | rf_unlock_mutex2(raidPtr->mutex); |
| 273 | return (ENOSPC); |
| 274 | } |
| 275 | printf("RECON: initiating reconstruction on col %d -> spare at col %d\n" , col, scol); |
| 276 | #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 |
| 277 | } |
| 278 | #endif |
| 279 | rf_unlock_mutex2(raidPtr->mutex); |
| 280 | |
| 281 | reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); |
| 282 | raidPtr->reconDesc = (void *) reconDesc; |
| 283 | #if RF_RECON_STATS > 0 |
| 284 | reconDesc->hsStallCount = 0; |
| 285 | reconDesc->numReconExecDelays = 0; |
| 286 | reconDesc->numReconEventWaits = 0; |
| 287 | #endif /* RF_RECON_STATS > 0 */ |
| 288 | reconDesc->reconExecTimerRunning = 0; |
| 289 | reconDesc->reconExecTicks = 0; |
| 290 | reconDesc->maxReconExecTicks = 0; |
| 291 | rc = rf_ContinueReconstructFailedDisk(reconDesc); |
| 292 | |
| 293 | if (!rc) { |
| 294 | /* fix up the component label */ |
| 295 | /* Don't actually need the read here.. */ |
| 296 | c_label = raidget_component_label(raidPtr, scol); |
| 297 | |
| 298 | raid_init_component_label(raidPtr, c_label); |
| 299 | c_label->row = 0; |
| 300 | c_label->column = col; |
| 301 | c_label->clean = RF_RAID_DIRTY; |
| 302 | c_label->status = rf_ds_optimal; |
| 303 | rf_component_label_set_partitionsize(c_label, |
| 304 | raidPtr->Disks[scol].partitionSize); |
| 305 | |
| 306 | /* We've just done a rebuild based on all the other |
| 307 | disks, so at this point the parity is known to be |
| 308 | clean, even if it wasn't before. */ |
| 309 | |
| 310 | /* XXX doesn't hold for RAID 6!!*/ |
| 311 | |
| 312 | rf_lock_mutex2(raidPtr->mutex); |
| 313 | /* The failed disk has already been marked as rf_ds_spared |
| 314 | (or rf_ds_dist_spared) in |
| 315 | rf_ContinueReconstructFailedDisk() |
| 316 | so we just update the spare disk as being a used spare |
| 317 | */ |
| 318 | |
| 319 | spareDiskPtr->status = rf_ds_used_spare; |
| 320 | raidPtr->parity_good = RF_RAID_CLEAN; |
| 321 | rf_unlock_mutex2(raidPtr->mutex); |
| 322 | |
| 323 | /* XXXX MORE NEEDED HERE */ |
| 324 | |
| 325 | raidflush_component_label(raidPtr, scol); |
| 326 | } else { |
| 327 | /* Reconstruct failed. */ |
| 328 | |
| 329 | rf_lock_mutex2(raidPtr->mutex); |
| 330 | /* Failed disk goes back to "failed" status */ |
| 331 | raidPtr->Disks[col].status = rf_ds_failed; |
| 332 | |
| 333 | /* Spare disk goes back to "spare" status. */ |
| 334 | spareDiskPtr->status = rf_ds_spare; |
| 335 | rf_unlock_mutex2(raidPtr->mutex); |
| 336 | |
| 337 | } |
| 338 | rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); |
| 339 | return (rc); |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | |
| 344 | Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, |
| 345 | and you don't get a spare until the next Monday. With this function |
| 346 | (and hot-swappable drives) you can now put your new disk containing |
| 347 | /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to |
| 348 | rebuild the data "on the spot". |
| 349 | |
| 350 | */ |
| 351 | |
| 352 | int |
| 353 | rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) |
| 354 | { |
| 355 | RF_RaidDisk_t *spareDiskPtr = NULL; |
| 356 | RF_RaidReconDesc_t *reconDesc; |
| 357 | const RF_LayoutSW_t *lp; |
| 358 | RF_ComponentLabel_t *c_label; |
| 359 | int numDisksDone = 0, rc; |
| 360 | uint64_t numsec; |
| 361 | unsigned int secsize; |
| 362 | struct pathbuf *pb; |
| 363 | struct vnode *vp; |
| 364 | int retcode; |
| 365 | int ac; |
| 366 | |
| 367 | rf_lock_mutex2(raidPtr->mutex); |
| 368 | lp = raidPtr->Layout.map; |
| 369 | if (!lp->SubmitReconBuffer) { |
| 370 | RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n" , |
| 371 | lp->parityConfig); |
| 372 | /* wakeup anyone who might be waiting to do a reconstruct */ |
| 373 | rf_signal_cond2(raidPtr->waitForReconCond); |
| 374 | rf_unlock_mutex2(raidPtr->mutex); |
| 375 | return(EIO); |
| 376 | } |
| 377 | |
| 378 | /* |
| 379 | * The current infrastructure only supports reconstructing one |
| 380 | * disk at a time for each array. |
| 381 | */ |
| 382 | |
| 383 | if (raidPtr->Disks[col].status != rf_ds_failed) { |
| 384 | /* "It's gone..." */ |
| 385 | raidPtr->numFailures++; |
| 386 | raidPtr->Disks[col].status = rf_ds_failed; |
| 387 | raidPtr->status = rf_rs_degraded; |
| 388 | rf_unlock_mutex2(raidPtr->mutex); |
| 389 | rf_update_component_labels(raidPtr, |
| 390 | RF_NORMAL_COMPONENT_UPDATE); |
| 391 | rf_lock_mutex2(raidPtr->mutex); |
| 392 | } |
| 393 | |
| 394 | while (raidPtr->reconInProgress) { |
| 395 | rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); |
| 396 | } |
| 397 | |
| 398 | raidPtr->reconInProgress++; |
| 399 | |
| 400 | /* first look for a spare drive onto which to reconstruct the |
| 401 | data. spare disk descriptors are stored in row 0. This |
| 402 | may have to change eventually */ |
| 403 | |
| 404 | /* Actually, we don't care if it's failed or not... On a RAID |
| 405 | set with correct parity, this function should be callable |
| 406 | on any component without ill effects. */ |
| 407 | /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ |
| 408 | |
| 409 | #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 |
| 410 | if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { |
| 411 | RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n" , col); |
| 412 | |
| 413 | raidPtr->reconInProgress--; |
| 414 | rf_signal_cond2(raidPtr->waitForReconCond); |
| 415 | rf_unlock_mutex2(raidPtr->mutex); |
| 416 | return (EINVAL); |
| 417 | } |
| 418 | #endif |
| 419 | |
| 420 | /* This device may have been opened successfully the |
| 421 | first time. Close it before trying to open it again.. */ |
| 422 | |
| 423 | if (raidPtr->raid_cinfo[col].ci_vp != NULL) { |
| 424 | #if 0 |
| 425 | printf("Closed the open device: %s\n" , |
| 426 | raidPtr->Disks[col].devname); |
| 427 | #endif |
| 428 | vp = raidPtr->raid_cinfo[col].ci_vp; |
| 429 | ac = raidPtr->Disks[col].auto_configured; |
| 430 | rf_unlock_mutex2(raidPtr->mutex); |
| 431 | rf_close_component(raidPtr, vp, ac); |
| 432 | rf_lock_mutex2(raidPtr->mutex); |
| 433 | raidPtr->raid_cinfo[col].ci_vp = NULL; |
| 434 | } |
| 435 | /* note that this disk was *not* auto_configured (any longer)*/ |
| 436 | raidPtr->Disks[col].auto_configured = 0; |
| 437 | |
| 438 | #if 0 |
| 439 | printf("About to (re-)open the device for rebuilding: %s\n" , |
| 440 | raidPtr->Disks[col].devname); |
| 441 | #endif |
| 442 | rf_unlock_mutex2(raidPtr->mutex); |
| 443 | pb = pathbuf_create(raidPtr->Disks[col].devname); |
| 444 | if (pb == NULL) { |
| 445 | retcode = ENOMEM; |
| 446 | } else { |
| 447 | retcode = dk_lookup(pb, curlwp, &vp); |
| 448 | pathbuf_destroy(pb); |
| 449 | } |
| 450 | |
| 451 | if (retcode) { |
| 452 | printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n" ,raidPtr->raidid, |
| 453 | raidPtr->Disks[col].devname, retcode); |
| 454 | |
| 455 | /* the component isn't responding properly... |
| 456 | must be still dead :-( */ |
| 457 | rf_lock_mutex2(raidPtr->mutex); |
| 458 | raidPtr->reconInProgress--; |
| 459 | rf_signal_cond2(raidPtr->waitForReconCond); |
| 460 | rf_unlock_mutex2(raidPtr->mutex); |
| 461 | return(retcode); |
| 462 | } |
| 463 | |
| 464 | /* Ok, so we can at least do a lookup... |
| 465 | How about actually getting a vp for it? */ |
| 466 | |
| 467 | retcode = getdisksize(vp, &numsec, &secsize); |
| 468 | if (retcode) { |
| 469 | vn_close(vp, FREAD | FWRITE, kauth_cred_get()); |
| 470 | rf_lock_mutex2(raidPtr->mutex); |
| 471 | raidPtr->reconInProgress--; |
| 472 | rf_signal_cond2(raidPtr->waitForReconCond); |
| 473 | rf_unlock_mutex2(raidPtr->mutex); |
| 474 | return(retcode); |
| 475 | } |
| 476 | rf_lock_mutex2(raidPtr->mutex); |
| 477 | raidPtr->Disks[col].blockSize = secsize; |
| 478 | raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors; |
| 479 | |
| 480 | raidPtr->raid_cinfo[col].ci_vp = vp; |
| 481 | raidPtr->raid_cinfo[col].ci_dev = vp->v_rdev; |
| 482 | |
| 483 | raidPtr->Disks[col].dev = vp->v_rdev; |
| 484 | |
| 485 | /* we allow the user to specify that only a fraction |
| 486 | of the disks should be used this is just for debug: |
| 487 | it speeds up * the parity scan */ |
| 488 | raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * |
| 489 | rf_sizePercentage / 100; |
| 490 | rf_unlock_mutex2(raidPtr->mutex); |
| 491 | |
| 492 | spareDiskPtr = &raidPtr->Disks[col]; |
| 493 | spareDiskPtr->status = rf_ds_rebuilding_spare; |
| 494 | |
| 495 | printf("raid%d: initiating in-place reconstruction on column %d\n" , |
| 496 | raidPtr->raidid, col); |
| 497 | |
| 498 | reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, |
| 499 | numDisksDone, col); |
| 500 | raidPtr->reconDesc = (void *) reconDesc; |
| 501 | #if RF_RECON_STATS > 0 |
| 502 | reconDesc->hsStallCount = 0; |
| 503 | reconDesc->numReconExecDelays = 0; |
| 504 | reconDesc->numReconEventWaits = 0; |
| 505 | #endif /* RF_RECON_STATS > 0 */ |
| 506 | reconDesc->reconExecTimerRunning = 0; |
| 507 | reconDesc->reconExecTicks = 0; |
| 508 | reconDesc->maxReconExecTicks = 0; |
| 509 | rc = rf_ContinueReconstructFailedDisk(reconDesc); |
| 510 | |
| 511 | if (!rc) { |
| 512 | rf_lock_mutex2(raidPtr->mutex); |
| 513 | /* Need to set these here, as at this point it'll be claiming |
| 514 | that the disk is in rf_ds_spared! But we know better :-) */ |
| 515 | |
| 516 | raidPtr->Disks[col].status = rf_ds_optimal; |
| 517 | raidPtr->status = rf_rs_optimal; |
| 518 | rf_unlock_mutex2(raidPtr->mutex); |
| 519 | |
| 520 | /* fix up the component label */ |
| 521 | /* Don't actually need the read here.. */ |
| 522 | c_label = raidget_component_label(raidPtr, col); |
| 523 | |
| 524 | rf_lock_mutex2(raidPtr->mutex); |
| 525 | raid_init_component_label(raidPtr, c_label); |
| 526 | |
| 527 | c_label->row = 0; |
| 528 | c_label->column = col; |
| 529 | |
| 530 | /* We've just done a rebuild based on all the other |
| 531 | disks, so at this point the parity is known to be |
| 532 | clean, even if it wasn't before. */ |
| 533 | |
| 534 | /* XXX doesn't hold for RAID 6!!*/ |
| 535 | |
| 536 | raidPtr->parity_good = RF_RAID_CLEAN; |
| 537 | rf_unlock_mutex2(raidPtr->mutex); |
| 538 | |
| 539 | raidflush_component_label(raidPtr, col); |
| 540 | } else { |
| 541 | /* Reconstruct-in-place failed. Disk goes back to |
| 542 | "failed" status, regardless of what it was before. */ |
| 543 | rf_lock_mutex2(raidPtr->mutex); |
| 544 | raidPtr->Disks[col].status = rf_ds_failed; |
| 545 | rf_unlock_mutex2(raidPtr->mutex); |
| 546 | } |
| 547 | |
| 548 | rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); |
| 549 | |
| 550 | rf_lock_mutex2(raidPtr->mutex); |
| 551 | raidPtr->reconInProgress--; |
| 552 | rf_signal_cond2(raidPtr->waitForReconCond); |
| 553 | rf_unlock_mutex2(raidPtr->mutex); |
| 554 | |
| 555 | return (rc); |
| 556 | } |
| 557 | |
| 558 | |
| 559 | int |
| 560 | rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) |
| 561 | { |
| 562 | RF_Raid_t *raidPtr = reconDesc->raidPtr; |
| 563 | RF_RowCol_t col = reconDesc->col; |
| 564 | RF_RowCol_t scol = reconDesc->scol; |
| 565 | RF_ReconMap_t *mapPtr; |
| 566 | RF_ReconCtrl_t *tmp_reconctrl; |
| 567 | RF_ReconEvent_t *event; |
| 568 | RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; |
| 569 | #if RF_INCLUDE_RAID5_RS > 0 |
| 570 | RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID; |
| 571 | #endif |
| 572 | RF_ReconUnitCount_t RUsPerPU; |
| 573 | struct timeval etime, elpsd; |
| 574 | unsigned long xor_s, xor_resid_us; |
| 575 | int i, ds; |
| 576 | int status, done; |
| 577 | int recon_error, write_error; |
| 578 | |
| 579 | raidPtr->accumXorTimeUs = 0; |
| 580 | #if RF_ACC_TRACE > 0 |
| 581 | /* create one trace record per physical disk */ |
| 582 | RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); |
| 583 | #endif |
| 584 | |
| 585 | /* quiesce the array prior to starting recon. this is needed |
| 586 | * to assure no nasty interactions with pending user writes. |
| 587 | * We need to do this before we change the disk or row status. */ |
| 588 | |
| 589 | Dprintf("RECON: begin request suspend\n" ); |
| 590 | rf_SuspendNewRequestsAndWait(raidPtr); |
| 591 | Dprintf("RECON: end request suspend\n" ); |
| 592 | |
| 593 | /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ |
| 594 | tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); |
| 595 | |
| 596 | rf_lock_mutex2(raidPtr->mutex); |
| 597 | |
| 598 | /* create the reconstruction control pointer and install it in |
| 599 | * the right slot */ |
| 600 | raidPtr->reconControl = tmp_reconctrl; |
| 601 | mapPtr = raidPtr->reconControl->reconMap; |
| 602 | raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; |
| 603 | raidPtr->reconControl->numRUsComplete = 0; |
| 604 | raidPtr->status = rf_rs_reconstructing; |
| 605 | raidPtr->Disks[col].status = rf_ds_reconstructing; |
| 606 | raidPtr->Disks[col].spareCol = scol; |
| 607 | |
| 608 | rf_unlock_mutex2(raidPtr->mutex); |
| 609 | |
| 610 | RF_GETTIME(raidPtr->reconControl->starttime); |
| 611 | |
| 612 | Dprintf("RECON: resume requests\n" ); |
| 613 | rf_ResumeNewRequests(raidPtr); |
| 614 | |
| 615 | |
| 616 | mapPtr = raidPtr->reconControl->reconMap; |
| 617 | |
| 618 | incPSID = RF_RECONMAP_SIZE; |
| 619 | lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU; |
| 620 | RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; |
| 621 | recon_error = 0; |
| 622 | write_error = 0; |
| 623 | pending_writes = incPSID; |
| 624 | raidPtr->reconControl->lastPSID = incPSID - 1; |
| 625 | |
| 626 | /* bounds check raidPtr->reconControl->lastPSID and |
| 627 | pending_writes so that we don't attempt to wait for more IO |
| 628 | than can possibly happen */ |
| 629 | |
| 630 | if (raidPtr->reconControl->lastPSID > lastPSID) |
| 631 | raidPtr->reconControl->lastPSID = lastPSID; |
| 632 | |
| 633 | if (pending_writes > lastPSID) |
| 634 | pending_writes = lastPSID; |
| 635 | |
| 636 | /* start the actual reconstruction */ |
| 637 | |
| 638 | done = 0; |
| 639 | while (!done) { |
| 640 | |
| 641 | if (raidPtr->waitShutdown) { |
| 642 | /* someone is unconfiguring this array... bail on the reconstruct.. */ |
| 643 | recon_error = 1; |
| 644 | break; |
| 645 | } |
| 646 | |
| 647 | num_writes = 0; |
| 648 | |
| 649 | #if RF_INCLUDE_RAID5_RS > 0 |
| 650 | /* For RAID5 with Rotated Spares we will be 'short' |
| 651 | some number of writes since no writes will get |
| 652 | issued for stripes where the spare is on the |
| 653 | component being rebuilt. Account for the shortage |
| 654 | here so that we don't hang indefinitely below |
| 655 | waiting for writes to complete that were never |
| 656 | scheduled. |
| 657 | |
| 658 | XXX: Should be fixed for PARITY_DECLUSTERING and |
| 659 | others too! |
| 660 | |
| 661 | */ |
| 662 | |
| 663 | if (raidPtr->Layout.numDataCol < |
| 664 | raidPtr->numCol - raidPtr->Layout.numParityCol) { |
| 665 | /* numDataCol is at least 2 less than numCol, so |
| 666 | should be RAID 5 with Rotated Spares */ |
| 667 | |
| 668 | /* XXX need to update for RAID 6 */ |
| 669 | |
| 670 | startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1; |
| 671 | endPSID = raidPtr->reconControl->lastPSID; |
| 672 | |
| 673 | offPSID = raidPtr->numCol - col - 1; |
| 674 | |
| 675 | aPSID = startPSID - startPSID % raidPtr->numCol + offPSID; |
| 676 | if (aPSID < startPSID) { |
| 677 | aPSID += raidPtr->numCol; |
| 678 | } |
| 679 | |
| 680 | bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol); |
| 681 | |
| 682 | if (aPSID < endPSID) { |
| 683 | num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1; |
| 684 | } |
| 685 | |
| 686 | if ((aPSID == endPSID) && (bPSID == endPSID)) { |
| 687 | num_writes++; |
| 688 | } |
| 689 | } |
| 690 | #endif |
| 691 | |
| 692 | /* issue a read for each surviving disk */ |
| 693 | |
| 694 | reconDesc->numDisksDone = 0; |
| 695 | for (i = 0; i < raidPtr->numCol; i++) { |
| 696 | if (i != col) { |
| 697 | /* find and issue the next I/O on the |
| 698 | * indicated disk */ |
| 699 | if (IssueNextReadRequest(raidPtr, i)) { |
| 700 | Dprintf1("RECON: done issuing for c%d\n" , i); |
| 701 | reconDesc->numDisksDone++; |
| 702 | } |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | /* process reconstruction events until all disks report that |
| 707 | * they've completed all work */ |
| 708 | |
| 709 | while (reconDesc->numDisksDone < raidPtr->numCol - 1) { |
| 710 | |
| 711 | event = rf_GetNextReconEvent(reconDesc); |
| 712 | status = ProcessReconEvent(raidPtr, event); |
| 713 | |
| 714 | /* the normal case is that a read completes, and all is well. */ |
| 715 | if (status == RF_RECON_DONE_READS) { |
| 716 | reconDesc->numDisksDone++; |
| 717 | } else if ((status == RF_RECON_READ_ERROR) || |
| 718 | (status == RF_RECON_WRITE_ERROR)) { |
| 719 | /* an error was encountered while reconstructing... |
| 720 | Pretend we've finished this disk. |
| 721 | */ |
| 722 | recon_error = 1; |
| 723 | raidPtr->reconControl->error = 1; |
| 724 | |
| 725 | /* bump the numDisksDone count for reads, |
| 726 | but not for writes */ |
| 727 | if (status == RF_RECON_READ_ERROR) |
| 728 | reconDesc->numDisksDone++; |
| 729 | |
| 730 | /* write errors are special -- when we are |
| 731 | done dealing with the reads that are |
| 732 | finished, we don't want to wait for any |
| 733 | writes */ |
| 734 | if (status == RF_RECON_WRITE_ERROR) { |
| 735 | write_error = 1; |
| 736 | num_writes++; |
| 737 | } |
| 738 | |
| 739 | } else if (status == RF_RECON_READ_STOPPED) { |
| 740 | /* count this component as being "done" */ |
| 741 | reconDesc->numDisksDone++; |
| 742 | } else if (status == RF_RECON_WRITE_DONE) { |
| 743 | num_writes++; |
| 744 | } |
| 745 | |
| 746 | if (recon_error) { |
| 747 | /* make sure any stragglers are woken up so that |
| 748 | their theads will complete, and we can get out |
| 749 | of here with all IO processed */ |
| 750 | |
| 751 | rf_WakeupHeadSepCBWaiters(raidPtr); |
| 752 | } |
| 753 | |
| 754 | raidPtr->reconControl->numRUsTotal = |
| 755 | mapPtr->totalRUs; |
| 756 | raidPtr->reconControl->numRUsComplete = |
| 757 | mapPtr->totalRUs - |
| 758 | rf_UnitsLeftToReconstruct(mapPtr); |
| 759 | |
| 760 | #if RF_DEBUG_RECON |
| 761 | raidPtr->reconControl->percentComplete = |
| 762 | (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); |
| 763 | if (rf_prReconSched) { |
| 764 | rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); |
| 765 | } |
| 766 | #endif |
| 767 | } |
| 768 | |
| 769 | /* reads done, wakeup any waiters, and then wait for writes */ |
| 770 | |
| 771 | rf_WakeupHeadSepCBWaiters(raidPtr); |
| 772 | |
| 773 | while (!recon_error && (num_writes < pending_writes)) { |
| 774 | event = rf_GetNextReconEvent(reconDesc); |
| 775 | status = ProcessReconEvent(raidPtr, event); |
| 776 | |
| 777 | if (status == RF_RECON_WRITE_ERROR) { |
| 778 | num_writes++; |
| 779 | recon_error = 1; |
| 780 | raidPtr->reconControl->error = 1; |
| 781 | /* an error was encountered at the very end... bail */ |
| 782 | } else if (status == RF_RECON_WRITE_DONE) { |
| 783 | num_writes++; |
| 784 | } /* else it's something else, and we don't care */ |
| 785 | } |
| 786 | if (recon_error || |
| 787 | (raidPtr->reconControl->lastPSID == lastPSID)) { |
| 788 | done = 1; |
| 789 | break; |
| 790 | } |
| 791 | |
| 792 | prev = raidPtr->reconControl->lastPSID; |
| 793 | raidPtr->reconControl->lastPSID += incPSID; |
| 794 | |
| 795 | if (raidPtr->reconControl->lastPSID > lastPSID) { |
| 796 | pending_writes = lastPSID - prev; |
| 797 | raidPtr->reconControl->lastPSID = lastPSID; |
| 798 | } |
| 799 | |
| 800 | /* back down curPSID to get ready for the next round... */ |
| 801 | for (i = 0; i < raidPtr->numCol; i++) { |
| 802 | if (i != col) { |
| 803 | raidPtr->reconControl->perDiskInfo[i].curPSID--; |
| 804 | raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; |
| 805 | } |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | mapPtr = raidPtr->reconControl->reconMap; |
| 810 | if (rf_reconDebug) { |
| 811 | printf("RECON: all reads completed\n" ); |
| 812 | } |
| 813 | /* at this point all the reads have completed. We now wait |
| 814 | * for any pending writes to complete, and then we're done */ |
| 815 | |
| 816 | while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { |
| 817 | |
| 818 | event = rf_GetNextReconEvent(reconDesc); |
| 819 | status = ProcessReconEvent(raidPtr, event); |
| 820 | |
| 821 | if (status == RF_RECON_WRITE_ERROR) { |
| 822 | recon_error = 1; |
| 823 | raidPtr->reconControl->error = 1; |
| 824 | /* an error was encountered at the very end... bail */ |
| 825 | } else { |
| 826 | #if RF_DEBUG_RECON |
| 827 | raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); |
| 828 | if (rf_prReconSched) { |
| 829 | rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); |
| 830 | } |
| 831 | #endif |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | if (recon_error) { |
| 836 | /* we've encountered an error in reconstructing. */ |
| 837 | printf("raid%d: reconstruction failed.\n" , raidPtr->raidid); |
| 838 | |
| 839 | /* we start by blocking IO to the RAID set. */ |
| 840 | rf_SuspendNewRequestsAndWait(raidPtr); |
| 841 | |
| 842 | rf_lock_mutex2(raidPtr->mutex); |
| 843 | /* mark set as being degraded, rather than |
| 844 | rf_rs_reconstructing as we were before the problem. |
| 845 | After this is done we can update status of the |
| 846 | component disks without worrying about someone |
| 847 | trying to read from a failed component. |
| 848 | */ |
| 849 | raidPtr->status = rf_rs_degraded; |
| 850 | rf_unlock_mutex2(raidPtr->mutex); |
| 851 | |
| 852 | /* resume IO */ |
| 853 | rf_ResumeNewRequests(raidPtr); |
| 854 | |
| 855 | /* At this point there are two cases: |
| 856 | 1) If we've experienced a read error, then we've |
| 857 | already waited for all the reads we're going to get, |
| 858 | and we just need to wait for the writes. |
| 859 | |
| 860 | 2) If we've experienced a write error, we've also |
| 861 | already waited for all the reads to complete, |
| 862 | but there is little point in waiting for the writes -- |
| 863 | when they do complete, they will just be ignored. |
| 864 | |
| 865 | So we just wait for writes to complete if we didn't have a |
| 866 | write error. |
| 867 | */ |
| 868 | |
| 869 | if (!write_error) { |
| 870 | /* wait for writes to complete */ |
| 871 | while (raidPtr->reconControl->pending_writes > 0) { |
| 872 | |
| 873 | event = rf_GetNextReconEvent(reconDesc); |
| 874 | status = ProcessReconEvent(raidPtr, event); |
| 875 | |
| 876 | if (status == RF_RECON_WRITE_ERROR) { |
| 877 | raidPtr->reconControl->error = 1; |
| 878 | /* an error was encountered at the very end... bail. |
| 879 | This will be very bad news for the user, since |
| 880 | at this point there will have been a read error |
| 881 | on one component, and a write error on another! |
| 882 | */ |
| 883 | break; |
| 884 | } |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | |
| 889 | /* cleanup */ |
| 890 | |
| 891 | /* drain the event queue - after waiting for the writes above, |
| 892 | there shouldn't be much (if anything!) left in the queue. */ |
| 893 | |
| 894 | rf_DrainReconEventQueue(reconDesc); |
| 895 | |
| 896 | /* XXX As much as we'd like to free the recon control structure |
| 897 | and the reconDesc, we have no way of knowing if/when those will |
| 898 | be touched by IO that has yet to occur. It is rather poor to be |
| 899 | basically causing a 'memory leak' here, but there doesn't seem to be |
| 900 | a cleaner alternative at this time. Perhaps when the reconstruct code |
| 901 | gets a makeover this problem will go away. |
| 902 | */ |
| 903 | #if 0 |
| 904 | rf_FreeReconControl(raidPtr); |
| 905 | #endif |
| 906 | |
| 907 | #if RF_ACC_TRACE > 0 |
| 908 | RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); |
| 909 | #endif |
| 910 | /* XXX see comment above */ |
| 911 | #if 0 |
| 912 | FreeReconDesc(reconDesc); |
| 913 | #endif |
| 914 | |
| 915 | return (1); |
| 916 | } |
| 917 | |
| 918 | /* Success: mark the dead disk as reconstructed. We quiesce |
| 919 | * the array here to assure no nasty interactions with pending |
| 920 | * user accesses when we free up the psstatus structure as |
| 921 | * part of FreeReconControl() */ |
| 922 | |
| 923 | rf_SuspendNewRequestsAndWait(raidPtr); |
| 924 | |
| 925 | rf_lock_mutex2(raidPtr->mutex); |
| 926 | raidPtr->numFailures--; |
| 927 | ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); |
| 928 | raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; |
| 929 | raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; |
| 930 | rf_unlock_mutex2(raidPtr->mutex); |
| 931 | RF_GETTIME(etime); |
| 932 | RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); |
| 933 | |
| 934 | rf_ResumeNewRequests(raidPtr); |
| 935 | |
| 936 | printf("raid%d: Reconstruction of disk at col %d completed\n" , |
| 937 | raidPtr->raidid, col); |
| 938 | xor_s = raidPtr->accumXorTimeUs / 1000000; |
| 939 | xor_resid_us = raidPtr->accumXorTimeUs % 1000000; |
| 940 | printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n" , |
| 941 | raidPtr->raidid, |
| 942 | (int) elpsd.tv_sec, (int) elpsd.tv_usec, |
| 943 | raidPtr->accumXorTimeUs, xor_s, xor_resid_us); |
| 944 | printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n" , |
| 945 | raidPtr->raidid, |
| 946 | (int) raidPtr->reconControl->starttime.tv_sec, |
| 947 | (int) raidPtr->reconControl->starttime.tv_usec, |
| 948 | (int) etime.tv_sec, (int) etime.tv_usec); |
| 949 | #if RF_RECON_STATS > 0 |
| 950 | printf("raid%d: Total head-sep stall count was %d\n" , |
| 951 | raidPtr->raidid, (int) reconDesc->hsStallCount); |
| 952 | #endif /* RF_RECON_STATS > 0 */ |
| 953 | rf_FreeReconControl(raidPtr); |
| 954 | #if RF_ACC_TRACE > 0 |
| 955 | RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); |
| 956 | #endif |
| 957 | FreeReconDesc(reconDesc); |
| 958 | |
| 959 | return (0); |
| 960 | |
| 961 | } |
| 962 | /***************************************************************************** |
| 963 | * do the right thing upon each reconstruction event. |
| 964 | *****************************************************************************/ |
| 965 | static int |
| 966 | ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) |
| 967 | { |
| 968 | int retcode = 0, submitblocked; |
| 969 | RF_ReconBuffer_t *rbuf; |
| 970 | RF_SectorCount_t sectorsPerRU; |
| 971 | |
| 972 | retcode = RF_RECON_READ_STOPPED; |
| 973 | |
| 974 | Dprintf1("RECON: ProcessReconEvent type %d\n" , event->type); |
| 975 | |
| 976 | switch (event->type) { |
| 977 | |
| 978 | /* a read I/O has completed */ |
| 979 | case RF_REVENT_READDONE: |
| 980 | rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; |
| 981 | Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n" , |
| 982 | event->col, rbuf->parityStripeID); |
| 983 | Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n" , |
| 984 | rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, |
| 985 | rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); |
| 986 | rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); |
| 987 | if (!raidPtr->reconControl->error) { |
| 988 | submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); |
| 989 | Dprintf1("RECON: submitblocked=%d\n" , submitblocked); |
| 990 | if (!submitblocked) |
| 991 | retcode = IssueNextReadRequest(raidPtr, event->col); |
| 992 | else |
| 993 | retcode = 0; |
| 994 | } |
| 995 | break; |
| 996 | |
| 997 | /* a write I/O has completed */ |
| 998 | case RF_REVENT_WRITEDONE: |
| 999 | #if RF_DEBUG_RECON |
| 1000 | if (rf_floatingRbufDebug) { |
| 1001 | rf_CheckFloatingRbufCount(raidPtr, 1); |
| 1002 | } |
| 1003 | #endif |
| 1004 | sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; |
| 1005 | rbuf = (RF_ReconBuffer_t *) event->arg; |
| 1006 | rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); |
| 1007 | Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n" , |
| 1008 | rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); |
| 1009 | rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, |
| 1010 | rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); |
| 1011 | rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); |
| 1012 | |
| 1013 | rf_lock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1014 | raidPtr->reconControl->pending_writes--; |
| 1015 | rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1016 | |
| 1017 | if (rbuf->type == RF_RBUF_TYPE_FLOATING) { |
| 1018 | rf_lock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1019 | while(raidPtr->reconControl->rb_lock) { |
| 1020 | rf_wait_cond2(raidPtr->reconControl->rb_cv, |
| 1021 | raidPtr->reconControl->rb_mutex); |
| 1022 | } |
| 1023 | raidPtr->reconControl->rb_lock = 1; |
| 1024 | rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1025 | |
| 1026 | raidPtr->numFullReconBuffers--; |
| 1027 | rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); |
| 1028 | |
| 1029 | rf_lock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1030 | raidPtr->reconControl->rb_lock = 0; |
| 1031 | rf_broadcast_cond2(raidPtr->reconControl->rb_cv); |
| 1032 | rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1033 | } else |
| 1034 | if (rbuf->type == RF_RBUF_TYPE_FORCED) |
| 1035 | rf_FreeReconBuffer(rbuf); |
| 1036 | else |
| 1037 | RF_ASSERT(0); |
| 1038 | retcode = RF_RECON_WRITE_DONE; |
| 1039 | break; |
| 1040 | |
| 1041 | case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been |
| 1042 | * cleared */ |
| 1043 | Dprintf1("RECON: BUFCLEAR EVENT: col %d\n" , event->col); |
| 1044 | if (!raidPtr->reconControl->error) { |
| 1045 | submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, |
| 1046 | 0, (int) (long) event->arg); |
| 1047 | RF_ASSERT(!submitblocked); /* we wouldn't have gotten the |
| 1048 | * BUFCLEAR event if we |
| 1049 | * couldn't submit */ |
| 1050 | retcode = IssueNextReadRequest(raidPtr, event->col); |
| 1051 | } |
| 1052 | break; |
| 1053 | |
| 1054 | case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction |
| 1055 | * blockage has been cleared */ |
| 1056 | DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n" , event->col); |
| 1057 | if (!raidPtr->reconControl->error) { |
| 1058 | retcode = TryToRead(raidPtr, event->col); |
| 1059 | } |
| 1060 | break; |
| 1061 | |
| 1062 | case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation |
| 1063 | * reconstruction blockage has been |
| 1064 | * cleared */ |
| 1065 | Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n" , event->col); |
| 1066 | if (!raidPtr->reconControl->error) { |
| 1067 | retcode = TryToRead(raidPtr, event->col); |
| 1068 | } |
| 1069 | break; |
| 1070 | |
| 1071 | /* a buffer has become ready to write */ |
| 1072 | case RF_REVENT_BUFREADY: |
| 1073 | Dprintf1("RECON: BUFREADY EVENT: col %d\n" , event->col); |
| 1074 | if (!raidPtr->reconControl->error) { |
| 1075 | retcode = IssueNextWriteRequest(raidPtr); |
| 1076 | #if RF_DEBUG_RECON |
| 1077 | if (rf_floatingRbufDebug) { |
| 1078 | rf_CheckFloatingRbufCount(raidPtr, 1); |
| 1079 | } |
| 1080 | #endif |
| 1081 | } |
| 1082 | break; |
| 1083 | |
| 1084 | /* we need to skip the current RU entirely because it got |
| 1085 | * recon'd while we were waiting for something else to happen */ |
| 1086 | case RF_REVENT_SKIP: |
| 1087 | DDprintf1("RECON: SKIP EVENT: col %d\n" , event->col); |
| 1088 | if (!raidPtr->reconControl->error) { |
| 1089 | retcode = IssueNextReadRequest(raidPtr, event->col); |
| 1090 | } |
| 1091 | break; |
| 1092 | |
| 1093 | /* a forced-reconstruction read access has completed. Just |
| 1094 | * submit the buffer */ |
| 1095 | case RF_REVENT_FORCEDREADDONE: |
| 1096 | rbuf = (RF_ReconBuffer_t *) event->arg; |
| 1097 | rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); |
| 1098 | DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n" , event->col); |
| 1099 | if (!raidPtr->reconControl->error) { |
| 1100 | submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); |
| 1101 | RF_ASSERT(!submitblocked); |
| 1102 | retcode = 0; |
| 1103 | } |
| 1104 | break; |
| 1105 | |
| 1106 | /* A read I/O failed to complete */ |
| 1107 | case RF_REVENT_READ_FAILED: |
| 1108 | retcode = RF_RECON_READ_ERROR; |
| 1109 | break; |
| 1110 | |
| 1111 | /* A write I/O failed to complete */ |
| 1112 | case RF_REVENT_WRITE_FAILED: |
| 1113 | retcode = RF_RECON_WRITE_ERROR; |
| 1114 | |
| 1115 | /* This is an error, but it was a pending write. |
| 1116 | Account for it. */ |
| 1117 | rf_lock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1118 | raidPtr->reconControl->pending_writes--; |
| 1119 | rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1120 | |
| 1121 | rbuf = (RF_ReconBuffer_t *) event->arg; |
| 1122 | |
| 1123 | /* cleanup the disk queue data */ |
| 1124 | rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); |
| 1125 | |
| 1126 | /* At this point we're erroring out, badly, and floatingRbufs |
| 1127 | may not even be valid. Rather than putting this back onto |
| 1128 | the floatingRbufs list, just arrange for its immediate |
| 1129 | destruction. |
| 1130 | */ |
| 1131 | rf_FreeReconBuffer(rbuf); |
| 1132 | break; |
| 1133 | |
| 1134 | /* a forced read I/O failed to complete */ |
| 1135 | case RF_REVENT_FORCEDREAD_FAILED: |
| 1136 | retcode = RF_RECON_READ_ERROR; |
| 1137 | break; |
| 1138 | |
| 1139 | default: |
| 1140 | RF_PANIC(); |
| 1141 | } |
| 1142 | rf_FreeReconEventDesc(event); |
| 1143 | return (retcode); |
| 1144 | } |
| 1145 | /***************************************************************************** |
| 1146 | * |
| 1147 | * find the next thing that's needed on the indicated disk, and issue |
| 1148 | * a read request for it. We assume that the reconstruction buffer |
| 1149 | * associated with this process is free to receive the data. If |
| 1150 | * reconstruction is blocked on the indicated RU, we issue a |
| 1151 | * blockage-release request instead of a physical disk read request. |
| 1152 | * If the current disk gets too far ahead of the others, we issue a |
| 1153 | * head-separation wait request and return. |
| 1154 | * |
| 1155 | * ctrl->{ru_count, curPSID, diskOffset} and |
| 1156 | * rbuf->failedDiskSectorOffset are maintained to point to the unit |
| 1157 | * we're currently accessing. Note that this deviates from the |
| 1158 | * standard C idiom of having counters point to the next thing to be |
| 1159 | * accessed. This allows us to easily retry when we're blocked by |
| 1160 | * head separation or reconstruction-blockage events. |
| 1161 | * |
| 1162 | *****************************************************************************/ |
| 1163 | static int |
| 1164 | IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) |
| 1165 | { |
| 1166 | RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; |
| 1167 | RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; |
| 1168 | RF_ReconBuffer_t *rbuf = ctrl->rbuf; |
| 1169 | RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; |
| 1170 | RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; |
| 1171 | int do_new_check = 0, retcode = 0, status; |
| 1172 | |
| 1173 | /* if we are currently the slowest disk, mark that we have to do a new |
| 1174 | * check */ |
| 1175 | if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) |
| 1176 | do_new_check = 1; |
| 1177 | |
| 1178 | while (1) { |
| 1179 | |
| 1180 | ctrl->ru_count++; |
| 1181 | if (ctrl->ru_count < RUsPerPU) { |
| 1182 | ctrl->diskOffset += sectorsPerRU; |
| 1183 | rbuf->failedDiskSectorOffset += sectorsPerRU; |
| 1184 | } else { |
| 1185 | ctrl->curPSID++; |
| 1186 | ctrl->ru_count = 0; |
| 1187 | /* code left over from when head-sep was based on |
| 1188 | * parity stripe id */ |
| 1189 | if (ctrl->curPSID > raidPtr->reconControl->lastPSID) { |
| 1190 | CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); |
| 1191 | return (RF_RECON_DONE_READS); /* finito! */ |
| 1192 | } |
| 1193 | /* find the disk offsets of the start of the parity |
| 1194 | * stripe on both the current disk and the failed |
| 1195 | * disk. skip this entire parity stripe if either disk |
| 1196 | * does not appear in the indicated PS */ |
| 1197 | status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, |
| 1198 | &rbuf->spCol, &rbuf->spOffset); |
| 1199 | if (status) { |
| 1200 | ctrl->ru_count = RUsPerPU - 1; |
| 1201 | continue; |
| 1202 | } |
| 1203 | } |
| 1204 | rbuf->which_ru = ctrl->ru_count; |
| 1205 | |
| 1206 | /* skip this RU if it's already been reconstructed */ |
| 1207 | if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { |
| 1208 | Dprintf2("Skipping psid %ld ru %d: already reconstructed\n" , ctrl->curPSID, ctrl->ru_count); |
| 1209 | continue; |
| 1210 | } |
| 1211 | break; |
| 1212 | } |
| 1213 | ctrl->headSepCounter++; |
| 1214 | if (do_new_check) |
| 1215 | CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ |
| 1216 | |
| 1217 | |
| 1218 | /* at this point, we have definitely decided what to do, and we have |
| 1219 | * only to see if we can actually do it now */ |
| 1220 | rbuf->parityStripeID = ctrl->curPSID; |
| 1221 | rbuf->which_ru = ctrl->ru_count; |
| 1222 | #if RF_ACC_TRACE > 0 |
| 1223 | memset((char *) &raidPtr->recon_tracerecs[col], 0, |
| 1224 | sizeof(raidPtr->recon_tracerecs[col])); |
| 1225 | raidPtr->recon_tracerecs[col].reconacc = 1; |
| 1226 | RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); |
| 1227 | #endif |
| 1228 | retcode = TryToRead(raidPtr, col); |
| 1229 | return (retcode); |
| 1230 | } |
| 1231 | |
| 1232 | /* |
| 1233 | * tries to issue the next read on the indicated disk. We may be |
| 1234 | * blocked by (a) the heads being too far apart, or (b) recon on the |
| 1235 | * indicated RU being blocked due to a write by a user thread. In |
| 1236 | * this case, we issue a head-sep or blockage wait request, which will |
| 1237 | * cause this same routine to be invoked again later when the blockage |
| 1238 | * has cleared. |
| 1239 | */ |
| 1240 | |
| 1241 | static int |
| 1242 | TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) |
| 1243 | { |
| 1244 | RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; |
| 1245 | RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; |
| 1246 | RF_StripeNum_t psid = ctrl->curPSID; |
| 1247 | RF_ReconUnitNum_t which_ru = ctrl->ru_count; |
| 1248 | RF_DiskQueueData_t *req; |
| 1249 | int status; |
| 1250 | RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; |
| 1251 | |
| 1252 | /* if the current disk is too far ahead of the others, issue a |
| 1253 | * head-separation wait and return */ |
| 1254 | if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) |
| 1255 | return (0); |
| 1256 | |
| 1257 | /* allocate a new PSS in case we need it */ |
| 1258 | newpssPtr = rf_AllocPSStatus(raidPtr); |
| 1259 | |
| 1260 | RF_LOCK_PSS_MUTEX(raidPtr, psid); |
| 1261 | pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); |
| 1262 | |
| 1263 | if (pssPtr != newpssPtr) { |
| 1264 | rf_FreePSStatus(raidPtr, newpssPtr); |
| 1265 | } |
| 1266 | |
| 1267 | /* if recon is blocked on the indicated parity stripe, issue a |
| 1268 | * block-wait request and return. this also must mark the indicated RU |
| 1269 | * in the stripe as under reconstruction if not blocked. */ |
| 1270 | status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); |
| 1271 | if (status == RF_PSS_RECON_BLOCKED) { |
| 1272 | Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n" , psid, which_ru); |
| 1273 | goto out; |
| 1274 | } else |
| 1275 | if (status == RF_PSS_FORCED_ON_WRITE) { |
| 1276 | rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); |
| 1277 | goto out; |
| 1278 | } |
| 1279 | /* make one last check to be sure that the indicated RU didn't get |
| 1280 | * reconstructed while we were waiting for something else to happen. |
| 1281 | * This is unfortunate in that it causes us to make this check twice |
| 1282 | * in the normal case. Might want to make some attempt to re-work |
| 1283 | * this so that we only do this check if we've definitely blocked on |
| 1284 | * one of the above checks. When this condition is detected, we may |
| 1285 | * have just created a bogus status entry, which we need to delete. */ |
| 1286 | if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { |
| 1287 | Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n" , psid, which_ru); |
| 1288 | if (pssPtr == newpssPtr) |
| 1289 | rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); |
| 1290 | rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); |
| 1291 | goto out; |
| 1292 | } |
| 1293 | /* found something to read. issue the I/O */ |
| 1294 | Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n" , |
| 1295 | psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); |
| 1296 | #if RF_ACC_TRACE > 0 |
| 1297 | RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); |
| 1298 | RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); |
| 1299 | raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = |
| 1300 | RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); |
| 1301 | RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); |
| 1302 | #endif |
| 1303 | /* should be ok to use a NULL proc pointer here, all the bufs we use |
| 1304 | * should be in kernel space */ |
| 1305 | req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, |
| 1306 | ReconReadDoneProc, (void *) ctrl, |
| 1307 | #if RF_ACC_TRACE > 0 |
| 1308 | &raidPtr->recon_tracerecs[col], |
| 1309 | #else |
| 1310 | NULL, |
| 1311 | #endif |
| 1312 | (void *) raidPtr, 0, NULL, PR_WAITOK); |
| 1313 | |
| 1314 | ctrl->rbuf->arg = (void *) req; |
| 1315 | rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); |
| 1316 | pssPtr->issued[col] = 1; |
| 1317 | |
| 1318 | out: |
| 1319 | RF_UNLOCK_PSS_MUTEX(raidPtr, psid); |
| 1320 | return (0); |
| 1321 | } |
| 1322 | |
| 1323 | |
| 1324 | /* |
| 1325 | * given a parity stripe ID, we want to find out whether both the |
| 1326 | * current disk and the failed disk exist in that parity stripe. If |
| 1327 | * not, we want to skip this whole PS. If so, we want to find the |
| 1328 | * disk offset of the start of the PS on both the current disk and the |
| 1329 | * failed disk. |
| 1330 | * |
| 1331 | * this works by getting a list of disks comprising the indicated |
| 1332 | * parity stripe, and searching the list for the current and failed |
| 1333 | * disks. Once we've decided they both exist in the parity stripe, we |
| 1334 | * need to decide whether each is data or parity, so that we'll know |
| 1335 | * which mapping function to call to get the corresponding disk |
| 1336 | * offsets. |
| 1337 | * |
| 1338 | * this is kind of unpleasant, but doing it this way allows the |
| 1339 | * reconstruction code to use parity stripe IDs rather than physical |
| 1340 | * disks address to march through the failed disk, which greatly |
| 1341 | * simplifies a lot of code, as well as eliminating the need for a |
| 1342 | * reverse-mapping function. I also think it will execute faster, |
| 1343 | * since the calls to the mapping module are kept to a minimum. |
| 1344 | * |
| 1345 | * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING |
| 1346 | * THE STRIPE IN THE CORRECT ORDER |
| 1347 | * |
| 1348 | * raidPtr - raid descriptor |
| 1349 | * psid - parity stripe identifier |
| 1350 | * col - column of disk to find the offsets for |
| 1351 | * spCol - out: col of spare unit for failed unit |
| 1352 | * spOffset - out: offset into disk containing spare unit |
| 1353 | * |
| 1354 | */ |
| 1355 | |
| 1356 | |
| 1357 | static int |
| 1358 | ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, |
| 1359 | RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, |
| 1360 | RF_SectorNum_t *outFailedDiskSectorOffset, |
| 1361 | RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) |
| 1362 | { |
| 1363 | RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; |
| 1364 | RF_RowCol_t fcol = raidPtr->reconControl->fcol; |
| 1365 | RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ |
| 1366 | RF_RowCol_t *diskids; |
| 1367 | u_int i, j, k, i_offset, j_offset; |
| 1368 | RF_RowCol_t pcol; |
| 1369 | int testcol; |
| 1370 | RF_SectorNum_t poffset; |
| 1371 | char i_is_parity = 0, j_is_parity = 0; |
| 1372 | RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; |
| 1373 | |
| 1374 | /* get a listing of the disks comprising that stripe */ |
| 1375 | sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); |
| 1376 | (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); |
| 1377 | RF_ASSERT(diskids); |
| 1378 | |
| 1379 | /* reject this entire parity stripe if it does not contain the |
| 1380 | * indicated disk or it does not contain the failed disk */ |
| 1381 | |
| 1382 | for (i = 0; i < stripeWidth; i++) { |
| 1383 | if (col == diskids[i]) |
| 1384 | break; |
| 1385 | } |
| 1386 | if (i == stripeWidth) |
| 1387 | goto skipit; |
| 1388 | for (j = 0; j < stripeWidth; j++) { |
| 1389 | if (fcol == diskids[j]) |
| 1390 | break; |
| 1391 | } |
| 1392 | if (j == stripeWidth) { |
| 1393 | goto skipit; |
| 1394 | } |
| 1395 | /* find out which disk the parity is on */ |
| 1396 | (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); |
| 1397 | |
| 1398 | /* find out if either the current RU or the failed RU is parity */ |
| 1399 | /* also, if the parity occurs in this stripe prior to the data and/or |
| 1400 | * failed col, we need to decrement i and/or j */ |
| 1401 | for (k = 0; k < stripeWidth; k++) |
| 1402 | if (diskids[k] == pcol) |
| 1403 | break; |
| 1404 | RF_ASSERT(k < stripeWidth); |
| 1405 | i_offset = i; |
| 1406 | j_offset = j; |
| 1407 | if (k < i) |
| 1408 | i_offset--; |
| 1409 | else |
| 1410 | if (k == i) { |
| 1411 | i_is_parity = 1; |
| 1412 | i_offset = 0; |
| 1413 | } /* set offsets to zero to disable multiply |
| 1414 | * below */ |
| 1415 | if (k < j) |
| 1416 | j_offset--; |
| 1417 | else |
| 1418 | if (k == j) { |
| 1419 | j_is_parity = 1; |
| 1420 | j_offset = 0; |
| 1421 | } |
| 1422 | /* at this point, [ij]_is_parity tells us whether the [current,failed] |
| 1423 | * disk is parity at the start of this RU, and, if data, "[ij]_offset" |
| 1424 | * tells us how far into the stripe the [current,failed] disk is. */ |
| 1425 | |
| 1426 | /* call the mapping routine to get the offset into the current disk, |
| 1427 | * repeat for failed disk. */ |
| 1428 | if (i_is_parity) |
| 1429 | layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); |
| 1430 | else |
| 1431 | layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); |
| 1432 | |
| 1433 | RF_ASSERT(col == testcol); |
| 1434 | |
| 1435 | if (j_is_parity) |
| 1436 | layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); |
| 1437 | else |
| 1438 | layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); |
| 1439 | RF_ASSERT(fcol == testcol); |
| 1440 | |
| 1441 | /* now locate the spare unit for the failed unit */ |
| 1442 | #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 |
| 1443 | if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { |
| 1444 | if (j_is_parity) |
| 1445 | layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); |
| 1446 | else |
| 1447 | layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); |
| 1448 | } else { |
| 1449 | #endif |
| 1450 | *spCol = raidPtr->reconControl->spareCol; |
| 1451 | *spOffset = *outFailedDiskSectorOffset; |
| 1452 | #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 |
| 1453 | } |
| 1454 | #endif |
| 1455 | return (0); |
| 1456 | |
| 1457 | skipit: |
| 1458 | Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n" , |
| 1459 | psid, col); |
| 1460 | return (1); |
| 1461 | } |
| 1462 | /* this is called when a buffer has become ready to write to the replacement disk */ |
| 1463 | static int |
| 1464 | IssueNextWriteRequest(RF_Raid_t *raidPtr) |
| 1465 | { |
| 1466 | RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; |
| 1467 | RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; |
| 1468 | #if RF_ACC_TRACE > 0 |
| 1469 | RF_RowCol_t fcol = raidPtr->reconControl->fcol; |
| 1470 | #endif |
| 1471 | RF_ReconBuffer_t *rbuf; |
| 1472 | RF_DiskQueueData_t *req; |
| 1473 | |
| 1474 | rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); |
| 1475 | RF_ASSERT(rbuf); /* there must be one available, or we wouldn't |
| 1476 | * have gotten the event that sent us here */ |
| 1477 | RF_ASSERT(rbuf->pssPtr); |
| 1478 | |
| 1479 | rbuf->pssPtr->writeRbuf = rbuf; |
| 1480 | rbuf->pssPtr = NULL; |
| 1481 | |
| 1482 | Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n" , |
| 1483 | rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, |
| 1484 | rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); |
| 1485 | Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n" , |
| 1486 | rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, |
| 1487 | rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); |
| 1488 | |
| 1489 | /* should be ok to use a NULL b_proc here b/c all addrs should be in |
| 1490 | * kernel space */ |
| 1491 | req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, |
| 1492 | sectorsPerRU, rbuf->buffer, |
| 1493 | rbuf->parityStripeID, rbuf->which_ru, |
| 1494 | ReconWriteDoneProc, (void *) rbuf, |
| 1495 | #if RF_ACC_TRACE > 0 |
| 1496 | &raidPtr->recon_tracerecs[fcol], |
| 1497 | #else |
| 1498 | NULL, |
| 1499 | #endif |
| 1500 | (void *) raidPtr, 0, NULL, PR_WAITOK); |
| 1501 | |
| 1502 | rbuf->arg = (void *) req; |
| 1503 | rf_lock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1504 | raidPtr->reconControl->pending_writes++; |
| 1505 | rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1506 | rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); |
| 1507 | |
| 1508 | return (0); |
| 1509 | } |
| 1510 | |
| 1511 | /* |
| 1512 | * this gets called upon the completion of a reconstruction read |
| 1513 | * operation the arg is a pointer to the per-disk reconstruction |
| 1514 | * control structure for the process that just finished a read. |
| 1515 | * |
| 1516 | * called at interrupt context in the kernel, so don't do anything |
| 1517 | * illegal here. |
| 1518 | */ |
| 1519 | static int |
| 1520 | ReconReadDoneProc(void *arg, int status) |
| 1521 | { |
| 1522 | RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; |
| 1523 | RF_Raid_t *raidPtr; |
| 1524 | |
| 1525 | /* Detect that reconCtrl is no longer valid, and if that |
| 1526 | is the case, bail without calling rf_CauseReconEvent(). |
| 1527 | There won't be anyone listening for this event anyway */ |
| 1528 | |
| 1529 | if (ctrl->reconCtrl == NULL) |
| 1530 | return(0); |
| 1531 | |
| 1532 | raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; |
| 1533 | |
| 1534 | if (status) { |
| 1535 | printf("raid%d: Recon read failed: %d\n" , raidPtr->raidid, status); |
| 1536 | rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); |
| 1537 | return(0); |
| 1538 | } |
| 1539 | #if RF_ACC_TRACE > 0 |
| 1540 | RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); |
| 1541 | RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); |
| 1542 | raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = |
| 1543 | RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); |
| 1544 | RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); |
| 1545 | #endif |
| 1546 | rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); |
| 1547 | return (0); |
| 1548 | } |
| 1549 | /* this gets called upon the completion of a reconstruction write operation. |
| 1550 | * the arg is a pointer to the rbuf that was just written |
| 1551 | * |
| 1552 | * called at interrupt context in the kernel, so don't do anything illegal here. |
| 1553 | */ |
| 1554 | static int |
| 1555 | ReconWriteDoneProc(void *arg, int status) |
| 1556 | { |
| 1557 | RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; |
| 1558 | |
| 1559 | /* Detect that reconControl is no longer valid, and if that |
| 1560 | is the case, bail without calling rf_CauseReconEvent(). |
| 1561 | There won't be anyone listening for this event anyway */ |
| 1562 | |
| 1563 | if (rbuf->raidPtr->reconControl == NULL) |
| 1564 | return(0); |
| 1565 | |
| 1566 | Dprintf2("Reconstruction completed on psid %ld ru %d\n" , rbuf->parityStripeID, rbuf->which_ru); |
| 1567 | if (status) { |
| 1568 | printf("raid%d: Recon write failed (status %d(0x%x))!\n" , rbuf->raidPtr->raidid,status,status); |
| 1569 | rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); |
| 1570 | return(0); |
| 1571 | } |
| 1572 | rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); |
| 1573 | return (0); |
| 1574 | } |
| 1575 | |
| 1576 | |
| 1577 | /* |
| 1578 | * computes a new minimum head sep, and wakes up anyone who needs to |
| 1579 | * be woken as a result |
| 1580 | */ |
| 1581 | static void |
| 1582 | CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) |
| 1583 | { |
| 1584 | RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; |
| 1585 | RF_HeadSepLimit_t new_min; |
| 1586 | RF_RowCol_t i; |
| 1587 | RF_CallbackDesc_t *p; |
| 1588 | RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition |
| 1589 | * of a minimum */ |
| 1590 | |
| 1591 | |
| 1592 | rf_lock_mutex2(reconCtrlPtr->rb_mutex); |
| 1593 | while(reconCtrlPtr->rb_lock) { |
| 1594 | rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); |
| 1595 | } |
| 1596 | reconCtrlPtr->rb_lock = 1; |
| 1597 | rf_unlock_mutex2(reconCtrlPtr->rb_mutex); |
| 1598 | |
| 1599 | new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ |
| 1600 | for (i = 0; i < raidPtr->numCol; i++) |
| 1601 | if (i != reconCtrlPtr->fcol) { |
| 1602 | if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) |
| 1603 | new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; |
| 1604 | } |
| 1605 | /* set the new minimum and wake up anyone who can now run again */ |
| 1606 | if (new_min != reconCtrlPtr->minHeadSepCounter) { |
| 1607 | reconCtrlPtr->minHeadSepCounter = new_min; |
| 1608 | Dprintf1("RECON: new min head pos counter val is %ld\n" , new_min); |
| 1609 | while (reconCtrlPtr->headSepCBList) { |
| 1610 | if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) |
| 1611 | break; |
| 1612 | p = reconCtrlPtr->headSepCBList; |
| 1613 | reconCtrlPtr->headSepCBList = p->next; |
| 1614 | p->next = NULL; |
| 1615 | rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); |
| 1616 | rf_FreeCallbackDesc(p); |
| 1617 | } |
| 1618 | |
| 1619 | } |
| 1620 | rf_lock_mutex2(reconCtrlPtr->rb_mutex); |
| 1621 | reconCtrlPtr->rb_lock = 0; |
| 1622 | rf_broadcast_cond2(reconCtrlPtr->rb_cv); |
| 1623 | rf_unlock_mutex2(reconCtrlPtr->rb_mutex); |
| 1624 | } |
| 1625 | |
| 1626 | /* |
| 1627 | * checks to see that the maximum head separation will not be violated |
| 1628 | * if we initiate a reconstruction I/O on the indicated disk. |
| 1629 | * Limiting the maximum head separation between two disks eliminates |
| 1630 | * the nasty buffer-stall conditions that occur when one disk races |
| 1631 | * ahead of the others and consumes all of the floating recon buffers. |
| 1632 | * This code is complex and unpleasant but it's necessary to avoid |
| 1633 | * some very nasty, albeit fairly rare, reconstruction behavior. |
| 1634 | * |
| 1635 | * returns non-zero if and only if we have to stop working on the |
| 1636 | * indicated disk due to a head-separation delay. |
| 1637 | */ |
| 1638 | static int |
| 1639 | CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, |
| 1640 | RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, |
| 1641 | RF_ReconUnitNum_t which_ru) |
| 1642 | { |
| 1643 | RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; |
| 1644 | RF_CallbackDesc_t *cb, *p, *pt; |
| 1645 | int retval = 0; |
| 1646 | |
| 1647 | /* if we're too far ahead of the slowest disk, stop working on this |
| 1648 | * disk until the slower ones catch up. We do this by scheduling a |
| 1649 | * wakeup callback for the time when the slowest disk has caught up. |
| 1650 | * We define "caught up" with 20% hysteresis, i.e. the head separation |
| 1651 | * must have fallen to at most 80% of the max allowable head |
| 1652 | * separation before we'll wake up. |
| 1653 | * |
| 1654 | */ |
| 1655 | rf_lock_mutex2(reconCtrlPtr->rb_mutex); |
| 1656 | while(reconCtrlPtr->rb_lock) { |
| 1657 | rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); |
| 1658 | } |
| 1659 | reconCtrlPtr->rb_lock = 1; |
| 1660 | rf_unlock_mutex2(reconCtrlPtr->rb_mutex); |
| 1661 | if ((raidPtr->headSepLimit >= 0) && |
| 1662 | ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { |
| 1663 | Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n" , |
| 1664 | raidPtr->raidid, col, ctrl->headSepCounter, |
| 1665 | reconCtrlPtr->minHeadSepCounter, |
| 1666 | raidPtr->headSepLimit); |
| 1667 | cb = rf_AllocCallbackDesc(); |
| 1668 | /* the minHeadSepCounter value we have to get to before we'll |
| 1669 | * wake up. build in 20% hysteresis. */ |
| 1670 | cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); |
| 1671 | cb->col = col; |
| 1672 | cb->next = NULL; |
| 1673 | |
| 1674 | /* insert this callback descriptor into the sorted list of |
| 1675 | * pending head-sep callbacks */ |
| 1676 | p = reconCtrlPtr->headSepCBList; |
| 1677 | if (!p) |
| 1678 | reconCtrlPtr->headSepCBList = cb; |
| 1679 | else |
| 1680 | if (cb->callbackArg.v < p->callbackArg.v) { |
| 1681 | cb->next = reconCtrlPtr->headSepCBList; |
| 1682 | reconCtrlPtr->headSepCBList = cb; |
| 1683 | } else { |
| 1684 | for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); |
| 1685 | cb->next = p; |
| 1686 | pt->next = cb; |
| 1687 | } |
| 1688 | retval = 1; |
| 1689 | #if RF_RECON_STATS > 0 |
| 1690 | ctrl->reconCtrl->reconDesc->hsStallCount++; |
| 1691 | #endif /* RF_RECON_STATS > 0 */ |
| 1692 | } |
| 1693 | rf_lock_mutex2(reconCtrlPtr->rb_mutex); |
| 1694 | reconCtrlPtr->rb_lock = 0; |
| 1695 | rf_broadcast_cond2(reconCtrlPtr->rb_cv); |
| 1696 | rf_unlock_mutex2(reconCtrlPtr->rb_mutex); |
| 1697 | |
| 1698 | return (retval); |
| 1699 | } |
| 1700 | /* |
| 1701 | * checks to see if reconstruction has been either forced or blocked |
| 1702 | * by a user operation. if forced, we skip this RU entirely. else if |
| 1703 | * blocked, put ourselves on the wait list. else return 0. |
| 1704 | * |
| 1705 | * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY |
| 1706 | */ |
| 1707 | static int |
| 1708 | CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, |
| 1709 | RF_ReconParityStripeStatus_t *pssPtr, |
| 1710 | RF_PerDiskReconCtrl_t *ctrl, |
| 1711 | RF_RowCol_t col, |
| 1712 | RF_StripeNum_t psid, |
| 1713 | RF_ReconUnitNum_t which_ru) |
| 1714 | { |
| 1715 | RF_CallbackDesc_t *cb; |
| 1716 | int retcode = 0; |
| 1717 | |
| 1718 | if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) |
| 1719 | retcode = RF_PSS_FORCED_ON_WRITE; |
| 1720 | else |
| 1721 | if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { |
| 1722 | Dprintf3("RECON: col %d blocked at psid %ld ru %d\n" , col, psid, which_ru); |
| 1723 | cb = rf_AllocCallbackDesc(); /* append ourselves to |
| 1724 | * the blockage-wait |
| 1725 | * list */ |
| 1726 | cb->col = col; |
| 1727 | cb->next = pssPtr->blockWaitList; |
| 1728 | pssPtr->blockWaitList = cb; |
| 1729 | retcode = RF_PSS_RECON_BLOCKED; |
| 1730 | } |
| 1731 | if (!retcode) |
| 1732 | pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under |
| 1733 | * reconstruction */ |
| 1734 | |
| 1735 | return (retcode); |
| 1736 | } |
| 1737 | /* |
| 1738 | * if reconstruction is currently ongoing for the indicated stripeID, |
| 1739 | * reconstruction is forced to completion and we return non-zero to |
| 1740 | * indicate that the caller must wait. If not, then reconstruction is |
| 1741 | * blocked on the indicated stripe and the routine returns zero. If |
| 1742 | * and only if we return non-zero, we'll cause the cbFunc to get |
| 1743 | * invoked with the cbArg when the reconstruction has completed. |
| 1744 | */ |
| 1745 | int |
| 1746 | rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, |
| 1747 | void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) |
| 1748 | { |
| 1749 | RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're |
| 1750 | * forcing recon on */ |
| 1751 | RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ |
| 1752 | RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity |
| 1753 | * stripe status structure */ |
| 1754 | RF_StripeNum_t psid; /* parity stripe id */ |
| 1755 | RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk |
| 1756 | * offset */ |
| 1757 | RF_RowCol_t *diskids; |
| 1758 | RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ |
| 1759 | RF_RowCol_t fcol, diskno, i; |
| 1760 | RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ |
| 1761 | RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ |
| 1762 | RF_CallbackDesc_t *cb; |
| 1763 | int nPromoted; |
| 1764 | |
| 1765 | psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); |
| 1766 | |
| 1767 | /* allocate a new PSS in case we need it */ |
| 1768 | newpssPtr = rf_AllocPSStatus(raidPtr); |
| 1769 | |
| 1770 | RF_LOCK_PSS_MUTEX(raidPtr, psid); |
| 1771 | |
| 1772 | pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); |
| 1773 | |
| 1774 | if (pssPtr != newpssPtr) { |
| 1775 | rf_FreePSStatus(raidPtr, newpssPtr); |
| 1776 | } |
| 1777 | |
| 1778 | /* if recon is not ongoing on this PS, just return */ |
| 1779 | if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { |
| 1780 | RF_UNLOCK_PSS_MUTEX(raidPtr, psid); |
| 1781 | return (0); |
| 1782 | } |
| 1783 | /* otherwise, we have to wait for reconstruction to complete on this |
| 1784 | * RU. */ |
| 1785 | /* In order to avoid waiting for a potentially large number of |
| 1786 | * low-priority accesses to complete, we force a normal-priority (i.e. |
| 1787 | * not low-priority) reconstruction on this RU. */ |
| 1788 | if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { |
| 1789 | DDprintf1("Forcing recon on psid %ld\n" , psid); |
| 1790 | pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under |
| 1791 | * forced recon */ |
| 1792 | pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage |
| 1793 | * that we just set */ |
| 1794 | fcol = raidPtr->reconControl->fcol; |
| 1795 | |
| 1796 | /* get a listing of the disks comprising the indicated stripe */ |
| 1797 | (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); |
| 1798 | |
| 1799 | /* For previously issued reads, elevate them to normal |
| 1800 | * priority. If the I/O has already completed, it won't be |
| 1801 | * found in the queue, and hence this will be a no-op. For |
| 1802 | * unissued reads, allocate buffers and issue new reads. The |
| 1803 | * fact that we've set the FORCED bit means that the regular |
| 1804 | * recon procs will not re-issue these reqs */ |
| 1805 | for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) |
| 1806 | if ((diskno = diskids[i]) != fcol) { |
| 1807 | if (pssPtr->issued[diskno]) { |
| 1808 | nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); |
| 1809 | if (rf_reconDebug && nPromoted) |
| 1810 | printf("raid%d: promoted read from col %d\n" , raidPtr->raidid, diskno); |
| 1811 | } else { |
| 1812 | new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ |
| 1813 | ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, |
| 1814 | &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare |
| 1815 | * location */ |
| 1816 | new_rbuf->parityStripeID = psid; /* fill in the buffer */ |
| 1817 | new_rbuf->which_ru = which_ru; |
| 1818 | new_rbuf->failedDiskSectorOffset = fd_offset; |
| 1819 | new_rbuf->priority = RF_IO_NORMAL_PRIORITY; |
| 1820 | |
| 1821 | /* use NULL b_proc b/c all addrs |
| 1822 | * should be in kernel space */ |
| 1823 | req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, |
| 1824 | psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, |
| 1825 | NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); |
| 1826 | |
| 1827 | new_rbuf->arg = req; |
| 1828 | rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ |
| 1829 | Dprintf2("raid%d: Issued new read req on col %d\n" , raidPtr->raidid, diskno); |
| 1830 | } |
| 1831 | } |
| 1832 | /* if the write is sitting in the disk queue, elevate its |
| 1833 | * priority */ |
| 1834 | if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) |
| 1835 | if (rf_reconDebug) |
| 1836 | printf("raid%d: promoted write to col %d\n" , |
| 1837 | raidPtr->raidid, fcol); |
| 1838 | } |
| 1839 | /* install a callback descriptor to be invoked when recon completes on |
| 1840 | * this parity stripe. */ |
| 1841 | cb = rf_AllocCallbackDesc(); |
| 1842 | /* XXX the following is bogus.. These functions don't really match!! |
| 1843 | * GO */ |
| 1844 | cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; |
| 1845 | cb->callbackArg.p = (void *) cbArg; |
| 1846 | cb->next = pssPtr->procWaitList; |
| 1847 | pssPtr->procWaitList = cb; |
| 1848 | DDprintf2("raid%d: Waiting for forced recon on psid %ld\n" , |
| 1849 | raidPtr->raidid, psid); |
| 1850 | |
| 1851 | RF_UNLOCK_PSS_MUTEX(raidPtr, psid); |
| 1852 | return (1); |
| 1853 | } |
| 1854 | /* called upon the completion of a forced reconstruction read. |
| 1855 | * all we do is schedule the FORCEDREADONE event. |
| 1856 | * called at interrupt context in the kernel, so don't do anything illegal here. |
| 1857 | */ |
| 1858 | static void |
| 1859 | ForceReconReadDoneProc(void *arg, int status) |
| 1860 | { |
| 1861 | RF_ReconBuffer_t *rbuf = arg; |
| 1862 | |
| 1863 | /* Detect that reconControl is no longer valid, and if that |
| 1864 | is the case, bail without calling rf_CauseReconEvent(). |
| 1865 | There won't be anyone listening for this event anyway */ |
| 1866 | |
| 1867 | if (rbuf->raidPtr->reconControl == NULL) |
| 1868 | return; |
| 1869 | |
| 1870 | if (status) { |
| 1871 | printf("raid%d: Forced recon read failed!\n" , rbuf->raidPtr->raidid); |
| 1872 | rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); |
| 1873 | return; |
| 1874 | } |
| 1875 | rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); |
| 1876 | } |
| 1877 | /* releases a block on the reconstruction of the indicated stripe */ |
| 1878 | int |
| 1879 | rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) |
| 1880 | { |
| 1881 | RF_StripeNum_t stripeID = asmap->stripeID; |
| 1882 | RF_ReconParityStripeStatus_t *pssPtr; |
| 1883 | RF_ReconUnitNum_t which_ru; |
| 1884 | RF_StripeNum_t psid; |
| 1885 | RF_CallbackDesc_t *cb; |
| 1886 | |
| 1887 | psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); |
| 1888 | RF_LOCK_PSS_MUTEX(raidPtr, psid); |
| 1889 | pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); |
| 1890 | |
| 1891 | /* When recon is forced, the pss desc can get deleted before we get |
| 1892 | * back to unblock recon. But, this can _only_ happen when recon is |
| 1893 | * forced. It would be good to put some kind of sanity check here, but |
| 1894 | * how to decide if recon was just forced or not? */ |
| 1895 | if (!pssPtr) { |
| 1896 | /* printf("Warning: no pss descriptor upon unblock on psid %ld |
| 1897 | * RU %d\n",psid,which_ru); */ |
| 1898 | #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) |
| 1899 | if (rf_reconDebug || rf_pssDebug) |
| 1900 | printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n" , (long) psid, which_ru); |
| 1901 | #endif |
| 1902 | goto out; |
| 1903 | } |
| 1904 | pssPtr->blockCount--; |
| 1905 | Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n" , |
| 1906 | raidPtr->raidid, psid, pssPtr->blockCount); |
| 1907 | if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ |
| 1908 | |
| 1909 | /* unblock recon before calling CauseReconEvent in case |
| 1910 | * CauseReconEvent causes us to try to issue a new read before |
| 1911 | * returning here. */ |
| 1912 | pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; |
| 1913 | |
| 1914 | |
| 1915 | while (pssPtr->blockWaitList) { |
| 1916 | /* spin through the block-wait list and |
| 1917 | release all the waiters */ |
| 1918 | cb = pssPtr->blockWaitList; |
| 1919 | pssPtr->blockWaitList = cb->next; |
| 1920 | cb->next = NULL; |
| 1921 | rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); |
| 1922 | rf_FreeCallbackDesc(cb); |
| 1923 | } |
| 1924 | if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { |
| 1925 | /* if no recon was requested while recon was blocked */ |
| 1926 | rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); |
| 1927 | } |
| 1928 | } |
| 1929 | out: |
| 1930 | RF_UNLOCK_PSS_MUTEX(raidPtr, psid); |
| 1931 | return (0); |
| 1932 | } |
| 1933 | |
| 1934 | void |
| 1935 | rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) |
| 1936 | { |
| 1937 | RF_CallbackDesc_t *p; |
| 1938 | |
| 1939 | rf_lock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1940 | while(raidPtr->reconControl->rb_lock) { |
| 1941 | rf_wait_cond2(raidPtr->reconControl->rb_cv, |
| 1942 | raidPtr->reconControl->rb_mutex); |
| 1943 | } |
| 1944 | |
| 1945 | raidPtr->reconControl->rb_lock = 1; |
| 1946 | rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1947 | |
| 1948 | while (raidPtr->reconControl->headSepCBList) { |
| 1949 | p = raidPtr->reconControl->headSepCBList; |
| 1950 | raidPtr->reconControl->headSepCBList = p->next; |
| 1951 | p->next = NULL; |
| 1952 | rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); |
| 1953 | rf_FreeCallbackDesc(p); |
| 1954 | } |
| 1955 | rf_lock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1956 | raidPtr->reconControl->rb_lock = 0; |
| 1957 | rf_broadcast_cond2(raidPtr->reconControl->rb_cv); |
| 1958 | rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); |
| 1959 | |
| 1960 | } |
| 1961 | |
| 1962 | |