Specification of the Exim Mall
Transfer Agent

Exim Maintainers

Specification of the Exim Mail Transfer Agent

Author: Exim Maintainers

Copyright © 2017 University of Cambridge

Revision 4.89 07 Mar 2017

Contents

I [o o 18 od 1] o H TP PP PP PPTPPPPIN 1.
1.1 EXIiM dOCUMENTALIONuiiiiiiiiiieiiiiiie ettt e et e e e e s r e e e e e e e e e e aeeeas 1.
1.2 FTP ANd WED SITES ...ttt e e e e e e e eaeeeas 2.
1.3 MAITING TISTS ..eeeeeeeie ettt e e e e e e e e e e e e e e b e e e e e e e e e aan 2.,
1.4 EXIM TFAINING ©.tttiiiieeeiiiittee et et e e e e e r e e e e e e e s e e et e e e e e e b be e e e e e e e e e e annnnrneeeaeeeas 1 T
R =10 [=] o] 12T I UUPT
1.6 Where to find the EXim diStriDULION ... 3.
A 01 = L0 OO PP PPPPPPPPPPIY b,
1.8 RUN tiIME CONFIQUIATION ...ttt e e e e e el 4......
1.9 CalliNG INTEITACEeeiiiiieeiiei ettt e e e e e e e e e e nnnens A........
1.20 TEIMUNOIOTY .eteeeiieeeiiiiitt ettt e e e e e et e e e e e e et e e e e e e e e e s e e e e aeeeas 4.

A [g Tt] g oTo] = 11=To [oloTo [P PP PP PPPPPPPPPP PPN B.........

3. How Exim receives and delivers mail ... 8.....
3.1 Overall PhilOSOPNYeeiiiiieiii e e e 8.
3.2 PONCY CONTION ...ttt e e e e e e e e e e e 8.........
R B U =] o {11 (=] £ ST PP PPPPPPPPPPPY 8.
3.4 Message identifiCatiONueeiiiiiiiiiie e 9......
3.5 RECEIVING MAII ...t e e e e e e (o N
3.6 Handling an iNCOMING MESSATEcveeeiiiiiiiiiiiieeeee ittt e e e e e e a e e e e e aibbrereeeeeeeaa 10....
3.7 Life Of @ MESSAGE ...ceeieiiiiiiie ettt e ettt e e e e e e e e 10......
3.8 Processing an address for delIVETY ... 11..

3.9 Processing an address for VErifiCatioNcooooiiiiiiiiiieee e 12..
3.10 Running an individual FTOULETooiiiiiiiiiiiiiiiiee e 12....
3.11 DUPICAE AUUINESSESeiiiiiiiieeee ittt e e e e e e e e e e e e 13.....
3.12 ROULET PrECONTITIONS ...eeiiiieeiiiiiiiiie it e e e ettt e e e e e e e e e e et e e e e e s e e e aeeeeas 13.....
3.13 DeliVery iN detallooiuiiiiiieiee e 14......
3.14 REtry MECNANISITuiiiiiiiiiiiiiei ettt e e et e e e e e e e e e e e e e e 15......
3.15 Temporary delivery failure ... 15....
3.16 Permanent delivery failUre ... 15....
3.17 Failures to deliver DOUNCE MESSAGESccceeiiiiiiiiiiiiieeee it 16...

4. Building and installing EXIM ..o 17....
4.1 UNPACKING .ttt e e ettt e e e e e et e e e e e e e e e e e e e e e e n e 17.......
4.2 Multiple machine architectures and operating SYStemSccoeeevriiiiiiieieeeennniiienee. 17
4.3 PCRE TDIATY ..ottt e e et e e e nab e e e enaeeas 17.......
4.4 DBM lIBIAIIES ...cooiieieieiieee ettt e e e e e e 17.......
4.5 Pre-building CONfIQUIALIONcoiiiiiiiiiiiiiiee e 18.....
4.6 SUPPOIT TOF ICONV() ueeeteeieieeeeeeeit ittt e e e et e e e e e st e e e e e e e nnreeeeeeeans 19......
4.7 Including TLS/SSL enCryption SUPPOITuvvirieeeeiiiiiiiiieeeeeeaaiiire e e e e e e e e e 19..

4.8 USE OF LCPWIBPPELS ..eeeieiieeeiiaiitiee et e e e e e ettt e e e e s e st ettt e e e e e e s r e e e e e e e e annbrnneeeeeeeaanns 20......
4.9 Including SUPPOIT FOr IPVGooeiiiiiiiiieiee e 20.....
4.10 Dynamically loaded lookup module SUPPOITeviiiiiiiiiiiiiiieeee e 21.
4.11 The DUIIAING PIrOCESSiiiiiiiiieeiiiie ettt e e e e e 21.....
4.12 OULPUL FTOM “MEAKE”eeiiiiiiiiieitii ittt e e e e e e e e e e e e e r e e e e e e e aaa 21.....
4.13 Overriding build-time optioNs fOr EXIMoooiiiiiiiiiiiiiiee e 21..
4.14 OS-SpeCific NEAdEr flESeeiieiiiie e 23.....
4.15 Overriding build-time options for the Monitorcccoveeiiiiii e 23.
4.16 Installing Exim binaries and SCrPLSccuuviiiiiiiiiiiie e 24...
4.17 Installing iNfo dOCUMENTALIONoiiiiiiiiiiiiiie e e 25....
4.18 Setting up the SPOOI QIFECLONYcieiiiiiiiiiiiiie e 25...

I T == 1 o 25........

4.20 Replacing another MTA With EXIMeeuieiiiiiiiiieeeeeeeeeeeeeeee e 26...
4.21 Upgrading EXIMcooooiiiee s 27......
4.22 Stopping the Exim daemon 0N SOIArIScooovvivviiiiiiiiiiiii 27..

. The EXim command liNE ... 28.....
5.1 Setting options DY Program NAIMEcouiiiiiiiiiiiiii e 28...
5.2 Trusted and adMin USEIScooiiiiiiiiiiiiiiie et e e e e e e e e e 28.....
5.3 Command lIN€ OPLIONScoooiiiiiiii e 29.....

. The Exim run time configuration file ... s 51...
6.1 Using a different configuration file ... 51...
6.2 Configuration file fOrmatoooviiiiiiii h2.....
6.3 File inclusions in the configuration file ... 53..
6.4 Macros in the configuration file ..o b3....
6.5 MACIO SUDSHEIULION ... e e 53......
6.6 RedefiniNg MACIOS ...ccoo i 54......
6.7 Overriding MACIO VAIUEBScooiiiieieeeee e 54.....
ORI e T g o [0 il = Tod €0 U ES7= o = PR 54.....
6.9 BUIIIN MACIOS ..ot e e 54......
6.10 Conditional skips in the configuration filecoo oo 55..
6.11 ComMMON OPLION SYNLAX .ceeeieeiieeeeee e 55.....
L2 2 = To To (== T o o] o 1 o] g =R h5......
B.13 INTEOET VAlUBS ...ttt et e e e e e e e e eeeeeees 56.......
6.14 OcCtal INTEGET VAIUES ...ttt e s eeeeeeeeeeeeeeeeees 56......
LI o = To [o To T 1o 018 0 4] 1= PP 56.....
6.16 TIME INTEIVAISeeeiiiiiie e e e e e e e e e e 56......
LR S] 1o IR 7= 10T R 56.......
6.18 EXpanded StriNGS ...ccooiieeieiieee s 51......
6.19 User and groUp NAIMESccoeiieiieeee e 57.....
6.20 LISt CONSIIUCTION ..eiiiiiiiiiiie it e ettt e e e e e e e e e e e e e e e e e e 57......
6.21 Changing liSt SEPArALOrScceiiiiiiiiiiiiiii e 51.....
6.22 Empty itemMS iN NISES ..ooieiiiieieeeeee e 58.....
6.23 Format of driver configurationsoooo i 58....

. The default configuration file ... e 60....
7.1 Main configuration SETHNGS ...ttt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesd 60....
A N O I oo T oo 18] = [0 [P 63......
7.3 Router CoNfigUIatioNcoooiiiiiieeeeee e 66......
7.4 Transport CONFIQUIALIONoooii i 68.....
7.5 Default retry FUIE «.....ooe i 6q9......
7.6 Rewriting CONfIQUIALIONcooiiiiiiiie e 69.....
7.7 Authenticators configurationooooiiiiiiii i 69....

B =0 U] U= o] =27 (o] R 71......
. File and database I00KUPS ooiiiiiieeeeeeeeeeeee e 12.....
9.1 Examples of different I0OKUP SYNTAXccooeeieiiiiiiiee e 12...
0.2 LOOKUPD Iy PSS ittt ssnnnnnnssnnnsnnnnnnnnnnnsnnnnnnnsdDueeeens
9.3 SiNgle-Key I00KUP TYPESoeieeiiiiiiiiiiei ettt e e a e e 73.....
9.4 Query-style I00KUP tYPESuuueeiiiiieiiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeesdd Deees.
9.5 Temporary errors iN l0OKUPSoovviiiiiiieeeee e 78....
9.6 Default values in single-key 100KUPS ... 16...

9.7 Partial matching in single-key [00KUPS ..o 71...

iv

1S IS T o o] (U o J o= T] T [P 78......

9.9 QUOLING [00KUP data ...ceeeeeeeeeeeeeee s 78.....
9.10 More about dNSADcoooiiiiiiiic e d D
9.11 Dnsdb I00KUP MOMIfIEFSuueiiiiiiiiiiiiiiiiiiiiiiieiiieenieeeeneeeenneeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeesd Qeeen.
9.12 Pseudo dnsdb reCord tyPeSuuuuuuuiriiiiiiiiiiieiiieiiieeeeeeeeeeeeeeeeee et ee e e e eeeeeeeeeeeeees 80....
9.13 Multiple dnsdb I0OKUPS .. .o 81.....
9.14 MOre @abOUL LDAP ...t 81....
9.15 Format Of LDAP QUEIIESooeiiiiiiiiiiiiieieee ettt 81....
S IR I I 7Y o[o]] o o 82......
9.17 LDAP CONNECHIONSiiiiiiiiieeeeieiitee et e et e aeeas 82.....
9.18 LDAP authentication and control informationcccceeeviiiiiiiiieee e 83.
9.19 Format of data returned DY LDAPuuuiiiiiiiiiiiiiiieiiieiieeiieeeeeeeeee e e e eeeeeeeeeens 85...
9.20 MOre @abOUL NISH ... e e e 85......
S I R @]I o o (U | 1RSSR 86.......
9.22 More about MySQL, PostgreSQL, Oracle, InterBase, and RedisSccccccoeviinnnee. 86
9.23 Specifying the Server in the QUETYeeiiiiiiiiiiiiieiiieiiieeiee e e e e eeeeeeas 87...
9.24 Special MYSQL fEALUIESooiiiiiiiiieiieeeeee e 81.....
9.25 Special POStgreSQL fEATUIEScoiiiiiiiiiiiiiii et e e 88....
9.26 More about SQLITE ...coooiiieiieeeeee e 88.....
9.27 MOre @bDOUL REAISoooiiiiiiiiiiiee ettt a e e e 88......
10. Domain, host, address, and local part listS ..o 89..
10.1 EXPANSION OF lISES ...ttt n e e e e e e e e 89......
10.2 Negated iteMS IN HISTSuuiiiiiiiiiiiiii ettt eeeeeeeeeeeeeeeeeeeeeeeeees 89.....
10.3 File NAMES IN TISTS ..o 90......
10.4 An Isearch file is not an out-of-line liSt ... 90..
10.5 NAMEA lISES ...ttt e e e e e e e e
10.6 Named lists compared With MACIOScceevviiiiiiiiiiiii e, 91..
10.7 Named liSt CACNINGcciiiiiiiei ettt e e e eeneeeeee 91.....
10.8 DOMAIN LISESeeeeeeeiiiiiiee ettt e e e s e e e e e e e eeas 92......
F0.9 HOSEHISES ...ttt e e e e e e e e e e e e e e e e 9%.......
10.10 Special NOSt ISt PAIEINS ... 94....
10.11 Host list patterns that match by IP address ... 94.
10.12 Host list patterns for single-key lookups by host addressceeevviiiiiiiiieiiennne. 95
10.13 Host list patterns that match by host name ... 96.
10.14 Behaviour when an IP address or name cannot be foundccccceeviiiiiiinnnnn. 97
10.15 Mixing wildcarded host names and addresses in hoSt liStSeeveeeiiiiiiiiiieienennl! 97
10.16 Temporary DNS errors when looking up host informationcccccceoviiiiiiennen. 98
10.17 Host list patterns for single-key lookups by host name ... a8
10.18 Host list patterns for query-style [00KUPSoooiiiiiiiiii e, 98..
10.19 AAAIESS SIS ...eiieiiiieiieitt e e e e e e e e e e e e 99......
10.20 Case of letters in addreSs lIStSc.uvviiiiiiiiiii e 101.
10.21 LOCAl PATLISIS e 101....
11, SErNQG EXPANSIONS ..eiiiiiiiiieeiiiiiirr e e e e e e e e e e e e e s s e et e e e e e e s nnr e e e e e e e e s s annrrrreeeeeeaanns 102....
11.1 Literal text in expanded StriNgScooovviiiiiiiii 102.
11.2 Character escape sequences in expanded StriNgsScooovveeiieeieeeeeeeeeceeeenees 102
11.3 Testing StriNg @XPaANSIONSccoeeeiiieeeieee e enenne 102..
11.4 Forced expansion failure ... 103..
T ¢ o T= 1 1S3 o (=T 1 L PP 103....
G ¢ o T= T LS (o] g o] 0= = (] PR 114...
11.7 EXPansion CONAItIONScoooiiiiiiieeeee e 120...
11.8 Combining expansion CONAItIONSooooieiiiiiii e 127.
e ¢ o T= 1 LS (o] Y 7= 1 F=] [P 128...
12, EMBEAAEA PEIl ..ot 147.....

12.1 Setting up so Perl can be used ... 147.

12.2 Calling Perl SUDFOULINEScoooiiiiii i 147...
12.3 Calling Exim functions from Perl ... 148.
12.4 Use of standard output and error by Perl ... 148
13. Starting the daemon and the use of network interfaces ... 149
13.1 Starting a listening dAGMONuuuiuuuiiiiiiiiiiiiiiiieeeeeeee e eeee e eeeeeeeeeeeeeeeees 149..
13.2 Special IP listening addreSSEScoovvviiiiiiiiiiiiee e 150.
13.3 Overriding local_interfaces and daemon_Smtp_pPortSccccccvvveeiiiiiiiiiiiiieeeeeeeee. 150
13.4 Support for the obsolete SSMTP (or SMTPS) protocolcccveeeeiiiiiiiiiiiieeeee 150
13.5 IPVE QUUIESS SCOPES .eeeeeeeieieieeiieeieieeeteeateeeaaeeeaaaaaeaeaaaeeeees 151...
RS B G I T E7= T][T 1Y P 151...
13.7 Examples of starting a listening daemon ... 151
13.8 Recognizing the 10Cal NOSTooviiiiiiiiiiiie e 152..
13.9 Delivering to a remote hOSEcoooiiiiii e 152..
2 /=TT I o T U = U1 o] o R 153....
14.1 MISCEIIANEOUSooeiiiiiiiiiiiee ettt e e e e e e e e e e e e aanes 153....
I (g T o T T = 10 4= (= £ PP 153....
14.3 Privilege CONLIOIS ...cooiiiieiieeeeeee e 153....
2 e To T 1] o SRS SRR 154.....
145 FrOZEN MESSAGES .oottuuuiiiaeiiiititti e e e et e etattt e e e aaeeeettbaaaaaeeaeeeseabaaa e e eaeaeeeesnnaannns 154....
I G B = 1 = T (oo (U | 1RSSR 154....
I YT T ST T 1= T PP 154....
14.8 Embedded Perl STartupcoooiiiiioiooie oo 154...
e B - T=T 1 [o 154.....
14.10 RESOUICE CONEIOI .ot e ettt a e e e e 155...
14.11 POLICY CONIOIS ... 155....
14.12 CalloUt CACNEcoeiiiie et e e e e 156....
I I T I SO PP PP PP PPPPTPPPI 156......
I 0 o To= | L=< gl = T o |1 o PR 156...
14.15 All incoming messages (SMTP and NoN-SMTP)ouiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 157
14.16 NON-SMTP iNCOMING MESSAUESuuuuuuuururnunnuenunnnnnnnnnnnnneesensneesenneeeeeeeeeeeeeeeeeeeeeeees 157.
14.17 INCOMING SMTP MESSAQES ...evevveeereuiiueeiiieiieeieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeaeeaeeeeeeees 157..
14.18 SMTP EXIENSIONSutiiiiiiiiiiiiitiie et e e e et e e e e e r e e e e e e e e e e e e e e s e eeeeeas 157...
14.19 ProCeSSIiNG MESSATES ...cceiieeeeeieeaaeeaaaaaaaaaaaaaaaaaaaaaaaaa s s e nnnnnnnnnnnnnnesnnennne 158...
14.20 SYSIEM FILEE ..ceieeiie e e 158....
14.21 ROULING AN AEIVEIYeiieiiiii ettt e et e e e e eeeeeeeeeeas 158...
14.22 Bounce and WarNing MESSAGESceeeeeeeeeieeeeeeeeeeeeeeaaeaaaeaaaaaaaaaaaaaa s s aaaasaa e eeennnnes 159.
14.23 Alphabetical list of Main OPtioNSoooeiiiii i 159.
15. Generic OptioNS fOr FOULEIS oooieii i 206..
G N g T = ToT o= | (11 (] PSP 220....
17. The dnsIOOKUP FOULET oo 221...
17.1 Problems with DNS I0OKUPSeuuuiiiiiiiiiiiiiiiiiiiee ettt e e e e e e e e e eeeeeas 221..
17.2 Declining addresses by dnslookup ... 221
17.3 Private options for dnSIOOKUPoooeeiiiiiee e 222.
17.4 Effect of qualify_single and search_parentscccccooiiiii 224
18. The IPHEEral FOULET ...ttt e e ee e e e e e e e eeeeeas 225....
19. The ipIOOKUP FOULET oo 226....

20. The MANUAITOULE TOULET .eeeieeeie ettt et ettt et et e e e e et e e e e e e e ee e e e reenreenreens 228...

20.1 Private options for ManualrOULecooiiioiiiiiiie e 228.
20.2 Routing rules in route_liStoovviiiiiiiie 229..
20.3 Routing rules in route_datalcovveeiiiiiiiiiiiii 230..
20.4 Format of the lisSt Of NOSESc..uiiiiiiiii e 23Q..
20.5 Format of ONE NOSEITEIM ...ccoiiiiiiieiiece e 231..
20.6 HOW the list Of NOSES IS USEAccoiiiiiiiiiiieiee et 231..
20.7 How the OptioNS @re USEAoooviiiiiiiiiee e, 232..
20.8 Manualroute eXamMPIESuuuuuuiiiiiiiiiiiiiii it eee e e e e e e e e eeeeeeeeeeeeeeeeeees 232...
21. The qUErYPrOgIram FOULET eiiiiiiiiiiiiieeieeeeee ettt ettt ettt e ettt e e et e et e e e e e e et e e e aaaaaaaaaaaaaaaaaaaaens 235...
22. TNE FEAINECE TOULET ...eieiiiiei ittt e e e e e e e e e e e e e e e e e e anes 231....
22.1 REIrECHON TALAvveeeiieeiiiiiiie ettt e e e e e e e e e e e e e e n e 231....
22.2 Forward files and address VErifiCationoccuviiiiiieeiiiiiieeceee e 237
22.3 Interpreting redireCtion dataooooeiiiiiii i 238..
22.4 Items in a non-filter redireCtion liSt ... 238.
22.5 Redirecting to a local MailboXoooiieiiiiii s 238.
22.6 Special items in redireCtion lIStSccoooiiiiiii e 239.
22.7 DUPICAte AOAIESSES ... oo ieeii e nneenne 241...
22.8 Repeated redireCtion @XPANSIONuuueuuuuuuuuuueeeeeeneeenneeneeeneneneereeenneeenneeneeeneeeees 241.
22.9 Errors in redireCtion lISTSooviiiiiiiiiieii e 241..
22.10 Private options for the redir@Ct FOULETuuuuuuiuieeiiieiiiiiieiiieeieeeieeeieeeeeeeeeeeeeeeee 241
23. Environment for running local tranSportS ..o 250
23.1 CONCUITENE AEIIVEIIESeeiiiieiiiiiieie ettt e e e e e e s 250...
PG T O [(o K3 T g To o | o £ SSSRRR 250....
23.3 Current and NOME AIFECIOMIESoeviiiiiiiiiiiiiieee e 251.
23.4 Expansion variables derived from the addresscccccvvvvveiiiiii 251
24. Generic optioNns fOr trANSPOIS .oeeiiiiiiiiieeeee e 252..
25. Address batching in local tranSPOrtS .o 259
26. The appendfile tranNSPOIT uiiiiiiiiiiiiie it eee e e e e e e e eeeeeeeeeeeeeeeeeees 261...
26.1 The file and direCtory OPLiONScoooeiiiiiiei e 261.
26.2 Private options for appendfile ... 262.
26.3 Operational details for appendingcooooiiiiiiiii i 271.
26.4 Operational details for delivery to a new file ... 273
26.5 MalAIr EIVETYeieeiiiiiiieie ettt ettt e et e e e e e e e e eeeeeeeeeeeeeeeeeaeeees 273....
26.6 Using tags to record MESSAQE SIZESccoiiiiieieeeie e eeeeeeeeeeeeneeeeee 274
26.7 Using @ MaildirSize fil@uuueiiiiiiiiiiiiiiiiiiiiiiieii et e e e e e e e e e e e e eeeees 274...
26.8 MaIStOre EIVEIYeeeieiiiiiiiieeeeeeeee et e e e e e e e e e eas 215....
26.9 Non-special new file deliVEery ... 2175..
27. The autoreply tranSPOMT ... 276...
27.1 Private options fOr @QUIOTEPIYuueueiiiiiiiiiiiiiiiiiiiiieiieei et e e e e e e e e e eeeeees 216..
28. The IMP tranSPOIT oo e 279....
29. The PIPE traNSPOIT oo e 281....

Vii

29.1 CoNnCUITENE AEIIVEIY ..coeveeiiieieeee e, 281...

29.2 Returned Status and datalcuveeiiieiiiiiiieee e 281..
29.3 HOW the COMMEANT IS TUNeiiiiiiiiiiiiiie et a e e e e 282..
29.4 ENVIrONMENE VArADIESoiiiiiiiiiiite et e e 283...
29.5 Private OptioNS fOF PIPEeeeeeiiiiiiiieiiiee ettt 283...
29.6 Using an external local delivery agentuuueeeueeiueeeimmnieeiieeiieeeieneeeeeeeeneeeeneee 288
ICTO TR I o ToI= 0 01 R 1= T L= oo o AP 290....
30.1 Multiple messages on a single CONNECLIONc.oovviviiiiiiiiiiiiiieeeeeeeee 290
30.2 Use of the $host and $host_address variablescccoovviieeiiiiiie e 290
30.3 Use of $tls_cipher and $tIS_peerdncoceiiiiiiiiieiie e 290.
30.4 Private options fOr SMIPcooeiiieieeeeeeee s 290...
30.5 How the limits for the number of hosts to try are used ... 301
30 Ao (o [ST SR =T] o o PP 302....
31.1 Explicitly configured addreSs reWritiNgeeueeuueemumemmmnmeeeeeeeeeeneeeneeeeeneeneeeeeeee 302
31.2 When does reWriting NaPPEN? ...t eeeen 302.
31.3 Testing the rewriting rules that apply on iNPUt ... 303
31.4 REWIIHING FUIBSeeiiiiiiiiiiiiiitiiteeteetee ettt ettt e et e e e e e e e e eeeeeeeeeeeeeeeeeeeeees 303....
31.5 ReWrtING PAEINS . ..o 304....
31.6 Rewriting replaCcemeNntscoooiiiiiiie s 305...
31.7 ReWrItING flagS .oooeeeeeeee e 305....
31.8 Flags specifying which headers and envelope addresses to rewrite 305
31.9 The SMTP-time rewriting flagccooveiiriee e 305..
31.10 Flags controlling the reWriting PrOCESSuuuuueiirmeiieiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 306
31.11 REWTrItiNG EXAMPIESuuueiuiiiiiiiiiiiiieeieeetieeieeaeeaeeees 306...
IC YA & (=1 1 VA o0 1110 [0 = 11 (o] o NP 308....
32.1 Changing retry FUIEScoooii i 308...
32.2 FOrmat Of retry TUIESccooei oo 308...
32.3 Choosing which retry rule to use for address errorsceveeveevveeevieeiieeieeeeeeeeee, 309
32.4 Choosing which retry rule to use for host and message errors...........ccccceeeeeeeee.. 309
32.5 Retry rules for SPECIfIC ITOISoiiiiiiiiiiiieei et 310..
32.6 Retry rules for specified SENAErs ..o 311.
32.7 RELrY PArAMELEIS ...ttt e e e e ettt e e e e e e e e ettt e e e aaaeas 312...
32.8 Retry rule @Xamplesooooiiiiiiioi e 312...
32.9 TIMEOUL Of FELIY ALuvueieiiiiiiiiiiiiiiiieiiie ettt e e e e e e e e e e e e eeeeeeeeeeeeeeeeeees 313...
32.10 Long-term failUreScooviiiiiiiiiiii e 313...
32.11 Deliveries that work intermittently ... 314.
33. SMTP QUINENTICALION ..o e e e e e 315...
33.1 Generic options for AUtNENTICAIONSuvueiiiiiiiiiiiiiiiiiieee e 316.
33.2 The AUTH parameter on MAIL cOmMmMaNdScoooiiiiiiiiiiiiiieeeeeeeeeeeeeeee, 318
33.3 Authentication on an EXIM SEIVETccuuiiiiiiiiiiiiiieeee e 318.
33.4 Testing server authentiCationccoovviiiiiiiiiiiiiii e 319..
33.5 Authentication by an EXim CENtuuuiiiiiiiiiiiiiiiiiiiiiiiiieieeiieeieeeeeeeeeeeeeeeeeeeeeeeees 320.
34. The plaintext authentiCator —oooviiiiiiii 321..
34.1 PlainteXt OPLIONS ... e 321....
34.2 Using plainteXt iN @ SEIVETcociiiiiiee e eeeeenee 321..
34.3 The PLAIN authentication MeChaniSmcccuvvviiiiiiiiiiii e 321
34.4 The LOGIN authentication MeChaNISIMcooiiiiiiiiiiiiiiieee e 322
34.5 Support for different kinds of authenticationccccoooiiiiiiiiiiiiiees 323

viii

34.6 Using plainteXt in @ CENToeiiiieeeeeeee e 323..

35. The cram_md5 authentiCator ... e 325..
35.1 USING Cram_MAD5 @S @ SEIVELcoeiiiiiiiiiiiiieiieee ettt ettt e e e e e e e e e e e e aaaaaaaaans 325..
35.2 Using cram_md5 as a ClIeNtoooeeiiiiiii e 325..

36. The cyrus_sasl authentiCator —coooiiiiiiii i 321..
36.1 USING CYrUS_SASI @S @ SEIVEToeeiiiiiiiiiiiieiieee ettt a e e e 321..

37. The dovecot QUtNENTICATON ooiiiiiiiiiii e e e 329..

38. The gsasl authentiCatoroooiiiiiiiiiiii 330...
38.1 gsasl auth variables ... 331...

39. The heimdal_gssapi authenticator ... 332.
39.1 heimdal_gssapi auth variables ... 332.

40. The Spa aULNENTICALON eiiiiiiiiiieee e 333...
40.1 USING SPA 8S @ SEIVEL .eiiiiiiiiiieeeeeee ettt ettt e aeaaeeas 333...
40.2 USING SPA S @ CHENT ... eeeeeeeeeenees 333...

41. The tIS QUINENTICATOT ...coiiiiiiite e e e e s e e e e e aanes 335...

42. Encrypted SMTP connections using TLS/SSL ... 336
42.1 Support for the legacy “ssmtp” (aka “smtps”™) Protocoleeeeeeeeeeeeeeeeeeeeeeennnne. 336
42.2 OPENSSL VS GNUTLS ..ottt e s 336...
42.3 GNUTLS parameter COMPULALIONc.uvvriieeeeeeeiiiii e e e e 337.
42.4 Requiring specific CIphers iN OPENSSLuuiuiiiiiiiiiiiiiieiieiiieeieeeieeeeeeeeeeeeeeeee e 338
42.5 Requiring specific ciphers or other parameters in GNUTLSccccceeiiiiiiiiieneeen. 339
42.6 Configuring an EXim Server to USE TLSooiiiicee e 339
42.7 Requesting and verifying client certificatesccccovvveviiii 341
42.8 ReVOKEd CEITIfICAESoeiiiiiiiiiiiiii e 341...
42.9 Configuring an Exim client to USe TLS ... 342
42.10 Use of TLS Server Name INAICALIONocvuviiiiiieeieiiieee e 343
42.11 Multiple messages on the same encrypted TCP/IP connectioncccceee.... 344
42.12 Certificates and all thatoooiiiiii s 344...
42.13 CertifiCate CRAINScooiiiiiiii e e 345...
42.14 Self-Signed CErtifiCAtESc.uviiiiiieeiiii e e 345..

43. ACCESS CONMIOI lISES .t 346....
2 0t R 1= 1 o 2 PSPPSR 346....
43.2 Specifying When ACLS are USEdcccooiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeseeeeees 346.
43.3 The NON-SMTP ACLSuiiiiiiiiieiii et e e e e 3417...
43.4 The SMTP CONNECE ACL ...t e s 34.7...
43.5 The EHLOHELO ACL ...ttt e e e 341...
43.6 TNE DATA ACLS ...ceieeeiiiee ettt e e e e e e e e e e e e e ennnees 347....
43.7 The SMTP DKIM ACL ...ooiiiiiiiiiiie ettt e e e e 348...
43.8 The SMTP MIME ACL ...ttt a e e 348...
43.9 The SMTP PRDR ACL ...oiiiiiiiiiiiiiii et 348...
43.10 THE QUIT ACKL ittt e e e e e e e e e e e e e e e s eaee s 348....
43.11 The NO-QUIT ACL ..eiiiiiiiiiiiiiiei ittt e e e s e e e e as 349...

iX

43.12 FiNdING QN ACL 0 USE ...coiiiiiiiiiieiiieee ettt 349...

43.13 ACL FELUIMN COUES ...cciiiiiiiiiieie e e ettt ennnnees 350...
43.14 UNSEt ACL OPLIONS ..ooeiiiiiieeeeee e 350...
43.15 Data for meSSAge ACLSooiiiiiiieiieeeieeeeee e 351..
43.16 Data for NON-mMeSSage ACLSccoiiiiiiiee e 351.
43.17 FOrmat Of @n ACLcooiiiiieieii e 351...
43.18 ACL VEIDS ...ttt e et e e e 352....
43.19 ACL VANADIESoeeeiiiiieieie et e e e e e 353....
43.20 Condition and Modifier ProCESSING ...cceeeeeieeeeeeeee s 354
43.21 ACL MOGIFIEIS ...eetieiiieeeee ittt e e e e e e e e e e e e e e e e e e e annes 355....
43.22 Use of the control MOIfIENoeiiiiiiiie e 359..
43.23 Summary of message fiXUp CONIOLcooiiiiiiiiiiiie e 363
43.24 Adding header liNeS iN ACLScoooiiiiii s 363.
43.25 Removing header NS iN ACLSuuuuuuiiiiiiiiiiiiiiiieiiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 364.
43.26 ACL CONITIONSiiiiiiiiiiee et ennnnreeeeeeas 365....
43.27 USING DNS SIS ...ereiieiiiiiiiiiii ettt e e e e e e 369....
43.28 Specifying the IP address for a DNS list I0OKUPccvvviieiiiiiiiiiiccee i 370
43.29 DNS lists keyed on dOmMain NAMESeeeiiiiiiiiiiiiieiee e e s 370
43.30 Multiple explicit keys for a DNS ISt ..o 371
43.31 Data returned by DNS lISIS ...ccooiiiiiii i 371..
43.32 Variables set from DNS lIStSooiiiiiiiiiiiii e 372.
43.33 Additional matching conditions for DNS liStSccccooiiiiiiiiiiiiiiiieeeeeees 372
43.34 Negated DNS matching CONAItIONSuuuiuiuiimuiiiiiiiiiiiiieieeeieeeeeeeeeeeaeeeeeeeeeeaee 373
43.35 Handling multiple DNS records from a DNS liStccvviiiiiiiiiiiiiece e 373
43.36 Detailed information from merged DNS liStSccvviiiiiiiiiiiiie e 374
43.37 DNS [IStS QN IPVGooviiiiiiiiiiieiiiic et 375...
43.38 Rate limiting iNCOMING MESSAQGESuuvururuuruuniinuinnneenurnneeneeenneeenenenensneenneeseeeneeeeees 3175.
43.39 Ratelimit options for what is being measuredccccvveeiiiiiiiiiiiiiiiiieeeeeee 3176
43.40 Ratelimit UPAAte MOUESuuuiiiiiiiiiiiii ittt eeebeeseeeeeeeeseeseeeeeeeeeeeeees 377...
43.41 Ratelimit options for handling fast ClIieNtSuuieiiiiiiiiiiiiiiiiiiieeeeeeeeeee 377
43.42 Limiting the rate of different eVents ... 378
43.43 USING rate lIMItING ...ttt e s eeeeeeeeeeeees 378...
43.44 AdAress VEIIICATIONuviiiiieee ettt e e e e 379...
43.45 CalloUt VEIIFICALIONeeviiiieiee et e e e e 380...
43.46 Additional parameters for callouts ... 381
43.47 Callout CACNINGcooeiiii i 383....
43.48 Sender address verification rePOrtingccc.veeeeeeeeriiiiiiiiee e 383
43.49 Redirection wWhile VErifyingcoovvriiiiiii 383..
43.50 Client SMTP authorization (CSA)eeeiiiooiiiiieeee et 384.
43.51 Bounce address tag validation ... 385.
43.52 Using an ACL t0 CONtrol relayingoooooooeoooeieee e 386.
43.53 Checking a relay configuration ..., 387.
44. Content scanning at ACL tIMe ..o e 388..
441 SCaNNING TOF VIFUSESooiieiieeeeee et 388...
44.2 Scanning with SpamAssassin and Rspamd ... 392
44.3 Calling SpamAssassin from an EXim ACL ... 394
44.4 Scanning MIME PArtSoooviiiiiiiiiiii e 395...
44.5 Scanning with regular @XPreSSIONSuuueeuuueuirueieeieeneeeeeeeneeeeeeeeeneneeeneeseeeeeeeees 398.
45. Adding a local scan function to EXim ... 399
45.1 Building Exim to use a local scan functionccccueeeeviiiiieiiieiiiiiieiiieeeeeeeeeeeee. 399
VYA N o I (o) gl (o Tox= | o= o T SRR 399...
45.3 Configuration options for local_Scan()ccooeeieeiiiiiii 400
45.4 Available EXim variablesoooiiii e 401..
45.5 Structure 0f NEAUET lINESoiiiiiiii e 403..

X

45.6 Structure Of reCIPIENT ITEIMSuuiiiiiiiiiiiiiiiiiiiieieeiiees 403..

45.7 Available EXim fUNCLONSuiiiiiiiiiie e 404...
45.8 More about Exim’'s memory handling ... 408
46. System-wide mesSSage filteriNg ...oveeiiiiiiii e 409..
46.1 SpPecCifying a SYStEM fIlter ... et eeeeeees 409..
46.2 Testing a system filter ... 4009...
46.3 Contents of @ system filter ... 409..
46.4 Additional variable for system filters ... 410
46.5 Defer, freeze, and fail commands for system filtersccccc 410
46.6 Adding and removing headers in a system filter...........ccccoo 411
46.7 Setting an errors address in a system filter ... 411
46.8 Per-address filteringooovoveiiiiie 412...
A7. MESSAJE PrOCESSING 1ieeiieiieeiieee et e e e e e 413...
47.1 Submission mode for Non-local MESSAGESuuuuuiriuiiiiiiiiiiiiiiiiieiieeieeeeeeeeeeeeeeeeee 413
A7.2 LINE BNAINGS ..oiiiiieiieeiee e 414....
47.3 Unqualified addreSSeScoooeeeiiiiiiiei e AL AL
47.4 The UUCP From lINE ..ottt e e 415...
47.5 ReSeNt- NEAUET lINES ..o e e 415...
47.6 The Auto-Submitted: header N ... 416.
47.7 The BCC: header liNEoceiiiiiieiee e 416...
47.8 The Date: header lINEoooiiiiiii e 416...
47.9 The Delivery-date: header liNeuuuuiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 416.
47.10 The Envelope-to: header liN@ ... eeeeeees 416.
47.11 The From: header lINEooiiiiiiiee e 416...
47.12 The Message-ID: header liNe eeeeeeeeeeeeees 417.
47.13 The Received: Neader liNE ... 417..
47.14 The References: NEAUEr NGcoooiiiiiiiiiiii e 417..
47.15 The Return-path: header lIN@ eeeeeeeeeeeeees 417.
47.16 The Sender: header lINE ... 417...
47.17 Adding and removing header lines in routers and transSportscccccccveeeeeeeeee. 418
47.18 CONSLruCted AAUIESSESeeiiiieiiiiiiiiiiie et e e e e e e e e e 419..
47.19 Case Of l0Cal PANTS ...ooviiiiiieeeeeeeee 42Q...
A7.20 DOtS iN [OCAI PAITS ...ttt s e e e e seeeeees 420...
47.21 ReWNtING AAAMESSES ...coeeiiiiiiieiieee e 420...
48. SMTP PIOCESSING .ereeeeeieeiiiiiiiiteeet e e e e e et e e e e e s s s ree e et e e e e s e s r e e e e e e e e e e sannbbsneeeeeeesaannns 421....
48.1 Outgoing SMTP and LMTP over TCP/IP ... A2
48.2 Errors in outgoiNg SMTP ..ot 422 ..
48.3 Incoming SMTP messages over TCP/IPcccvvivveiiiiiiiiiieeeceeeeieeeee e A23
48.4 Unrecognized SMTP COMMANGASuuuuuuumuuiieiiinieeeeeeieneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 425.
48.5 Syntax and protocol errors in SMTP COMMANdSccccvmiiirieeinnniiiiiee e 425
48.6 Use of non-mail SMTP COMMANTScoveeiiiiiimiiiiiieeeeiiiieieeeee e e e A28,
48.7 The VRFY and EXPN COMMANGScooiiiiiiiiiieeieiiiiieee e 425.
48.8 The ETRN COMMANTooiiiiiiiiiiiiiiii et e e e e 425...
48.9 INCOMING 10CAI SIMTP ...ttt eeee e sseeeseeseeeeeeeeeeeeeeeeeeeees 426...
48.10 Outgoing batched SMTPoooiiiii 426..
48.11 Incoming batched SMTP ..o 427..
49. Customizing bounce and warning MESSAQES eevurrrrreruermeeeeeeeerenreeeeeeeeeeeeeeeereeeeeees 428
49.1 Customizing DOUNCE MESSAGEScceiiiiiei e 428.
49.2 Customizing WarniNg MESSAJES ...uuuuuuuuuuuunnunnnnnnnnnnnnnennnennnennnennnnennennsnnnssnsnsnnnssnnssees 429.

Xi

50. Some common configuration SELHNGS —oviiiiieiiiiiiiiei e 430

50.1 Sending mailto a smart NOStccooevviiiiiiiiiiieeee L A30.
50.2 Using Exim to handle mailing liStSccccccvviiiiimmiimiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeee . A30.
50.3 Syntax errors in Mailing lIStSuuuviiiiiiiiiiiiiiiiiiiiiiieiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee . 4301
50.4 Re-expansion of mailing listS ... A3
50.5 Closed MailiNg [ISTSuueiieiiiiiiiieiiiieeeeeee ettt e e e e e e e e e aaaaaeas 431...
50.6 Variable Envelope Return Paths (VERP) ... A32
50.7 VIrtual OMAINS ...t e e e e e e e e e eeeeas 433....
50.8 Multiple user MailbOXeSoooiiiiiii 434...
50.9 Simplified vacation PrOCESSINGuiiiiiiiiiiiiiiiieiiiei ettt a e e aaaaaaaaeas 435.
50.10 Taking copies Of Mall ..o 435...
50.11 Intermittently connected NOSESccoooiiiiiiiii e 435.
50.12 Exim on the upstream Server NOSt ... 435.
50.13 Exim on the intermittently connected client NOStcccccoiiiiiiiiiiiieees 436
51. Using Exim as a non-queueing ClIeNt ... 437.
G2 o T i {1 =PSRRI 1c.1° IS
52.1 Where the [0gS are WIItEEINuuuuuiieeiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeneeeees 439..
52.2 Logging to local files that are periodically “cycled”ccoouuuiiiiiiiieiiiiiiiiiieeieeeee. 440
52.3 Datestamped 10g fileS ... 440...
52.4 LOgQiNG t0 SYSIOQ «.eeeeeeiiiiiiiiiiiiiiieeeeeeeeeeeee ettt AADL
YA I Mo o N 11 = =T £ SSRRRRRR 442....
52.6 L0QQing MeSSage rECEPLION ...coeeeeei et 442..
52.7 Logging AeliVEIIES ...ccoeeiiieeeeee e 443...
52.8 Discarded delIVEIIESccuuiiiiiiiiee e 444...
52.9 Deferred delIVEIIESoiiiiiiiiiiiii et e e 444...
52.10 Delivery failuresoooiiiiiiiiiiiiiiiiieieeee e A4
52.11 FAKE EIVEIIESoeeiiiiiiiiiee et e e e e 445....
52.12 COMPIBLION ... ennee 445 ...
52.13 Summary of Fields in LOg LINEScc.uuiiiiiiiiiiiiiiiee e 445.
52.14 Other 10g ENIHES ...oooeiiiieeeeeeeeee e 445....
52.15 Reducing or increasing what is 10ggedeeeveeiiieiiiiiiiiiiiiiiieiiieiieeeeeeeeeeeeeeeen 446
52.16 MESSAQE 100 «eeieeiiiiiiiiiieiiiee e 450Q....
53. EXIM ULIITIES oot e e e e e e e e s e e e e e e e 451.....
53.1 Finding out what Exim processes are doing (exiwhat)cccccviiiiii 451
53.2 Selective queue listing (EXIQOIEP) - oeeeeeeeeeeeeeee e 451.
53.3 Summarizing the queue (EXIQSUMIM)oiiiiiiiiiiiiei et a e e e aaaaaaaaeas 452
53.4 Extracting specific information from the log (eXIgrep)cooveveeeeeiieee e 453
53.5 Selecting messages by various criteria (EXIPICK)oovvviiiiiiiiiii 453
53.6 Cycling log files (EXICYCIOG) .oevviiiiiiiiiiiiiiiiee e 454..
53.7 Mail statistiCS (EXIMSIALS) ..ovvviiiiiiiieie e 454..
53.8 Checking access policy (exim_checkacCess)coooeiiiiiiiiiieiiii s 455
53.9 Making DBM files (exim_dbmbuild) ... 455,
53.10 Finding individual retry times (EXINEXL)cooieeiiiiiiee e 456
53.11 Hints database MaiNtENANCEc.uiiiiiiiiiii e 456..
EoIC T0 2 <> d .4 e [0] Lo | TSP 457....
53.13 eXIM_tidYdD ...eoeiiieee e 457.....
53.14 eXiM_fIXUD ..o ADB L
53.15 Mailbox maintenance (eXim_I0CK)oovviiiiiiiiiiiiiiiiiiiiiiiiieiieeieeeeeeeeeeeeeeeeeeeen . ABS,
54. The EXIM MONITOT ...ooiiiiiiiiiie et e e e e e s e e e e e e nnnnnne s 460....
54.1 RUNNING the MONITOT ..o 46Q0...

Xii

o I g oI i] o od = T PRSP 460....
54.3 Main aCtiON DULLONSoeiiiiiiiiiiiiii et e s 461...
oY I g T (o T 0 L] o] = PRSP 461....
54.5 The queUe diSPIayccooiiiiiiiee i eeee 462...
54.6 THE QUEUE MENU ...oiiiiiiiiiiiiieiieeiieteeeeeeebeeeeeeneeeneeenseennesssnssnssssessesseneeeeeeeee s AB20
55. Security CONSIAEIALIONS ..o e e e e e e e e e e e e 465...
55.1 Building a more “hardened” EXiMccoooiiiiiiiiiii e 465.
55.2 ROOL PrIVIIEOE oeeeiiieeiiieeeeeeeeee 465....
55.3 Running EXim WithOUt Privilegeooor i 467..
55.4 Delivering to [0Cal fileScccooiiiiieieeeeeeeeeveeeveeeeeeeeeeeeeeeeeee s ABBL
55.5 Running local commandsoooiiiiiiiiiiiii 468..
55.6 Trustin configuration dataooooiiiiiiiiiii e 468..
55.7 IPVA SOUICE FOULING .eeiiiiiiiiiiiiiieeee et 469...
55.8 The VRFY, EXPN, and ETRN commands in SMTPccooooviiiiiiiie e, 469
55.9 Privileged USEIS ..o e 469....
55.10 SPOOIFIIES ..o ABOL L
B55.11 USE OF @rQV]0] -.eeueeuueinuuuuniinieiniinnieeiieeieeeteeaeeeeeeeees 469....
55.12 Use of %f formattingooooeiiiiiiiie e 470...
55.13 Embedded EXim pathcccccoviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee L ATO.
55.14 Dynamic Module dir€CIONYcooeiiiiiiiii e 470..
55.15 USE Of SPINF() coeeeeeeeeeeee e 470....
55.16 Use of debug_printf() and 1og_Write()ooovvrrriiiiiiiii 470
55.17 Use of strcat() and StrCPY() «.eeeeeeeeeeemememmmmmmemmmmerinerieee A 0.
56. Format Of SPOO0I fil@S ..o 471 ...
56.1 FOrmat of the -H fil@ooi e 471...
57. Support for DKIM (DomainKeys ldentified Mail) ooeiiiiioiiieeee e 2 476
57.1 Signing OUtgOiNg MESSAUES -...ceeeeeeeeeeeeeeeeeeeeee e ea e e e aa e aae e e e s aa s aa e e ennennnnnes 416..
57.2 Verifying DKIM signatures in incoming mailccooooiiiiiiiiiiiiieees 477
58, PrOXIES .ttt e e e e e e e e e e e 480......
58.1 INDOUN PrOXIES ..o e 480....
58.2 OUDOUN PrOXIES ...ooiiiiiiiieiee e 480....
o1 S TRC T o T o |1 o PSSR 481.....
59. InternationaliSAtiON cccueiiiiiieeeii e BB 20
59.1 MTA OPEIALIONS ..ottt ettt ettt et e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaens 482....
59.2 MDA OPEIALIONS ... e 482....
LT O Y =T o | £ PP 484......
61. Adding new drivers or IOOKUP tYPES .ooeiiiiiiiiieieiieeieeeeeeeeeeeeeeeeeeeeee e ABB
OPLONS INABX e 481......
VariabIES INAEX ...t e e e e e e e e e 493.....
LOT0] g Tol=T o | 1T [495.....

Xiii

1. Introduction

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AlIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HI-

UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2 (aka
UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix (formerly Digital UNIX, formerly DEC-
OSF1), Ultrix, and Unixware. Some of these operating systems are no longer current and cannot
easily be tested, so the configuration files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about run-
ning Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in tiNCiiléCE Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the fileLICENCE

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, | could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. | am grateful to them all. The
distribution now contains a file callelCKNOWLEDGMENTSn which | have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.89 of Exim. Substantive changes from the
4.88 edition are marked in some renditions of the document; this paragraph is so marked if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An “easier” discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitldthe Exim SMTP Mail Servedsecond edition, 2007), pub-
lished by UIT Cambridgehtp://www.uit.co.uk/exim-book/).

This book also contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note

that the earlier book about Exim, published by O’Reilly, covers Exim 3, and many things have

changed in Exim 4.)

If you are using a Debian distribution of Exim, you will find information about Debian-specific
features in the filéusr/share/doc/exim4-base/README.Debifihe commandnan update-exim.conf
is another source of Debian-specific information.

1 Introduction (1)

As the program develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manual are placed in the file
doc/NewStufin the Exim distribution.

Some features may be classified as “experimental”. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in theddéexperimental.txt

All changes to the program (whether new features, bug fixes, or other kinds of change) are noted
briefly in the file calleddloc/ChangelLog

This specification itself is available as an ASCII filednc/spec.txso that it can easily be searched
with a text editor. Other files in tlocdirectory are:

OptionLists.txt list of all options in alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 a man page of Exim’s command line options
experimental.txt documentation of experimental features
filter.txt specification of the filter language
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4
openssl.txt installing a current OpenSSL release

The main specification and the specification of the filtering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Sec 1.6 below tells you how to get hold of these.

1.2 FTP and web sites

The primary site for Exim source distributions is currently the University of Cambridge’s FTP site,
whose contents are describedvifhere to find the Exim distributidmelow. In addition, there is a web

site and an FTP site &xim.org. These are now also hosted at the University of Cambridge. The
exim.org site was previously hosted for a number of years by Energis Squared, formerly Planet
Online Ltd, whose support | gratefully acknowledge.

As well as Exim distribution tar files, the Exim web site contains a number of differently formatted

versions of the documentation. A recent addition to the online information is the Exim wiki

(http://wiki.exim.org), which contains what used to be a separate FAQ, as well as various other
examples, tips, and know-how that have been contributed by Exim users.

An Exim Bugzilla exists ahttp://bugs.exim.org. You can use this to report bugs, and also to add
items to the wish list. Please search first to check that you are not duplicating a previous entry.

1.3 Mailing lists

The following Exim mailing lists exist:
exim-announce@exim.org Moderated, low volume announcements list

exim-users@exim.org General discussion list
exim-dev@exim.org Discussion of bugs, enhancements, etc.
exim-cvs@exim.org Automated commit messages from the VCS

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-specific mailingpisg-exim4-users@lists.alioth.debian.aig

this web page:

http://lists.alioth.debian.org/mailman/listinfo/pkg-exim4-users
Please ask Debian-specific questions on this list and not on the general Exim lists.

2 Introduction (1)

1.4 Exim training

Training courses in Cambridge (UK) used to be run annually by the author of Exim, before he retired.
At the time of writing, there are no plans to run further Exim courses in Cambridge. However, if that
changes, relevant information will be postetitb://www-tus.csx.cam.ac.uk/courses/exim/

1.5 Bug reports

Reports of obvious bugs can be emailed bogs@exim.orgor reported via the Bugzilla
(http://bugs.exim.org). However, if you are unsure whether some behaviour is a bug or not, the best
thing to do is to post a message todkien-devmailing list and have it discussed.

1.6 Where to find the Exim distribution
The master ftp site for the Exim distribution is
ftp://ftp.csx.cam.ac.uk/pub/software/email/exim
This is mirrored by
ftp://ftp.exim.org/pub/exim

The file references that follow are relative to #sémdirectories at these sites. There are now quite a
number of independent mirror sites around the world. Those that | know about are listed in the file
calledMirrors.

Within the eximdirectory there are subdirectories callexim3 (for previous Exim 3 distributions),
exim4(for the latest Exim 4 distributions), aniéstingfor testing versions. In thexim4subdirectory,
the current release can always be found in files called

exim-n.nn.tar.gz
exim-n.nn.tar.bz2

wheren.nnis the highest such version number in the directory. The two files contain identical data;
the only difference is the type of compression. Hz2file is usually a lot smaller than tigzfile.

The distributions will be PGP signed by an individual key of the Release Coordinator. This key will
have a uid containing an email address in ¢ixén.orgdomain and will have signatures from other
people, including other Exim maintainers. We expect that the key will be in the "strong set" of PGP
keys. There should be a trust path to that key from Nigel Metheringham’s PGP key, a version of
which can be found in the release directory in thetilgel-pubkey.asll keys used will be available

in public keyserver pools, such mol.sks-keyservers.net

At time of last update, releases were being made by Phil Pennock and signed with key
0x403043153903637Rlthough that key is expected to be replaced in 2013. A trust path from Nigel's
key to Phil's can be observedhdtps://www.security.spodhuis.org/exim-trustpath

Releases have also been authorized to be performed by Todd Lyons who signs with key
0xC4F4F94804D29EBAA direct trust path exists between previous RE Phil Pennock and Todd
Lyons through a common associate.

The signatures for the tar bundles are in:

exim-n.nn.tar.gz.asc
exim-n.nn.tar.bz2.asc

For each released version, the log of changes is made separately available in a separate file in the
directoryChangelLogso that it is possible to find out what has changed without having to download
the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files insid&ithédirectory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz

3 Introduction (1)

exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

These tar files contain only thdoc directory, not the complete distribution, and are also available in
.bz2as well asgzforms.

1.7 Limitations

» Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP “bang paths”, though simple two-component bang paths can
be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are
used.

» Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
gualified on arrival.

» The only external transport mechanisms that are currently implemented are SMTP and LMTP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to files and pipes, optionallypatched SMTHormat; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

» Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large, it
is better to get the messages “delivered” into files (that is, off Exim's queue) and subsequently
passed on to the dial-in hosts by other means.

» Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.8 Run time configuration

Exim’s run time configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and
is described in chap@ 7 below.

1.9 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement forusr/lib/sendmailor /usr/sbin/sendmaiwhen sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for exabypleshich lists

the messages on the queue) do so in Exim’s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. CElapter 5 documents all
Exim’s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program callegimon which displays current information in an X window,
and which contains a menu interface to Exim’s command line administration options.

1.10 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated fromhthader(see below) by a blank line.

4 Introduction (1)

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a “non-delivery report” (NDR). The tebmunceis commonly used for this action, and

the error reports are often callbdunce messageshis is a convenient shorthand for “delivery failure
error report”. Such messages have an empty sender address in the me=msagejse(see below) to
ensure that they cannot themselves give rise to further bounce messages.

The termdefaultappears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The termdeferis used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries areleferreduntil a later time.

The worddomainis sometimes used to mean all but the first component of a host's namexdt is
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associatedelope as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The headerof a message is the first part of a message’s text, consisting of a number of lines, each of
which has a name such &wom:, To:, Subject; etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The termlocal part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is callddrtteenor mail domain

The termdocal deliveryandremote delivenare used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. As far as Exim is concerned, all hosts
other than the host it is running on ageote

Return pathis another name that is used for the sender address in a message’s envelope.

The termqueueis used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim’s case the reality is more like a pool than a
gueue, because there is normally no ordering of waiting messages.

The termqueue runners used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs, and also relates to the
commandung, but in Exim the waiting messages are normally processed in an unpredictable order.

The termspool directoryis used for a directory in which Exim keeps the messages on its queue — that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a “spool directory” by some people. In the Exim documen-
tation, “spool” is always used in the first sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

* Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright © University of Cambridge. The source to PCRE is ho
longer shipped with Exim, so you will need to use the version of PCRE shipped with your system,
or obtain and install the full version of the library from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

» Support for the cdb (Constant DataBase) lookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is com-
pletely contained within the code of Exim. It does not link against an external cdb library. The code
contains the following statements:

Copyright © 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This code implements
Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code
for cdb can be obtained fromnttp://www.pobox.com/~djb/cdb.html. This implemen-

tation borrows some code from Dan Bernstein’s implementation (which has no license
restrictions applied to it).

» Client support for Microsoft'sSecure Password Authenticatiamprovided by code contributed by
Marc Prud’hommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

» Support for calling the Cyrupwcheckandsaslauthddaemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright © 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) The name “Carnegie Mellon University” must not be used to endorse or promote
products derived from this software without prior written permission. For per-
mission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer@andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

“This product includes software developed by Computing Services at Carnegie
Mellon University fttp://www.cmu.edu/computing/”

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

6 Incorporated code (2)

OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE
MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

» The Exim Monitor program, which is an X-Window application, includes modified versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and
the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of Digital or MIT not be used in
advertising or publicity pertaining to distribution of the software without specific, writ-
ten prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

* The DMARC implementation uses the OpenDMARC library which is Copyrighted by The Trusted
Domain Project. Portions of Exim source which use OpenDMARC derived code are indicated in
the respective source files. The full OpenDMARC license is provided in the LICENSE.opendmarc
file contained in the distributed source code.

* Many people have contributed code fragments, some large, some small, that were not covered by

any specific licence requirements. It is assumed that the contributors are happy to see their code
incorporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered immedi-
ately. Consequently, Exim does not maintain independent queues of messages for specific domains or
hosts, though it does try to send several messages in a single SMTP connection after a host has been
down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAs being abused as “open relays” by misguided individuals who
send out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

« Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control List§ACLS). Each list is a series of statements that may either grant or deny
access. ACLs can be used at several places in the SMTP dialogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very
end of the message. The sysadmin can specify conditions for accepting or rejecting individual
recipients or the entire message, respectively, at these two points (see pter 43). Denial of access
results in an SMTP error code.

* An ACL is also available for locally generated, non-SMTP messages. In this case, the only avail-
able actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result of
such a scan is passed back to the ACL, which can then use it to decide what to do with the
message.

* When a message has been received, either from a remote host or from the local host, but before the
final acknowledgment has been sent, a locally supplied C function dattatl scan()can be run to
inspect the message and decide whether to accept it or not (see pter 45). If the message is
accepted, the list of recipients can be modified by the function.

» Using thelocal_scan()mechanism is another way of calling external scanner software SFhe
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

» After a message has been accepted, a further checking mechanism is available in the form of the
system filtesee chapt6). This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are_able to run private filters by setting up appropriate
forwardfiles in their home directories. See cha 22 (aboutdb@&ectrouter) for the configuration
needed to support this, and the separate document eriitiets interfaces to mail filterindor user
details. Two different kinds of filtering are available:

» Sieve filters are written in the standard filtering language that is defined by RFC 3028.

» Exim filters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User filters are run as part of the routing process, described below.

8 Receiving and delivering mail (3)

3.4 Message identification

Every message handled by Exim is givemassage iavhich is sixteen characters long. It is divided

into three parts, separated by hyphens, for exarhféDhn-0001bo-D3 . Each part is a sequence

of letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct file names, and the names of
files in those systems are not always case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

» The first six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this field contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

 After the first hyphen, the next six characters are the id of the process that received the message.
» There are two different possibilities for the final two characters:

(1) If localhost_numberis not set, this value is the fractional part of the time of reception,
normally in units of 1/2000 of a second, but for systems that must use base 36 instead of base
62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(2) If localhost_numberis set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this case is in units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving mail

The only way Exim can receive mail from another host is using SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such as a user’'s MUA), there are several possibilities:

 If the process runs Exim with thdom option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the messdgs if
also used.

« If the process runs Exim with théS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. This is so-called “batch SMTP” format, but it isn’t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

 If the process runs Exim with thdos option, the message is read interactively, using the SMTP
protocol. A two-way pipe is hormally used for passing data between the local process and the Exim
process. This is “real” SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLs for SMTP commands are used for this form of submission.

» A local process may also make a TCP/IP call to the host's loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specially. It treats all such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set Quali/_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (“trusted

9 Receiving and delivering mail (3)

users”) to specify a different sender address unconditionally, or all users to specify certain forms of
different sender address. THeoption or the SMTP MAIL command is used to specify these different
addresses. See sect 5.2 for details of trusted users, aodtthsted_set_sendewoption for a way

of allowing untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL, if one is defined. Messages received using SMTP (either over TCP/IP, or interacting with
a local process) can be checked by a number of ACLs that operate at different times during the SMTP
session. Either individual recipients, or the entire message, can be rejected if local policy require-
ments are not met. Thecal _scan()function (see chapt5) is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these

situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, folloviredidnythe file
containing the envelope and header, dhdor the data file.

By default all these message files are held in a single directory calted inside the general Exim

spool directory. Some operating systems do not perform very well if the number of files in a directory
gets large; to improve performance in such casesspiie spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.
When this is done, the queue is processed one sub-directory at a time instead of all at once, which can
improve overall performance even when there are not enough files in each directory to affect file
system performance.

The envelope information consists of the address of the message’s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in cha 56.

Address rewriting that is specified in the rewrite section of the configuration (see c@ter 31) is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see pte 5 and 24).

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed — for example, when a message can neither be delivered to its recipi-
ents nor returned to its sender, the message is marked “frozen” on the spool, and no more deliveries
are attempted.

An administrator can “thaw” such messages when the problem has been corrected, and can also
freeze individual messages by hand if necessary. In addition, an administrator can force a delivery
error, causing a bounce message to be sent.

There are options calle@ynore_bounce_errors_after and timeout_frozen_after, which discard
frozen messages after a certain time. The first applies only to frozen bounces, the second to any
frozen messages.

While Exim is working on a message, it writes information about each delivery attempt to its main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter

10 Receiving and delivering mail (3)

). The log lines are also written to a sepanaiessage lodile for each message. These logs are
solely for the benefit of the administrator, and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message_logshis might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followedby At the end of a delivery run, if there are
some addresses left to be tried again later, the first spool fileKtifée) is updated to indicate which

these are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are cattaders and transports and collectively
these are known adrivers Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

Each driver that is specified in the run time configuration isrnstanceof that particular driver type.
Multiple instances are allowed; for example, you can set up several diffengipttransports, each

with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A routeris a driver that operates on an address, either determining how its delivery should happen, by
assigning it to a specific transport, or converting the address into one or more new addresses (for
example, via an alias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transportis a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: forlacal transport, the destination is a file or a pipe on the local
host, whereas for emotetransport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each recipi-
ent address in a message is processed in a small configuration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
this is only an example. You can configure Exim’s routers in many different ways, and there may be
any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specially by the local host. These are typically addresses for arbitrary domains on
the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that ehatch. Typically, this

is a router that looks up domains in the DNS in order to find the hosts to which this address routes. If

it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The second router is reached only when the domain is recognized as one that “belongs” to the local
host. This router does redirection — also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,

11 Receiving and delivering mail (3)

the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of a login account,

or it may look up the local part in a file or a database. If its preconditions are not met, or if the router

declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim’s routers are also wesddiéss
verification Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested digingritie
-bvs command line options.

When an address is being verified, the routers are run in “verify mode”. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program, unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
theno_verify option would be set for such a router, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a routeare met, the router is run. What happens next depends on the outcome,
which is one of the following:

» accept The router accepts the address, and either assigns it to a transport, or generates one or more
“child” addresses. Processing the original address ceases, unlessséenoption is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). Wheseenis set, the address is passed to the next router.
Normally, however, aacceptreturn marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the first
router by default. It is possible to change this by setting rédirect_router option to specify

which router to start at for child addresses. Unlgass_router(see below) the router specified by
redirect_router may be anywhere in the router configuration.

» pass The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be changed
by setting thepass_router option. However, (unlikeedirect_router) the named router must be
below the current router (to avoid loops).

» decline The router declines to accept the address because it does not recognize it at all. By default,
the address is passed to the next router, but this can be prevented by setting rirere option.
Whenno_moreis set, all the remaining routers are skipped. In effaot,more convertsdecline
into fail.

« fail: The router determines that the address should fail, and queues it for the generation of a bounce
message. There is no further processing of the original addressuwmdessis set on the router.

» defer The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

 error: There is some error in the router (for example, a syntax error in its configuration). The action
is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is “unrouteable address”, but you

12 Receiving and delivering mail (3)

can set your own message by making use ofddwenot_route_messageption. This can be set for
any router; the value from the last router that “saw” the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. Tddirect router has a “fail”

facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports,
and discards any duplicates that it finds. During this check, local parts are treated as case-sensitive.
This happens only when actually delivering a message; when testing routerstyidl the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in cter 15.

» Thelocal_part_prefix andlocal_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or suffix)
is not present, the router is skipped. These conditions are tested first. When an affix is present, it
is removed from the local part before further processing, including the evaluation of any other
conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing it
for delivery (or testing its delivery routing). If theerify option is set false, the router is skipped
when Exim is verifying an address. Setting therify option actually sets two optionsegrify
sender and verify_recipient, which independently control the use of the router for sender and
recipient verification. You can set these options directly if you want a router to be used for only one
type of verification. Note that cutthrough delivery is classed as a recipient verification for this
purpose.

» If the address_tesbption is set false, the router is skipped when Exim is run with-tih@ption to
test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to tisteto test subsequent delivery routing without
having to simulate the effect of the scanner.

* Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. Theverify_only option controls this. Again, cutthrough delivery counts as a verification.

 Individual routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see #gn option).

* If the domainsoption is set, the domain of the address must be in the set of domains that it defines.

* If the local_parts option is set, the local part of the address must be in the set of local parts that it
defines. Iflocal_part_prefix or local_part_suffix is in use, the prefix or suffix is removed from the
local part before this check. If you want to do precondition tests on local parts that include affixes,
you can do so by using @ondition option (see below) that uses the variatéscal _part $local_
part_prefix and$local_part_suffixas necessary.

* If the check_local_useroption is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are plackdcdal_user_uidand
$local_user_gidand the user’'s home directory is placedbimome these values can be used in the
remaining preconditions.

* If the router_home_directory option is set, it is expanded at this point, because it overrides the
value of$home If this expansion were left till later, the value $fiomeas set bycheck local_user
would be used in subsequent tests. Having two different valu&baein the same router could
lead to confusion.

13 Receiving and delivering mail (3)

If the sendersoption is set, the envelope sender address must be in the set of addresses that it
defines.

If the require_files option is set, the existence or non-existence of specified files is tested.

If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described iapter 11.

Note thatrequire_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use tegistsexpansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for exammiecmailrg).

3.13 Delivery in detail
When a message is to be delivered, the sequence of events is as follows:

If a system-wide filter file is specified, the message is passed to it. The filter may add recipients to

the message, replace the recipients, discard the message, cause a new message to be generated, or
cause the message delivery to fail. The format of the system filter file is the same as for Exim user
filter files, described in the separate document entil®on’s interfaces to mail filtering(Note:

Sieve cannot be used for system filter files.)

Some additional features are available in system filters — see cter 46 for details. Note that a
message is passed to the system filter only once per delivery attempt, however many recipients it
has. However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter conditisin delivery can be

used to detect the first run of the system filter.

Each recipient address is offered to each configured router in turn, subject to its preconditions, until
one is able to handle it. If no router can handle the address, that is, if they all decline, the address is
failed. Because routers can be targeted at particular domains, several locally handled domains can
be processed entirely independently of each other.

A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
which will be run later. Alternatively, the router may generate one or more new addresses (typically
from alias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, a router ignores any address which has an identically-named ancestor that was
processed by itself.

When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

Each local delivery to a file or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (“the Exim user”), but in this case, several remote deliveries can
be run in parallel. The maximum number of simultaneous remote deliveries for any one message is
set by theremote_max_parallel option. The order in which deliveries are done is not defined,
except that all local deliveries happen before any remote deliveries.

When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry time
for the address is reached. However, this happens only for delivery attempts that are part of a queue
run. Local deliveries are always attempted when delivery immediately follows message reception,
even if retry times are set for them. This makes for better behaviour if one particular message is
causing problems (for example, causing quota overflow, or provoking an error in a filter file).

14 Receiving and delivering mail (3)

* Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
gueue run or not. See cha 32 for details of retry strategies.

 If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

» If one or more addresses suffered a temporary failure, the message is left on the queue, to be tried
again later. Delivery of these addresses is said tefered

* When all the recipient addresses have either been delivered or bounced, handling of the message is
complete. The spool files and message log are deleted, though the message log can optionally be
preserved if required.

3.14 Retry mechanism

Exim’s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that usesg thgtion with a time interval to

start queue runners at regular intervals, or use some other means (stroh)de start them. If you

do not arrange for queue runners to be run, messages that fail temporarily at the first attempt will
remain on your queue for ever. A queue runner process works its way through the queue, one message
at a time, trying each delivery that has passed its retry time. You can run several queue runners at
once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
). These rules also specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.15 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.16 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See che@br 49 for details.

Bounce messages contain ArFailed-Recipientsheader line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the MAIL command.

15 Receiving and delivering mail (3)

However, when an address is expanded via a forward or alias file, an alternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
50.9) it is common to direct bounce messages to the manager of the list.

3.17 Failures to deliver bounce messages
If a bounce message (either locally generated or received from a remote host) itself suffers a perma-
nent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of an

administrator. There are options that can be used to make Exim discard such failed messages, or to
keep them for only a short time (dg®@eout_frozen_after andignore_bounce_errors_aftej.

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when unpacked, creates a directory with the
name of the current release (for examplém-4.89 into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU General Public Licence

Makefile top-level make file

NOTICE conditions for the use of Exim

README list of files, directories and simple build instructions

Other files whose names begin WREADMEmay also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
oS OS-specific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in the directory, and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, &uild directoryis created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary.

4.3 PCRE library

Exim no longer has an embedded PCRE library as the vast majority of modern systems include PCRE
as a system library, although you may need to install the PCRE or PCRE development package for
your operating system. If your system has a normal PCRE installation the Exim build process will
need no further configuration. If the library or the headers are in an unusual location you will need to
either set the PCRE_LIBS and INCLUDE directives appropriately, or set PCRE_CONFIG=yes to use
the installedpcre-configcommand. If your operating system has no PCRE support then you will need
to obtain and build the current PCRE from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/ More information on PCRE is available

at http://www.pcre.org/.

4.4 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating vianitigm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they

17 Building and installing Exim (4)

contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardized on the Berkeley DB library.

Different DBM libraries have different conventions for haming the files they use. When a program
opens a file calledbmfile there are several possibilities:

(1) Atraditionalndbmimplementation, such as that supplied as part of Solaris, operates on two files
calleddbmfile.diranddbmfile.pag

(2) The GNU library,gdbm operates on a single file. If used via itdbmcompatibility interface it
makes two different hard links to it with namdbmfile.dirand dbmfile.pag but if used via its
native interface, the file name is used unmodified.

(3) The Berkeley DB package, if called via idbmcompatibility interface, operates on a single file
called dbmfile.dbh but otherwise looks to the programmer exactly the same as the traditional
ndbmimplementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file daiteide the
programmer’s interface is somewhat different to the traditiodbininterface.

(5) To complicate things further, there are several very different versions of the Berkeley DB pack-
age. Version 1.85 was stable for a very long time, releasearzl 3x were current for a while,
but the latest versions are now numberexi Maintenance of some of the earlier releases has
ceased. All versions of Berkeley DB can be obtained fitip//www.sleepycat.com/

(6) Yet another DBM library, callettb, is available fromhttp://download.sourceforge.net/tdb It
has its own interface, and also operates on a single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE_DB in an appropriate configuration file
(typically Local/Makefilg. For example:

USE_DB=yes

Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An error is diagnosed if
you set more than one of these.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
configuration files for Cygwin set USE_GDBM. Anything you setLiocal/Makefile however, over-

rides these system defaults.

As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be necessary to set DBMLIB,
to cause inclusion of the appropriate library, as in one of these lines:

DBMLIB = -ldb
DBMLIB = -ltdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in DBMLIB, as in
this example:

INCLUDE=-l/usr/locall/include/db-4.1
DBMLIB=/usr/local/lib/db-4.1/libdb.a

There is further detailed discussion about the various DBM libraries in thddidébm.discuss.txh
the Exim distribution.

4.5 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the nanoeal/Makefile A template for this file is supplied as the file
src/EDITME and it contains full descriptions of all the option settings therein. These descriptions are

18 Building and installing Exim (4)

therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copysrc/EDITMEto Local/Makefile then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time configuration file (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be a colon-separated list of file
names; Exim uses the first of them that exists.

There are a few other parameters that can be specified either at build time or at run time, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim’'s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that
you specify them inLocal/Makefileinstead of at run time, so that errors detected early in Exim’s
execution (such as a malformed configuration file) can be logged.

Exim’s interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

WITH_CONTENT_SCAN=yes
in your Local/Makefile For details of the facilities themselves, see ch@er 44,

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITMEMust be edited appropriately for your installation and saved under the name
Local/eximon.conflf you are happy with the default settings describedexim_monitor/EDITME
Local/eximon.confan be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults tgcc See sectioE 4.13 below for details of how to do this.

4.6 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means$bf the
mechanism, it decodes them, and translates them into a specified character set (default is set at build
time). The translation is possible only if the operating system supporitotivg) function.

However, some of the operating systems that suppyv() do not support very many conversions.
The GNU ibiconv library (available fromhttp://www.gnu.org/software/libiconv/) can be installed
on such systems to remedy this deficiency, as well as on systems that do not isopp(yat all.
After installinglibiconv, you should add

HAVE_ICONV=yes
to yourLocal/Makefileand rebuild Exim.

4.7 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can also support legacy clients that expect to start a TLS session immediately on
connection to a non-standard port (see tilseon_connect_portsruntime option and thetls-on-
connectcommand line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If OpenSSL is installed, you should set
SUPPORT_TLS=yes
TLS_LIBS=-Issl -lcrypto

19 Building and installing Exim (4)

in Local/Makefile You may also need to specify the locations of the OpenSSL library and include
files. For example:

SUPPORT_TLS=yes
TLS_LIBS=-L/usr/local/openssl/lib -Issl -lcrypto
TLS_INCLUDE-=-I/usr/local/openssl/include/

If you havepkg-configavailable, then instead you can just use:

SUPPORT_TLS=yes
USE_OPENSSL_PC=openssl|

If GNUTLS is installed, you should set

SUPPORT_TLS=yes
USE_GNUTLS=yes
TLS_LIBS=-Ignutls -Itasnl -lgcrypt

in Local/Makefile and again you may need to specify the locations of the library and include files. For
example:

SUPPORT_TLS=yes

USE_GNUTLS=yes

TLS_LIBS=-L/usr/gnu/lib -Ignutls -ltasnl -lgcrypt
TLS_INCLUDE=-l/usr/gnu/include

If you havepkg-configavailable, then instead you can just use:

SUPPORT_TLS=yes
USE_GNUTLS=yes
USE_GNUTLS_PC=gnutls

You do not need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.
Details of how to configure Exim to make use of TLS are given in chapter 42.

4.8 Use of tcpwrappers

Exim can be linked with thécpwrapperslibrary in order to check incoming SMTP calls using the
tcpwrapperscontrol files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making usdagwrapperdor other purposes. To do this, you should set
USE_TCP_WRAPPERS ibocal/Makefile arrange for the filécpd.hto be available at compile time,
and also ensure that the libralipwrap.ais available at link time, typically by includingwrap in
EXTRALIBS_EXIM. For example, iftcpwrapperds installed inusr/local you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0 -l/usr/locall/include
EXTRALIBS_EXIM=-L/usr/local/lib -lwrap

in Local/Makefile The daemon name to use in ttepwrapperscontrol files is “exim”. For example,
the line

exim : LOCAL 192.168.1. .friendly.domain.example

in your /etc/hosts.allovfile allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts irfriendly.domain.exampléAll other connections are denied. The daemon name
used bytcpwrapperscan be changed at build time by setting TCP_WRAPPERS_DAEMON_NAME
in Local/Makefile or by setting tcp_wrappers_daemon_name in the configure file. Consult the
tcpwrappersdocumentation for further details.

4.9 Including support for IPv6

Exim contains code for use on systems that have IPv6 support. Sét\E_IPV6=YES in
Local/Makefilecauses the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library files.

20 Building and installing Exim (4)

Two different types of DNS record for handling IPv6 addresses have been defined. AAAA records
(analogous to A records for IPv4) are in use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to “experimental”. Exim used to have a compile
option for including A6 record support but this has now been withdrawn.

4.10 Dynamically loaded lookup module support

On some platforms, Exim supports not compiling all lookup types directly into the main binary,
instead putting some into external modules which can be loaded on demand. This permits packagers
to build Exim with support for lookups with extensive library dependencies without requiring all
users to install all of those dependencies. Most, but not all, lookup types can be built this way.

SetLOOKUP_MODULE_DIfR the directory into which the modules will be installed; Exim will only
load modules from that directory, as a security measure. You will need ©FReAGS_DYNAMIG

not already defined for your OS; s@s/Makefile-LinuXor an example. Some other requirements for
adjustingEXTRALIBS may also be necessary, see EDITMEfor details.

Then, for each module to be loaded dynamically, define the rel&@OKUP<lookup_type flags to
have the value "2" instead of "yes". For example, this will build in Isearch but load sqlite and mysq|
support on demand:

LOOKUP_LSEARCH=yes
LOOKUP_SQLITE=2
LOOKUP_MYSQL=2

4.11 The building process

Once Local/Makefile(and Local/eximon.confif required) have been created, ramakeat the top

level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the dirbatlsh5un0S5-5.8-sparc

is created. Symbolic links to relevant source files are installed in the build directory.

If this is the first timemakehas been run, it calls a script that builds a make file inside the build
directory, using the configuration files from thecal directory. The new make file is then passed to
another instance afmake This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The commanahake makefile can be used to force a rebuild of the make
file in the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be iREXDME file
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

4.12 Output from “make”

The output produced by thmakeprocess for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is still possible to get the full output, by
calling makelike this:

FULLECHO=" make -e

The value of FULLECHO defaults to “@”, the flag character that suppresses command reflection in
make When you ask for the full output, it is given in addition to the short output.

4.13 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed seakéinstruc-

21 Building and installing Exim (4)

tions. If a value is set more than once, the last setting overrides any previous ones. This provides a
convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
OS/Makefile<ostype
Local/Makefile
Local/Makefile<ostype
Local/Makefile<archtype
Local/Makefile<ostype-<archtype
OS/Makefile-Base

where <ostype is the operating system type andrehtype> is the architecture typd.ocal/Makefile
is required to exist, and the building process fails if it is absent. The other tlueal files are
optional, and are often not needed.

The values used forostyper and <archtype> are obtained from scripts callextripts/os-typeand
scripts/arch-typerespectively. If either of the environment variables EXIM_OSTYPE or EXIM_
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from tlm@ame command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A numberadfhoctransformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to find out what values are being used on your system.

OS/Makefile-Defaultontains comments about the variables that are set therein. Some (but not all) are
mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating systeds(Makefile-<ostypepto see what the default
values are.

If you need to change any of the values that are seD8/Makefile-Defaulor in OS/Makefile-
<ostype> or to add any new definitions, you do not need to change the original files. Instead, you
should make the changes by putting the new values in an appropdestfile. For example, when
building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1)
operating system, it is necessary to specify that the C compiler is callexther thargcc Also, the
compiler must be called with the optiestdl, to make it recognize some of the features of Standard

C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you should
create a file calleocal/Makefile-OSFTontaining the lines

CC=cc
CFLAGS=-std1

If you are compiling for just one operating system, it may be easier to put these lines directly into
Local/Makefile

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents bbtatdirectory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings fapcal/Makefileare:

LOOKUP_LDAP=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes

and similar settings apply to the other lookup types. They are all listecciEDITME In many cases

the relevant include files and interface libraries need to be installed before compiling Exim. However,
there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include files or libraries are required. When a lookup type is not included in the
binary, attempts to configure Exim to use it cause run time configuration errors.

Many systems now use a tool callpitg-configto encapsulate information about how to compile
against a library; Exim has some initial support for being able to use pkg-config for lookups and

22 Building and installing Exim (4)

authenticators. For any given makefile variable which staii®KUP_or AUTH_, you can add a new
variable with the_PC suffix in the name and assign as the value the name of the package to be
gueried. The results of querying via thpkg-configcommand will be added to the appropriate
Makefile variables with+= directives, so your version ahakewill need to support that syntax. For
instance:

LOOKUP_SQLITE=yes
LOOKUP_SQLITE_PC=sqlite3
AUTH_GSASL=yes
AUTH_GSASL_PC=libgsasl
AUTH_HEIMDAL_GSSAPI=yes
AUTH_HEIMDAL_GSSAPI_PC=heimdal-gssapi

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM_PERL=perl.o
must be defined ihocal/Makefile Details of this facility are given in chap 12.

The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are
compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OS/Makefile-Default

X11=/usr/X11R6
XINCLUDE=-I1$(X11)/include
XLFLAGS=-L$(X11)/lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOShere is

X11=/usr/openwin
XINCLUDE=-1$(X11)/include
XLFLAGS=-L$(X11)/lib -R$(X11)/lib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into yoluocal/Makefile-<ostypeile.

If you need to add any extra libraries to the link steps, these can be put in a variable called
EXTRALIBS, which appears in all the link commands, but by default is not defined. In contrast,
EXTRALIBS_EXIM is used only on the command for linking the main Exim binary, and not for any
associated utilities.

There is also DBMLIB, which appears in the link commands for binaries that use DBM functions
(see also secti.4). Finally, there is EXTRALIBS_EXIMON, which appears only in the link step
for the Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that isl.ocal/Makefileor Local/eximon.confbefore rebuilding.

4.14 OS-specific header files

The OS directory contains a number of files with names of the fasmh-<ostype> These are
system-specific C header files that should not normally need to be changed. There is a list of macro
settings that are recognized in the f&/os.configuringwhich should be consulted if you are porting
Exim to a new operating system.

4.15 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

23 Building and installing Exim (4)

OS/eximon.conf-Default
OS/eximon.confostype
Local/eximon.conf
Local/eximon.confostype
Local/eximon.conkarchtype>
Local/eximon.confostype-<archtype

As with Exim itself, the final three files need not exist, and in this cas®©tB&ximon.conf-<ostype>

file is also optional. The default values @S/eximon.conf-Defauttan be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

4.16 Installing Exim binaries and scripts

The commandnake install runs theexim_installscript with no arguments. The script copies
binaries and utility scripts into the directory whose name is specified by the BIN_DIRECTORY
setting inLocal/Makefile The install script copies files only if they are newer than the files they are
going to replace. The Exim binary is required to be owned by root and haveeth&lbit set, for
normal configurations. Therefore, you must mmake install as root so that it can set up the
Exim binary in this way. However, in some special situations (for example, if a host is doing no local
deliveries) it may be possible to run Exim without making the binary setuid root (see c@ter 55 for
details).

Exim’s run time configuration file is named by the CONFIGURE_FILE settinganal/Makefile If

this names a single file, and the file does not exist, the default configuratiandit®nfigure.default

is copied there by the installation script. If a run time configuration file already exists, it is left alone.
If CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is
installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by SYSTEM_ALIASES_FILE inLocal/Makefile(/etc/aliasesby default). If the system aliases file

does not exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been keptétc/aliases However, some operating
systems are now usirigtc/mail/aliasesYou should check if yours is one of these, and change Exim’s
configuration if necessary.

The default configuration uses the local host’'s name as the only local domain, and is set up to do local
deliveries into the shared directofyar/mail, running as the local user. System aliases &oidvard

files in users’ home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

make DESTDIR=/some/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name
is modified.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

Runningmake installdoes not copy the Exim 4 conversion scrgonvert4r4 You will probably run

this only once if you are upgrading from Exim 3. None of the documentation files iddbdirectory

are _copied, except for the info files when you have set INFO_DIRECTORY, as described in section
below.

For the utility programs, old versions are renamed by adding the sfia their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for exampiém-4.89-1 The script then arranges for a symbolic

24 Building and installing Exim (4)

link calledeximto point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the namemis never absent from the directory (as seen by other processes).

If you want to see what thmake instalwill do before running it for real, you can pass threoption
to the installation script by this command:

make INSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be
from within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-SunOS5-5.5.1-sparc; ../scripts/exim_install -n)
There are two other options that can be supplied to the installation script.

» -no_chownbypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

» -no_symlink bypasses the setting up of the symbolic 8rknto the installed binary.
INSTALL_ ARG can be used to pass these options to the script. For example:
make INSTALL ARG=-no_symlink install

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make INSTALL_ARG="-no_symlink exim' install

4.17 Installing info documentation

Not all systems use the GNldfo system for documentation, and for this reason, the Texinfo source
of Exim’s documentation is_not included in the main distribution. Instead it is available separately
from the ftp site (see secti@ﬁ).

If you have defined INFO_DIRECTORY ihocal/Makefileand the Texinfo source of the documen-
tation is found in the source tree, runnintake install automatically builds the info files and
installs them.

4.18 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.19 Testing

Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exim -bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exim -bt <local username
should verify that it recognizes a local mailbox, and
exim -bt <remote address

25 Building and installing Exim (4)

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim -v postmaster@your.domain.example
From: user@your.domain.example

To: postmaster@your.domain.example
Subject: Testing Exim

This is a test message.
D

The-v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’s arrival, one for its delivery, and one containing
“Completed”.

If you encounter problems, look at Exim’s log filemdinlog and paniclog to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the-d option. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form

exim-d -M <exim-message-id

You must be root or an “admin user” in order to do this. Fdeption produces rather a lot of output,
but you can cut this down to specific areas. For example, if youdisdl+route only the debugging
information relevant to routing is included. (See-theption in chapt5 for more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the “sticky bit” set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the “sticky bit” on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above thecal_deliverytransport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely famtl() locking instead. However, you should

do this only if all user agents also ugmtl() locking. For further discussion of locking issues, see
chapte.

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, tb¥ option can be used to run an Exim daemon
that listens on some other port, anetd can be used to do this. Theébh option and the
exim_checkaccesasility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the run time configuration, all other
file and directory names that Exim uses can be altered, in order to keep it entirely clear of the
production version.

4.20 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is eittiasr/shbin/sendmail or
lusr/lib/sendmaildepending on the operating system), and it is necessary to make this name point to
the eximbinary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and makirigsr/sbin/sendmaibr /usr/lib/sendmaila symbolic link to the
eximbinary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the fiédc/mail/mailer.confnstead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

sendmail Jusr/exim/bin/exim
send-mail lusr/exim/bin/exim

26 Building and installing Exim (4)

mailqg lusr/exim/bin/exim -bp
newaliases {usr/bin/true

Once you have set up the symbolic link, or editetc/mail/mailer.confyour Exim installation is
“live”. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document erfixliedls interface

to malil filteringavailable to them.

4.21 Upgrading Exim
If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAs, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. The install script does not modify an existing runtime configuration file.
4.22 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solaris is

[etc/init.d/sendmail stop
If /usr/lib/sendmaihas been turned into a symbolic link, this script fails to stop Exim because it uses
the commangbs -eand greps the output for the text “sendmail”; this is not present because the actual
program name (that is, “exim”) is given by thgs command with these options. A solution is to
replace the line that finds the process id with something like

pid="cat /var/spool/exim/exim-daemon.pid

to obtain the daemon'’s pid directly from the file that Exim saves it in.

Note, however, that stopping the daemon does not “stop Exim”. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

27 Building and installing Exim (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the nammailg, it behaves as if the optiotbp were present before any other
options. The-bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked hasr/sbin/sendmaibr /usr/lib/sendmail

If Exim is called under the nammsmtpit behaves as if the optiotbS were present before any other
options, for compatibility with Smail. TheébS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the nanmenail it behaves as if thd and-oeeoptions were present before any
other options, for compatibility with Smail. The nammail is used as an interface by some UUCP
systems.

If Exim is called under the nameing it behaves as if the optiorq were present before any other
options, for compatibility with Smail. Theq option causes a single queue runner process to be
started.

If Exim is called under the nameewaliasest behaves as if the optiotbi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias
file. Exim does not have the concept of a single alias file, but can be configured to run a given
command if called with thebi option.

5.2 Trusted and admin users

Some Exim options are available onlyttasted usersnd others are available only &almin usersin

the description below, the phrases “Exim user” and “Exim group” mean the user and group defined
by EXIM_USER and EXIM_GROUP inocal/Makefileor set by theexim_user and exim_group
options. These do not necessarily have to use the name “exim”.

» The trusted users are root, the Exim user, any user listed intbid _usersconfiguration option,
and any user whose current group or any supplementary group is one of those listetlustdte
groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use-theption or a leading “From ” line to specify the
envelope sender of a message that is passed to Exim through the local interface {seeahé-f
options below). See thentrusted_set_sendeioption for a way of permitting non-trusted users to
set envelope senders.

For a trusted user, there is never any check on the contents Bfdhre header line, and &ender:
line is never added. Furthermore, any exist®@nder:line in incoming local (non-TCP/IP) mess-
ages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol hame, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstanced,use can never set the other values

that are available to trusted users.

» The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in theadmin_groups configuration option. The current group does not have to be one
of these groups.

28 The Exim command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging output.

By default, the use of theM, -q, -R, and-S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires_admin option false (that is, specifyimgp_prod_requires_admir).

Similarly, the use of thebp option to list all the messages in the queue is restricted to admin users
unlessqueue_list_requires_adminis set false.

Warning: If you configure your system so that admin users are able to edit Exim’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapt 6.

5.3 Command line options

Exim’s command line options are described in alphabetical order below. If none of the options that
specifies a specific action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a specific format, or listing the queue) are present, and there is at least one
argument on the command lindgm (accept a local message on the standard input, with the argu-
ments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself and
exits.

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

--version
This option is an alias febV and causes version information to be displayed.

-Ac
-Am
These options are used by Sendmail for selecting configuration files and are ignored by Exim.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SMTP connections. Usuatlydiogtion
is combined with theg<time> option, to specify that the daemon should also initiate periodic
gueue runs.

The-bd option can be used only by an admin user. If either of-thédebugging) orv (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
specific interfaces. Chap 13 contains a description of the options that control this.

When a listening daemon is started without the useo¥f (that is, without overriding the normal
configuration), it writes its process id to a file calledim-daemon.pith Exim’s spool directory.
This location can be overridden by setting PID_FILE_PATH.atal/Makefile The file is written
while Exim is still running as root.

29 The Exim command line (5)

When-oX is used on the command line to start a listening daemon, the process id is not written to
the normal pid file path. HoweveoP can be used to specify a path on the command line if a pid
file is required.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means ointlede

facility, is changed, and also whenever a new version of Exim is installed. It is not necessary to do
this when other files that are referenced from the configuration (for example, alias files) are
changed, because these are reread each time they are used.

-bdf
This option has the same effect dsd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible files. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes irLocal/Makefilg it tries to load thdibreadline
library dynamically whenever thdoe option is used without command line arguments. If success-
ful, it uses thereadline()function, which provides extensive line-editing facilities, for reading the
test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. As in
Exim’s run time configuration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the configuration file (for exampbgualify _domaip are available, but no
message-specific values (such$message_exim)idire set, because no message is being pro-
cessed (but sebem and-Mset).

Note: If you use this mechanism to test lookups, and you change the data files or databases you are
using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

-bem <filename
This option operates likdoe except that it must be followed by the name of a file. For example:

exim -bem /tmp/testmessage

The file is read as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-specific variables s@otessage_sizand
$header_from:are available. However, nBeceived:header is added to the message. If the
option is set, recipients are read from the headers in the normal way, and are shown in the
$recipientsvariable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (justbije

-bF <filename
This option is the same abf except that it assumes that the filter being tested is a system filter.
The additional commands that are available only in system filters are recognized.

-bf <filename
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file can be supplied.

If you want to test a system filter file, uskF instead of-bf. You can use bothbF and-bf on the
same command, in order to test a system filter and a user filter in the same run. For example:

exim -bF /system/filter -bf /userf/filter </test/message

This is helpful when the system filter adds header lines or sets filter variables that are used by the
user filter.

If the test filter file does not begin with one of the special lines

30 The Exim command line (5)

Exim filter
Sieve filter

it is taken _to be _a normaforward file, and is tested for validity under that interpretation. See
section4 .6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that usds, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of filter
testing are given in the separate document entitléeh’s interfaces to mail filtering

When testing a filter file, the envelope sender can be set byf thyation, or by a “From " line at

the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domairr
This sets the domain of the recipient address when a filter file is being tested by meansbédf the
option. The default is the value $fualify_domain

-bfl <local part>
This sets the local part of the recipient address when a filter file is being tested by meansobf the
option. The default is the username of the process that calls Exim. A local part should be specified
with any prefix or suffix stripped, because that is how it appears to the filter when a message is
actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when a filter file is being tested by
means of thebf option. The default is an empty prefix.

-bfs <suffix
This sets the suffix of the local part of the recipient address when a filter file is being tested by
means of thebf option. The default is an empty suffix.

-bh <IP address
This option runs a fake SMTP session as if from the given IP address, using the standard input and
output. The IP address may include a port number at the end, after a full stop. For example:

exim -bh 10.9.8.7.1234
exim -bh fe80::a00:20ff:fe86:a061.5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value &sender_host_addresafter conversion to the canonical form is
fe80:0000:0000:0a00:20ff:fe86:a061.5678

Comments as to what is going on are written to the standard error file. These include lines
beginning with “LOG” for anything that would have been logged. This facility is provided for
testing configuration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls ugihg

Warning 1: You can test features of the configuration that rely on ident (RFC 1413) information
by using the-oMt option. However, Exim cannot actually perform an ident callout when testing
using-bh because there is no incoming SMTP connection.

Warning 2: Address verification callouts (see sect.45) are also skipped when testing using
-bh. If you want these callouts to occur, ublc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
real log files. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. Th@Mi option can be used to specify a specific IP interface and port if this

is important, andoMaa and-oMai can be used to set parameters as if the SMTP session were
authenticated.

The exim_checkaccesdility is a “packaged” version ofbh whose output just states whether a
given recipient address from a given host is acceptable or not. See|secfion 53.8.

31 The Exim command line (5)

Features such as authentication and encryption, where the client input is not plain text, cannot
easily be tested witkbh. Instead, you should use a specialized SMTP test program siswieks
(http://jetmore.org/john/code/#swaks)

-bhc <IP address
This option operates in the same way -8, except that address verification callouts are per-
formed if required. This includes consulting and updating the callout cache database.

-bi
Sendmail interprets thebi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
{usr/lib/sendmailwith the -bi option tend to appear in various scripts such as NIS make files, so
the option must be recognized.

If -bi is encountered, the command specified by bhecommand configuration option is run,
under the uid and gid of the caller of Exim. If tReA option is used, its value is passed to the
command as an argument. The command sebibgommand may not contain arguments. The
command can use thexim_dbmbuildutility, or some other means, to rebuild alias files if this is
required. If thebi_command option is not set, calling Exim witbi is a no-op.

-bl:help
We shall provide various options startifigli: for querying Exim for information. The output of
many of these will be intended for machine consumption. This one is not-Alteelp option
asks Exim for a synopsis of supported options beginAig . Use of any of these options shall
cause Exim to exit after producing the requested output.

-bl:dscp
This option causes Exim to emit an alphabetically sorted list of all recognised DSCP names.

-bl:sieve
This option causes Exim to emit an alphabetically sorted list of all supported Sieve protocol
extensions on stdout, one per line. This is anticipated to be useful for ManageSieve (RFC 5804)
implementations, in providing that protocoB®IEVE capability response line. As the precise list
may depend upon compile-time build options, which this option will adapt to, this is the only way
to guarantee a correct response.

-bm
This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the standard input. The recipients are given as the command arguments (excefitiw/laéso
present — see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the values
of the qualify_domain or qualify_recipient options, as appropriate. Thieng option (see below)
provides a way of suppressing this for special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP ACL.
See chapt3 for details.

The return code is zero if the message is successfully accepted. Otherwise, the action is controlled
by the-oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility with
Sendmail and Smaiil, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative specification of the format of this
line. Exim recognizes it by matching against the regular expression defined yi¢pe from_

pattern option, which can be changed if necessary.

32 The Exim command line (5)

The specified sender is treated as if it were given as the argument-foapion, but if a-f option
is also present, its argument is used in preference to the address taken from the message. The caller
of Exim must be a trusted user for the sender of a message to be set in this way.

-bmalware <filename
This debugging option causes Exim to scan the given file or directory (depending on the used
scanner interface), using the malware scanning framework. The optian stannerinfluences
this option, so ifav_scannels value is dependent upon an expansion then the expansion should
have defaults which apply to this invocation. ACLs are not invoked, sw iscannerreferences
an ACL variable then that variable will never be populated-bBndhlware will fail.

Exim will have changed working directory before resolving the filename, so using fully qualified
pathnames is advisable. Exim will be running as the Exim user when it tries to open the file, rather
than as the invoking user. This option requires admin privileges.

The -bmalware option will not be extended to be more generally useful, there are better tools
for file-scanning. This option exists to help administrators verify their Exim and AV scanner
configuration.

-bng
By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are qualified using
qualify_domain, and recipient addresses usiggalify _recipient (which defaults to the value of
qualify_domain).

Sometimes, qualification is not wanted. For examplep® (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably do
not want to qualify unqualified addresses in header lines. (Such lines will be present only if you
have not enabled a header syntax check in the appropriate ACL.)

The-bng option suppresses all qualification of unqualified addresses in messages that originate on
the local host. When this is used, unqualified addresses in the envelope provoke errors (causing
message rejection) and unqualified addresses in header lines are left alone.

-bP
If this option is given with no arguments, it causes the values of all Exim's main configuration
options to be written to the standard output. The values of one or more specific options can be
requested by giving their names as arguments, for example:

exim -bP qualify_domain hold_domains

However, any option setting that is preceded by the word “hide” in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

mysql_servers = <value not displayable>

If config is given as an argument, the config is output, as it was parsed, any include file resolved,
any comment removed.

If config_file is given as an argument, the name of the run time configuration file is output.
(configure_fileworks too, for backward compatibility.) If a list of configuration files was supplied,
the value that is output here is the name of the file that was actually used.

If the -n flag is given, then for most modes-bP operation the name will not be output.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are written
in a sub-directory of the spool directory callled), and the pid file is written directly into the spool
directory.

If -bP is followed by a name preceded byfor example,
exim -bP +local_domains

33 The Exim command line (5)

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it finds.

If one of the wordsrouter, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver’s private options. A list of the
names of drivers of a particular type can be obtained by using one of the wautkyr_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by usimguters, transports, or authenticators.

If environment is given as an argument, the set of environment variables is output, line by line.
Using the-n flag suppresses the value of the variables.

If invoked by an admin user, themacro, macro_list and macros are available, similarly to the
drivers. Because macros are sometimes used for storing passwords, this option is restricted. The
output format is one item per line.

_bp
This option requests a listing of the contents of the mail queue on the standard outputhbip the
option is followed by a list of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However,dbeue_list_requires_adminoption can be set
false to allow any user to see the queue.

Each message on the queue is displayed as in the following example:

25m 2.9K 0t5C6f-0000c¢8-00 <alice@wonderland.fict.example>
red.king@looking-glass.fict.example
<other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as “<>". If the message was submitted locally by an untrusted user who overrode the
default sender address, the user’s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text “*** frozen ***” is
displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on subse-
quent lines. Those addresses to which the message has already been delivered are marked with the
letter D. If an original address gets expanded into several addresses via an alias or forward file, the
original is displayed with a D only when deliveries for all of its child addresses are complete.

-bpa
This option operates likebp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with “+D” instead of just “D”.

-bpc
This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unlgssue_list_requires_adminis set false.

-bpr
This option operates likebp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn't need the sorting.

-bpra
This option is a combination ebpr and-bpa.

-bpru
This option is a combination ebpr and-bpu.

34 The Exim command line (5)

-bpu
This option operates likebp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by a router withahe_timeoption set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for a retry rule that matches the values and to write it to the standard output. For
example:

exim -brt bach.comp.mus.example
Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;

See chapt2 for a description of Exim’s retry rules. The first argument, which is required, can be
a complete address in the folotal_part@domainor it can be just a domain name. If the second
argument contains a dot, it is interpreted as an optional second domain name; if no retry rule is
found for the first argument, the second is tried. This ties in with Exim’s behaviour when looking
for retry rules for remote hosts — if no rule is found that matches the host, one that matches the
mail domain is sought. Finally, an argument that is the name of a specific delivery error, as used in
setting up retry rules, can be given. For example:

exim -brt haydn.comp.mus.example quota 3d
Retry rule: *@haydn.comp.mus.example quota_3d F,1h,15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully qualified
domain. Exim outputs how this address would be rewritten for each possible place it might appear.
See chaptl for further details.

-bS
This option is used for batched SMTP input, which is an alternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, this is not really SMTP input. Exim reads each message’s envelope from SMTP
commands on the standard input, but generates no responses. If the caller is trustédisoed_
set_sendeiis set, the senders in the SMTP MAIL commands are believed; otherwise the sender is
always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see char 43). Unqualified addresses are automatically
qualified usingqualify_domain and qualify_recipient, as appropriate, unless tHenqg option is

used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is O if no error was detected,; it is 1 if one or more messages
were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section|48.11.

-bs
This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chaptgr |43) are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA.

In this usage, if the caller of Exim is trusted, ontrusted_set_senderis set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands

35 The Exim command line (5)

is ignored and the sender is set up as the calling user. Unqualified addresses are automatically
qualified usingqualify_domain and qualify_recipient, as appropriate, unless tHenqg option is
used.

The-bs option is also used to run Exim froimetd, as an alternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is called froninetd the source of the mail is assumed to be remote, and the comments
above concerning senders and qualification do not apply. In this situation, Exim behaves in exactly
the same way as it does when receiving a message via the listening daemon.

-bt
This option runs Exim in address testing mode, in which each argument is taken as a recipient
address to be tested for deliverability. The results are written to the standard output. If a test fails,
and the caller is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the-be test option, you cannot arrange for Exim to userdgeedline()function, because it is
running agoot and there are security issues.

Each address is handled as if it were the recipient address of a message (comgareftion).

It is passed to the routers and the result is written to the standard output. However, any router that
hasno_address_testet is bypassed. This can malte easier to use for genuine routing tests if
your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

Note: When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration makes
any tests on the sender address of a message, you can uSeptien to set an appropriate sender
when running-bt tests. Without it, the sender is assumed to be the calling user at the default
qualifying domain. However, if you have set up (for example) routers whose behaviour depends on
the contents of an incoming message, you cannot test those conditionshisifitpe -N option
provides a possible way of doing such tests.

-bV
This option causes Exim to write the current version number, compilation number, and compi-
lation date of theeximbinary to the standard output. It also lists the DBM library that is being
used, the optional modules (such as specific lookup types), the drivers that are included in the
binary, and the name of the run time configuration file that is in use.

As part of its operationsbV causes Exim to read and syntax check its configuration file. However,
this is a static check only. It cannot check values that are to be expanded. For example, although a
misspelt ACL verb is detected, an error in the verb’s arguments is not. You cannot rep/on

alone to discover (for example) all the typos in the configuration; some realistic testing is needed.
The-bh and-N options provide more dynamic testing facilities.

-bv
This option runs Exim in address verification mode, in which each argument is taken as a recipient
address to be verified by the routers. (This does not involve any verification callouts). During
normal operation, verification happens mostly as a consequence proces&rify acondition in
an ACL (see chapt3). If you want to test an entire ACL, possibly including callouts, see the
-bh and-bhc options.

If verification fails, and the caller is not an admin user, no details of the failure are output, because
these might contain sensitive information such as usernames and passwords for database lookups.

36 The Exim command line (5)

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified.

Unlike the-betest option, you cannot arrange for Exim to userdadline()function, because it is
running aeximand there are security issues.

Verification differs from address testing (tH&t option) in that routers that have_verify set are
skipped, and if the address is accepted by a router thatailaserify set, verification fails. The
address is verified as a recipientlifv is used; to test verification for a sender addrdsgs should

be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was verified or not, and giving a reason in the latter case. Withgujenerating more than one
address by redirection causes verification to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall verification to succeed.

When-v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Verification may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

If any of the routers in the configuration makes any tests on the sender address of a message, you
should use thef option to set an appropriate sender when runnaingtests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

-bvs
This option acts likebv, but verifies the address as a sender rather than a recipient address. This
affects any rewriting and qualification that might happen.

-bw
This option runs Exim as a daemon, awaiting incoming SMTP connections, similarly tbdhe
option. All port specifications on the command-line and in the configuration file are ignored.
Queue-running may not be specified.

In this mode, Exim expects to be passed a socket as fd 0 (stdin) which is listening for connections.
This permits the system to start up and have inetd (or equivalent) listen on the SMTP ports,
starting an Exim daemon for each port only when the first connection is received.

If the option is given asbw<time> then the time is a timeout, after which the daemon will exit,
which should cause inetd to listen once more.

-C <filelist>
This option causes Exim to find the run time configuration file from the given list instead of from
the list specified by the CONFIGURE_FILE compile-time setting. Usually, the list will consist of
just a single file name, but it can be a colon-separated list of names. In this case, the first file that
exists is used. Failure to open an existing file stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caller other than root, and the list is different from the compiled-in
list, Exim gives up its root privilege immediately, and runs with the real and effective uid and gid
set to those of the caller. However, if a TRUSTED_ CONFIG_LIST file is defined in
Local/Makefile that file contains a list of full pathnames, one per line, for configuration files which
are trusted. Root privilege is retained for any configuration file so listed, as long as the caller is the
Exim user (or the user specified in the CONFIGURE_OWNER option, if any), and as long as the
configuration file is not writeable by inappropriate users or groups.

Leaving TRUSTED_CONFIG_LIST unset precludes the possibility of testing a configuration
using -C right through message reception and delivery, even if the caller is root. The reception
works, but by that time, Exim is running as the Exim user, so when it re-executes to regain
privilege for the delivery, the use o€ causes privilege to be lost. However, root can test reception

37 The Exim command line (5)

and delivery using two separate commands (one to put a message on the queuedegiagd
another to do the delivery, usinAgl).

If ALT_CONFIG_PREFIX is definedn Local/Makefile it specifies a prefix string with which any
file named in aC command line option must start. In addition, the file name must not contain the
sequenceé../ . However, if the value of theC option is identical to the value of CONFIGURE _
FILE in Local/Makefile Exim ignores-C and proceeds as usual. There is no default setting for
ALT_CONFIG_PREFIX; when it is unset, any file name can be used@ith

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The-C facility is useful for ensuring that configuration files are syntactically correct, but cannot be
used for test deliveries, unless the caller is privileged, or unless it is an exotic configuration that
does not require privilege. No check is made on the owner or group of the files specified by this
option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see s@on 6.4).
However, like-C, if it is used by an unprivileged caller, it causes Exim to give up its root privilege.
If DISABLE_D_ OPTION is defined inLocal/Makefile the use ofD is completely disabled, and
its use causes an immediate error exit.

If WHITELIST_D_MACROS is defined in.ocal/Makefilethen it should be a colon-separated list

of macros which are considered safe andDifonly supplies macros from this list, and the values

are acceptable, then Exim will not give up root privilege if the caller is root, the Exim run-time
user, or the CONFIGURE_OWNER, if set. This is a transition mechanism and is expected to be
removed in the future. Acceptable values for the macros satisfy the retjéxga-z0-9 /.-

I'$

The entire option (including equals sign if present) must all be within one command line-iem.

can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exim -DABC ...
exim -DABC-= ...

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

exim '-D ABC = something' ...

-D may be repeated up to 10 times on a command line. Only macro names up to 22 letters long can
be set.

-d<debug options
This option causes debugging information to be written to the standard error stream. It is restricted
to admin users because debugging output may show database queries that contain password infor-
mation. Also, the details of users’ filter files should be protected. If a non-admin userdjses
Exim writes an error message to the standard error stream and exits with a non-zero return code.

When-d is used,-v is assumed. Ifd is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For exarpifer adds filter debugging,
whereas-d-all+filter selects only filter debugging. Note that no spaces are allowed in the debug
setting. The available debugging categories are:

acl ACL interpretation

auth authenticators

deliver general delivery logic

dns DNS lookups (see also resolver)
dnsbl DNS black list (aka RBL) code

38 The Exim command line (5)

exec arguments foexecv()calls

expand detailed debugging for string expansions

filter filter handling

hints_lookup hints data lookups

host_lookup all types of name-to-IP address handling

ident ident lookup

interface lists of local interfaces

lists matching things in lists

load system load checks

local_scan can be used bigcal_scan()(see chapt5)

lookup general lookup code and all lookups

memory memory handling

pid add pid to debug output lines

process_info setting info for the process log

queue_run queue runs

receive general message reception logic

resolver turn on the DNS resolver’'s debugging output

retry retry handling

rewrite address rewriting

route address routing

timestamp add timestamp to debug output lines

tls TLS logic

transport transports

uid changes of uid/gid and looking up uid/gid

verify address verification logic

all almost all of the above (see below), and also
Theall option excludesnemory when used asall , but includes it for-all . The reason for

this is that+all is something that people tend to use when generating debug output for Exim
maintainers. If+memory is included, an awful lot of output that is very rarely of interest is
generated, so it now has to be explicitly requested. Howaler, does turn everything off.

The resolver option produces output only if the DNS resolver was compiled with DEBUG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging output
from the DNS resolver is written to stdout rather than stderr.

The default {d with no argument) omitexpand , filter ,interface , load , memory, pid ,
resolver , andtimestamp . However, thepid selector is forced when debugging is turned on

for a daemon, which then passes it on to any re-executed Exims. Exim also automatically adds the
pid to debug lines when several remote deliveries are run in parallel.

Thetimestamp selector causes the current time to be inserted at the start of all debug output
lines. This can be useful when trying to track down delays in processing.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or ifv is used.

-dd<debug options

This option behaves exactly likel except when used on a command that starts a daemon process.

In that case, debugging is turned off for the subprocesses that the daemon creates. Thus, it is useful
for monitoring the behaviour of the daemon without creating as much output as full debugging
does.

-dropcr

-E

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described iion 47.2.

This option specifies that an incoming message is a locally-generated delivery failure report. It is
used internally by Exim when handling delivery failures and is not intended for external use. Its
only effect is to stop Exim generating certain messages to the postmaster, as otherwise message
cascades could occur in some situations. As part of the same option, a message id may follow the

39 The Exim command line (5)

charactersE. If it does, the log entry for the receipt of the new message contains the id, following
“R=", as a cross-reference.

-ex
There are a number of Sendmail options starting with which seem to be called by various
programs without the leadingin the option. For example, theacation program useseq. Exim
treats all options of the forrex as synonymous with the correspondiogx options.

-F <string>
This option sets the sender’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the usgtosentry from the password data is used. As
users are generally permitted to alter thgéicosentries, no security considerations are involved.
White space betweef and the string> is optional.

-f <address
This option sets the address of the envelope sender of a locally-generated message (also known as
the return path). The option can normally be used only by a trusted useunbutsted_set
sendercan be set to allow untrusted users to use it.

Processes running as root or the Exim user are always trusted. Other trusted users are defined by
the trusted_usersor trusted_groups options. In the absence ef, or if the caller is not trusted,
the sender of a local message is set to the caller’s login name at the default qualify domain.

There is one exception to the restriction on the usd:adn empty sender can be specified by any

user, trusted or not, to create a message that can never provoke a bounce. An empty sender can be
specified either as an empty string, or as a pair of angle brackets with nothing between them, as in
these examples of shell commands:

exim -f '<>' user@domain
exim -f "™ user@domain

In addition, the use off is not restricted when testing a filter file withf or when testing or
verifying addresses using tHst or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to send
anonymous mail. Exim still checks that tReom: header refers to the local user, and if it does not,
it adds aSender:header, though this can be overridden by settindocal_from_check

White space betweeifi and the «@ddress is optional (that is, they can be given as two arguments

or one combined argument). The sender of a locally-generated message can also be set (when
permitted) by an initial “From ” line in the message — see the descriptiechrofabove — but if-f

is also present, it overrides “From ".

-G
This option is equivalent to an ACL applying:

control = suppress_local_fixups

for every message received. Note that Sendmail will complain about such bad formatting, where
Exim silently just does not fix it up. This may change in future.

As this affects audit information, the caller must be a trusted user to use this option.

-h <numbep
This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it over-
rides the “hop count” obtained by countiRgceivedheaders.)

-i
This option, which has the same effect-a§ specifies that a dot on a line by itself should not

terminate an incoming, non-SMTP message. | can find no documentation for this option in Solaris
2.4 Sendmaiil, but themailx command in Solaris 2.4 uses it. See atliso

-L <tag>
This option is equivalent to settingyslog_processnamén the config file and settingpg_file_
path to syslog . Its use is restricted to administrators. The configuration file has to be read and

40 The Exim command line (5)

parsed, to determine access rights, before this is set and takes effect, so early configuration file
errors will not honour this flag.

The tag should not be longer than 32 characters.

-M <message el <message i ...
This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings of
queue_domainsqueue_smtp_domainsandhold_domainsare ignored.

Retry hints for any of the addresses are overridden — Exim tries to deliver even if the normal retry
time has not yet been reached. This option requires the caller to be an admin user. However, there
is an option callegorod_requires_admin which can be set false to relax this restriction (and also

the same requirement for theg -R, and-S options).

The deliveries happen synchronously, that is, the original Exim process does not terminate until all
the delivery attempts have finished. No output is produced unless there is a serious error. If you
want to see what is happening, use-theption as well, or inspect Exim’s main log.

-Mar <message i <address <address ...
This option requests Exim to add the addresses to the list of recipients of the message (“ar” for
“add recipients”). The first argument must be a message id, and the remaining ones must be email
addresses. However, if the message is active (in the middle of a delivery attempt), it is not altered.
This option can be used only by an admin user.

-MC <transport- <hosthname <sequence numbermessage e
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP connection, which
is passed as the standard input. Details are given in c@ter 48. This must be the final option, and
the caller must be root or the Exim user in order to use it.

-MCA
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the-MC option. It signifies that the connection to the remote host has been authenticated.

-MCD
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the-MC option. It signifies that the remote host supports the ESPSRextension.

-MCG
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the-MC option. It signifies that an alternate queue is used, named by the following option.

-MCP
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the-MC option. It signifies that the server to which Exim is connected supports pipelining.

-MCQ <process it <pipe fc>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option when the original delivery was started by a queue runner. It passes on the
process id of the queue runner, together with the file descriptor number of an open pipe. Closure of
the pipe signals the final completion of the sequence of processes that are passing messages
through the same SMTP connection.

-MCS
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the SMTP SIZE option should be used on
messages delivered down the existing connection.

-MCT
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the host to which Exim is connected supports
TLS encryption.

41 The Exim command line (5)

-Mc <message e <message i ...
This option requests Exim to run a delivery attempt on each message in turn, but unlfé the
option, it does check for retry hints, and respects any that are found. This option is not very useful
to external callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself
in order to regain root privilege for a delivery (see char 55). Howelar,can be useful when
testing, in order to run a delivery that respects retry times and other options sheolidadomains
that are overridden wheiM is used. Such a delivery does not count as a queue run. If you want to
run a specific delivery as if in a queue run, you should «p&ith a message id argument. A
distinction between queue run deliveries and other deliveries is made in one or two places.

-Mes <message i <address
This option requests Exim to change the sender address in the message to the given address, which
must be a fully qualified address or “<>" (“es” for “edit sender”). There must be exactly two
arguments. The first argument must be a message id, and the second one an email address.
However, if the message is active (in the middle of a delivery attempt), its status is not altered.
This option can be used only by an admin user.

-Mf <message i <message i ...
This option requests Exim to mark each listed message as “frozen”. This prevents any delivery
attempts taking place until the message is “thawed”, either manually or as a resultaftthe
thaw configuration option. However, if any of the messages are active (in the middle of a delivery
attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message i <message i ...
This option requests Exim to give up trying to deliver the listed messages, including any that are
frozen. However, if any of the messages are active, their status is not altered. For non-bounce
messages, a delivery error message is sent to the sender, containing the text “cancelled by adminis-
trator”. Bounce messages are just discarded. This option can be used only by an admin user.

-Mmad <message el <message i ...
This option requests Exim to mark all the recipient addresses in the messages as already delivered
(“mad” for “mark all delivered”). However, if any message is active (in the middle of a delivery
attempt), its status is not altered. This option can be used only by an admin user.

-Mmd <message i <address <address ...
This option requests Exim to mark the given addresses as already delivered (“md” for “mark
delivered”). The first argument must be a message id, and the remaining ones must be emalil
addresses. These are matched to recipient addresses in the message in a case-sensitive manner. If
the message is active (in the middle of a delivery attempt), its status is not altered. This option can
be used only by an admin user.

-Mrm <message m <message i ...
This option requests Exim to remove the given messages from the queue. No bounce messages are
sent; each message is simply forgotten. However, if any of the messages are active, their status is
not altered. This option can be used only by an admin user or by the user who originally caused
the message to be placed on the queue.

-Mset <message i
This option is useful only in conjunction wittbe (that is, when testing string expansions). Exim
loads the given message from its spool before doing the test expansions, thus setting message-
specific variables such &nessage_siznd the header variables. THeecipientsvariable is made
available. This feature is provided to make it easier to test expansions that make use of these
variables. However, this option can be used only by an admin user. Sdeeatso

-Mt <message © <message i ...
This option requests Exim to “thaw” any of the listed messages that are “frozen”, so that delivery
attempts can resume. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

-Mvb <message i
This option causes the contents of the message body (-D) spool file to be written to the standard
output. This option can be used only by an admin user.

42 The Exim command line (5)

-Mvc <message id
This option causes a copy of the complete message (header lines plus body) to be written to the
standard output in RFC 2822 format. This option can be used only by an admin user.

-Mvh <message i
This option causes the contents of the message headers (-H) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvl <message i
This option causes the contents of the message log spool file to be written to the standard output.
This option can be used only by an admin user.

-m
This is apparently a synonym feom that is accepted by Sendmail, so Exim treats it that way too.

-N
This is a debugging option that inhibits delivery of a message at the transport level. It inwlies
Exim goes through many of the motions of delivery — it just doesn't actually transport the mess-
age, but instead behaves as if it had successfully done so. However, it does not make any updates
to the retry database, and the log entries for deliveries are flagged with “*>" rather than “=>".

BecauseN discards any message to which it applies, only root or the Exim user are allowed to use
it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when supplying an
incoming message to which it will apply. Although transportation never fails wheis set, an
address may be deferred because of a configuration problem on a transport, or a routing problem.
Once-N has been used for a delivery attempt, it sticks to the message, and applies to any subse-
quent delivery attempts that may happen for that message.

This option is interpreted by Sendmail to mean “no aliasing”. For normal modes of operation, it is
ignored by Exim. When combined witfbP it makes the output more terse (suppresses option
names, environment values and config pretty printing).

-O <data>
This option is interpreted by Sendmail to meahoption . Itis ignored by Exim.

-0A <file name
This option is used by Sendmail in conjunction witti to specify an alternative alias file name.
Exim handlesbi differently; see the description above.

-0B <n>
This is a debugging option which limits the maximum number of messages that can be delivered
down one SMTP connection, overriding the value set in smyptransport. If > is omitted, the
limitis set to 1.

-odb
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It requests “background” delivery of such messages, which means that the accepting
process automatically starts a delivery process for each message received, but does not wait for the
delivery processes to finish.

When all the messages have been received, the reception process exits, leaving the delivery pro-
cesses to finish in their own time. The standard output and error streams are closed at the start of
each delivery process. This is the default action if none obtheptions are present.

If one of the queueing options in the configuration fipuéue_only or queue_only_file for
example) is in effect;odb overrides it ifqueue_only_overrideis set true, which is the default
setting. Ifqueue_only_overrideis set falsesodb has no effect.

-odf
This option requests “foreground” (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the saroella$ A delivery process is auto-
matically started to deliver the message, and Exim waits for it to complete before proceeding.

43 The Exim command line (5)

The original Exim reception process does not finish until the delivery process for the final message
has ended. The standard error stream is left open during deliveries.

However, like-odb, this option has no effect ifueue_only_overrideis false and one of the
gqueueing options in the configuration file is in effect.

If there is a temporary delivery error during foreground delivery, the message is left on the queue
for later delivery, and the original reception process exits. See c@ter 51 for a way of setting up a
restricted configuration that never queues messages.

-odi
This option is synonymous witlodf. It is provided for compatibility with Sendmail.

-odqg
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It specifies that the accepting process should not automatically start a delivery process
for each message received. Messages are placed on the queue, and remain there until a subsequent
queue runner process encounters them. There are several configuration options (pueheas
only) that can be used to queue incoming messages under certain conditions. This option overrides
all of them and alseodqs It always forces queueing.

-odgs
This option is a hybrid betweemdb/-odi and-odg. However, like-odb and-odi, this option has
no effect ifqueue_only_overrideis false and one of the queueing options in the configuration file
is in effect.

When-odqgs does operate, a delivery process is started for each incoming message, in the back-
ground by default, but in the foreground-ddi is also present. The recipient addresses are routed,
and local deliveries are done in the normal way. However, if any SMTP deliveries are required,
they are not done at this time, so the message remains on the queue until a subsequent queue
runner process encounters it. Because routing was done, Exim knows which messages are waiting
for which hosts, and so a humber of messages for the same host can be sent in a single SMTP
connection. Thequeue_smtp_domainsconfiguration option has the same effect for specific
domains. See also theq option.

-oee
If an error is detected while a non-SMTP message is being received (for example, a malformed
address), the error is reported to the sender in a mail message.

Provided this error message is successfully sent, the Exim receiving process exits with a return
code of zero. If not, the return code is 2 if the problem is that the original message has no
recipients, or 1 for any other error. This is the defagt option if Exim is called asmail.

-oem
This is the same a®ee except that Exim always exits with a non-zero return code, whether or not
the error message was successfully sent. This is the deéalbption, unless Exim is called as
rmail.

-oep
If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for all errors.

-oeq
This option is supported for compatibility with Sendmail, but has the same effeetpas

-oew
This option is supported for compatibility with Sendmail, but has the same effeetras

-0i
This option, which has the same effect -asspecifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Otherwise, a single dot does terminate, though Exim
does no special processing for other lines that start with a dot. This option is set by default if Exim
is called asmail. See alseti.

44 The Exim command line (5)

-oitrue
This option is treated as synonymous wih

-oMa <host address
A number of options starting witltoM can be used to set values associated with remote hosts on
locally-submitted messages (that is, messages not received over TCP/IP). These options can be
used by any caller in conjunction with thkh, -be, -bf, -bF, -bt, or -bv testing options. In other
circumstances, they are ignored unless the caller is trusted.

The-oMa option sets the sender host address. This may include a port number at the end, after a
full stop (period). For example:

exim -bs -oMa 10.9.8.7.1234

An alternative syntax is to enclose the IP address in square brackets, followed by a colon and the
port number:

exim -bs -oMa [10.9.8.7]:1234

The IP address is placed in tlieender_host_addresariable, and the port, if present, §sender_
host_port If both -oMa and-bh are present on the command line, the sender host IP address is
taken from whichever one is last.

-oMaa <name>
See-oMa above for general remarks about #od options. The-oMaa option sets the value of
$sender_host_authenticatéthe authenticator name). See char 33 for a discussion of SMTP
authentication. This option can be used witth and-bsto set up an authenticated SMTP session
without actually using the SMTP AUTH command.

-oMai <string>
See-oMa above for general remarks about ted options. The-oMai option sets the value of
$authenticated_idthe id that was authenticated). This overrides the default value (the caller’s
login id, except with-bh, where there is no default) for messages from local sources. See chapter
for a discussion of authenticated ids.

-oMas <address
See -oMa above for general remarks about theM options. The-oMas option sets the
authenticated sender value$authenticated_senddt overrides the sender address that is created
from the caller’s login id for messages from local sources, except whters used, when there is
no default. For bothbh and-bs, an authenticated sender that is specified on a MAIL command
overrides this value. See chaptef 33 for a discussion of authenticated senders.

-oMi <interface address
See-oMa above for general remarks about tod/1 options. The-oMi option sets the IP interface
address value. A port number may be included, using the same syntax-adtrThe interface
address is placed $received_ip_addresand the port number, if present$ireceived_port

-oMm <message referenee
See-oMa above for general remarks about #uM options. Thee-oMm option sets the message
reference, e.g. message-id, and is logged during delivery. This is useful when some kind of audit
trail is required to tie messages together. The format of the message reference is checked and will
abort if the format is invalid. The option will only be accepted if exim is running in trusted mode,
not as any regular user.

The best example of a message reference is when Exim sends a bounce message. The message
reference is the message-id of the original message for which Exim is sending the bounce.

-oMr <protocol name
See-oMa above for general remarks about #wM options. The-oMr option sets the received
protocol value that is stored i#ireceived_protocolHowever, it does not apply (and is ignored)
when-bh or -bs is used. For-bh, the protocol is forced to one of the standard SMTP protocol
names (see the description $rfeceived_protocain sectiori 11.P). Forbs, the protocol is always
“local-" followed by one of those same names. Fo® (batched SMTP) however, the protocol can
be set byoMr.

45 The Exim command line (5)

-oMs <host name
See-oMa above for general remarks about Hod/1 options. The-oMs option sets the sender host
name in$sender_host_nam®&/hen this option is present, Exim does not attempt to look up a host
name from an IP address; it uses the name it is given.

-oMt <ident string>
See-oMa above for general remarks about Hod/ options. TheoMt option sets the sender ident
value in$sender_identThe default setting for local callers is the login id of the calling process,
except whenbh is used, when there is no default.

-om
In Sendmail, this option means “me too”, indicating that the sender of a message should receive a
copy of the message if the sender appears in an alias expansion. Exim always does this, so the
option does nothing.

-00
This option is ignored. In Sendmail it specifies “old style headers”, whatever that means.

-oP <path>
This option is useful only in conjunction withbd or -q with a time value. The option specifies the
file to which the process id of the daemon is written. WheX is used with-bd, or when-q with
a time is used withoutbd, this is the only way of causing Exim to write a pid file, because in
those cases, the normal pid file is not used.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will wait
forever for the standard input. The value can also be set byebeive timeoutoption. The
format used for specifying times is described in se¢tior] 6.16.

-os<time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each SMTP
command and block of data. The value can also be set bgrtiip_receive_timeoutoption; it
defaults to 5 minutes. The format used for specifying times is described in .sect|on 6.16.

-ov
This option has exactly the same effectas

-0X <number or string
This option is relevant only when théd (start listening daemon) option is also given. It controls
which ports and interfaces the daemon uses. Details of the syntax, and how it interacts with
configuration file options, are given in chap@ 13. WheX is used to start a daemon, no pid file
is written unlessoP is also present to specify a pid file name.

_pd
This option applies when an embedded Perl interpreter is linked with Exim (see cEaIpter 12). It
overrides the setting of thperl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

_pS
This option applies when an embedded Perl interpreter is linked with Exim (see cEaIpter 12). It
overrides the setting of theerl_at_start option, forcing the starting of the interpreter to occur as
soon as Exim is started.

-p<rval>:<svab
For compatibility with Sendmail, this option is equivalent to

-oMr <rval>-oMs <svab

It sets the incoming protocol and host name (for trusted callers). The host name and its colon can
be omitted when only the protocol is to be set. Note the Exim already has two private ogpins,
and-ps, that refer to embedded Perl. It is therefore impossible to set a protocol vath®o$

using this option (but that does not seem a real limitation).

46 The Exim command line (5)

This option is normally restricted to admin users. However, there is a configuration option called
prod_requires_admin which can be set false to relax this restriction (and also the same require-
ment for theM, -R, and-S options).

If other commandline options do not specify an action, theoption starts one queue runner
process. This scans the queue of waiting messages, and runs a delivery process for each one in
turn. It waits for each delivery process to finish before starting the next one. A delivery process
may not actually do any deliveries if the retry times for the addresses have not been reached. Use
-gf (see below) if you want to override this.

If the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process terminates.
In other words, a single pass is made over the waiting mail, one message at a timg.viigea
time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up a
remote MTA, other messages to the same MTA have a chance of getting through if they get tried
first.

It is possible to cause the messages to be processed in lexical message id order, which is essen-
tially the order in which they arrived, by setting thi@eue_run_in_order option, but this is not
recommended for normal use.

-g<gflags>
The-q option may be followed by one or more flag letters that change its behaviour. They are all
optional, but if more than one is present, they must appear in the correct order. Each flag is
described in a separate item below.

-qg...
An option starting with-qg requests a two-stage queue run. In the first stage, the queue is scanned
as if thequeue_smtp_domain®ption matched every domain. Addresses are routed, local deliver-
ies happen, but no remote transports are run.

The hints database that remembers which messages are waiting for specific hosts is updated, as if
delivery to those hosts had been deferred. After this is complete, a second, normal queue scan
happens, with routing and delivery taking place as normal. Messages that are routed to the same
host should mostly be delivered down a single SMTP connection because of the hints that were set
up during the first queue scan. This option may be useful for hosts that are connected to the
Internet intermittently.

-q[q]i...
If the i flag is present, the queue runner runs delivery processes only for those messages that

haven’t previously been tried. $tands for “initial delivery”.) This can be helpful if you are putting
messages on the queue usiodg and want a queue runner just to process the new messages.

-q[q][i]f...
If onef flag is present, a delivery attempt is forced for each non-frozen message, whereas fwithout

only those non-frozen addresses that have passed their retry times are tried.

-q[q][ilff...
If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[q] (I
Thel (the letter “ell”) flag specifies that only local deliveries are to be done. If a message requires
any remote deliveries, it remains on the queue for later delivery.

-q[q][][ff[[G<name>[/<time>]]]
If the G flag and a name is present, the queue runner operates on the queue with the given name
rather than the default queue. The name should not contaoharacter. For a periodic queue run
(see below) append to the name a slash and a time value.

a7 The Exim command line (5)

If other commandline options specify an action;cgs<name> option will specify a queue to
operate on. For example:

exim -bp -gGquarantine
mailg -qgGquarantine
exim -qGoffpeak -Rf @special.domain.example

-g<gflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically less
than a given value by following thq option with a starting message id. For example:

exim -q 0t5C6f-0000c8-00

Messages that arrived earlier th@rbC6f-0000c8-00 are not inspected. If a second message
id is given, messages whose ids are lexically greater than it are also skipped. If the same id is given
twice, for example,

exim -q 0t5C6f-0000c8-00 0t5C6f-0000c8-00

just one delivery process is started, for that message. This differs-fvbrim that retry data is
respected, and it also differs frofivic in that it counts as a delivery from a queue run. Note that

the selection mechanism does not affect the order in which the messages are scanned. There are
also other ways of selecting specific sets of messages for delivery in a queue rvR argks.

-g<gflags><time>
When a time value is present, thg option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in section
). This form of the-q option is commonly combined with thdad option, in which case a
single daemon process handles both functions. A common way of starting up a combined daemon
at system boot time is to use a command such as

lusr/exim/bin/exim -bd -g30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every 30
minutes.

When a daemon is started bywith a time value, but withoutbd, no pid file is written unless one
is explicitly requested by th@P option.

-gR<rsflags> <string>
This option is synonymous witir. It is provided for Sendmail compatibility.

-qS<rsflags> <string>
This option is synonymous wits.

-R<rsflags> <string>
The <sflags> may be empty, in which case the white space before the string is optional, unless the
string isf, ff, r, rf, or rff, which are the possible values forsflags>. White space is required if
<rsflags> is not empty.

This option is similar to-g with no time value, that is, it causes Exim to perform a single queue

run, except that, when scanning the messages on the queue, Exim processes only those that have at
least one undelivered recipient address containing the given string, which is checked in a case-
independent way. If thersflags> start withr, <string> is interpreted as a regular expression;
otherwise it is a literal string.

If you want to do periodic queue runs for messages with specific recipients, you can cefRbine
with -g and a time value. For example:

exim -g25m -R @special.domain.example

This example does a queue run for messages with recipients in the given domain every 25 minutes.
Any additional flags that are specified withare applied to each queue run.

Once a message is selected for delivery by this mechanism, all its addresses are processed. For the
first selected message, Exim overrides any retry information and forces a delivery attempt for each
undelivered address. This means that if delivery of any address in the first message is successful,

48 The Exim command line (5)

any existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected messages,
the failing address will be skipped.

If the <rsflags> containf or ff, the delivery forcing applies to all selected messages, not just the
first; frozen messages are included wfigs present.

The-R option makes it straightforward to initiate delivery of all messages to a given domain after
a host has been down for some time. When the SMTP command ETRN is accepted by its ACL
(see chapt3), its default effect is to run Exim with {Reoption, but it can be configured to run

an arbitrary command instead.

This is a documented (for Sendmail) obsolete alternative narvie for

-S<rsflags> <string>

This option acts likeR except that it checks the string against each message’s sender instead of
against the recipients. IR is also set, both conditions must be met for a message to be selected. If
either of the options hdor ff in its flags, the associated action is taken.

-Tqt <times>

-ti

This is an option that is exclusively for use by the Exim testing suite. It is not recognized when
Exim is run normally. It allows for the setting up of explicit “gueue times” so that various
warning/retry features can be tested.

When Exim is receiving a locally-generated, non-SMTP message on its standard inptit, the
option causes the recipients of the message to be obtained frofo:tléc:, andBcc: header lines

in the message instead of from the command arguments. The addresses are extracted before any
rewriting takes place and tigec: header line, if present, is then removed.

If the command has any arguments, they specify addresses to which the mesesagibe
delivered. That is, the argument addresses are removed from the recipients list obtained from the
headers. This is compatible with Smail 3 and in accordance with the documented behaviour of
several versions of Sendmail, as described in man pages on a number of operating systems (e.g.
Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendawdilargument addresses to

those obtained from the headers, and the O’Reilly Sendmail book documents it that way. Exim can
be made to add argument addresses instead of subtracting them by setting theexipdon
addresses_remove_argumentsilse.

If there are anyResent-header lines in the message, Exim extracts recipients froResént-Tq:
Resent-Cg:andResent-Bccheader lines instead of froffo:, Cc:, andBcc:. This is for compati-
bility with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an errbwhs used in
conjunction withResent-header lines.)

RFC 2822 talks about different setsRésent-header lines (for when a message is resent several
times). The RFC also specifies that they should be added at the front of the message, and separated
by Receivediines. It is not at all clear howt should operate in the present of multiple sets, nor
indeed exactly what constitutes a “set”. In practice, it seems that MUAs do not follow the RFC.
The Resent-lines are often added at the end of the header, and if a message is resent more than
once, it is common for the original set Besent-headers to be renamed>ésRkesent-when a new

set is added. This removes any possible ambiguity.

This option is exactly equivalent tb-i. It is provided for compatibility with Sendmail.

-tls-on-connect

This option is available when Exim is compiled with TLS support. It forces all incoming SMTP
connections to behave_as if the incoming port is listed intheon_connect_portsoption. See

sectio and chap 42 for further details.

49 The Exim command line (5)

-U
Sendmail uses this option for “initial message submission”, and its documentation states that in
future releases, it may complain about syntactically invalid messages rather than fixing them when
this flag is not set. Exim ignores this option.

-V
This option causes Exim to write information to the standard error stream, describing what it is
doing. In particular, it shows the log lines for receiving and delivering a message, and if an SMTP
connection is made, the SMTP dialogue is shown. Some of the log lines shown may not actually
be written to the log if the setting dbg_selectordiscards them. Any relevant selectors are shown
with each log line. If none are shown, the logging is unconditional.

-X
AIX uses -x for a private purpose (“mail from a local mail program has National Language
Support extended characters in the body of the mail item”). It-setghen calling the MTA from
its mail command. Exim ignores this option.

-X <logfile>
This option is interpreted by Sendmail to cause debug information to be sent to the named file. It is
ignored by Exim.

-z <log-line>
This option writes its argument to Exim’s logfile. Use is restricted to administrators; the intent is
for operational notes. Quotes should be used to maintain a multi-word item as a single argument,
under most shells.

50 The Exim command line (5)

6. The Exim run time configuration file

Exim uses a single run time configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the configuration file, Exim writes a message on the

standard error, and exits with a non-zero return code. The message is also written to the panic log.
Note: Only simple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually alter the string.

The name of the configuration file is compiled into the binary for security reasons, and is specified
by the CONFIGURE_FILE compilation option. In most configurations, this specifies a single file.
However, it is permitted to give a colon-separated list of file names, in which case Exim uses the first
existing file in the list.

The run time configuration file must be owned by root or by the user that is specified at compile time
by the CONFIGURE_OWNER option (if set). The configuration file must not be world-writeable,
or group-writeable unless its group is the root group or the one specified at compile time by the
CONFIGURE_GROUP option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
able to edit the run time configuration file has an easy way to run commands as root. If you specify a
user or group in the CONFIGURE_OWNER or CONFIGURE_GROUP options, then that user and/or
any users who are members of that group will trivially be able to obtain root privileges.

Up to Exim version 4.72, the run time configuration file was also permitted to be writeable by the
Exim user and/or group. That has been changed in Exim 4.73 since it offered a simple privilege
escalation for any attacker who managed to compromise the Exim user account.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.defaulif CONFIGURE_FILE defines just one file name, the installation process copies
the default configuration to a new file of that name if it did not previously exist. If CONFIGURE_
FILE is a list, no default is automatically installed. Char 7 is a “walk-through” discussion of the
default configuration.

6.1 Using a different configuration file

A one-off alternate configuration can be specified by-beommand line option, which may specify

a single file or a list of files. However, whef is used, Exim gives up its root privilege, unless called
by root (or unless the argument fe€ is identical to the built-in value from CONFIGURE_FILE), or

is listed in the TRUSTED_CONFIG_LIST file and the caller is the Exim user or the user specified in
the CONFIGURE_OWNER settingC is useful mainly for checking the syntax of configuration files
before installing them. No owner or group checks are done on a configuration file specifi€diby

root privilege has been dropped.

Even the Exim user is not trusted to specify an arbitrary configuration file withGhaption to be

used with root privileges, unless that file is listed in the TRUSTED_CONFIG_LIST file. This locks

out the possibility of testing a configuration usif@ right through message reception and delivery,

even if the caller is root. The reception works, but by that time, Exim is running as the Exim user, so
when it re-execs to regain privilege for the delivery, the us&atauses privilege to be lost. However,

root can test reception and delivery using two separate commands (one to put a message on the queue,
using-odq, and another to do the delivery, ush).

If ALT_CONFIG_PREFIX is definedn Local/Makefile it specifies a prefix string with which any file
named in a-C command line option must start. In addition, the file name must not contain the
sequence/!./ . There is no default setting for ALT_CONFIG_PREFIX; when it is unset, any file
name can be used wi@@.

One-off changes to a configuration can be specified byEheommand line option, which defines
and overrides values for macros used inside the configuration file. HoweverClikbe use of this
option by a non-privileged user causes Exim to discard its root privilege. If DISABLE_D_OPTION is

51 The runtime configuration file (6)

defined inLocal/Makefile the use otD is completely disabled, and its use causes an immediate error
exit.

The WHITELIST_D_MACROS option it.ocal/Makefilepermits the binary builder to declare certain
macro names trusted, such that root privilege will not necessarily be discarded. WHITELIST_D __
MACROS defines a colon-separated list of macros which are considered safe-&nhdnlfy supplies

macros from this list, and the values are acceptable, then Exim will not give up root privilege if the
caller is root, the Exim run-time user, or the CONFIGURE_OWNER, if set. This is a transition
mechanism and is expected to be removed in the future. Acceptable values for the macros satisfy the
regexp\[A-Za-z0-9_/.-]*$

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined

in Local/Makefile Exim first looks for a file whose name is the configuration file name followed by a
dot and the machine’s node name, as obtained fronuttzne()function. If this file does not exist,

the standard name is tried. This processing occurs for each file name in the list given by
CONFIGURE_FILE orC.

In some esoteric situations different versions of Exim may be run under different effective uids and
the CONFIGURE_FILE_USE_EUID is defined to help with this. See the commests/BDITME
for details.

6.2 Configuration file format

Exim’s configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are all optional, and may appear in any order.
Each part other than the first is introduced by the word “begin” followed by at least one literal space,
and the name of the part. The optional parts are:

» ACL: Access control lists for controlling incoming SMTP mail (see ch@er 43).

 authenticators Configuration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see cha 33).

» routers Configuration settings for the router drivers. Routers process addresses and determine how
the message is to be delivered (see ch@S—ZZ).

 transports Configuration settings for the transport drivers. Transports define mechanisms for copy-
ing messages to destinations (see cha@4—30).

» retry: Retry rules, for use when a message cannot be delivered immediately. If there is no retry
section, or if it is empty (that is, no retry rules are defined), Exim will not retry deliveries. In this
situation, temporary errors are treated the same as permanent errors. Retry rules are discussed in

chapte.

* rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery. Rewriting is discussed in cter 31.

 local_scan Private options for théocal_scan()function. If you want to use this feature, you must
set

LOCAL_SCAN_HAS_OPTIONS=yes
in Local/Makefilebefore building Exim. Details of thimcal_scan()facility are given in chapt5.
Leading and trailing white space in configuration lines is always ignored.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignorédbte: A # character other than at the beginning of a line is not treated
specially, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the general rule for
white space means that trailing white space after the backslash and leading white space at the start of
continuation lines is ignored. Comment lines beginning with # (but not empty lines) may appear in
the middle of a sequence of continuation lines.

52 The runtime configuration file (6)

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.defaultand add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in c@ters 43,
, and| 3[L, respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from se@‘ 6.11 onwards. Before that, the inclusion,
macro, and conditional facilities are described.

6.3 File inclusions in the configuration file
You can include other files inside Exim’s run time configuration file by using this syntax:

.include <file name
.include_if_exists <file name

on a line by itself. Double quotes round the file hame are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent
files.

The first form allows a relative name. It is resolved relative to the directory of the including file| For
the second form an absolute file name is required.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
a good idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_lookup = a.b.c\
.include /some/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
included file as if they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If a line in the main part of the configuration (that is, before the first “begin” line) begins with an
upper case letter, it is taken as a macro definition, and must be of the form

<name> = <est of line

The name must consist of letters, digits, and underscores, and need not all be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and
has leading and trailing white space removed. Quotes are not removed. The replacement text can
never end with a backslash character, but this doesn’t seem to be a serious limitation.

Macros may also be defined between router, transport, authenticator, or ACL definitions. They may
not, however, be defined within an individual driver or ACL, or in tbeal_scan retry, or rewrite
sections of the configuration.

6.5 Macro substitution

Once a macro is defined, all subsequent lines in the file (and any included files) are scanned for the

macro name; if there are several macros, the line is scanned for each in turn, in the order in which the

macros are defined. The replacement text is not re-scanned for the current macro, though it is scanned
for subsequently defined macros. For this reason, a macro hame may not contain the name of a
previously defined macro as a substring. You could, for example, define

ABCD_XYZ = <something
ABCD = <something else

but putting the definitions in the opposite order would provoke a configuration error. Macro expansion
is applied to individual physical lines from the file, before checking for line continuation or file

53 The runtime configuration file (6)

inclusion (see above). If a line consists solely of a macro name, and the expansion of the macro is
empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
include line.

6.6 Redefining macros

Once defined, the value of a macro can be redefined later in the configuration (or in an included file).
Redefinition is specified by usimgr instead of=. For example:

MAC = initial value

MAC == updated value

Redefinition does not alter the order in which the macros are applied to the subsequent lines of the
configuration file. It is still the same order in which the macros were originally defined. All that
changes is the macro’s value. Redefinition makes it possible to accumulate values. For example:

MAC = initial value

MAC == MAC and something added
This can be helpful in situations where the configuration file is built from a number of other files.

6.7 Overriding macro values

The values set for macros in the configuration file can be overridden bYpthemmand line option,
but Exim gives up its root privilege whetD is used, unless called by root or the Exim user. A
definition on the command line using tHB option causes all definitions and redefinitions within the
file to be ignored.

6.8 Example of macro usage

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALIAS _QUERY = select mailbox from user where \
login="${quote_mysql:$local_part}’;

This can then be used inedirectrouter setting like this:
data = ${lookup mysql{ALIAS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists — see s_ectiﬂ;n 10.5.

6.9 Builtin macros

Exim defines some macros depending on facilities available, which may differ due to build-time
definitions and from one release to another. All of these macros start with an underscore. They can be
used to conditionally include parts of a configuration (see below).

The following classes of macros are defined:

HAVE* build-time defines
_DRIVER_ROUTER_* router drivers
_DRIVER_TRANSPORT_* transport drivers
_DRIVER_AUTHENTICATOR_* authenticator drivers
_OPT_MAIN_* main config options
_OPT_ROUTERS * generic router options
_OPT_TRANSPORTS_* generic transport options
_OPT_AUTHENTICATORS_* generic authenticator options
_OPT_ROUTER_* _* private router options

54 The runtime configuration file (6)

_OPT_TRANSPORT_*_* private transport options
_OPT_AUTHENTICATOR_* * private authenticator options

Use an “exim -bP macros” command to get the list of macros.

6.10 Conditional skips in the configuration file

You can use the directivedgdef , .ifndef , .elifdef , .elifndef , .else ,and.endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
the file is read (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

ifdef AAA
message_size_limit = 50M
.else

message_size_limit = 100M
.endif

sets a message size limit of 50M if the ma&dAis defined (orA or AA), and 100M otherwise. If
there is more than one macro named on the line, the condition is true if any of them are defined. That
is, it is an “or” condition. To obtain an “and” condition, you need to use nafdefl s.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition “there was a macro substitution in this line” will always be true.

Text following .else and.endif s ignored, and can be used as comment to clarify complicated
nestings.

6.11 Common option syntax

For the main set of options, driver options, dadal_scan()options, each setting is on a line by itself,

and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qualify_domain = mydomain.example.com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using tH#° command line option to read these values, you can precede
the option settings with the word “hide”. For example:

hide mysqgl_servers = localhost/users/admin/secret-password
For non-admin users, such options are displayed like this:
mysgl_servers = <value not displayable>
If “hide” is used on a driver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.12 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specify-
ing such options: with and without a data value. If the option name is specified on its own without
data, the switch is turned on; if it is preceded by “no_" or “not_" the switch is turned off. However,
boolean options may be followed by an equals sign and one of the words “true”, “false”, “yes”, or

“no”, as an alternative syntax. For example, the following two settings have exactly the same effect:

gueue_only
gueue_only = true

55 The runtime configuration file (6)

The following two lines also have the same (opposite) effect:

no_queue_only
gueue_only = false

You can use whichever syntax you prefer.

6.13 Integer values

If an option’s type is given as “integer”, the value can be given in decimal, hexadecimal, or octal. If it
starts with a digit greater than zero, a decimal number is assumed. Otherwise, it is treated as an octal
number unless it starts with the characters “Ox”, in which case the remainder is interpreted as a
hexadecimal number.

If an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M,

it is multiplied by 1024x1024; if by the letter G, 1024x1024x1024. When the values of integer option
settings are output, values which are an exact multiple of 1024 or 1024x1024 are sometimes, but not
always, printed using the letters K and M. The printing style is independent of the actual input format
that was used.

6.14 Octal integer values

If an option’s type is given as “octal integer”, its value is always interpreted as an octal number,
whether or not it starts with the digit zero. Such options are always output in octal.

6.15 Fixed point numbers

If an option’s type is given as “fixed-point”, its value must be a decimal integer, optionally followed
by a decimal point and up to three further digits.

6.16 Time intervals

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

S seconds

m minutes
h hours

d days

w weeks

For example, “3h50m” specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
“90m” instead of “1h30m”.

6.17 String values

If an option’s type is specified as “string”, the value can be specified with or without double-quotes. If

it does not start with a double-quote, the value consists of the remainder of the line plus any continu-
ation lines, starting at the first character after any leading white space, with trailing white space
removed, and with no interpretation of the characters in the string. Because Exim removes comment
lines (those beginning with #) at an early stage, they can appear in the middle of a multi-line string.
The following two settings are therefore equivalent:

trusted_users = uucp:mail

trusted_users = uucp:\
This comment line is ignored
mail

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

56 The runtime configuration file (6)

\\ single backslash

\n newline

\r carriage return

\t tab

\ <octal digits> up to 3 octal digits specify one character

\x <hex digits up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert special charac-
ters, or if you need to specify a value with leading or trailing spaces. These cases are rare, so quoting
is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting was
required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.18 Expanded strings

Some strings in the configuration file are subjectesdtimg expansionby which means various parts

of the string may be changed according to the circumstances (see pter 11). The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is also an escape charac-
ter for the expander, so any backslashes that are required for that reason must be doubled if they are
within a quoted configuration string.

6.19 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that
can be looked up using tigetpwnam(pr getgrnam()function, as appropriate.

6.20 List construction

The data for some configuration options is a list of items, with colon as the default separator. Many of
these options are shown with type “string list” in the descriptions later in this document. Others are
listed as “domain list”, “host list”, “address list”, or “local part list”. Syntactically, they are all the

same; however, those other than “string list” are subject to particular kinds of interpretation, as

described in chaptO.

In all these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_userssetting in sectio? above is an example. If a colon is actually needed in an item in a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of IPv6 address. For example, the list

local_interfaces = 127.0.0.1: ::::1
contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1.

Note: Although leading and trailing white space is ignored in individual list items, it is not ignored
when parsing the list. The space after the first colon in the example above is necessary. If it were not
there, the list would be interpreted as the two items 127.0.0.1:: and 1.

6.21 Changing list separators

Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was introduced to allow
the separator character to be changed. If a list begins with a left angle bracket, followed by any
punctuation character, that character is used instead of colon as the list separator. For example, the list
above can be rewritten to use a semicolon separator like this:

local_interfaces = <; 127.0.0.1; ::11

57 The runtime configuration file (6)

This facility applies to all lists, with the exception of the listlog_file_path It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

It is also possible to use newline and other control characters (those with code values less than 32,
plus DEL) as separators in lists. Such separators must be provided literally at the time the list is
processed. For options that are string-expanded, you can write the separator using a normal escape
sequence. This will be processed by the expander before the string is interpreted as a list. For
example, if a newline-separated list of domains is generated by a lookup, you can process it directly
by a line such as this:

domains = <\n ${lookup mysgH.....}}

This avoids having to change the list separator in such data. You are unlikely to want to use a control
character as a separator in an option that is not expanded, because the value is literal text. However, it
can be done by giving the value in quotes. For example:

local_interfaces = "<\n 127.0.0.1 \n ::1"

Unlike printing character separators, which can be included in list items by doubling, it is not possible
to include a control character as data when it is set as the separator. Two such characters in succession
are interpreted as enclosing an empty list item.

6.22 Empty items in lists

An empty item at the end of a list is always ignored. In other words, trailing separator characters are
ignored. Thus, the list in

senders = user@domain :

contains only a single item. If you want to include an empty string as one item in a list, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = userl@domain : : user2@domain

Note: There must be white space between the two colons, as otherwise they are interpreted as
representing a single colon data character (and the list would then contain just one item). If you want
to specify a list that contains just one, empty item, you can do it as in this example:

senders =:

In this case, the first item is empty, and the second is discarded because it is at the end of the list.

6.23 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In
each part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lines like this:

<instance name
<optior>

<optior>
In the following example, the instance namiaaluser and it is followed by three options settings:

localuser:
driver = accept
check_local_user
transport = local_delivery

For each driver instance, you specify which Exim code module it uses — by the settingdrividre

option — and (optionally) some configuration settings. For example, in the case of transports, if you
want a transport to deliver with SMTP you would use $inetpdriver; if you want to deliver to a local

file you would use th@ppendfiledriver. Each of the drivers is described in detall in its own separate
chapter later in this manual.

58 The runtime configuration file (6)

You can have several routers, transports, or authenticators that are based on the same underlying
driver (each must have a different instance name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of optiganericand private The generic
options are those that apply to all drivers of the same type (that is, all routers, all transports or all
authenticators). Thdriver option is a generic option that must appear in every definition. The private
options are special for each driver, and none need appear, because they all have default values.

The options may appear in any order, except thatiier option must precede any private options,
since these depend on the particular driver. For this reason, it is recommendddviiatalways be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the
same type. A router and a transport (for example) can each have the same name, but no two router
instances can have the same name. The name of a driver instance should not be confused with the
name of the underlying driver module. For example, the configuration lines:

remote_smtp:
driver = smtp

create an instance of tlentptransport driver whose namersmote_smtpThe same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of tlentptransport, with different options, might be defined thus:

special_smtp:
driver = smtp
port = 1234
command_timeout = 10s

The namesemote_smt@andspecial_smtpvould be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings

for any particular driver instance, including all the defaulted values, can be extracted by making use
of the-bP command line option.

59 The runtime configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim s/configure.defaulis sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter “walks
through” the default configuration, giving brief explanations of the settings. Detailed descriptions of
the options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default configuration.

7.1 Main configuration settings

The main (global) configuration option settings must always come first in the file. The first thing
you'll see in the file, after some initial comments, is the line

primary_hostname =

This is a commented-out setting of thamary_hostname option. Exim needs to know the official,

fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim usesitteane()system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domainlist local_domains =@
domainlist relay_to_domains =
hostlist relay_from_hosts =127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give hames to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see se|=ctioh 10.5).

The first line defines a domain list callédcal_domains this is used later in the configuration to
identify domains that are to be delivered on the local host.

There is just one item in this list, the string “@”. This is a special form of entry which means “the
name of the local host”. Thus, if the local host is calleahost.example mail to
any.user@a.host.examgke expected to be delivered locally. Because the local host’s name is refer-
enced indirectly, the same configuration file can be used on different hosts.

The second line defines a domain list caliethy _to_domaingbut the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list calleelay_from_hostsThis list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to
submit mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to
submit messages for relaying.

Just to be sure there’s no misunderstanding: at this point in the configuration we aren't actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next two configuration lines are genuine option settings:

acl_smtp_rcpt = acl_check_rcpt
acl_smtp_data = acl_check_data

These options specifiiccess Control List¢ACLs) that are to be used during an incoming SMTP
session for every recipient of a message (every RCPT command), and after the contents of the
message have been received, respectively. The names of the listechmheck rcptand
acl_check_dataand we will come to their definitions below, in the ACL section of the configuration.
The RCPT ACL controls which recipients are accepted for an incoming message — if a configuration

60 The default configuration file (7)

does not provide an ACL to check recipients, no SMTP mail can be accepted. The DATA ACL allows
the contents of a message to be checked.

Two commented-out option settings are next:

av_scanner = clamd:/tmp/clamd
spamd_address = 127.0.0.1 783

These are example settings that can be used when Exim is compiled with the content-scanning
extension. The first specifies the interface to the virus scanner, and the second specifies the interface
to SpamAssassin. Further details are given in ch@ter 44.

Three more commented-out option settings follow:

tls_advertise_hosts = *
tls_certificate = /etc/ssl/exim.crt
tIs_privatekey = /etc/ssl/exim.pem

These are example settings that can be used when Exim is compiled with support for TLS (aka SSL)
as described in secti.?. The first one specifies the list of clients that are allowed to use TLS when
connecting to this server; in this case the wildcard means all clients. The other options specify where
Exim should find its TLS certificate and private key, which together prove the server’s identity to any
clients that connect. More details are given in chapter 42.

Another two commented-out option settings follow:

daemon_smtp_ports = 25 : 465 : 587
tls_on_connect_ports = 465

These options provide better support for roaming users who wish to use this server for message
submission. They are not much use unless you have turned on TLS (as described in the previous
paragraph) and authentication (about which more in sen 7.7). The usual SMTP port 25 is often
blocked on end-user networks, so RFC 4409 specifies that message submission should use port 587
instead. However some software (notably Microsoft Outlook) cannot be configured to use port 587
correctly, so these settings also enable the non-standard “smtps” (aka “ssmtp”) port 465 (see section

[13.4).
Two more commented-out options settings follow:

qualify_domain =
qualify_recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not sequalify_domain, the value ofprimary_hostname is used. If you set both of these options,

you can have different qualification domains for sender and recipient addresses. If you set only the
first one, its value is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13fhat is, with a “domain literal” (an IP address within square brackets) instead of a
named domain.

allow_domain_literals

The RFCs still require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their IP addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addregseintaster where

domain literals are still useful.

The next configuration line is a kind of trigger guard:
never_users = root

It specifies that no delivery must ever be run as the root user. The normal convention is tocmEt up
as an alias for the system administrator. This setting is a guard against slips in the configuration. The
list of users specified bgever_usersis not, however, the complete list; the build-time configuration

61 The default configuration file (7)

in Local/Makefilehas an option called FIXED_NEVER_USERS specifying a list that cannot be
overridden. The contents okever_usersare added to this list. By default FIXED_NEVER_USERS
also specifies root.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host’s identity is its IP address. The next configuration line,

host_lookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you feel it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on “nearby” networks. Note that it is not
always possible to find a host name from an IP address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned wilentcallbacks, as defined by RFC 1413 (hence their names):

rfc1413 hosts = *
rfc1413_query_timeout = Os

These settings cause Exim to avoid ident callbacks for all incoming SMTP calls. Few hosts offer
RFC1413 service these days; calls have to be terminated by a timeout and this needlessly delays the
startup of an incoming SMTP connection. If you have hosts for which you trust RFC1413 and need
this information, you can change this.

This line enables an efficiency SMTP option. It is negotiated by clients and not expected to cause
problems but can be disabled if needed.

prdr_enable = true

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two
commented-out options:

sender_unqualified_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

Thelog_selectoroption is used to increase the detail of logging over the default:

log_selector = +smtp_protocol_error +smtp_syntax_error \
+tls_certificate_verified

Thepercent_hack _domainsoption is also commented out:
percent_hack_domains =

It provides a list of domains for which the “percent hack” is to operate. This is an almost obsolete
form of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The next two settings in the main part of the default configuration are concerned with messages that
have been “frozen” on Exim’s queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

ignore_bounce_errors_after = 2d
timeout_frozen_after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days on the
gueue. The second specifies that any frozen message (whether a bounce message or not) is to be
timed out (and discarded) after a week. In this configuration, the first setting ensures that no failing
bounce message ever lasts a week.

62 The default configuration file (7)

Exim queues it's messages in a spool directory. If you expect to have large queues, you may consider
using this option. It splits the spool directory into subdirectories to avoid file system degradation from
many files in a single directory, resulting in better performance. Manual manipulation of queued
messages becomes more complex (though fortunately not often needed).

split_spool_directory = true

In an ideal world everybody follows the standards. For non-ASCII messages RFC 2047 is a standard,
allowing a maximum line length of 76 characters. Exim adheres that standard and won't process
messages which violate this standard. (Even ${rfc2047:...} expansions will fail.) In particular, the
Exim maintainers have had multiple reports of problems from Russian administrators of issues until
they disable this check, because of some popular, yet buggy, mail composition software.

check _rfc2047_length = false

If you need to be strictly RFC compliant you may wish to disable the 8BITMIME advertisement. Use
this, if you exchange mails with systems that are not 8-bit clean.

accept_8bitmime = false

Libraries you use may depend on specific environment settings. This imposes a security risk (e.qg.
PATH). There are two listskeep_environmentfor the variables to import as they are, aadd_
environment for variables we want to set to a fixed value. Note that TZ is handled separately, by the
$%timezone%$ runtime option and by the TIMEZONE_DEFAULT buildtime option.

keep_environment = "LDAP
add_environment = PATH=/usr/bin::/bin

7.2 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line

begin acl

and it contains the definitions of two ACLs, calledl_check_rcptand acl_check_datathat were
referenced in the settings @fl_smtp_rcptandacl_smtp_dataabove.

The first ACL is used for every RCPT command in an incoming SMTP message. Each RCPT
command specifies one of the message’s recipients. The ACL statements are considered in order, until
the recipient address is either accepted or rejected. The RCPT command is then accepted or rejected,
according to the result of the ACL processing.

acl_check_rcpt:
This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.
accept hosts =:

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn’t actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message did not come
from a remote host, because in that case, the remote hostname is empty. The colon is important.
Without it, the list itself is empty, and can never match anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAS operate in this manner.

deny message = Restricted characters in address
domains = +local_domains
local_parts =7[]: " @%Y]]

deny message = Restricted characters in address
domains = I+local_domains
local_parts =7[L/]] : ~*[@%!] : AN

63 The default configuration file (7)

These statements are concerned with local parts that contain any of the characters “@”, “%”, “", “/”,
“|”, or dots in unusual places. Although these characters are entirely legal in local parts (in the case
of “@” and leading dots, only if correctly quoted), they do not commonly occur in Internet mail
addresses.

The first three have in the past been associated with explicitly routed addresses (percent is still
sometimes used — see thercent_hack_domainsoption). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in théocal _domaingiomain list. The “+” character is used to indicate a reference to a
named list. In this configuration, there is just one domailogal_domainsbut in general there may

be many.

The second condition on the first statement uses two regular expressions to block local parts that
begin with a dot or contain “@", “%”, “1”, “/”, or “|". If you have local accounts that include these
characters, you will have to modify this rule.

Empty components (two dots in a row) are not valid in RFC 2822, but Exim allows them because they
have been encountered in practice. (Consider the common convention of local parts constructed as
“first-initial.second-initial.family-nanfewhen applied to someone like the author of Exim, who has

no second initial.) However, a local part starting with a dot or containing “/../” can cause trouble if it

is used as part of a file name (for example, for a mailing list). This is also true for local parts that
contain slashes. A pipe symbol can also be troublesome if the local part is incorporated unthinkingly
into a shell command line.

The second rule above applies to all other domains, and is less strict. This allows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local
parts that begin with a dot, slash, or vertical bar, but allows these characters within the local part.
However, the sequence “/../” is barred. The use of “"@”, “%”, and “!” is blocked, as before. The
motivation here is to prevent your users (or your users’ viruses) from mounting certain kinds of attack
on remote sites.

accept local_parts = postmaster
domains = +local_domains

This statement, which has two conditions, accepts an incoming address if the localpuestinmaster
and the domain is one of those listed in theal_domaingdomain list. The “+” character is used to
indicate a reference to a named list. In this configuration, there is just one domeagaindomains
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the subse-
guent tests. This can be helpful while sorting out problems in cases where the subsequent tests are
incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, lmalloutscan be used for more verification if required.
Sectio discusses the details of address verification.

accept hosts = +relay_from_hosts
control = submission

This statement accepts the address if the message is coming from one of the hosts that are defined as
being allowed to relay through this host. Recipient verification is omitted here, because in many cases
the clients are dumb MUAs that do not cope well with SMTP error responses. For the same reason,
the second line specifies “submission mode” for messages that are accepted. This is described in

64 The default configuration file (7)

detail in sectiol; it causes Exim to fix messages that are deficient in some way, for example,
because they lack Bate: header line. If you are actually relaying out from MTAs, you should
probably add recipient verification here, and disable submission mode.

accept authenticated = *
control = submission

This statement accepts the address if the client host has authenticated itself. Submission mode is again
specified, on the grounds that such messages are most likely to come from MUAs. The default
configuration does not define any_authenticators, though it does include some nearly complete
commented-out examples describeErI 7.7. This means that no client can in fact authenticate until you
complete the authenticator definitions.

require message = relay not permitted
domains = +local_domains : +relay_to_domains

This statement rejects the address if its domain is neither a local domain nor one of the domains for
which this host is a relay.

require verify = recipient
This statement requires the recipient address to be verified; if verification fails, the address is rejected.

#deny message = rejected because $sender_host_address \

is in a black list at $dnslist_domain\n\

$dnslist_text

dnslists = black.list.example

#

#warn dnslists = black.list.example

add_header = X-Warning: $sender_host_address is in \
a black list at $dnslist_domain

log_message = found in $dnslist_domain

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second just inserts a warning header line.

require verify = csa

This commented-out line is an example of how you could turn on client SMTP authorization (CSA)
checking. Such checks do DNS lookups for special SRV records.

accept

The final statement in the first ACL unconditionally accepts any recipient address that has success-
fully passed all the previous tests.

acl_check data:

This line marks the start of the second ACL, and names it. Most of the contents of this ACL are
commented out:

#deny malware =*
message = This message contains a virus \
($malware_name).

These lines are examples of how to arrange for messages to be scanned for viruses when Exim has
been compiled with the content-scanning extension, and a suitable virus scanner is installed. If the
message is found to contain a virus, it is rejected with the given custom error message.

#warn spam = nobody

message = X-Spam_score: $spam_score\n\
X-Spam_score_int: $spam_score_int\n\
X-Spam_bar: $spam_bar\n\
X-Spam_report: $spam_report

HHHH*

65 The default configuration file (7)

These lines are an example of how to arrange for messages to be scanned by SpamAssassin when
Exim has been compiled with the content-scanning extension, and SpamAssassin has been installed.
The SpamAssassin check is run withbody as its user parameter, and the results are added to the
message as a series of extra header line. In this case, the message is not rejected, whatever the spam
score.

accept

This final line in the DATA ACL accepts the message unconditionally.

7.3 Router configuration
The router configuration comes next in the default configuration, introduced by the line
begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_literal:

driver = ipliteral

domains = !+local_domains
transport = remote_smtp

This router is commented out because the majority of sites do not want to support domain literal
addresses (those of the foroser@[10.9.8.7]. If you uncomment this router, you also need to
uncomment the setting aflow_domain_literals in the main part of the configuration.

dnslookup:
driver = dnslookup
domains =! +local_domains
transport = remote_smtp
ignore_target _hosts = 0.0.0.0 : 127.0.0.0/8
no_more

The first uncommented router handles addresses that do not involve any local domains. This is
specified by the line

domains = ! +local_domains

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domainsndicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver @nslookupand is specified by thériver option. Do not be confused

by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in tiéver option must be one of the driver modules that is in

the Exim binary.

The dnslookuprouter routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smtpransport, as specified by ti@nsport option. If the router does not find the domain in

the DNS, no further routers are tried because of nbemore setting, so the address fails and is
bounced.

The ignore_target_hostsoption specifies a list of IP addresses that are to be entirely ignored. This

option is present because a number of cases have been encountered where MX records in the DNS
point to host names whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these IP addresses causes Exim to fail to route the email address, so it bounces.

66 The default configuration file (7)

Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system_aliases:

driver = redirect

allow_fail

allow_defer

data = ${lookup{$local_part}Isearch{/etc/aliases}}
user = exim

file_transport = address_file

pipe_transport = address_pipe

Control reaches this and subsequent routers only for addresses in the local domains. This router
checks to see whether the local part is defined as an alias iettiialiasedile, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
thedata option is empty, causing the address to be passed to the next router.

letc/aliasesis a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting SYSTEM _
ALIASES_ FILE inLocal/Makefilebefore building Exim.

userforward:
driver = redirect
check_local_user

local_part_suffix = +* ; -*

local_part_suffix_optional
file = $home/.forward

allow_filter
no_verify
no_expn
check_ancestor
file_transport = address_file
pipe_transport = address_pipe
reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but
this time it is looking for forwarding data set up by individual users. Theck_local_usersetting
specifies a check that the local part of the address is the login name of a local user. If it is not, the
router is skipped. The two commented options that folbeck_local_usernamely:

local_part_suffix = +* : -*
local_part_suffix_optional

show how you can specify the recognition of local part suffixes. If the first is uncommented, a suffix
beginning with either a plus or a minus sign, followed by any sequence of characters, is removed from
the local part and placed in the varialiecal_part_suffixThe second suffix option specifies that the
presence of a suffix in the local part is optional. When a suffix is present, the check for a local login
uses the local part with the suffix removed.

When a local user account is found, the file calliesward in the user’s home directory is consulted.
If it does not exist, or is empty, the router declines. Otherwise, the conterftawhrd are interpreted
as redirection data (see cha;@r 22 for more details).

Traditional.forwardfiles contain just a list of addresses, pipes, or files. Exim supports this by default.
However, ifallow_filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim or Sieve filtering instructions, provided the file begins with “#Exim filter” or “#Sieve

filter”, respectively. User filtering is discussed in the separate document erfiiieds interfaces to

mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. There are two reasons for doing this:

67 The default configuration file (7)

(1) Whether or not a local user hasfarward file is not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an EXPN command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read Heensird
files at this time.

The setting ofcheck_ancestoiprevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding — see segtion 22.5).

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to a file, or to a pipe, or sets up an auto-reply, respectively. For exampl&rfvard
file contains

a.nother@elsewhere.example, /home/spgr/archive
the delivery tdhome/spqgr/archivés done by running theddress_filetransport.

localuser:
driver = accept
check local user
local_part_suffix = +* : -*
local_part_suffix_optional
transport = local_delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and assigning it tddbal_deliverytransport. Otherwise, we

have reached the end of the routers, so the address is bounced. The commented suffix settings fulfil
the same purpose as they do foruberforwardrouter.

7.4 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

begin transports
One remote transport and four local transports are defined.

remote_smtp:
driver = smtp
hosts_try_prdr = *

This transport is used for delivering messages over SMTP connections. The list of remote hosts
comes from the router. Theosts_try prdr option enables an efficiency SMTP option. It is nego-
tiated between client and server and not expected to cause problems but can be disabled if needed. All
other options are defaulted.

local_delivery:
driver = appendfile
file = /lvar/mail/$local_part
delivery_date_add
envelope_to_add
return_path_add
group = malil
mode = 0660
This appendfiletransport is used for local delivery to user mailboxes in traditional BSD mailbox
format. By default it runs under the uid and gid of the local user, which requires the sticky bit to be set

on the/var/mail directory. Some systems use the alternative approach of running mail deliveries under
a particular group instead of using the sticky bit. The commented options show how this can be done.

68 The default configuration file (7)

Exim adds three headers to the message as it deliveDeitvery-date; Envelope-to:and Return-
path: This action is requested by the three similarly-named options above.

address_pipe:
driver = pipe
return_output

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
users’.forward files). Thereturn_output option specifies that any output on stdout or stderr gener-
ated by the pipe is to be returned to the sender.

address_file:
driver = appendfile
delivery_date_add
envelope_to_add
return_path_add

This transport is used for handling deliveries to files that are generated by redirection. The name of
the file is not specified in this instanceapipendfile because it comes from thedirectrouter.

address_reply:
driver = autoreply

This transport is used for handling automatic replies generated by users’ filter files.

7.5 Default retry rule

The retry section of the configuration file contains rules which affect the way Exim retries deliveries
that cannot be completed at the first attempt. It is introduced by the line

begin retry
In the default configuration, there is just one rule, which applies to all errors:
* * F,2h,15m; G,16h,1h,1.5; F,4d,6h

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at

intervals starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 6
hours up to 4 days. If an address is not delivered after 4 days of temporary failure, it is bounced. The

time is measured from first failure, not from the time the message was received.

If the retry section is removed from the configuration, or is empty (that is, if no retry rules are
defined), Exim will not retry deliveries. This turns temporary errors into permanent errors.

7.6 Rewriting configuration
The rewriting section of the configuration, introduced by
begin rewrite

contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default configuration file.

7.7 Authenticators configuration
The authenticators section of the configuration, introduced by
begin authenticators

defines mechanisms for the use of the SMTP AUTH command. The default configuration file contains

two commented-out example authenticators which support plaintext username/password authenti-
cation using the standard PLAIN mechanism and the traditional but non-standard LOGIN mechanism,

with Exim acting as the server. PLAIN and LOGIN are enough to support most MUA software.

The example PLAIN authenticator looks like this:

69 The default configuration file (7)

#PLAIN:

driver = plaintext

server_set_id = $auth2

server_prompts =

server_condition = Authentication is not yet configured

server_advertise_condition = ${if def:tls_in_cipher }

And the example LOGIN authenticator looks like this:

#LOGIN:

driver = plaintext

server_set_id = $authl

server_prompts = <| Username: | Password:

server_condition = Authentication is not yet configured

server_advertise_condition = ${if def:tls_in_cipher }

The server_set_idoption makes Exim remember the authenticated usernarfauthenticated _id

which can be used later in ACLs or routers. Téerver_prompts option configures thelaintext
authenticator so that it implements the details of the specific authentication mechanism, i.e. PLAIN or
LOGIN. Theserver_advertise_conditionsetting controls when Exim offers authentication to clients;

in the examples, this is only when TLS or SSL has been started, so to enable the authenticators you
also need to add support for TLS as described in sn 7.1.

Theserver_conditionsetting defines how to verify that the username and password are correct. In the
examples it just produces an error message. To make the authenticators work, you can use a string
expansion expression like one of the examples in c@ter 34.

Beware that the sequence of the parameters to PLAIN and LOGIN differ; the usercode and password
are in different positions. Chapier| 34 covers both.

70 The default configuration file (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in online Perl manpages, in many Perl
reference books, and also in Jeffrey Friedigstering Regular Expressionghich is published by
O’Reilly (seehttp://www.oreilly.com/catalog/regex2}).

The documentation for the syntax and semantics of the regular expressions that are supported by
PCRE is included in the PCRE distribution, and no further description is included here. The PCRE
functions are called from Exim using the default option settings (that is, with no PCRE options set),
except that the PCRE_CASELESS option is set when the matching is required to be case-insensitive.

In most cases, when a regular expression is required in an Exim configuration, it has to start with a
circumflex, in order to distinguish it from plain text or an “ends with” wildcard. In this example of a
configuration setting, the second item in the colon-separated list is a regular expression.

domains = a.b.c: \\d{3} : *.y.z : ...

The doubling of the backslash is required because of string expansion that precedes interpretation —
see sectio.l for more discussion of this issue, and a way of avoiding the need for doubling
backslashes. The regular expression that is eventually used in this example contains just one
backslash. The circumflex is included in the regular expression, and has the normal effect of
“anchoring” it to the start of the string that is being matched.

There are, however, two cases where a circumflex is not required for the recognition of a regular
expression: these are timeatch condition in a string expansion, and theatches condition in an

Exim filter file. In these cases, the relevant string is always treated as a regular expression; if it does
not start with a circumflex, the expression is not anchored, and can match anywhere in the subject
string.

In all cases, if you want a regular expression to match at the end of a string, you must code the $
metacharacter to indicate this. For example:

domains = M\d{3}\\.example
matches the domait23.examplebut it also matchebk23.example.conYou need to use:
domains = "\d{3}\\.example\$

if you wantexampleto be the top-level domain. The backslash before the $ is needed because string
expansion also interprets dollar characters.

71 Regular expressions (8)

9. File and database lookups

Exim can be configured to look up data in files or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests. These cause parts of the
string to be replaced by data that is obtained from the lookup. Lookups of this type are con-
ditional expansion_items. Different results can be defined for the cases of lookup success and
failure. See chaptl, where string expansions are described in detail. The key for the lookup
is specified as part of the string expansion.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or fails is what really counts. These kinds of list
are described in chaplO. The key for the lookup is given by the context in which the list is
expanded.

String expansions, lists, and lookups interact with each other in such a way that there is no order in
which to describe any one of them that does not involve references to the others. Each of these three
chapters makes more sense if you have read the other two first. If you are reading this for the first
time, be aware that some of it will make a lot more sense after you have read pteO and 11.

9.1 Examples of different lookup syntax

It is easy to confuse the two different kinds of lookup, especially as the lists that may contain the
second kind are always expanded before being processed as lists. Therefore, they may also contain
lookups of the first kind. Be careful to distinguish between the following two examples:

domains = ${lookup{$sender_host_address}Isearch{/somef/file}}
domains = Isearch;/some/file

The first uses a string expansion, the result of which must be a domain list. No strings have been
specified for a successful or a failing lookup; the defaults in this case are the looked-up data and an
empty string, respectively. The expansion takes place before the string is processed as a list, and the
file that is searched could contain lines like this:

192.168.3.4: domainl:domain2....
192.168.1.9: domain3:domain4-...

When the lookup succeeds, the result of the expansion is a list of domains (and possibly other types of
item that are allowed in domain lists).

In the second example, the lookup is a single item in a domain list. It causes Exim to use a lookup to
see if the domain that is being processed can be found in the file. The file could contains lines like
this:

domainl:
domain2:
Any data that follows the keys is not relevant when checking that the domain matches the list item.

It is possible, though no doubt confusing, to use both kinds of lookup at once. Consider a file
containing lines like this:

192.168.5.6: Isearch;/another/file

If the value of$sender_host_address 192.168.5.6, expansion of the fidbmains setting above
generates the second setting, which therefore causes a second lookup to occur.

The rest of this chapter describes the different lookup types that are available. Any of them can be
used in any part of the configuration where a lookup is permitted.

72 File and database lookups (9)

9.2 Lookup types
Two different types of data lookup are implemented:

The single-keytype requires the specification of a file in which to look, and a single key to search
for. The key must be a non-empty string for the lookup to succeed. The lookup type determines
how the file is searched.

The query-styletype accepts a generalized database query. No particular key value is assumed by
Exim for query-style lookups. You can use whichever Exim variables you need to construct the
database query.

The code for each lookup type is in a separate source file that is included in the binary of Exim only if
the corresponding compile-time option is set. The default settirgys/EDITMEare:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup (e.g. SQL databases), you need to install appropriate libraries and header files before building
Exim.

9.3 Single-key lookup types
The following single-key lookup types are implemented:

cdhb The given file is searched as a Constant DataBase file, using the key string without a terminat-
ing binary zero. The cdb format is designed for indexed files that are read frequently and never
updated, except by total re-creation. As such, it is particularly suitable for large files containing
aliases or other indexed data referenced by an MTA. Information about cdb can be found in several
places:

http://www.pobox.com/~djb/cdb.html
ftp://ftp.corpit.ru/pub/tinycdb/
http://packages.debian.org/stable/utils/freecdb.html

A cdb distribution is not needed in order to build Exim with cdb support, because the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
files is provided with Exim, so you need to obtain a cdb distribution in order to do this.

dbm Calls to DBM library functions are used to extract data from the given DBM file by looking
up the record with the given key. A terminating binary zero is included in the key that is passed to
the DBM library. See secti.4 for a discussion of DBM libraries.

For all versions of Berkeley DB, Exim uses the DB_HASH style of database when building DBM
files using theexim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens
existing databases for reading with the DB_UNKNOWN option. This enables it to handle any of
the types of database that the library supports, and can be useful for accessing DBM files created
by other applications. (For earlier DB versions, DB_HASH is always used.)

dbmjz This is the same adbm except that the lookup key is interpreted as an Exim list; the
elements of the list are joined together with ASCII NUL characters to form the lookup key. An
example usage would be to authenticate incoming SMTP calls using the passwords from Cyrus
SASL's/etc/sasldbZile with thegsaslauthenticator or Exim’s owaram_mdSauthenticator.

dbmnz This is the same adbm except that a terminating binary zero is not included in the key
that is passed to the DBM library. You may need this if you want to look up data in files that are
created by or shared with some other application that does not use terminating zeros. For example,
you need to usdbmnzrather thardbmif you want to authenticate incoming SMTP calls using the
passwords from Courier'getc/userdbshadow.ddile. Exim’s utility program for creating DBM

files (exim_dbmbuildincludes the zeros by default, but has an option to omit them (see section

[53.9).

dsearch The given file must be a directory; this is searched for an entry whose name is the key by
calling thelstat() function. The key may not contain any forward slash charactetstdf() suc-

73 File and database lookups (9)

ceeds, the result of the lookup is the name of the entry, which may be a file, directory, symbolic
link, or any other kind of directory entry. An example of how this lookup can be used to support
virtual domains is given in sectipn 50.7.

iplsearch The given file is a text file containing keys and data. A key is terminated by a colon or
white space or the end of the line. The keys in the file must be IP addresses, or IP addresses with
CIDR masks. Keys that involve IPv6 addresses must be enclosed in quotes to prevent the first
internal colon being interpreted as a key terminator. For example:

1.2.3.4: data for 1.2.3.4
192.168.0.0/16: data for 192.168.0.0/16
"abcd::cdab": data for abcd::cdab
"abcd:abcd::/32" data for abcd:abcd::/32

The key for aniplsearchlookup must be an IP address (without a mask). The file is searched
linearly, using the CIDR masks where present, until a matching key is found. The first key that
matches is used; there is no attempt to find a “best” match. Apart from the way the keys are
matched, the processing fpisearchis the same as fdgsearch

Warning 1: Unlike most other single-key lookup types, a file of data ifdsearchcan not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

Warning 2: In a host list, you must always uset-iplsearchso that the implicit key is the host’s IP
address rather than its name (see segtion [10.12).

Isearch The given file is a text file that is searched linearly for a line beginning with the search key,
terminated by a colon or white space or the end of the line. The search is case-insensitive; that is,
upper and lower case letters are treated as the same. The first occurrence of the key that is found in
the file is used.

White space between the key and the colon is permitted. The remainder of the line, with leading

and trailing white space removed, is the data. This can be continued onto subsequent lines by
starting them with any amount of white space, but only a single space character is included in the
data at such a junction. If the data begins with a colon, the key must be terminated by a colon, for

example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of alias files. Note that the keys ifsaarchfile are literal
strings. There is no wildcarding of any kind.

In most Isearchfiles, keys are not required to contain colons or # characters, or white space.
However, if you need this feature, it is available. If a key begins with a doublequote character, it is
terminated only by a matching quote (or end of line), and the normal escaping rules apply to its
contents (see secti17). An optional colon is permitted after quoted keys (exactly as for
unquoted keys). There is no special handling of quotes for the data patse@@hline.

nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key, without
a terminating binary zero. There is a variant caliésD which does include the terminating binary
zero in the key. This is reportedly needed for Sun-style alias files. Exim does not recognize NIS
aliases; the full map names must be used.

wildlsearch or nwildlsearch These search a file linearly, likisearch but instead of being
interpreted as a literal string, each key in the file may be wildcarded. The difference between these
two lookup types is that fowildlsearch each key in the file is string-expanded before being used,
whereas fonwildlsearch no expansion takes place.

Like Isearch the testing is done case-insensitively. However, keys in the file that are regular
expressions can be made case-sensitive by the ys@ of within the pattern. The following forms
of wildcard are recognized:

(1) The string may begin with an asterisk to mean “ends with”. For example:

74 File and database lookups (9)

*.a.b.c data for anything.a.b.c
*fish data for anythingfish

(2) The string may begin with a circumflex to indicate a regular expression. For example, for
wildlsearch

MN\d+\.a\.b\N data for <digits>.a.b

Note the use ofN to disable expansion of the contents of the regular expression. If you are
usingnwildlsearch where the keys are not string-expanded, the equivalent entry is:

Md+\.a\.b data for <digits>.a.b

The case-insensitive flag is set at the start of compiling the regular expression, but it can be
turned off by using(-i) at an appropriate point. For example, to make the entire pattern
case-sensitive:

A?-D\d+\.a\lb data for <digits>.a.b

If the regular expression contains white space or colon characters, you must either quote it
(seelsearchabove), or represent these characters in other ways. For examptan be used

for white space antk3A for a colon. This may be easier than quoting, because if you quote,
you have to escape all the backslashes inside the quotes.

Note: It is not possible to capture substrings in a regular expression match for later use,
because the results of all lookups are cached. If a lookup is repeated, the result is taken from
the cache, and no actual pattern matching takes place. The values of all the numeric variables
are unset after @)wildlsearchmatch.

(3) Although I cannot see it being of much use, the general matching function that is used to
implement(n)wildlsearchmeans that the string may begin with a lookup name terminated by
a semicolon, and followed by lookup data. For example:

cdb;/some/file data for keys that match the file
The data that is obtained from the nested lookup is discarded.

Keys that do not match any of these patterns are interpreted literally. The continuation rules for the
data are the same as feearch and keys may be followed by optional colons.

Warning: Unlike most other single-key lookup types, a file of data ([@wildlsearchcannot be
turned into a DBM or cdb file, because those lookup types support only literal keys.

9.4 Query-style lookup types

The supported query-style lookup types are listed below. Further details about many of them are given
in later sections.

dnsdb This does a DNS search for one or more records whose domain names are given in the
supplied query. The resulting data is the contents of the records. See sechon 9.10.

ibase This does a lookup in an InterBase database.

Idap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from
a single entry. There is a variant callédhpm that permits values from multiple entries to be
returned. A third variant calleftlapdnreturns the Distinguished Name of a single entry instead of
any attribute values. See secfion 9.14.

mysql The format of the query is an SQL statement that is passed to a MySQL database. See
sectio.

nisplus This does a NIS+ lookup using a query that can specify the name of the field to be
returned. See sectiﬁn 9}20.

oracle The format of the query is an SQL statement that is passed to an Oracle database. See
sectio.

75 File and database lookups (9)

» passwds a query-style lookup with queries that are just user names. The lookugeglsnam()
to interrogate the system password data, and on success, the result string is the same as you would
get from anlsearchlookup on a traditionaletc/passwd filethough with* for the password value.
For example:

*:42:42:King Rat:/home/kr:/bin/bash

* pgsql The format of the query is an SQL statement that is passed to a PostgreSQL database. See
section 9.201.

» redis The format of the query is either a simple get or simple set, passed to a Redis database. See
sectio.

» sqglite The format of the query is a file name followed by an SQL statement that is passed to an
SQLite database. See section P.26.

» testdb This is a lookup type that is used for testing Exim. It is not likely to be useful in normal
operation.

» whoson Whoson(http://whoson.sourceforge.net is a protocol that allows a server to check
whether a particular (dynamically allocated) IP address is currently allocated to a known (trusted)
user and, optionally, to obtain the identity of the said user. For SMTP selWéissonvas popular
at one time for “POP before SMTP” authentication, but that approach has been superseded by
SMTP authentication. In Exim/V/hosoncan be used to implement “POP before SMTP” checking
using ACL statements such as

require condition =\
${lookup whoson {$sender_host_address}{yes}{no}}

The query consists of a single IP address. The value returned is the name of the authenticated user,
which is stored in the variablvalue However, in this example, the data$malueis not used; the
result of the lookup is one of the fixed strings “yes” or “no”.

9.5 Temporary errors in lookups

Lookup functions can return temporary error codes if the lookup cannot be completed. For example,
an SQL or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup
that might do this for critical options such as a list of local domains.

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up altogether.

9.6 Default values in single-key lookups

In this context, a “default value” is a value specified by the administrator that is to be used if a lookup
fails.

Note: This section applies only to single-key lookups. For query-style lookups, the facilities of the
guery language must be used. An attempt to specify a default for a query-style lookup provokes an
error.

If “*” is added to a single-key lookup type (for examplegarch*) and the initial lookup fails, the key
“*” is looked up in the file to provide a default value. See also the section on partial matching below.

Alternatively, if “*@” is added to a single-key lookup type (for examplem*@) then, if the initial

lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails (or doesn’t take place because there is no @ in the
key), “*" is looked up. For example,radirectrouter might contain:

data = ${lookup{$local_part@$domain}isearch*@{/etc/mix-aliases}}
Suppose the address that is being processgohes@eyre.examplé&xim looks up these keys, in this
order:

76 File and database lookups (9)

jane@eyre.example
*@eyre.example
*

The data is taken from whichever key it finds fildbte: In anlsearchfile, this does not mean the first
of these keys in the file. A complete scan is done for each key, and only if it is not found at all does
Exim move on to try the next key.

9.7 Partial matching in single-key lookups

The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the file that has a key starting with “*.” is matched by
any domain that ends with the components that follow the full stop. For example, if a key in a DBM
file is

*.dates.fict.example

then when partial matching is enabled this is matched by (amongst o#%)dates.fict.example
and 1984.dates.fict.examplét is also matched bylates.fict.examp]df that does not appear as a
separate key in the file.

Note: Partial matching is not available for query-style lookups. It is also not available for any lookup
items in address lists (see sec.19).

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that partial matching keys beginning with a special prefix (default “*.”) are included
in the data file. Keys in the file that do not begin with the prefix are matched only by unmodified
subject keys when partial matching is in use.

Partial matching is requested by adding the string “partial-” to the front of the name of a single-key
lookup type, for examplgpartial-dbm . When this is done, the subject key is first looked up unmodi-
fied; if that fails, “*.” is added at the start of the subject key, and it is looked up again. If that fails,
further lookups are tried with dot-separated components removed from the start of the subject key,
one-by-one, and “*” added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For exampltial3-Isearch specifies a minimum of
three non-* components in the modified keys. Omitting the number is equivalent to “partial2-". If the
subject key is2250.dates.fict.exampkben the following keys are looked up when the minimum
number of non-* components is two:

2250.dates.fict.example
*,2250.dates.fict.example
*.dates.fict.example

* fict.example

As soon as one key in the sequence is successfully looked up, the lookup finishes.

The use of “*.” as the partial matching prefix is a default that can be changed. The motivation for this
feature is to allow Exim to operate with file formats that are used by other MTAs. A different prefix
can be supplied in parentheses instead of the hyphen after “partial”. For example:

domains = partial(.)lsearch;/somef/file

In this examp