Using the GNU Compiler Collection (GCC)

Using the GNU Compiler Collection

by Richard M. Stallman and the GCC Developer Community

For GCC Version 4.1.2

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@Qgnu.org
Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction s v v v oo v v v ettt ittt iiii it nennns 1
1 Programming Languages Supported by GCC 3
2 Language Standards Supported by GCC)
3 GCC Command Options « v v v v v v v v v v vveeeooeessssns 7
4 C Implementation-defined behavior 205
5 Extensions to the C Language Family 213
6 Extensions to the C++ Languageovvveennnn.. 361
7 GNU Objective-C runtime features. . « o v oo v e v v v v e e 371
8 Binary Compatibility « « o oo oo v v i i i i i i 377
9 gcov—a Test Coverage Programcc000u... 381
10 Known Causes of Trouble with GCC 389
11 Reporting Bugs e v v v v v v vt v i v iiiiieeeeeeeennnns 407
12 How To Get Help with GCCo oo v i i i i i i i iinnn.. 409
13 Contributing to GCC Development + .. ooveveeee... 411
Funding Free Software oot v it ennnnn 413
The GNU Project and GNU/Linux. o« v v v v v v v v vvnennennn 415
GNU GENERAL PUBLICLICENSE v e v et v e e e v e n e 417
GNU Free Documentation License « « v v v v v v v v v e e v vennn.. 423
Contributors to GCC . v v v v v ettt ittt i e s nnnnns 431
Option Index . o v v v v ettt e e ettt it eennnnnnsnns 447

Keyword Index v oo oo v v v e e it i i i iiiineeeeeennnns 459

11

Using the GNU Compiler Collection (GCC)

Table of Contents

Introduction..........c.c.iiiiiieneeeennnn. 1

1 Programming Languages Supported by GCC

2 Language Standards Supported by GCC 5

3 GCC Command Options 7
3.1 Option SUMMATYottt et e 7
3.2 Options Controlling the Kind of Output 17
3.3 Compiling C+4 Programsc.c.iiiiinieenn.. 20
3.4 Options Controlling C Dialect............................ ... 21
3.5 Options Controlling C++ Dialect............................ 25
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 32
3.7 Options to Control Diagnostic Messages Formatting........... 36
3.8 Options to Request or Suppress Warnings 36
3.9 Options for Debugging Your Program or GCC................ 53
3.10 Options That Control Optimization 65
3.11 Options Controlling the Preprocessor 94
3.12 Passing Options to the Assembler 104
3.13 Options for Linking 104
3.14 Options for Directory Search.............................. 107
3.15 Specifying subprocesses and the switches to pass to them.... 109
3.16 Specifying Target Machine and Compiler Version 115
3.17 Hardware Models and Configurations...................... 116

3.17.1 ARC Optionsovner e 116
3.17.2 ARM Optionst 116
3173 AVR Options. ... 121
3.17.4 Blackfin Options........... ... oo i 121
3.17.5 CRIS Optionsoovvie e 122
3.17.6 CRX OPtions . ..ottt 124
3.17.7 Darwin Options 124
3.17.8 DEC Alpha Options, 128
3.17.9 DEC Alpha/VMS Optionsccovvviiiiia. .. 132
3.17.10 FRV Options.coviiinn i 132
3.17.11 H8/300 Optionscoovriiieeiiieienaeana.. 136
3.17.12 HPPA Options ..o 136
3.17.13 Intel 386 and AMD x86-64 Options 139
31714 TA-64 Options.ot 147
3.17.15 M32C Options ..o v e e 149
3.17.16 M32R/D Options..........ovvueeiiiiiiienieaan... 149

3.17.17 M680X0 Options.vovene e 151

iii

iv

Using the GNU Compiler Collection (GCC)

3.17.18 M68hclx Options.coviiinee ... 153
3.17.19 MCore Options.oovuneee i 154
3.17.20 MIPS Options.ooveiiini ., 155
31721 MMIX Optionsovveeeii i 160
3.17.22 MN10300 Optionsvvvrneeeieee e 162
3.17.23 MT Options. .. .oovii e 162
3.17.24 PDP-11 Options.coveiii i 163
3.17.25 PowerPC Options 164
3.17.26 IBM RS/6000 and PowerPC Options................. 164
3.17.27 S/390 and zSeries Options.coouveiun .. 174
3.17.28 SH Optionsovee e 177
3.17.29 SPARC Options. ..., 180
3.17.30 Options for System V......... 184
3.17.31 TMS320C3x/C4x Options.........oovveeiiineeea.nn. 185
3.17.32 V850 Options ... oovne e i 187
3.17.33 VAX Options 188
3.17.34 x86-64 Optionscovviiuniii ... 188
3.17.35 Xstormyl6 Options.............coooviiiiiin... 188
3.17.36 Xtensa Options............iieiiiineiiinennn... 188
3.17.37 zSeries OptionS.o 190
3.18 Options for Code Generation Conventions.................. 190
3.19 Environment Variables Affecting GCC..................... 196
3.20 Using Precompiled Headers 199
3.21 Running Protoize 201
C Implementation-defined behavior....... 205
4.1 Translationo i 205
4.2 Environment.............. 205
4.3 Identifierso 205
4.4 CharacterS.ot 206
4.5 Integerso 206
4.6 Floating point i 207
4.7 Arrays and pointers i 208
4.8 HiNS. .ottt 209
4.9 Structures, unions, enumerations, and bit-fields.............. 209
4.10 Qualifiers. 210
411 Declaratorscoviii 210
412 Statementsoii 210
4.13 Preprocessing directives i 210
4.14 Library functions. ..ot 211
4.15 Architecture 211
4.16 Locale-specific behavior............ 211

5 Extensions to the C Language Family..... 213

5.1 Statements and Declarations in Expressions................. 213
5.2 Locally Declared Labels 214
5.3 Labelsas Values 215
5.4 Nested Functions........... 216
5.5 Constructing Function Calls................................ 218
5.6 Referring to a Type with typeof 219
5.7 Conditionals with Omitted Operands 220
5.8 Double-Word Integers i 221
5.9 Complex Numbers 221
5,10 Hex Floats.oooimr e 222
5.11 Arrays of Length Zero.......... 222
5.12 Structures With No Members 223
5.13 Arrays of Variable Length 223
5.14 Macros with a Variable Number of Arguments. 224
5.15 Slightly Looser Rules for Escaped Newlines................. 225
5.16 Non-Lvalue Arrays May Have Subscripts................... 225
5.17 Arithmetic on void- and Function-Pointers................. 226
5.18 Non-Constant Initializers 226
5.19 Compound Literals............ ... i, 226
5.20 Designated Initializers............ 227
521 Case Ranges........ ..ot 228
5.22 Casttoa Union Type ..., 228
5.23 Mixed Declarations and Code 229
5.24 Declaring Attributes of Functions.......................... 229
5.25 Attribute Syntax........... 242
5.26 Prototypes and Old-Style Function Definitions.............. 245
5.27 CH+ Style Comments, 246
5.28 Dollar Signs in Identifier Names........................... 246
5.29 The Character in Constants.......................... 246
5.30 Inquiring on Alignment of Types or Variables 246
5.31 Specifying Attributes of Variables 247

5.31.1 M32R/D Variable Attributes 251

5.31.2 1386 Variable Attributes................ 251

5.31.3 Xstormyl6 Variable Attributes 251
5.32 Specifying Attributes of Types 252

5.32.1 ARM Type Attributes 256

5.32.2 1386 Type Attributes........... 256
5.33 An Inline Function is As Fast Asa Macro.................. 256
5.34 Assembler Instructions with C Expression Operands 258

5.34.1 Sizeofanasm............ 262

5.34.2 1386 floating point asm operands...................... 263
5.35 Constraints for asm Operands 264

5.35.1 Simple Constraints, 264

5.35.2 Multiple Alternative Constraints...................... 266

5.35.3 Constraint Modifier Characters....................... 267

5.35.4 Constraints for Particular Machines................... 267

5.36 Controlling Names Used in Assembler Code 281

Using the GNU Compiler Collection (GCC)

5.37 Variables in Specified Registers...................... 282
5.37.1 Defining Global Register Variables.................... 282
5.37.2 Specifying Registers for Local Variables 283

5.38 Alternate Keywordsc i 284

5.39 Incomplete enum Types................oo ... 284

5.40 Function Names as Strings..................cooiiiiii.... 285

5.41 Getting the Return or Frame Address of a Function......... 286

5.42 Using vector instructions through built-in functions......... 286

5.43 Offsetof 288

5.44 Built-in functions for atomic memory access................ 288

5.45 Object Size Checking Builtins................. 289

5.46 Other built-in functions provided by GCC.................. 291

5.47 Built-in Functions Specific to Particular Target Machines. ... 298
5.47.1 Alpha Built-in Functions............................. 298
5.47.2 ARM Built-in Functions 299
5.47.3 Blackfin Built-in Functions 301
5.47.4 FR-V Built-in Functions 301

54741 Argument Types............iiiiiini.. 302
5.47.4.2 Directly-mapped Integer Functions 302
5.47.4.3 Directly-mapped Media Functions................ 302
5.47.4.4 Raw read/write Functions 304
5.47.4.5 Other Built-in Functions......................... 305
5.47.5 X86 Built-in Functions............................... 305
5.47.6 MIPS DSP Built-in Functions 312
5.47.7 MIPS Paired-Single Support.......................... 315
5.47.7.1 Paired-Single Arithmetic......................... 315
5.47.7.2 Paired-Single Built-in Functions.................. 316
5.47.7.3 MIPS-3D Built-in Functions 317
5.47.8 PowerPC AltiVec Built-in Functions 319
5.47.9 SPARC VIS Built-in Functions 351

5.48 Format Checks Specific to Particular Target Machines 352
5.48.1 Solaris Format Checks 352

5.49 Pragmas Accepted by GCC................. 352
549.1 ARM Pragmas 352
5.49.2 M32C Pragmas.t 353
5.49.3 RS/6000 and PowerPC Pragmas...................... 353
5.49.4 Darwin Pragmas.......... ... i 353
5.49.5 Solaris Pragmaso i 353
5.49.6 Symbol-Renaming Pragmas 354
5.49.7 Structure-Packing Pragmas........................... 355
5.49.8 Weak Pragmaso it 355

5.50 Unnamed struct/union fields within structs/unions 355

5.51 Thread-Local Storage.............c.coo ... 356

5.51.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage 357
5.51.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage ... 357

6 Extensions to the C++ Language......... 361
6.1 When is a Volatile Object Accessed?........................ 361
6.2 Restricting Pointer Aliasingcoiiiviin... 361
6.3 Vague Linkage 362
6.4 #pragma interface and implementation 363
6.5 Where’s the Template? 365
6.6 Extracting the function pointer from a bound pointer to member

function. 367
6.7 C++-Specific Variable, Function, and Type Attributes....... 367
6.8 Strong Using....... ..ot 368
6.9 Java Exceptions.......... ... 368
6.10 Deprecated Features........... 369
6.11 Backwards Compatibility 370

7 GNU Objective-C runtime features....... 371

7.1 +load: Executing code before main......................... 371

7.1.1 What you can and what you cannot do in +load........ 372
7.2 Typeencoding........ ..., 373
7.3 Garbage Collection........... 374
7.4 Constant string objects......... 375
7.5 compatibility_alias 376

8 Binary Compatibility 377

9 gcov—a Test Coverage Program 381
9.1 Introduction to gcov 381
9.2 Invoking gCOVttt 381
9.3 Using gcov with GCC Optimization 386
9.4 Brief description of gcov datafiles.................... 387
9.5 Data file relocation to support cross-profiling................ 387

10 Known Causes of Trouble with GCC..... 389
10.1 Actual Bugs We Haven’t Fixed Yet........................ 389
10.2 Cross-Compiler Problems 389
10.3 Interoperation, 389
10.4 Incompatibilities of GCC 391
10.5 Fixed Header Files o i 394
10.6 Standard Libraries i 395
10.7 Disappointments and Misunderstandings................... 395
10.8 Common Misunderstandings with GNU C++ 396

10.8.1 Declare and Define Static Members 396
10.8.2 Name lookup, templates, and accessing members of base

ClASSES .« vttt 397

10.8.3 Temporaries May Vanish Before You Expect........... 398

10.8.4 Implicit Copy-Assignment for Virtual Bases 399

10.9 Caveats of using protoize............ ..., 400

10.10 Certain Changes We Don’t Want to Make................. 401

vii

viii Using the GNU Compiler Collection (GCC)

10.11 Warning Messages and Error Messages.................... 404
11 ReportingBugs 407
11.1 Have You Found a Bug?........ 407
11.2 How and where to Report Bugs 407
12 How To Get Help with GCC............ 409
13 Contributing to GCC Development...... 411
Funding Free Software 413
The GNU Project and GNU/Linux 415
GNU GENERAL PUBLIC LICENSE 417
Preamble. 417
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION e 418
Appendix: How to Apply These Terms to Your New Programs 422
GNU Free Documentation License........... 423
ADDENDUM: How to use this License for your documents. 429
Contributors to GCC 431
OptionIndexcciiiiiiiin... 447

Keyword Indexcoiiiiiii.... 459

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and incom-
patibilities, and how to report bugs. It corresponds to GCC version 4.1.2. The internals
of the GNU compilers, including how to port them to new targets and some information
about how to write front ends for new languages, are documented in a separate manual.
See section “Introduction” in GNU Compiler Collection (GCC) Internals.

Using the GNU Compiler Collection (GCC)

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, and Ada.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Using the GNU Compiler Collection (GCC)

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

GCC supports three versions of the C standard, although support for the most recent
version is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/TEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or
‘-std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 21.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘~std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/gcc-4.1/c99status.html for details. To select this standard, use
‘~std=c99’ or ‘-std=is509899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in two Technical Corrigenda published
in 2001 and 2004. GCC does not support the uncorrected version.

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 5 [Extensions to the C Language Family], page 213.
Use of the ‘~std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with
GNU extensions). The default, if no C language dialect options are given, is ‘~std=gnu89’;
this will change to ‘-std=gnu99’ in some future release when the C99 support is complete.
Some features that are part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <iso0646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In ad-
dition, complex types, added in C99, are not required for freestanding implementations. The

6 Using the GNU Compiler Collection (GCC)

standard also defines two environments for programs, a freestanding environment, required
of all implementations and which may not have library facilities beyond those required of
freestanding implementations, where the handling of program startup and termination are
implementation-defined, and a hosted environment, which is not required, in which all the
library facilities are provided and startup is through a function int main (void) or int
main (int, char *[]). An OS kernel would be a freestanding environment; a program
using the facilities of an operating system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to O and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 21.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 10.6 [Standard Libraries], page 395.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C or Objective-C++. The most author-
itative manual is “Object-Oriented Programming and the Objective-C Language”, available
at a number of web sites:

e http://developer.apple.com/documentation/Cocoa/Conceptual/0bjectiveC/ is
a recent (and periodically updated) version;

e http://www.toodarkpark.org/computers/objc/ is an older example;

e http://www.gnustep.org and http://gcc.gnu.org/readings.html have additional
useful information.

There is no standard for treelang, which is a sample language front end for GCC. Its only
purpose is as a sample for people wishing to write a new language for GCC. The language
is documented in ‘gcc/treelang/treelang.texi’ which can be turned into info or HTML
format.

See section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See section “Standards” in The GNU Fortran 95 Compiler, for details of standards sup-
ported by gfortran.

See section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

Chapter 3: GCC Command Options 7

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=c’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 20, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very
different from ‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘L’ more than once, the directories are searched in the order specified.

4

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘~fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘-ffoo’ would be ‘~fno-foo’. This manual documents
only one of these two forms, whichever one is not the default.

See [Option Index], page 447, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Qverall Options
See Section 3.2 [Options Controlling the Kind of Output], page 17.

-¢ -8 -E -o file -combine -pipe -pass-exit-codes
-x language -v -### --help --target-help --version

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 21.

-ansi -std=standard -aux-info filename

-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fms-extensions

-trigraphs -no-integrated-cpp -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch

-fsigned-bitfields -fsigned-char

-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 25.

8 Using the GNU Compiler Collection (GCC)

-fabi-version=n -fno-access-control -fcheck-new
-fconserve-space -ffriend-injection -fno-const-strings
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fno-operator-names
-fno-optional-diags -fpermissive

-frepo -fno-rtti -fstats -ftemplate-depth-n
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden

-Wabi -Wctor-dtor-privacy

-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wno-deprecated -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 32.

-fconstant-string-class=class—-name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions
-fobjc-gc
-freplace-objc-classes
-fzero-link
-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 36.
-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]

-fdiagnostics-show-options

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 36.

-fsyntax-only -pedantic -pedantic-errors
-w -Wextra -Wall -Waggregate-return -Wno-attributes
-Wc++-compat -Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
-Wconversion -Wno-deprecated-declarations
-Wdisabled-optimization -Wno-div-by-zero -Wno-endif-labels
-Werror -Werror-implicit-function-declaration
-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
-Wno-format-extra-args -Wformat-nonliteral
-Wformat-security -Wformat-y2k
-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Wimport -Wno-import -Winit-self -Winline

Chapter 3: GCC Command Options

-Wno-int-to-pointer-cast

-Wno-invalid-offsetof -Winvalid-pch

-Wlarger-than-len -Wunsafe-loop-optimizations -Wlong-long
-Wmain -Wmissing-braces -Wmissing-field-initializers
-Wmissing-format-attribute -Wmissing-include-dirs
-Wmissing-noreturn

-Wno-multichar -Wnonnull -Wpacked -Wpadded

-Wparentheses -Wpointer-arith -Wno-pointer-to-int-cast
-Wredundant-decls

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wstack-protector

-Wstrict-aliasing -Wstrict-aliasing=2

-Wswitch -Wswitch-default -Wswitch-enum

-Wsystem-headers -Wtrigraphs -Wundef -Wuninitialized
-Wunknown-pragmas -Wno-pragmas -Wunreachable-code
-Wunused -Wunused-function -Wunused-label -Wunused-parameter
-Wunused-value -Wunused-variable -Wvariadic-macros
-Wvolatile-register-var -Wwrite-strings

C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs -Wold-style-definition
-Wstrict-prototypes -Wtraditional
-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 53.

-dletters -dumpspecs -dumpmachine -dumpversion
-fdump-unnumbered -fdump-translation-unit[-n]
-fdump-class-hierarchy[-n]
-fdump-ipa-all -fdump-ipa-cgraph
-fdump-tree-all
-fdump-tree-original[-n]|
-fdump-tree-optimized|-n]
-fdump-tree-inlined[-n]
-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias
-fdump-tree-ch
-fdump-tree-ssal-n] -fdump-tree-pre[-n]
-fdump-tree-ccp[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw|] -fdump-tree-mudflap|-n]
-fdump-tree-dom[-n]
-fdump-tree-dse[-n]
-fdump-tree-phiopt[-n]
-fdump-tree-forwprop|-n]
-fdump-tree-copyrename[-n]
-fdump-tree-nrv -fdump-tree-vect
-fdump-tree-sink
-fdump-tree-sra[-n]
-fdump-tree-salias
-fdump-tree-fre[-n]
-fdump-tree-vrp[-n]
-ftree-vectorizer-verbose=n
-fdump-tree-storeccp[-n]
-feliminate-dwarf2-dups -feliminate-unused-debug-types
-feliminate-unused-debug-symbols -fmem-report -fprofile-arcs
-frandom-seed=string -fsched-verbose=n
-ftest-coverage -ftime-report -fvar-tracking
-g —glevel -gcoff -gdwarf-2
-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+

10 Using the GNU Compiler Collection (GCC)

-p -pg -print-file-name=Ilibrary -print-libgcc-file-name
-print-multi-directory -print-multi-1ib
-print-prog-name=program -print-search-dirs -Q
-save-temps -time

Optimization Options
See Section 3.10 [Options that Control Optimization], page 65.

-falign-functions=n -falign-jumps=n
-falign-labels=n -falign-loops=n
-fbounds-check -fmudflap -fmudflapth -fmudflapir
-fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize |}
-fbranch-target-load-optimize2 -fbtr-bb-exclusive
-fcaller-saves -fcprop-registers -fcse-follow-jumps
-fcse-skip-blocks -fcx-limited-range -fdata-sections
-fdelayed-branch -fdelete-null-pointer-checks -fearly-inlining
-fexpensive-optimizations -ffast-math -ffloat-store
-fforce-addr -ffunction-sections
-fgcse -fgecse-1m -fgecse-sm -fgese-las -fgecse-after-reload
-floop-optimize -fcrossjumping -fif-conversion -fif-conversion2
-finline-functions -finline-functions-called-once
-finline-limit=n -fkeep-inline-functions
-fkeep-static-consts -fmerge-constants -fmerge-all-constants
-fmodulo-sched -fno-branch-count-reg
-fno-default-inline -fno-defer-pop -floop-optimize2 -fmove-loop-invariants [
-fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-funsafe-math-optimizations -funsafe-loop-optimizations -ffinite-math-only [}
-fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move
-foptimize-sibling-calls -fprefetch-loop-arrays
-fprofile-generate -fprofile-use
-fregmove -frename-registers
-freorder-blocks -freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -frerun-loop-opt
-frounding-math -fschedule-insns -fschedule-insns2
-fno-sched-interblock -fno-sched-spec -fsched-spec-load
-fsched-spec-load-dangerous
-fsched-stalled-insns=n -fsched-stalled-insns-dep=n
-fsched2-use-superblocks
-fsched2-use-traces -freschedule-modulo-scheduled-loops
-fsignaling-nans -fsingle-precision-constant
-fstack-protector -fstack-protector-all
-fstrength-reduce -fstrict-aliasing -ftracer -fthread-jumps
-funroll-all-loops —-funroll-loops -fpeel-loops
-fsplit-ivs-in-unroller -funswitch-loops
-fvariable-expansion-in-unroller
-ftree-pre -ftree-ccp -ftree-dce -ftree-loop-optimize
-ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -fivopts
-ftree-dominator-opts -ftree-dse -ftree-copyrename -ftree-sink
-ftree-ch -ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize
-ftree-vect-loop-version -ftree-salias -fweb
-ftree-copy-prop -ftree-store-ccp -ftree-store-copy-prop -fwhole-program
--param name=value -0 -00 -01 -02 -03 -0s

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor|, page 94.

-Aquestion=answer
-A-question|[=answer]|
-C -dD -dI -dM -dN

Chapter 3: GCC Command Options

-Dmacro[=defn| -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc
-P -fworking-directory -remap
-trigraphs -undef -Umacro -Wp,option
-Xpreprocessor option

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 104.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 104.
object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -shared -shared-libgcc -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 107.

-Bprefix -Idir -iquotedir -Ldir -specs=file -I- --sysroot=dir

Target Options
See Section 3.16 [Target Options|, page 115.

-V version -b machine

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations|, page 116.
ARC Options
-EB -EL
-mmangle-cpu -mcpu=cpu -mtext=text-section
-mdata=data-section -mrodata=readonly-data-section
ARM Options
-mapcs-frame -mno-apcs-frame
-mabi=name
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name -msoft-float -mhard-float -mfpe
-mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mstructure-size-boundary=n
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg
-mnop-fun-dllimport
-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns
-mpoke-function-name
-mthumb -marm

11

12

Using the GNU Compiler Collection (GCC)

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name

AVR Options

-mmcu=mcu -msize -minit-stack=n -mno-interrupts
-mcall-prologues -mno-tablejump -mtiny-stack -mint8

Blackfin Options

-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer

-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mid-shared-library

-mno-id-shared-library -mshared-library-id=n

-mlong-calls -mno-long-calls

CRIS Options

-mcpu=cpu -march=cpu -mtune=cpu

-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CRX Options
-mmac -mpush-args
Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mone-byte-bool

DEC Alpha Options

-mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type

-mbwx -mmax -mfix -mcix

-mfloat-vax -mfloat-ieee

Chapter 3: GCC Command Options

-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time
DEC Alpha/VMS Options
-mvms-return-codes
FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu

H8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300
HPPA Options

-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and x86-64 Options

-mtune=cpu-type -march=cpu-type

-mfpmath=unit

-masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num

-mmmx -msse -msse2 -msse3 -m3dnow

-mthreads -mno-align-stringops -minline-all-stringops
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -msseregparm
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model

-m32 -m64 -mlarge-data-threshold=num

IA-64 Options
-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -mno-sdata

13

14

Using the GNU Compiler Collection (GCC)

-mconstant-gp -mauto-pic -minline-float-divide-min-latency
-minline-float-divide-max-throughput
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-dwarf2-asm -mearly-stop-bits
-mfixed-range=register-range -mtls-size=tls-size
-mtune=cpu-type -mt -pthread -milp32 -mlp64

MS32R /D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M32C Options
-mcpu=cpu -msim -memregs=number
M680x0 Options

-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040

-m68060 -mcpu32 -m5200 -m68881 -mbitfield -mc68000 -mc68020
-mnobitfield -mrtd -mshort -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library

M68hclx Options

-m6811 -m6812 -m68hcll -m68hcl2 -m68hcs12
-mauto-incdec -minmax -mlong-calls -mshort
-msoft-reg-count=count

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips64
-mips16 -mno-mips16 -mabi=abi -mabicalls -mno-abicalls
-mxgot -mno-xgot -mgp32 -mgp64 -mfp32 -mfp64
-mhard-float -msoft-float -msingle-float -mdouble-float
-mdsp -mpaired-single -mips3d

-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-vr4120 -mno-fix-vr4120 -mfix-vr4130

Chapter 3: GCC Command Options

-mfix-sbl -mno-fix-sbl
-mflush-func=func -mno-flush-func
-mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions
-mvr4130-align -mno-vr4130-align

MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit

MN10500 Options
-mmult-bug -mno-mult-bug
-mam33 -mno-am33
-mam33-2 -mno-am33-2
-mreturn-pointer-on-do0
-mno-crt0 -mrelax

MT Options
-mno-crt0 -mbacc -msim
-march=cpu-type
PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -mi10
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-msplit -mno-split -munix-asm -mdec-asm

PowerPC Options See RS/6000 and PowerPC Options.

RS/6000 and PowerPC Options
-mcpu=cpu-type
-mtune=cpu-type
-mpower -mNo-power -mpower2 -—-mno-power2
-mpowerpc -mpowerpc64 -mno-powerpc
-maltivec -mno-altivec
-mpowerpc-gpopt —-mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mfprnd -mno-fprnd
-mnew-mnemonics -mold-mnemonics
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe
-malign-power -malign-natural
-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mupdate -mno-update
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-1lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme
-mcall-sysv -mcall-netbsd
-maix-struct-return -msvr4-struct-return
-mabi=abi-type -msecure-plt -mbss-plt
-misel -mno-isel
-misel=yes -misel=no

Using the GNU Compiler Collection (GCC)

-mspe -mno-spe
-mspe=yes -mspe=no

-mvrsave -mno-vrsave

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mvxworks -mwindiss -G num -pthread

S/390 and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack

-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd

-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
SH Options

-ml -m2 -m2e -m3 -m3e

-m4-nofpu -mé4-single-only -mé4-single -m4

-m4a-nofpu -méa-single-only -m4a-single -m4a -m4al

-m5-64media -m5-64media-nofpu

-mb-32media -m5-32media-nofpu

-m5-compact -m5-compact-nofpu

-mb -ml -mdalign -mrelax

-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave

-mieee -misize -mpadstruct -mspace

-mprefergot -musermode -multcost=number -mdiv=strategy

-mdivsi3_libfunc=name

-madjust-unroll -mindexed-addressing -mgettrcost=number -mpt-fixed

-minvalid-symbols

SPARC Options

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs

-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mimpure-text -mno-impure-text -mlittle-endian
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis -threads -pthreads -pthread

System V Options
-Qy -Qn -YP,paths -Ym,dir
TMS320C3z/Chx Options

-mcpu=cpu -mbig -msmall -mregparm -mmemparm
-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
-mrpts=count -mrptb -mdb -mloop-unsigned
-mparallel-insns -mparallel-mpy -mpreserve-float

V850 Options

-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n

-mapp-regs -mno-app-regs

-mdisable-callt -mno-disable-callt

-mv850e1l

Chapter 3: GCC Command Options 17

-mv850e
-mv850 -mbig-switch

VAX Options
-mg -mgnu -munix
£86-64 Options See 1386 and x86-64 Options.
Xstormyl6 Options
-msim
Xtensa Options

-mconst16 -mno-constl16

-mfused-madd -mno-fused-madd
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 190.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -fexceptions
-fnon-call-exceptions -funwind-tables
-fasynchronous-unwind-tables
-finhibit-size-directive -finstrument-functions
-fno-common -fno-ident
-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-fno-jump-tables
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fshort-wchar
-fverbose-asm -fpack-struct[=n] -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fargument-alias -fargument-noalias
-fargument-noalias-global -fleading-underscore
-ftls-model=model
-ftrapv -fwrapv -fbounds-check
-fvisibility

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:
file.c C source code which must be preprocessed.
file.i C source code which should not be preprocessed.
file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

file.mi Objective-C source code which should not be preprocessed.

18

file.
file.

file.

file.

file.
file.
file.
file.
file.
file.
file.

file.
file.

file.

file.
file.

file.
file.
file.

file.
file.
file.

file.
file.
file.
file.

file.

file.

file.

file.

mii

ccC

cp
CXX

cpp
CPP
cH++

mii

hh

for
FOR

fpp
FPP

£90
£95
F90
F95

ads

adb

Using the GNU Compiler Collection (GCC)

Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code which should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header.

C++ source code which must be preprocessed. Note that in ‘. cxx’, the last two
letters must both be literally ‘x’. Likewise, .C’ refers to a literal capital C.

Objective-C++ source code which must be preprocessed.

Objective-C++ source code which should not be preprocessed.

C++ header file to be turned into a precompiled header.

Fixed form Fortran source code which should not be preprocessed.

Fixed form Fortran source code which must be preprocessed (with the tradi-
tional preprocessor).

Free form Fortran source code which should not be preprocessed.

Free form Fortran source code which must be preprocessed (with the traditional
preprocessor).

Ada source code file which contains a library unit declaration (a declaration of
a package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

Assembler code.

Assembler code which must be preprocessed.

Chapter 3: GCC Command Options 19

other

An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

—X none

Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header c-cpp-output

c++ c++-header c++-cpp-output

objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp

ada

95 £95-cpp-input

java

treelang

Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes

Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,
the gcc program will instead return with numerically highest error produced
by any phase that returned an error indication.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-c’; ‘=8’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-C

Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

‘.’ i fle), ete., with CLo’.

Unrecognized input files, not requiring compilation or assembly, are ignored.
Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the
suffix ‘.c’, ‘.1’ etc., with ‘.s’.

Input files that don’t require compilation are ignored.
Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

20 Using the GNU Compiler Collection (GCC)

-o file Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source. suffix.gch’, and all preprocessed C source
on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

— it Like ‘-v’ except the commands are not executed and all command arguments
are quoted. This is useful for shell scripts to capture the driver-generated
command lines.

-pipe Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

-combine If you are compiling multiple source files, this option tells the driver to pass
all the source files to the compiler at once (for those languages for which the
compiler can handle this). This will allow intermodule analysis (IMA) to be
performed by the compiler. Currently the only language for which this is sup-
ported is C. If you pass source files for multiple languages to the driver, using
this option, the driver will invoke the compiler(s) that support IMA once each,
passing each compiler all the source files appropriate for it. For those languages
that do not support IMA this option will be ignored, and the compiler will be
invoked once for each source file in that language. If you use this option in con-
junction with ‘-save-temps’, the compiler will generate multiple pre-processed
files (one for each source file), but only one (combined) ‘.o’ or .s’ file.

--help Print (on the standard output) a description of the command line options un-
derstood by gcc. If the ‘=v’ option is also specified then ‘--help’ will also be
passed on to the various processes invoked by gcc, so that they can display the
command line options they accept. If the ‘-Wextra’ option is also specified then
command line options which have no documentation associated with them will
also be displayed.

--target-help
Print (on the standard output) a description of target specific command line
options for each tool.

--version
Display the version number and copyrights of the invoked GCC.

3.3 Compiling C++ Programs

)

C++ source files conventionally use one of the suffixes *.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’ or ‘.H’; and preprocessed C++ files use the

suffix *.ii’. GCC recognizes files with these names and compiles them as C++ programs

Chapter 3: GCC Command Options 21

even if you call the compiler the same way as for compiling C programs (usually with the
name gcc).

However, C++ programs often require class libraries as well as a compiler that understands
the C++ language—and under some circumstances, you might want to compile programs
or header files from standard input, or otherwise without a suffix that flags them as C++
programs. You might also like to precompile a C header file with a ‘.h’ extension to be
used in C++ compilations. g++ is a program that calls GCC with the default language set
to C++, and automatically specifies linking against the C++ library. On many systems, g++
is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 21, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect|, page 25, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, support all ISO C90 programs. In C++ mode, remove GNU exten-
sions that conflict with ISO C++.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such

as __unix__ and __vax__ are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8
[Warning Options|, page 36.

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.

Functions which would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions with ‘-ansi’ is
used. See Section 5.46 [Other built-in functions provided by GCC], page 291,
for details of the functions affected.

22

-std=

Using the GNU Compiler Collection (GCC)

Determine the language standard. This option is currently only supported when
compiling C or C++. A value for this option must be provided; possible values
are

‘c89’
‘1509899:1990’
ISO C90 (same as ‘-ansi’).

‘1809899:199409’
ISO C90 as modified in amendment 1.

‘c99’

‘c9x’

‘1509899:1999’

‘1809899:199x’
ISO C99. Note that this standard is not yet fully supported;
see http://gcc.gnu.org/gcc-4.1/c99status.html for more in-
formation. The names ‘c9x’ and ‘1s09899:199x’ are deprecated.

‘gnu89’ Default, ISO C90 plus GNU extensions (including some C99 fea-
tures).

‘gnu99’

‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented
in GCC, this will become the default. The name ‘gnu9x’ is depre-
cated.

‘c++98’ The 1998 ISO C++ standard plus amendments.

‘gnu++98’ The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

Even when this option is not specified, you can still use some of the features of
newer standards in so far as they do not conflict with previous C standards. For
example, you may use __restrict__ even when ‘-std=c99’ is not specified.

The ‘-std’ options specifying some version of ISO C have the same effects as
‘-ansi’, except that features that were not in ISO C90 but are in the specified
version (for example, ‘//’ comments and the inline keyword in ISO C99) are
not disabled.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
these standard versions.

—aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case

Chapter 3: GCC Command Options 23

-fno-asm

of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘~ansi’ implies ‘~fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard

keyword in ISO C99.

—-fno-builtin
—fno-builtin-function

—-fhosted

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.46 [Other built-in functions provided by GCC], page 291, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘~-Wformat’
for bad calls to printf, when printf is built in, and strlen is known not to
modify global memory.

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
this is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘~fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation takes place in a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘~fno-freestanding’.

-ffreestanding

Assert that compilation takes place in a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard

24

Using the GNU Compiler Collection (GCC)

library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

-fms-extensions

-trigraphs

Accept some non-standard constructs used in Microsoft header files.

Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 5.50 [Unnamed struct/union fields within
structs/unions|, page 355, for details.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-no-integrated-cpp

Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "ccl", "cclplus", or "cclobj" via the ‘-B’ option. The
user supplied compilation step can then add in an additional preprocessing
step after normal preprocessing but before compiling. The default is to use the
integrated cpp (internal cpp)

The semantics of this option will change if "ccl", "cclplus", and "cclobj" are
merged.

—-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

—-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

—-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char

Let the type char be signed, like signed char.

Chapter 3: GCC Command Options 25

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘~-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs;
but you can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g++ -g —frepo -0 -c firstClass.C

In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. Version 2 is the version of the C++ ABI that
first appeared in G++ 3.4. Version 1 is the version of the C++ ABI that first
appeared in G++ 3.2. Version 0 will always be the version that conforms most
closely to the C++ ABI specification. Therefore, the ABI obtained using version
0 will change as ABI bugs are fixed.

The default is version 2.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new will only return 0 if it is declared
‘throw()’, in which case the compiler will always check the return value even
without this option. In all other cases, when operator new has a non-empty
exception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two definitions were merged.

26 Using the GNU Compiler Collection (GCC)

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-ffriend-injection

Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were
documented to work this way in the old Annotated C++ Reference Manual, and
versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function which is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

—-fno-const-strings
Give string constants type char * instead of type const char *. By default,
G++ uses type const char * as required by the standard. Even if you use
‘~fno-const-strings’, you cannot actually modify the value of a string con-
stant.

This option might be removed in a future release of G++. For maximum porta-
bility, you should structure your code so that it works with string constants
that have type const char *.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run-
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler will still optimize based on the specifications, so throwing
an unexpected exception will result in undefined behavior.

-ffor-scope

-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘~fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

Chapter 3: GCC Command Options 27

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 6.5 [Template
Instantiation], page 365, for more information.

—fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

—fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘-fpermissive’ will allow some nonconforming code to com-
pile.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘~fno-implicit-templates’. See Section 6.5 [Template Instantiation],
page 365, for more information.

-fno-rtti
Disable generation of information about every class with virtual functions
for use by the C++ runtime type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed.

28 Using the GNU Compiler Collection (GCC)

-fstats Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

—fvisibility-inlines-hidden

Causes all inlined methods to be marked with __attribute__ ((visibility
("hidden"))) so that they do not appear in the export table of a DSO and do
not require a PLT indirection when used within the DSO. Enabling this option
can have a dramatic effect on load and link times of a DSO as it massively
reduces the size of the dynamic export table when the library makes heavy use
of templates. While it can cause bloating through duplication of code within
each DSO where it is used, often the wastage is less than the considerable space
occupied by a long symbol name in the export table which is typical when
using templates and namespaces. For even more savings, combine with the
‘~fvisibility=hidden’ switch.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior
code and has no benefits. This option may be removed in a future release of
G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Sec-
tion 3.10 [Options That Control Optimization], page 65. Note that these func-
tions will have linkage like inline functions; they just won’t be inlined by default.

Chapter 3: GCC Command Options 29

-Wabi (C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

The known incompatibilities at this point include:

e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:

struct A { virtual void £(); int f1 : 1; };

struct B : public A { int £2 : 1; };
In this case, G++ will place B: : £2 into the same byte asA: :f1; other com-
pilers will not. You can avoid this problem by explicitly padding A so that
its size is a multiple of the byte size on your platform; that will cause G++
and other compilers to layout B identically.

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail

padding when laying out virtual bases. For example:

struct A { virtual void f(); char ci; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};
In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is
a multiple of its alignment (ignoring virtual base classes); that will cause
G++ and other compilers to layout C identically.

e Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:
union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union
too small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void £ ();

}s

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed
at offset zero. G++ mistakenly believes that the A data member of B is
already at offset zero.

e Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

30 Using the GNU Compiler Collection (GCC)

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions.

-Wnon-virtual-dtor (C++ only)
Warn when a class appears to be polymorphic, thereby requiring a virtual
destructor, yet it declares a non-virtual one. This warning is enabled by ‘-Wall’.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AO: j (0, 1 (1) {1}
};

The compiler will rearrange the member initializers for ‘1’ and ‘j’ to match
the declaration order of the members, emitting a warning to that effect. This
warning is enabled by ‘-Wall’.

The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ book:

e Item 11: Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

e Item 12: Prefer initialization to assignment in constructors.

e Item 14: Make destructors virtual in base classes.

e Item 15: Have operator= return a reference to *this.

e Item 23: Don’t try to return a reference when you must return an object.
Also warn about violations of the following style guidelines from Scott Meyers’
More Effective C++ book:

e Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.

e Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.10 [Deprecated
Features|, page 369.

Chapter 3: GCC Command Options 31

-Wstrict-null-sentinel (C++ only)
Warn also about the use of an uncasted NULL as sentinel. When compiling only
with GCC this is a valid sentinel, as NULL is defined to __null. Although it is
a null pointer constant not a null pointer, it is guaranteed to of the same size
as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ only)

Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘~Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘-Wno-non-template-friend’ which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {
virtual void f();

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B*x b;
b->£f(0);

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ would try to preserve unsignedness, but the
standard mandates the current behavior.

struct A {
operator int ();

32 Using the GNU Compiler Collection (GCC)

A& operator = (int);

};
main ()
{
A a,b;
a =b;
}

In this example, G++ will synthesize a default ‘A& operator = (const A&);’,
while cfront will use the user-defined ‘operator =’.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-C
and Objective-C++ programs, but you can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —fgnu-runtime -0 -c some_class.m

In this example, ‘~-fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘~Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘-Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programes:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
will override the ‘~-fconstant-string-class’ setting and cause @". . ." literals
to be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

—-fno-nil-receivers
Assume that all Objective-C message dispatches (e.g., [receiver
message:arg]) in this translation unit ensure that the receiver is not nil.
This allows for more efficient entry points in the runtime to be used. Currently,

Chapter 3: GCC Command Options 33

this option is only available in conjunction with the NeXT runtime on Mac
OS X 10.3 and later.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ object
with a non-trivial default constructor. If so, synthesize a special - (id) .cxx_
construct instance method that will run non-trivial default constructors on
any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
so, synthesize a special - (void) .cxx_destruct method that will run all such
default destructors, in reverse order.

The - (id) .cxx_construct and/or - (void) .cxx_destruct methods
thusly generated will only operate on instance variables declared in the
current Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods will be
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods will be invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. Currently, this option is only available
in conjunction with the NeXT runtime on Mac OS X 10.3 and later.

Qtry {

Q@throw expr;

}
Qcatch (AnObjCClass *exc) {

Q@throw expr;
Qthrow;

}
@catch (AnotherClass *exc) {

}
@catch (id allOthers) {

}
@finally {

@throw expr;

34

-fobjc-gc

-freplace-

Using the GNU Compiler Collection (GCC)

}

The @throw statement may appear anywhere in an Objective-C or Objective-
C++ program; when used inside of a @catch block, the @throw may appear
without an argument (as shown above), in which case the object caught by the
@catch will be rethrown.

Note that only (pointers to) Objective-C objects may be thrown and caught
using this scheme. When an object is thrown, it will be caught by the nearest
@catch clause capable of handling objects of that type, analogously to how
catch blocks work in C++ and Java. A @catch(id ...) clause (as shown
above) may also be provided to catch any and all Objective-C exceptions not
caught by previous @catch clauses (if any).

The @finally clause, if present, will be executed upon exit from the imme-
diately preceding @try ... @catch section. This will happen regardless of
whether any exceptions are thrown, caught or rethrown inside the @try ...
@catch section, analogously to the behavior of the finally clause in Java.

There are several caveats to using the new exception mechanism:

e Although currently designed to be binary compatible with NS_HANDLER-
style idioms provided by the NSException class, the new exceptions can
only be used on Mac OS X 10.3 (Panther) and later systems, due to addi-
tional functionality needed in the (NeXT) Objective-C runtime.

e As mentioned above, the new exceptions do not support handling types
other than Objective-C objects. Furthermore, when used from Objective-
C++, the Objective-C exception model does not interoperate with C++
exceptions at this time. This means you cannot @throw an exception from
Objective-C and catch it in C++, or vice versa (i.e., throw ... @catch).

The ‘-fobjc-exceptions’ switch also enables the use of synchronization blocks
for thread-safe execution:
@synchronized (0bjCClass *guard) {

. .

Upon entering the @synchronized block, a thread of execution shall first check
whether a lock has been placed on the corresponding guard object by another
thread. If it has, the current thread shall wait until the other thread relinquishes
its lock. Once guard becomes available, the current thread will place its own
lock on it, execute the code contained in the @synchronized block, and finally
relinquish the lock (thereby making guard available to other threads).

Unlike Java, Objective-C does not allow for entire methods to be marked
@synchronized. Note that throwing exceptions out of @synchronized blocks
is allowed, and will cause the guarding object to be unlocked properly.

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.

objc-classes
Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used

Chapter 3: GCC Command Options 35

in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘-fzero-1ink’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘~Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector

Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘-fsyntax-only’ option is being
used.

-Wstrict-selector-match
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler will omit such warnings if any differences found are
confined to types which share the same size and alignment.

36 Using the GNU Compiler Collection (GCC)

-Wundeclared-selector

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). The options described below can be used to control the diag-
nostic messages formatting algorithm, e.g. how many characters per line, how often source
location information should be reported. Right now, only the C++ front end can honor these
options. However it is expected, in the near future, that the remaining front ends would be
able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics—show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-show-options
This option instructs the diagnostic machinery to add text to each diagnos-

tic emitted, which indicates which command line option directly controls that
diagnostic, when such an option is known to the diagnostic machinery.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erro-
neous but which are risky or suggest there may have been an error.

Chapter 3: GCC Command Options 37

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Fach of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

The following options control the amount and kinds of warnings produced by GCC; for
further, language-specific options also refer to Section 3.5 [C++ Dialect Options|, page 25
and Section 3.6 [Objective-C and Objective-C++ Dialect Options|, page 32.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not

follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’". Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files

should use these escape routes; application programs should avoid them. See
Section 5.38 [Alternate Keywords], page 284.

¢

Some users try to use ‘-pedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu89’ or ‘gnu99’, there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-
tures the compiler supports with the given option, and there would be nothing
to warn about.)

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

38

Using the GNU Compiler Collection (GCC)

-Wno-import

Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts

-Wcomment

Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment. This warning is
enabled by ‘-Wall’.

-Wfatal-errors

-Wformat

This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 5.24 [Function Attributes],
page 229), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘~ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-pedantic’ is used with ‘~-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 21.

Since ‘-Wformat’ also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘~Wnonnull’.

‘~Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wformat-y2k’, ‘-Wno-format-extra-args’,
‘~Wno-format-zero-length’, ‘-Wformat-nonliteral’, ‘-Wformat-security’,
and ‘-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wformat-y2k

If ‘“-Wformat’ is specified, also warn about strftime formats which may yield
only a two-digit year.

-Wno-format-extra-args

If ‘~Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Chapter 3: GCC Command Options 39

Where the unused arguments lie between used arguments that are specified
with ‘¢’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option will
suppress the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wno-format-zero-length
If ‘~Wformat’ is specified, do not warn about zero-length formats. The C stan-
dard specifies that zero-length formats are allowed.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
a va_list.

-Wformat-security

If ‘-Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘~Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘~Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.

‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables which are initialized with themselves. Note
this option can only be used with the ‘~Wuninitialized’ option, which in turn
only works with ‘-01’ and above.

For example, GCC will warn about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:
int £(Q)
{
int i = 1i;
return i;

}
-Wimplicit-int
Warn when a declaration does not specify a type. This warning is enabled by
‘~Wall’.

40

-Wimplicit

Using the GNU Compiler Collection (GCC)

-function-declaration

-Werror-implicit-function-declaration

-Wimplicit

-Wmain

Give a warning (or error) whenever a function is used before being declared.
The form ‘-Wno-error-implicit-function-declaration’ is not supported.
This warning is enabled by ‘-Wall’ (as a warning, not an error).

Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.
Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with

external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by ‘-Wall’.

-Wmissing-braces

-Wmissing-

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2]
int b[2][2]

{0,1,2,31};
{{o0, 13} {2,311}

This warning is enabled by ‘-Wall’.

include-dirs (C, C++, Objective-C and Objective-C++ only)
Warn if a user-supplied include directory does not exist.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about. Only the warning
for an assignment used as a truth value is supported when compiling C++; the
other warnings are only supported when compiling C.

Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
7 1 : 0) <= z’, which is a different interpretation from that of ordinary math-
ematical notation.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

{
if (a)
if (o)
foo O;
else
bar Q;
}
In C, every else branch belongs to the innermost possible if statement, which
in this example is 1f (b). This is often not what the programmer expected, as
illustrated in the above example by indentation the programmer chose. When
there is the potential for this confusion, GCC will issue a warning when this flag
is specified. To eliminate the warning, add explicit braces around the innermost
if statement so there is no way the else could belong to the enclosing if. The

resulting code would look like this:

Chapter 3: GCC Command Options 41

{
if (a)
{
if (b)
foo ();
else
bar O;
}
}

This warning is enabled by ‘-Wall’.

-Wsequence-point
Warn about code that may have undefined semantics because of violations of
sequence point rules in the C standard.

The C standard defines the order in which expressions in a C program are eval-
uated in terms of sequence points, which represent a partial ordering between
the execution of parts of the program: those executed before the sequence point,
and those executed after it. These occur after the evaluation of a full expression
(one which is not part of a larger expression), after the evaluation of the first
operand of a &&, ||, ? : or , (comma) operator, before a function is called (but
after the evaluation of its arguments and the expression denoting the called
function), and in certain other places. Other than as expressed by the sequence
point rules, the order of evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression with no
sequence point between them, the order in which the functions are called is not
specified. However, the standards committee have ruled that function calls do
not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C standard specifies that “Between the previous and next se-
quence point an object shall have its stored value modified at most once by the
evaluation of an expression. Furthermore, the prior value shall be read only to
determine the value to be stored.”. If a program breaks these rules, the results
on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] = 1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The present implementation of this option only works for C programs. A future
implementation may also work for C++ programs.

The C standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’.

42 Using the GNU Compiler Collection (GCC)

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.

For C, also warn if the return type of a function has a type qualifier such
as const. Such a type qualifier has no effect, since the value returned by
a function is not an lvalue. ISO C prohibits qualified void return types on
function definitions, so such return types always receive a warning even without
this option.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

This warning is enabled by ‘-Wall’.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used. This warning is enabled
by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘~Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 247).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 247).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 43

To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 247).

-Wunused-value

Warn whenever a statement computes a result that is explicitly not used. This
warning is enabled by ‘-Wall’.

To suppress this warning cast the expression to ‘void’.

-Wunused All the above ‘~Wunused’ options combined.
In order to get a warning about an unused function parameter, you must either
specify ‘~Wextra -Wunused’ (note that ‘-Wall’ implies ‘-~Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

-Wuninitialized

Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call.

These warnings are possible only in optimizing compilation, because they re-
quire data flow information that is computed only when optimizing. If you
don’t specify ‘-0’, you simply won’t get these warnings.

If you want to warn about code which uses the uninitialized value of the variable
in its own initializer, use the ‘~-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables which are uninitialized or
clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings will depend on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

These warnings are made optional because GCC is not smart enough to see all
the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:

{

int x;
switch (y)
{
case 1: x
break;
case 2: x
break;
case 3: X
}
foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. Here is another common case:
{

int save_y;

]
-

]
S

1]
]

44 Using the GNU Compiler Collection (GCC)

if (change_y) save_y =y, y = new_y;

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place which would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 5.24 [Function Attributes],
page 229.

This warning is enabled by ‘-Wall’.

-Wunknown-pragmas
Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued for
unknown pragmas in system header files. This is not the case if the warnings
were only enabled by the ‘-Wall’ command line option.

-Wno-pragmas
Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘~Wunknown-pragmas’.

-Wstrict-aliasing
This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to catch
the more common pitfalls. It is included in ‘-Wall’.

-Wstrict-aliasing=2
This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. This warning catches more cases than ‘-Wstrict-aliasing’, but
it will also give a warning for some ambiguous cases that are safe.

-Wall All of the above ‘W’ options combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with macros. This
also enables some language-specific warnings described in Section 3.5 [C++ Di-
alect Options|, page 25 and Section 3.6 [Objective-C and Objective-C++ Dialect
Options|, page 32.

The following ‘-W. ..’ options are not implied by ‘-Wall’. Some of them warn about
constructions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the warning.

Chapter 3: GCC Command Options 45

-Wextra (This option used to be called ‘-W’. The older name is still supported, but the
newer name is more descriptive.) Print extra warning messages for these events:

e A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

foo (a)
{
if (a > 0)
return a;
}

e An expression-statement or the left-hand side of a comma expression con-
tains no side effects. To suppress the warning, cast the unused expression
to void. For example, an expression such as ‘x[i, j]’ will cause a warning,
but ‘x[(void)i,j]’ will not.

e An unsigned value is compared against zero with ‘<’ or ‘>=".

e Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

e If ‘-Wall’ or ‘-Wunused’ is also specified, warn about unused arguments.

e A comparison between signed and unsigned values could produce an in-
correct result when the signed value is converted to unsigned. (But don’t
warn if ‘~Wno-sign-compare’ is also specified.)

e An aggregate has an initializer which does not initialize all
members. This warning can be independently controlled by
‘~-Wmissing-field-initializers’.

e A function parameter is declared without a type specifier in K&R-style
functions:

void foo(bar) { }
e An empty body occurs in an ‘if’ or ‘else’ statement.
e A pointer is compared against integer zero with ‘<’, ‘<=’, *>’, or ‘>=’,
e A variable might be changed by ‘longjmp’ or ‘vfork’.

e Any of several floating-point events that often indicate errors, such as over-
flow, underflow, loss of precision, etc.

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++ only) A non-static reference or non-static ‘const’ member appears in
a class without constructors.

e (C++ only) Ambiguous virtual bases.

(
(C++ only) Taking the address of a variable which has been declared
‘register’.

C++ only) Subscripting an array which has been declared ‘register’.

e (C++ only) A base class is not initialized in a derived class’ copy construc-
tor.

46 Using the GNU Compiler Collection (GCC)

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘~Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘~Wunknown-pragmas’ must also be used.

-Wfloat-equal
Warn if floating point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs which should be avoided.

e Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but does
not in ISO C.

e In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore ‘-Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘#’ does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some
traditional implementations would not recognize ‘#elif’, so it suggests
avoiding it altogether.

e A function-like macro that appears without arguments.
e The unary plus operator.

e The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these

Chapter 3: GCC Command Options 47

macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

A function declared external in one block and then used after the end of
the block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

Usage of ISO string concatenation is detected.
Initialization of automatic aggregates.

Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

Conversions by prototypes between fixed/floating point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wconversion’.

Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features will appear in your code when using libiberty’s traditional C
compatibility macros, PARAMS and VPARAMS. This warning is also bypassed
for nested functions because that feature is already a GCC extension and
thus not relevant to traditional C compatibility.

-Wdeclaration-after-statement (C only)

-Wundef

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 5.23 [Mixed Declarations|, page 229.

Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-1labels

Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wshadow Warn whenever a local variable shadows another local variable, parameter or

global variable or whenever a built-in function is shadowed.

-Wlarger-than-len

Warn whenever an object of larger than len bytes is defined.

48 Using the GNU Compiler Collection (GCC)

-Wunsafe-loop-optimizations
Warn if the loop cannot be optimized because the compiler could

not assume anything on the bounds of the loop indices. With
‘~funsafe-loop-optimizations’ warn if the compiler made such
assumptions.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wbad-function-cast (C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-Wc++-compat
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning;
when compiling C++, warn about the deprecated conversion from string con-
stants to char *. These warnings will help you find at compile time code that
can try to write into a string constant, but only if you have been very careful
about using const in declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make ‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning

Chapter 3: GCC Command Options 49

is also enabled by ‘-Wextra’; to get the other warnings of ‘~-Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This will not stop
errors for incorrect use of supported attributes.

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration which specifies the argument types.)

-Wold-style-definition (C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations (C only)
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.
-Wmissing-field-initializers
Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code would cause such a warning, because x.h is implicitly zero:
struct s { int £, g, h; };
struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following mod-
ification would not trigger a warning;:
struct s { int £, g, h; };
struct s x = { .£f =3, .g=41};
This warning is included in ‘~Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘~Wextra -Wno-missing-field-initializers’.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken
to manually verify functions actually do not ever return before adding the
noreturn attribute, otherwise subtle code generation bugs could be introduced.
You will not get a warning for main in hosted C environments.

-Wmissing-format-attribute
Warn about function pointers which might be candidates for format attributes.
Note these are only possible candidates, not absolute ones. GCC will guess that

50

Using the GNU Compiler Collection (GCC)

function pointers with format attributes that are used in assignment, initial-
ization, parameter passing or return statements should have a corresponding
format attribute in the resulting type. I.e. the left-hand side of the assignment
or initialization, the type of the parameter variable, or the return type of the
containing function respectively should also have a format attribute to avoid
the warning.

GCC will also warn about function definitions which might be candidates for
format attributes. Again, these are only possible candidates. GCC will guess
that format attributes might be appropriate for any function that calls a func-
tion like vprintf or vscanf, but this might not always be the case, and some
functions for which format attributes are appropriate may not be detected.

-Wno-multichar

Do not warn if a multicharacter constant (‘’FOOF’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>

In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers which have not been normalized; this option controls that warning.

There are four levels of warning that GCC supports. The default is
‘~Wnormalized=nfc’, which warns about any identifier which is not in the ISO
10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.

Unfortunately, there are some characters which ISO C and ISO C++ allow in
identifiers that when turned into NFC aren’t allowable as identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘-Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing
‘~Wnormalized=none’. You would only want to do this if you were
using some other normalization scheme (like “D”), because otherwise you can
easily create bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in
some fonts or display methodologies, especially once formatting has been ap-
plied. For instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”,
will display just like a regular n which has been placed in a superscript. ISO
10646 defines the NFKC normalisation scheme to convert all these into a stan-
dard form as well, and GCC will warn if your code is not in NFKC if you
use ‘-Wnormalized=nfkc’. This warning is comparable to warning about every
identifier that contains the letter O because it might be confused with the digit

Chapter 3: GCC Command Options 51

0, and so is not the default, but may be useful as a local coding convention if
the programming environment is unable to be fixed to display these characters
distinctly.

-Wno-deprecated-declarations

-Wpacked

-Wpadded

Do not warn about uses of functions, variables, and types marked as deprecated
by using the deprecated attribute. (see Section 5.24 [Function Attributes],
page 229, see Section 5.31 [Variable Attributes|, page 247, see Section 5.32
[Type Attributes], page 252.)

Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {

int x;

char a, b, c, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};
Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is

possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C only)

Warn if an extern declaration is encountered within a function.

-Wunreachable-code

Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at least a whole
line of source code will never be executed, because some condition is never
satisfied or because it is after a procedure that never returns.

It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should
be taken when removing apparently-unreachable code.

For instance, when a function is inlined, a warning may mean that the line is
unreachable in only one inlined copy of the function.

This option is not made part of ‘-Wall’ because in a debugging version of a
program there is often substantial code which checks correct functioning of the
program and is, hopefully, unreachable because the program does work. An-
other common use of unreachable code is to provide behavior which is selectable
at compile-time.

52 Using the GNU Compiler Collection (GCC)

-Winline Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘-Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types. (Such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor.) This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast (C only)
Suppress warnings from casts to pointer type of an integer of a different size.

-Wno-pointer-to-int-cast (C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 199) is found in the search path but can’t be used.

-Wlong-long
Warn if ‘long long’ type is used. This is default. To inhibit the warning
messages, use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-Wno-long-long’

are taken into account only when ‘-pedantic’ flag is used.

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘-Wno-variadic-macros’.

-Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers were unable to handle the code effectively. Often, the

Chapter 3: GCC Command Options 53

problem is that your code is too big or too complex; GCC will refuse to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign

-Werror

Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-pedantic’, which can be disabled with ‘~-Wno-pointer-sign’.

Make all warnings into errors.

-Wstack-protector

This option is only active when ‘~fstack-protector’ is active. It warns about
functions that will not be protected against stack smashing.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

)

-ggdb

-gstabs

Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging informa-
tion.

On most systems that use stabs format, ‘-g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but will probably make other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the
extra information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, or ‘-gvms’
(see below).

GCC allows you to use ‘-g’ with ‘-0’. The shortcuts taken by optimized code
may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results
or their values were already at hand; some statements may execute in different
places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.

54 Using the GNU Compiler Collection (GCC)

-feliminate-unused-debug-symbols
Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

-gstabs+ Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

-gcoff Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is sup-
ported). This is the format used by DBX on IRIX 6. With this option, GCC
uses features of DWARF version 3 when they are useful; version 3 is upward
compatible with version 2, but may still cause problems for older debuggers.

-gvms Produce debugging information in VMS debug format (if that is supported).
This is the format used by DEBUG on VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gvmslevel
Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

‘~gdwarf-2’ does not accept a concatenated debug level, because GCC used
to support an option ‘-gdwarf’ that meant to generate debug information in
version 1 of the DWARF format (which is very different from version 2), and
it would have been too confusing. That debug format is long obsolete, but the
option cannot be changed now. Instead use an additional ‘-glevel’ option to

change the debug level for DWARF2.

Chapter 3: GCC Command Options 55

-feliminate-dwarf2-dups

P

-Q

Compress DWARF2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF2 debugging information with ‘-gdwarf-2’.

Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report

Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report

Makes the compiler print some statistics about permanent memory allocation
when it finishes.

—-fprofile-arcs

--coverage

Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘~fbranch-probabilities’), or for test
coverage analysis (‘~ftest-coverage’). Each object file’s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘-o dir/foo.0’). See Section 9.5 [Cross-profiling],
page 387.

This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘~fprofile-arcs’ ‘~ftest-coverage’ (when com-
piling) and ‘-1gcov’ (when linking). See the documentation for those options
for more details.

e Compile the source files with ‘~fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~ftest-coverage’ option. You do not need to profile every source file in
a program.

e Link your object files with ‘-1gcov’ or ‘~fprofile-arcs’ (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run

56

Using the GNU Compiler Collection (GCC)

concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘~fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 65).

For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘~fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

-ftest-coverage
Produce a notes file that the gcov code-coverage utility (see Chapter 9 [gcov—a
Test Coverage Program|, page 381) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘~fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data will match the source files more closely, if
you do not optimize.

-dletters

—-fdump-rtl-pass
Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RTL-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to
the dumpname. dumpname is generated from the name of the output file, if
explicitly specified and it is not an executable, otherwise it is the basename of
the source file.

Most debug dumps can be enabled either passing a letter to the ‘-d’ option, or
with a long ‘-fdump-rtl’ switch; here are the possible letters for use in letters
and pass, and their meanings:

-dA Annotate the assembler output with miscellaneous debugging in-
formation.

-db

—fdump-rtl-bp
Dump after computing branch probabilities, to ‘file.09.bp’.

-dB

—-fdump-rtl-bbro

Dump after block reordering, to ‘file.30.bbro’.

Chapter 3:

GCC Command Options 57

-dc
-fdump-rtl-combine
Dump after instruction combination, to the file ‘file.17.combine’.

-dC

-fdump-rtl-cel

-fdump-rtl-ce2
‘-dC’ and ‘-fdump-rtl-cel’ enable dumping after the first if
conversion, to the file ‘file.11.cel’. ‘-dC’ and ‘~fdump-rtl-ce2’
enable dumping after the second if conversion, to the file
‘file.18.ce2’.

-dd

-fdump-rtl-btl

—fdump-rtl-dbr
‘-dd’ and ‘-~fdump-rtl-btl’ enable dumping after branch target
load optimization, to ‘file.31.btl’. ‘-dd’ and ‘-fdump-rtl-dbr’
enable dumping after delayed branch scheduling, to ‘file.36.dbr’.

-dD Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

-dE
-fdump-rtl-ce3
Dump after the third if conversion, to ‘file.28.ce3’.

-df

-fdump-rtl-cfg

-fdump-rtl-life
‘~df’ and ‘-fdump-rtl-cfg’ enable dumping after control and data
flow analysis, to ‘file.08.cfg’. ‘-df’ and ‘-fdump-rtl-cfg’ en-
able dumping dump after life analysis, to ‘file.16.1life’.

_dg
-fdump-rtl-greg
Dump after global register allocation, to ‘file.23.greg’.

-dG

-fdump-rtl-gcse

-fdump-rtl-bypass
‘-dG’ and ‘-fdump-rtl-gcse’ enable dumping after GCSE,
to ‘file.05.gcse’. ‘-dG’ and ‘-fdump-rtl-bypass’ enable
dumping after jump bypassing and control flow optimizations, to
‘file.07.bypass’.

-dh
-fdump-rtl-eh
Dump after finalization of EH handling code, to ‘file.02.eh’.
-di
-fdump-rtl-sibling
Dump after sibling call optimizations, to ‘file.01.sibling’ .

o8

Using the GNU Compiler Collection (GCC)

_dJ
-fdump-rtl-jump
Dump after the first jump optimization, to ‘file.03. jump’.

-dk
-fdump-rtl-stack
Dump after conversion from registers to stack, to ‘file.33.stack’.

-dl
-fdump-rtl-lreg
Dump after local register allocation, to ‘file.22.1lreg’.

-dL

-fdump-rtl-loop

—-fdump-rtl-loop2
‘-dLl” and ‘-fdump-rtl-loop’ enable dumping after the
first loop optimization pass, to ‘file.06.loop’. ‘-dL’ and
‘~fdump-rtl-loop2’ enable dumping after the second pass, to
‘file.13.1loop2’.

—-dm
-fdump-rtl-sms
Dump after modulo scheduling, to ‘file.20.sms’.

-dM

-fdump-rtl-mach
Dump after performing the machine dependent reorganization pass,
to ‘file.35.mach’.

-dn
-fdump-rtl-rnreg
Dump after register renumbering, to ‘file.29.rnreg’.

-dN
-fdump-rtl-regmove
Dump after the register move pass, to ‘file.19.regmove’.

-do
—-fdump-rtl-postreload
Dump after post-reload optimizations, to ‘file.24.postreload’.

-dr
-fdump-rtl-expand
Dump after RTL generation, to ‘file.00.expand’.

-dR
-fdump-rtl-sched2
Dump after the second scheduling pass, to ‘file.32.sched2’.

-ds

-fdump-rtl-cse
Dump after CSE (including the jump optimization that sometimes
follows CSE), to ‘file.04.cse’.

Chapter 3:

GCC Command Options 59

-ds
—-fdump-rtl-sched
Dump after the first scheduling pass, to ‘file.21.sched’.

-dt

-fdump-rtl-cse2
Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to ‘file.15.cse2’.

-dT
-fdump-rtl-tracer
Dump after running tracer, to ‘file.12.tracer’.

-dv

-fdump-rtl-vpt

-fdump-rtl-vartrack
‘-dV’ and ‘-fdump-rtl-vpt’ enable dumping after the
value profile transformations, to ‘file.10.vpt’. ‘~dV’ and
‘~fdump-rtl-vartrack’ enable dumping after variable tracking,
to ‘file.34.vartrack’.

-dw
-fdump-rtl-flow2
Dump after the second flow pass, to ‘file.26.flow2’.

-dz
-fdump-rtl-peephole2
Dump after the peephole pass, to ‘file.27.peephole2’.
-dz
-fdump-rtl-web
Dump after live range splitting, to ‘file.14.web’.
-da
-fdump-rtl-all
Produce all the dumps listed above.

-dH Produce a core dump whenever an error occurs.

—dm Print statistics on memory usage, at the end of the run, to standard
error.

-dp Annotate the assembler output with a comment indicating which

pattern and alternative was used. The length of each instruction is
also printed.

-dp Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.
-dv For each of the other indicated dump files (either with ‘-d’ or

‘~fdump-rtl-pass’), dump a representation of the control flow
graph suitable for viewing with VCG to ‘file.pass.vcg’.

-dx Just generate RTL for a function instead of compiling it. Usually
used with ‘r’ (‘-fdump-rtl-expand’).

60 Using the GNU Compiler Collection (GCC)

-dy Dump debugging information during parsing, to standard error.

—-fdump-unnumbered
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers and line number note output. This makes it more feasible to use
diff on debugging dumps for compiler invocations with different options, in

particular with and without ‘-g’.

-fdump-translation-unit (C++ only)

-fdump-translation-unit-options (C++ only)
Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘~options’ form is used, options controls the details of the dump as described
for the ‘~fdump-tree’ options.

-fdump-class-hierarchy (C++ only)

-fdump-class-hierarchy-options (C++ only)
Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name.
If the ‘-options’ form is used, options controls the details of the dump as
described for the ‘~fdump-tree’ options.

-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps; currently the only pro-
duced dump is the ‘cgraph’ dump.

‘cgraph’ Dumps information about call-graph optimization, unused function
removal, and inlining decisions.

-fdump-tree-switch

-fdump-tree-switch-options
Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. If the ‘~options’ form is used, options is a list of
‘-’ separated options that control the details of the dump. Not all options are
applicable to all dumps, those which are not meaningful will be ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

‘slim’ Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path. When dumping
pretty-printed trees, this option inhibits dumping the bodies of con-
trol structures.

Chapter 3:

GCC Command Options

raw

‘details’

‘stats’

‘blocks’
‘vops’
‘lineno’
‘uid’

‘all’

61

Print a raw representation of the tree. By default, trees are pretty-
printed into a C-like representation.

Enable more detailed dumps (not honored by every dump option).

Enable dumping various statistics about the pass (not honored by
every dump option).

Enable showing basic block boundaries (disabled in raw dumps).
Enable showing virtual operands for every statement.

Enable showing line numbers for statements.

Enable showing the unique ID (DECL_UID) for each variable.

Turn on all options, except ‘raw’, ‘slim’ and ‘lineno’.

The following tree dumps are possible:

‘original’

‘optimized’

‘inlined’

‘gimple’

)

‘cfg

veg

‘Ch,

ssa
‘salias’
‘alias’

4 b

ccp

‘storeccp’

Dump before any tree based optimization, to ‘file.original’.

Dump after all tree based optimization, to ‘file.optimized’.
Dump after function inlining, to ‘file.inlined’.

Dump each function before and after the gimplification pass to a
file. The file name is made by appending ‘.gimple’ to the source
file name.

Dump the control flow graph of each function to a file. The file
name is made by appending ‘.cfg’ to the source file name.

Dump the control flow graph of each function to a file in VCG
format. The file name is made by appending ‘.vcg’ to the source
file name. Note that if the file contains more than one function, the
generated file cannot be used directly by VCG. You will need to
cut and paste each function’s graph into its own separate file first.

Dump each function after copying loop headers. The file name is
made by appending ‘.ch’ to the source file name.

Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

Dump structure aliasing variable information to a file. This file
name is made by appending ‘.salias’ to the source file name.

Dump aliasing information for each function. The file name is made
by appending ‘.alias’ to the source file name.

Dump each function after CCP. The file name is made by append-
ing ‘. ccp’ to the source file name.

Dump each function after STORE-CCP. The file name is made by
appending ‘.storeccp’ to the source file name.

62

pre

‘fre’

‘copyprop’

Using the GNU Compiler Collection (GCC)

Dump trees after partial redundancy elimination. The file name is
made by appending ‘.pre’ to the source file name.

Dump trees after full redundancy elimination. The file name is
made by appending ‘.fre’ to the source file name.

Dump trees after copy propagation. The file name is made by
appending ‘. copyprop’ to the source file name.

‘store_copyprop’

‘dce

‘mudflap’

Sra

‘sink’

‘dom’

‘dse’

‘phiopt’

‘forwprop’

Dump trees after store copy-propagation. The file name is made
by appending . store_copyprop’ to the source file name.

Dump each function after dead code elimination. The file name is
made by appending ‘.dce’ to the source file name.

Dump each function after adding mudflap instrumentation. The
file name is made by appending ‘.mudflap’ to the source file name.

Dump each function after performing scalar replacement of aggre-
gates. The file name is made by appending ‘.sra’ to the source file
name.

Dump each function after performing code sinking. The file name
is made by appending ‘.sink’ to the source file name.

Dump each function after applying dominator tree optimizations.
The file name is made by appending ‘.dom’ to the source file name.

Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

Dump each function after optimizing PHI nodes into straightline
code. The file name is made by appending ‘. phiopt’ to the source
file name.

Dump each function after forward propagating single use variables.
The file name is made by appending ‘. forwprop’ to the source file
name.

‘copyrename’

nrv

‘vect’

vIp

Dump each function after applying the copy rename optimization.
The file name is made by appending ‘. copyrename’ to the source
file name.

Dump each function after applying the named return value opti-
mization on generic trees. The file name is made by appending
‘.nrv’ to the source file name.

Dump each function after applying vectorization of loops. The file
name is made by appending ‘.vect’ to the source file name.

Dump each function after Value Range Propagation (VRP). The
file name is made by appending ‘.vrp’ to the source file name.

Chapter 3: GCC Command Options 63

‘all’ Enable all the available tree dumps with the flags provided in this
option.

—-ftree-vectorizer-verbose=n
This option controls the amount of debugging output the vectorizer prints.
This information is written to standard error, unless ‘-fdump-tree-all’ or
‘~fdump-tree-vect’ is specified, in which case it is output to the usual dump
listing file, ‘.vect’.

-frandom-seed=string
This option provides a seed that GCC uses when it would otherwise use random
numbers. It is used to generate certain symbol names that have to be different
in every compiled file. It is also used to place unique stamps in coverage data
files and the object files that produce them. You can use the ‘~-frandom-seed’
option to produce reproducibly identical object files.

The string should be different for every file you compile.

-fsched-verbose=n
On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to standard
error, unless ‘-dS’ or ‘-dR’ is specified, in which case it is output to the usual
dump listing file, ‘.sched’ or ‘.sched2’ respectively. However for n greater
than nine, the output is always printed to standard error.

For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘~dRS’. For n greater than one, it also output basic block probabilities, de-
tailed ready list information and unit/insn info. For n greater than two, it
includes RTL at abort point, control-flow and regions info. And for n over four,
‘~-fsched-verbose’ also includes dependence info.

—-save-temps
Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c” with ‘-c -save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the
compiler now normally uses an integrated preprocessor.

When used in combination with the ‘-x’ command line option, ‘-save-temps’

is sensible enough to avoid over writing an input source file with the same
extension as an intermediate file. The corresponding intermediate file may be
obtained by renaming the source file before using ‘-save-temps’.

-time Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done). The output looks like this:

ccl 0.12 0.01

as 0.00 0.01
The first number on each line is the “user time”, that is time spent executing
the program itself. The second number is “system time”, time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

64 Using the GNU Compiler Collection (GCC)

-fvar-tracking
Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).
It is enabled by default when compiling with optimization (‘-0s’, ‘-0’, ‘-02’,
...), debugging information (‘-g’) and the debug info format supports it.

-print-file-name=Iibrary
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-1ib
Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by *;’, and
each switch starts with an ‘@ instead of the ‘~’, without spaces between multiple
switches. This is supposed to ease shell-processing.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name*

-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem,
cannot exec cppO: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ‘/’. See Section 3.19
[Environment Variables|, page 196.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-1linux-gnu’)—and
don’t do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

—dumpspecs

Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files|, page 109.

Chapter 3: GCC Command Options 65

-feliminate-unused-debug-types

Normally, when producing DWARF2 output, GCC will emit debugging infor-
mation for all types declared in a compilation unit, regardless of whether or not
they are actually used in that compilation unit. Sometimes this is useful, such
as if, in the debugger, you want to cast a value to a type that is not actually
used in your program (but is declared). More often, however, this results in
a significant amount of wasted space. With this option, GCC will avoid pro-
ducing debug symbol output for types that are nowhere used in the source file
being compiled.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

The compiler performs optimization based on the knowledge it has of the program. Op-
timization levels ‘-0’ and above, in particular, enable unit-at-a-time mode, which allows
the compiler to consider information gained from later functions in the file when compiling
a function. Compiling multiple files at once to a single output file in unit-at-a-time mode
allows the compiler to use information gained from all of the files when compiling each of
them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed.

-0
-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

With ‘-0’°, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.
‘-0’ turns on the following optimization flags:

-fdefer-pop
-fdelayed-branch
-fguess-branch-probability
-fcprop-registers
-floop-optimize
-fif-conversion
-fif-conversion2
-ftree-ccp

-ftree-dce
-ftree-dominator-opts
-ftree-dse

-ftree-ter

-ftree-lrs

66

-02

-03

-00
-0s

Using the GNU Compiler Collection (GCC)

-ftree-sra
-ftree-copyrename
-ftree-fre
-ftree-ch
-funit-at-a-time
-fmerge-constants

‘-0’ also turns on ‘-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.

‘-0’ doesn’t turn on ‘-ftree-sra’ for the Ada compiler. This option must be
explicitly specified on the command line to be enabled for the Ada compiler.

Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify ‘-02’. As compared to ‘-0, this
option increases both compilation time and the performance of the generated
code.

‘-02’ turns on all optimization flags specified by ‘-0’. It also turns on the
following optimization flags:
-fthread-jumps
-fcrossjumping
-foptimize-sibling-calls
-fcse-follow-jumps -fcse-skip-blocks
-fgcse -fgecse-1m
-fexpensive-optimizations
-fstrength-reduce
-frerun-cse-after-loop -frerun-loop-opt
-fcaller-saves
-fpeephole2
-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fregmove
-fstrict-aliasing
-fdelete-null-pointer-checks
-freorder-blocks -freorder-functions
-falign-functions -falign-jumps
-falign-loops -falign-labels
-ftree-vrp
-ftree-pre

Please note the warning under ‘~fgcse’ about invoking ‘-~02’ on programs that
use computed gotos.

Optimize yet more. ‘=03’ turns on all optimizations specified by ‘-02’
and also turns on the ‘-finline-functions’, ‘-funswitch-loops’ and
‘~-fgcse-after-reload’ options.

Do not optimize. This is the default.

Optimize for size. ‘-0s’ enables all ‘-02’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.
‘-0s’ disables the following optimization flags:
-falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-and-partition
-fprefetch-loop-arrays -ftree-vect-loop-version

Chapter 3: GCC Command Options 67

If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. In the table
below, only one of the forms is listed—the one you typically will use. You can figure out
the other form by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-0’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

Disabled at levels ‘-0°, ‘-=02’, ‘-03’, ‘-0s’.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load. This option is
now a nop and will be removed in 4.2.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them.

-fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
section “Register Usage” in GNU Compiler Collection (GCC) Internals.

Enabled at levels ‘-0°, ‘-02’, ‘-03’, ‘-0s’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

68 Using the GNU Compiler Collection (GCC)

-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at level ‘-03’.

-finline-functions-called-once
Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.

Enabled if ‘“-funit-at-a-time’ is enabled.

-fearly-inlining
Inline functions marked by always_inline and functions whose body
seems smaller than the function call overhead early before doing
‘~fprofile-generate’ instrumentation and real inlining pass. Doing so makes
profiling significantly cheaper and usually inlining faster on programs having
large chains of nested wrapper functions.

Enabled by default.

-finline-limit=n

By default, GCC limits the size of functions that can be inlined. This flag allows
the control of this limit for functions that are explicitly marked as inline (i.e.,
marked with the inline keyword or defined within the class definition in c++).
n is the size of functions that can be inlined in number of pseudo instructions
(not counting parameter handling). The default value of n is 600. Increasing
this value can result in more inlined code at the cost of compilation time and
memory consumption. Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower programs). This option
is particularly useful for programs that use inlining heavily such as those based
on recursive templates with C++.

Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value’. The ‘-finline-limit=n’
option sets some of these parameters as follows:
max-inline-insns-single

is set to n/2.
max-inline-insns-auto

is set to n/2.
min-inline-insns

is set to 130 or n/4, whichever is smaller.

Chapter 3: GCC Command Options 69

max-inline-insns-rtl
is set to n.

See below for a documentation of the individual parameters controlling inlining.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect
functions using the extern inline extension in GNU C. In C++, emit any and
all inline functions into the object file.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the ‘~fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating point con-
stants) across compilation units.

This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.

Enabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies ‘~fmerge-constants’. In addition to ‘-fmerge-constants’
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating point types. Languages like C or C++ require
each non-automatic variable to have distinct location, so using this option will
result in non-conforming behavior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC, IA-
64 and S/390.

The default is ‘~fbranch-count-reg’, enabled when ‘-fstrength-reduce’ is

enabled.

70 Using the GNU Compiler Collection (GCC)

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

The default is ‘-ffunction-cse’

—-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on
variables going to the data section. E.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.

The default is ‘-fzero-initialized-in-bss’.

-fbounds-check
For front-ends that support it, generate additional code to check that indices
used to access arrays are within the declared range. This is currently only
supported by the Java and Fortran front-ends, where this option defaults to
true and false respectively.

-fmudflap -fmudflapth —fmudflapir

For front-ends that support it (C and C++), instrument all risky pointer/array
dereferencing operations, some standard library string/heap functions, and
some other associated constructs with range/validity tests. Modules so in-
strumented should be immune to buffer overflows, invalid heap use, and some
other classes of C/C++ programming errors. The instrumentation relies on a
separate runtime library (‘libmudflap’), which will be linked into a program
if ‘~-fmudflap’ is given at link time. Run-time behavior of the instrumented
program is controlled by the MUDFLAP_OPTIONS environment variable. See env
MUDFLAP_QOPTIONS=-help a.out for its options.

Use ‘-fmudflapth’ instead of ‘~fmudflap’ to compile and to link if your pro-
gram is multi-threaded. Use ‘-fmudflapir’, in addition to ‘-fmudflap’ or
‘~fmudflapth’, if instrumentation should ignore pointer reads. This produces
less instrumentation (and therefore faster execution) and still provides some
protection against outright memory corrupting writes, but allows erroneously
read data to propagate within a program.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of itera-
tion variables.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

—-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immedi-

Chapter 3: GCC Command Options 71

ately following it, depending on whether the condition is known to be true or
false.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

-fcse-skip-blocks

This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations has been
performed.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

-frerun-loop-opt

-fgcse

-fgcse—1m

-fgcse-sm

Run the loop optimizer twice.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better runtime performance if you disable the global common
subexpression elimination pass by adding ‘-fno-gcse’ to the command line.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

When ‘-fgcse-1m’ is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

When ‘-fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.
When used in conjunction with ‘~fgcse-1m’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

Not enabled at any optimization level.

72 Using the GNU Compiler Collection (GCC)

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Not enabled at any optimization level.

-fgcse-after-reload
When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass
is performed after reload. The purpose of this pass is to cleanup redundant
spilling.

-floop-optimize
Perform loop optimizations: move constant expressions out of loops, simplify
exit test conditions and optionally do strength-reduction as well.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

-floop-optimize2
Perform loop optimizations using the new loop optimizer. The optimizations
(loop unrolling, peeling and unswitching, loop invariant motion) are enabled by
separate flags.

-funsafe-loop-optimizations
If given, the loop optimizer will assume that loop indices do not overflow, and
that the loops with nontrivial exit condition are not infinite. This enables a
wider range of loop optimizations even if the loop optimizer itself cannot prove
that these assumptions are valid. Using ‘~Wunsafe-loop-optimizations’, the
compiler will warn you if it finds this kind of loop.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and save code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion?2.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels ‘-0’, ‘-02’, ‘~-03’, ‘-0s’.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks for null
pointers. The compiler assumes that dereferencing a null pointer would have
halted the program. If a pointer is checked after it has already been derefer-
enced, it cannot be null.

Chapter 3: GCC Command Options 73

In some environments, this assumption is not true, and programs can safely
dereference null pointers. Use ‘~fno-delete-null-pointer-checks’ to disable
this optimization for programs which depend on that behavior.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

—foptimize-register-move

-fregmove
Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions.

Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimiza-
tion.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

—-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fschedule-insns?2
Similar to ‘~-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

—-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by
default when scheduling before register allocation, i.e. with ‘-fschedule-insns’
or at ‘=02’ or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
‘~fschedule-insns’ or at ‘-02’ or higher.

74 Using the GNU Compiler Collection (GCC)

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~-fschedule-insns’ or at
‘-02’ or higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘-02’ or higher.

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue of
stalled insns into the ready list, during the second scheduling pass.

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue of
stalled insns. Has an effect only during the second scheduling pass, and only if
‘~fsched-stalled-insns’ is used and its value is not zero.

-fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling algo-
rithm. Superblock scheduling allows motion across basic block boundaries re-
sulting on faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
‘~fschedule-insns2’ or at ‘-~02’ or higher.

-fsched2-use-traces
Use ‘-fsched2-use-superblocks’ algorithm when scheduling after register al-
location and additionally perform code duplication in order to increase the size
of superblocks using tracer pass. See ‘-ftracer’ for details on trace formation.

This mode should produce faster but significantly longer programs. Also with-
out ‘-fbranch-probabilities’ the traces constructed may not match the re-
ality and hurt the performance. This only makes sense when scheduling after
register allocation, i.e. with ‘~fschedule-insns2’ or at ‘-02’ or higher.

-freschedule-modulo-scheduled-loops
The modulo scheduling comes before the traditional scheduling, if a loop was
modulo scheduled we may want to prevent the later scheduling passes from
changing its schedule, we use this option to control that.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

Chapter 3: GCC Command Options 75

Enabled at levels ‘~-02’, ‘~-03’, ‘-0s’.

-ftree-pre
Perform Partial Redundancy Elimination (PRE) on trees. This flag is enabled
by default at ‘-02’ and ‘-03’.

-ftree-fre
Perform Full Redundancy Elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on all
paths leading to the redundant computation. This analysis faster than PRE,
though it exposes fewer redundancies. This flag is enabled by default at ‘-0’
and higher.

-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at ‘-0’ and higher.

-ftree-store-copy-prop
Perform copy propagation of memory loads and stores. This pass eliminates
unnecessary copy operations in memory references (structures, global variables,
arrays, etc). This flag is enabled by default at ‘-02” and higher.

-ftree-salias
Perform structural alias analysis on trees. This flag is enabled by default at
‘-0’ and higher.

—-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at ‘-0’
and higher.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at ‘-0’ and
higher.

-ftree-store-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
operates on both local scalar variables and memory stores and loads (global
variables, structures, arrays, etc). This flag is enabled by default at ‘-02’ and
higher.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at ‘-0’ and higher.

-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at ‘-0’ and higher.

-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag is

76 Using the GNU Compiler Collection (GCC)

enabled by default at ‘-0’ and higher. It is not enabled for ‘-0s’, since it usually
increases code size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at ‘-0’ and
higher.

-ftree-loop-linear
Perform linear loop transformations on tree. This flag can improve cache per-
formance and allow further loop optimizations to take place.

-ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that
would be hard to handle at RTL level (function calls, operations that expand
to nontrivial sequences of insns). With ‘-funswitch-loops’ it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.

-ftree-loop-ivcanon
Create a canonical counter for number of iterations in the loop for that deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-fivopts Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees.

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at ‘-0’ and higher.

-ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler tem-
poraries to other variables at copy locations, usually resulting in variable names
which more closely resemble the original variables. This flag is enabled by de-
fault at ‘-0’ and higher.

-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at ‘-0’ and higher.

-ftree-lrs
Perform live range splitting during the SSA->normal phase. Distinct live ranges
of a variable are split into unique variables, allowing for better optimization
later. This is enabled by default at ‘-0’ and higher.

-ftree-vectorize
Perform loop vectorization on trees.

Chapter 3: GCC Command Options 7

-ftree-vect-loop-version
Perform loop versioning when doing loop vectorization on trees. When a loop
appears to be vectorizable except that data alignment or data dependence can-
not be determined at compile time then vectorized and non-vectorized versions
of the loop are generated along with runtime checks for alignment or depen-
dence to control which version is executed. This option is enabled by default
except at level ‘-0s’ where it is disabled.

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant prop-
agation pass, but instead of values, ranges of values are propagated. This allows
the optimizers to remove unnecessary range checks like array bound checks and
null pointer checks. This is enabled by default at ‘-02’ and higher. Null pointer
check elimination is only done if ‘~-fdelete-null-pointer-checks’ is enabled.

-ftracer Perform tail duplication to enlarge superblock size. This transformation sim-
plifies the control flow of the function allowing other optimizations to do better
job.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘-funroll-loops’ implies both ‘~fstrength-reduce’
and ‘-frerun-cse-after-loop’. This option makes code larger, and may or
may not make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘~funroll-loops’,

-fsplit-ivs-in-unroller
Enables expressing of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.

Combination of ‘-fweb’ and CSE is often sufficient to obtain the same effect.
However in cases the loop body is more complicated than a single basic block,
this is not reliable. It also does not work at all on some of the architectures
due to restrictions in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler will create multiple copies of some local variables
when unrolling a loop which can result in superior code.

—-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

These options may generate better or worse code; results are highly dependent
on the structure of loops within the source code.

78 Using the GNU Compiler Collection (GCC)

-fno-peephole

-fno-peephole2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘~fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.

‘~fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-02’
-03’, “-0s’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.

GCC will use heuristics to guess branch probabilities if they are not
provided by profiling feedback (‘-fprofile-arcs’). These heuristics
are based on the control flow graph. If some branch probabilities are
specified by ‘__builtin_expect’, then the heuristics will be used to guess
branch probabilities for the rest of the control flow graph, taking the
‘__builtin_expect’ info into account. The interactions between the heuristics
and ‘__builtin_expect’ can be complex, and in some cases, it may be useful
to disable the heuristics so that the effects of ‘__builtin_expect’ are easier
to understand.

The default is ‘~fguess-branch-probability’ at levels ‘-0, ‘*-02’, ‘-03’, ‘-0s’.

-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels ‘--02’, ‘-03’.

—-freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and .o files, to improve paging and cache
locality performance.

This optimization is automatically turned off in the presence of exception han-
dling, for linkonce sections, for functions with a user-defined section attribute
and on any architecture that does not support named sections.

-freorder-functions
Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.

Also profile feedback must be available in to make this option effective. See
‘~fprofile-arcs’ for details.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the
language being compiled. For C (and C++), this activates optimizations based

Chapter 3: GCC Command Options 79

on the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.

Pay special attention to code like this:

union a_union {
int i;
double d;

};

int £ {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with
‘-fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above will work as expected.
However, this code might not:

int £ {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;
}
Every language that wishes to perform language-specific alias analysis should
define a function that computes, given an tree node, an alias set for the node.
Nodes in different alias sets are not allowed to alias. For an example, see the C

front-end function c_get_alias_set.
Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-falign-functions

-falign-functions=n
Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the
next 32-byte boundary, but ‘-falign-functions=24’ would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.

‘-fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean
that functions will not be aligned.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, ‘-03’.

—-falign-labels

-falign-labels=n
Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘~falign-functions’. This option can easily make code slower, because

80

Using the GNU Compiler Collection (GCC)

it must insert dummy operations for when the branch target is reached in the
usual flow of the code.

‘~fno-align-labels’ and ‘-falign-labels=1’" are equivalent and mean that
labels will not be aligned.

If ‘-falign-loops’ or ‘~falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment.

Enabled at levels ‘-02’, ‘~-03’.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.
‘~fno-align-loops’ and ‘-falign-loops=1" are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, ‘~-03’.

-falign-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘~falign-functions’. In this case, no dummy operations need be executed.
‘-fno-align-jumps’ and ‘-falign-jumps=1’" are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, ‘~-03’.

—-funit-at-a-time

Parse the whole compilation unit before starting to produce code. This allows
some extra optimizations to take place but consumes more memory (in general).
There are some compatibility issues with unit-at-at-time mode:

e enabling unit-at-a-time mode may change the order in which functions,
variables, and top-level asm statements are emitted, and will likely break
code relying on some particular ordering. The majority of such top-level
asm statements, though, can be replaced by section attributes.

e unit-at-a-time mode removes unreferenced static variables and functions.
This may result in undefined references when an asm statement refers di-
rectly to variables or functions that are otherwise unused. In that case
either the variable/function shall be listed as an operand of the asm state-
ment operand or, in the case of top-level asm statements the attribute used
shall be used on the declaration.

e Static functions now can use non-standard passing conventions that may
break asm statements calling functions directly. Again, attribute used will
prevent this behavior.

Chapter 3: GCC Command Options 81

As a temporary workaround, ‘-fno-unit-at-a-time’ can be used, but this
scheme may not be supported by future releases of GCC.

Enabled at levels ‘-0’, ‘-02’, ‘~-03’, ‘-0s’.

-fweb Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables will no longer stay in a
“home register”.

Enabled by default with ‘~funroll-loops’.

-fwhole-program

Assume that the current compilation unit represents whole program being com-
piled. All public functions and variables with the exception of main and those
merged by attribute externally_visible become static functions and in a af-
fect gets more aggressively optimized by interprocedural optimizers. While this
option is equivalent to proper use of static keyword for programs consisting
of single file, in combination with option ‘--combine’ this flag can be used to
compile most of smaller scale C programs since the functions and variables be-
come local for the whole combined compilation unit, not for the single source
file itself.

-fno-cprop-registers
After register allocation and post-register allocation instruction splitting, we
perform a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

Disabled at levels ‘-0°, ‘-02’, ‘-03’, ‘-0s’.

—-fprofile-generate
Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use ‘~fprofile-generate’ both when compiling and when linking your
program.

The following options are enabled: -fprofile-arcs, -fprofile-values, -
fvpt.

-fprofile-use
Enable profile feedback directed optimizations, and optimizations generally
profitable only with profile feedback available.

The following options are enabled: -fbranch-probabilities, -fvpt,
-funroll-loops, -fpeel-loops, —ftracer, -fno-loop-optimize.

The following options control compiler behavior regarding floating point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

82

Using the GNU Compiler Collection (GCC)

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘-ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

—-ffast-math

Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’,
‘~fno-trapping-math’, ‘~ffinite-math-only’, ‘~fno-rounding-math’,
‘~fno-signaling-nans’ and ‘fcx-limited-range’.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

-fno-math-errno

Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘-fmath-errno’.

On Darwin systems, the math library never sets errno. There is therefore
no reason for the compiler to consider the possibility that it might, and
‘~fno-math-errno’ is the default.

-funsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~-fno-unsafe-math-optimizations’.

-ffinite-math-only

Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications.

The default is ‘~fno-finite-math-only’.

Chapter 3: GCC Command Options 83

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inex-
act result and invalid operation. This option implies ‘~fno-signaling-nans’.
Setting this option may allow faster code if one relies on “non-stop” IEEE
arithmetic, for example.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~ftrapping-math’.

-frounding-math

Disable transformations and optimizations that assume default floating point
rounding behavior. This is round-to-zero for all floating point to integer con-
versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating point expressions at compile-time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.

The default is ‘~fno-rounding-math’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command line option will be used to specify the default state for FENV_ACCESS.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘~ftrapping-math’.
This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘-fno-signaling-nans’.

This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant
Treat floating point constant as single precision constant instead of implicitly
converting it to double precision constant.

-fcx-limited-range

-fno-cx-limited-range
When enabled, this option states that a range reduction step is not needed
when performing complex division. The default is ‘~fno-cx-limited-range’,
but is enabled by ‘~ffast-math’.

This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.

84

Using the GNU Compiler Collection (GCC)

The following options control optimizations that may improve performance, but are not
enabled by any ‘-0’ options. This section includes experimental options that may produce
broken code.

-fbranch-probabilities

After running a program compiled with ‘~fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gccl, page 53), you can compile it a sec-
ond time using ‘~fbranch-probabilities’, to improve optimizations based
on the number of times each branch was taken. When the program com-
piled with ‘-fprofile-arcs’ exits it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file The information in this data file is very
dependent on the structure of the generated code, so you must use the same
source code and the same optimization options for both compilations.

With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to
exactly determine which path is taken more often.

—fprofile-values

-fvpt

If combined with ‘-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.

With ‘~fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions and adds ‘REG_VALUE_PROFILE’ notes to instructions
for their later usage in optimizations.

Enabled with ‘~fprofile-generate’ and ‘~fprofile-use’.

If combined with ‘~fprofile-arcs’, it instructs the compiler to add a code to
gather information about values of expressions.

With ‘-fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operation using the knowledge about the value of the
denominator.

-frename-registers

-ftracer

Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization will most benefit processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables will no
longer stay in a “home register”.

Enabled by default with ‘~funroll-loops’.

Perform tail duplication to enlarge superblock size. This transformation sim-
plifies the control flow of the function allowing other optimizations to do better
job.

Enabled with ‘-fprofile-use’.

-funroll-loops

Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’,

Chapter 3: GCC Command Options 85

‘~fweb’ and ‘-~frename-registers’. It also turns on complete loop peeling (i.e.
complete removal of loops with small constant number of iterations). This
option makes code larger, and may or may not make it run faster.

Enabled with ‘~fprofile-use’.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘~funroll-loops’.

-fpeel-loops
Peels the loops for that there is enough information that they do not roll much
(from profile feedback). It also turns on complete loop peeling (i.e. complete
removal of loops with small constant number of iterations).

Enabled with ‘~fprofile-use’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the new loop optimizer. Enabled at
level ‘-01’

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

—-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

Disabled at level ‘-0s’.

-ffunction-sections

-fdata-sections
Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format and SPARC processors running Solaris 2 have linkers with
such optimizations. AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging
if you specify both this option and ‘-g’.

-fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading. The use of target registers can typically be exposed only during
reload, thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

86 Using the GNU Compiler Collection (GCC)

-fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.

-fbtr-bb-exclusive
When performing branch target register load optimization, don’t reuse branch
target registers in within any basic block.

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.
This includes functions that call alloca, and functions with buffers larger than
8 bytes. The guards are initialized when a function is entered and then checked
when the function exits. If a guard check fails, an error message is printed and
the program exits.

-fstack-protector-all
Like ‘~fstack-protector’ except that all functions are protected.

—--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC will not inline functions that contain more
that a certain number of instructions. You can control some of these constants
on the command-line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In each case, the value is an integer. The allowable choices for name are given
in the following table:

salias-max-implicit-fields
The maximum number of fields in a variable without direct struc-
ture accesses for which structure aliasing will consider trying to
track each field. The default is 5

sra-max-structure-size
The maximum structure size, in bytes, at which the scalar replace-
ment of aggregates (SRA) optimization will perform block copies.
The default value, 0, implies that GCC will select the most appro-
priate size itself.

sra-field-structure-ratio
The threshold ratio (as a percentage) between instantiated fields
and the complete structure size. We say that if the ratio of the
number of bytes in instantiated fields to the number of bytes in the
complete structure exceeds this parameter, then block copies are
not used. The default is 75.

max-crossjump-edges
The maximum number of incoming edges to consider for crossjump-
ing. The algorithm used by ‘-fcrossjumping’ is O(N?) in the

Chapter 3: GCC Command Options 87

number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable size.

min-crossjump-insns
The minimum number of instructions which must be matched at
the end of two blocks before crossjumping will be performed on
them. This value is ignored in the case where all instructions in
the block being crossjumped from are matched. The default value
is 5.

max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N?) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored. The default value is 8.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions is searched, the time savings from filling the delay
slot will be minimal so stop searching. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable run time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This param-
eter should be removed when the delay slot code is rewritten to
maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run. The default is 1.

max-pending-list-length
The maximum number of pending dependencies scheduling will al-
low before flushing the current state and starting over. Large func-

88

Using the GNU Compiler Collection (GCC)

tions with few branches or calls can create excessively large lists
which needlessly consume memory and resources.

max-inline-insns-single
Several parameters control the tree inliner used in gcc. This num-
ber sets the maximum number of instructions (counted in GCC'’s
internal representation) in a single function that the tree inliner
will consider for inlining. This only affects functions declared in-
line and methods implemented in a class declaration (C++). The
default value is 450.

max-inline-insns-auto
When you use ‘-finline-functions’ (included in ‘-03’), a lot of
functions that would otherwise not be considered for inlining by
the compiler will be investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied. The default value is 90.

large-function-insns

The limit specifying really large functions. For functions
larger than this limit after inlining inlining is constrained by
‘-—param large-function-growth’. This parameter is useful

primarily to avoid extreme compilation time caused by non-linear
algorithms used by the backend. This parameter is ignored when
‘~funit-at-a-time’ is not used. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in per-
cents. This parameter is ignored when ‘~funit-at-a-time’ is not
used. The default value is 100 which limits large function growth
to 2.0 times the original size.

large-unit-insns

The limit specifying large translation unit. Growth caused by
inlining of units larger than this limit is limited by ‘--param
inline-unit-growth’. For small units this might be too tight
(consider unit consisting of function A that is inline and B that
just calls A three time. If B is small relative to A, the growth
of unit is 300\% and yet such inlining is very sane. For very
large units consisting of small inlininable functions however
the overall unit growth limit is needed to avoid exponential
explosion of code size. Thus for smaller units, the size is increased
to ‘--param large-unit-insns’ before aplying ‘--param
inline-unit-growth’. The default is 10000

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by
inlining. This parameter is ignored when ‘-funit-at-a-time’ is
not used. The default value is 50 which limits unit growth to 1.5
times the original size.

Chapter 3: GCC Command Options 89

max-inline-insns-recursive

max-inline-insns-recursive-auto
Specifies maximum number of instructions out-of-line copy of self
recursive inline function can grow into by performing recursive in-
lining.
For functions declared inline ‘~-param max-inline-insns-recursive’]
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘--param max-inline-insns-recursive-auto’]]
is used. The default value is 450.

max-inline-recursive-depth
max-inline-recursive-depth-auto
Specifies maximum recursion depth used by the recursive inlining.

For functions declared inline ‘~-param max-inline-recursive-depth’}]
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘--param max-inline-recursive-depth-auto’l]
is used. The default value is 450.

min-inline-recursive-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion
depth by increasing the prologue size or complexity of function
body to other optimizers.

When profile feedback is available (see ‘~fprofile-generate’) the
actual recursion depth can be guessed from probability that func-
tion will recurse via given call expression. This parameter lim-
its inlining only to call expression whose probability exceeds given
threshold (in percents). The default value is 10.

inline-call-cost

Specify cost of call instruction relative to simple arithmetics oper-
ations (having cost of 1). Increasing this cost disqualifies inlining
of non-leaf functions and at the same time increases size of leaf
function that is believed to reduce function size by being inlined.
In effect it increases amount of inlining for code having large ab-
straction penalty (many functions that just pass the arguments to
other functions) and decrease inlining for code with low abstraction
penalty. The default value is 16.

max-unrolled-insns
The maximum number of instructions that a loop should have if
that loop is unrolled, and if the loop is unrolled, it determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop should have if that loop is unrolled, and

90

Using the GNU Compiler Collection (GCC)

if the loop is unrolled, it determines how many times the loop code
is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop should have if
that loop is peeled, and if the loop is peeled, it determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

iv-consider-all-candidates-bound
Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable op-
timizations. Only the most relevant candidates are considered if
there are more candidates, to avoid quadratic time complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

iv-always—-prune-cand-set-bound
If number of candidates in the set is smaller than this value, we
always try to remove unnecessary ivs from the set during its opti-
mization when a new iv is added to the set.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

vect-max-version—-checks
The maximum number of runtime checks that can be performed
when doing loop versioning in the vectorizer. See option ftree-vect-
loop-version for more information.

Chapter 3: GCC Command Options 91

max-iterations-to-track
The maximum number of iterations of a loop the brute force algo-
rithm for analysis of # of iterations of the loop tries to evaluate.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in
program given basic block needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block
in function given basic block needs to have to be considered hot

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where function contain single loop with known
bound and other loop with unknown. We predict the known num-
ber of iterations correctly, while the unknown number of iterations
average to roughly 10. This means that the loop without bounds
would appear artificially cold relative to the other one.

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.

The ‘tracer-dynamic-coverage-feedback’ is used only when pro-
file feedback is available. The real profiles (as opposed to statically
estimated ones) are much less balanced allowing the threshold to
be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is rather hokey argument, as most of the duplicates will
be eliminated later in cross jumping, so it may be set to much
higher values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

tracer-min-branch-ratio

tracer-min-branch-ratio-feedback
Stop forward growth if the best edge do have probability lower than
this threshold.

Similarly to ‘tracer-dynamic-coverage’ two values are present,
one for compilation for profile feedback and one for compilation
without. The value for compilation with profile feedback needs to
be more conservative (higher) in order to make tracer effective.

max-cse-path-length

Maximum number of basic blocks on path that cse considers. The
default is 10.

92

Using the GNU Compiler Collection (GCC)

max-cse-insns
The maximum instructions CSE process before flushing. The de-
fault is 1000.

global-var-threshold
Counts the number of function calls (n) and the number of call-
clobbered variables (v). If nxv is larger than this limit, a single
artificial variable will be created to represent all the call-clobbered
variables at function call sites. This artificial variable will then be
made to alias every call-clobbered variable. (done as int * size_t
on the host machine; beware overflow).

max-aliased-vops
Maximum number of virtual operands allowed to represent aliases
before triggering the alias grouping heuristic. Alias grouping re-
duces compile times and memory consumption needed for aliasing
at the expense of precision loss in alias information.

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of "RAM" is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ‘ggc-min-heapsize’ to zero causes a full collection to occur
at every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.
Again, tuning this may improve compilation speed, and has no
effect on code generation.

The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
which tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.

Chapter 3: GCC Command Options 93

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compile time increase with probably slightly
better performance. The default value is 100.

max-cselib-memory-location
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,
making the compile time increase with probably slightly better per-
formance. The default value is 500.

max-flow-memory-location
Similar as ‘max-cselib-memory-location’ but for dataflow live-
ness. The default value is 100.

reorder-blocks-duplicate

reorder-blocks-duplicate-feedback
Used by basic block reordering pass to decide whether to use un-
conditional branch or duplicate the code on its destination. Code
is duplicated when its estimated size is smaller than this value mul-
tiplied by the estimated size of unconditional jump in the hot spots
of the program.

The ‘reorder-block-duplicate-feedback’ is used only when pro-
file feedback is available and may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots
is more accurate.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.

min-sched-prob
The minimum probability of reaching a source block for interblock
speculative scheduling. The default value is 40.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register. The default is 10000.

integer-share-limit
Small integer constants can use a shared data structure, reducing
the compiler’s memory usage and increasing its speed. This sets the
maximum value of a shared integer constant’s. The default value

is 256.

94 Using the GNU Compiler Collection (GCC)

min-virtual-mappings
Specifies the minimum number of virtual mappings in the incre-
mental SSA updater that should be registered to trigger the virtual
mappings heuristic defined by virtual-mappings-ratio. The default
value is 100.

virtual-mappings-ratio
If the number of virtual mappings is virtual-mappings-ratio bigger
than the number of virtual symbols to be updated, then the incre-
mental SSA updater switches to a full update for those symbols.
The default ratio is 3.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that will receive stack
smashing protection when ‘-fstack-protection’ is used.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

max-fields-for-field-sensitive
Maximum number of fields in a structure we will treat in a field
sensitive manner during pointer analysis.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

¢

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options
make sense only together with ‘~E’ because they cause the preprocessor output to be un-
suitable for actual compilation.

You can use ‘-Wp, option’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

—-Xpreprocessor option
Pass option as an option to the preprocessor. You can use this to supply system-
specific preprocessor options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘~Xpreprocessor’ twice, once for the option and once for the argument.

-D name Predefine name as a macro, with definition 1.

-D name=definition
The contents of definition are tokenized and processed as if they appeared dur-
ing translation phase three in a ‘#define’ directive. In particular, the definition
will be truncated by embedded newline characters.

Chapter 3: GCC Command Options 95

-U name

—undef

-1 dir

-o file

-Wall

-Wcomment
-Wcomments

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name (args...)=definition’’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All ‘-imacros file’ and ‘-include file’ options are processed after all
‘-D’ and ‘-U’ options.

Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-1’ are searched before the standard system include di-
rectories. If the directory dir is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and the
special treatment of system headers are not defeated .

Write output to file. This is the same as specifying file as the second non-option
argument, to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-0’ to specify the output file.

Turns on all optional warnings which are desirable for normal code. At present
this is ‘-Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of the
preprocessor’s warnings are on by default and have no options to control them.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs

Most trigraphs in comments cannot affect the meaning of the program. How-
ever, a trigraph that would form an escaped newline (‘??/’ at the end of a line)
can, by changing where the comment begins or ends. Therefore, only trigraphs
that would form escaped newlines produce warnings inside a comment.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion
without warnings, but get the other ‘-Wall’ warnings, use ‘~trigraphs -Wall
-Wno-trigraphs’.

-Wtraditional

Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.

96

-Wimport
-Wundef

Using the GNU Compiler Collection (GCC)

Warn the first time ‘#import’ is used.

Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros

Warn about macros defined in the main file that are unused. A macro is used if
it is expanded or tested for existence at least once. The preprocessor will also
warn if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks,
then CPP will report it as unused. To avoid the warning in such a case, you
might improve the scope of the macro’s definition by, for example, moving it
into the first skipped block. Alternatively, you could provide a dummy use with
something like:

#if defined the_macro_causing_the_warning
#endif

-Wendif-labels

-Werror

Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually
happens in code of the form

#if FOO

#éise FOO

#endif FOO
The second and third FOO should be in comments, but often are not in older

programs. This warning is on by default.

Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers

-W

-pedantic

-pedantic-

-M

Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

Suppress all warnings, including those which GNU CPP issues by default.

Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

errors

Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and

Chapter 3: GCC Command Options 97

-MM

-MF file

-MG

-MP

-MT target

the names of all the included files, including those coming from ‘-include’ or
‘-~imacros’ command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the basename of the source file with any suffix replaced with object file suffix.
If there are many included files then the rule is split into several lines using
‘\’-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘-dM’.
To avoid mixing such debug output with the dependency rules you should ex-
plicitly specify the dependency output file with ‘-MF’, or use an environment
variable like DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables],
page 196). Debug output will still be sent to the regular output stream as
normal.

Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit

—wl.

Like ‘-M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘~-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

When used with ‘=M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.

When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

In conjunction with an option such as ‘-M’ requesting dependency generation,
‘-MG’ assumes missing header files are generated files and adds them to the
dependency list without raising an error. The dependency filename is taken
directly from the #include directive without prepending any path. ‘-MG’ also
suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.
This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules

work around errors make gives if you remove header files without updating the
‘Makefile’ to match.

This is typical output:
test.o: test.c test.h

test.h:

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, including any path, deletes any file

98

-MQ target

-MD

-MMD

-fpch-deps

Using the GNU Compiler Collection (GCC)

suffix such as ‘.c’, and appends the platform’s usual object suffix. The result
is the target.

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.

For example, ‘-MT ’$(objpfx)foo.0’’ might give
$(objpfx)foo.0: foo.c

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ >$(objpfx)foo.0’’ gives
$$(objpfx)foo.o: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

‘-MD’ is equivalent to ‘-M -MF file’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-0’ option is given. If it is, the driver uses
its argument but with a suffix of ‘.d’, otherwise it take the basename of the
input file and applies a ‘.d’ suffix.

If ‘-MD’ is used in conjunction with ‘-E’, any ‘-o’ switch is understood to specify
the dependency output file (but see [-MF], page 97), but if used without ‘-E’,
each ‘-0’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

Like ‘-MD’ except mention only user header files, not system header files.

When using precompiled headers (see Section 3.20 [Precompiled Headers],
page 199), this flag will cause the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified only the
precompiled header would be listed and not the files that were used to create
it because those files are not consulted when a precompiled header is used.

-fpch-preprocess

This option allows use of a precompiled header (see Section 3.20 [Precompiled
Headers], page 199) together with ‘~E’. It inserts a special #pragma, #pragma
GCC pch_preprocess "<filename>" in the output to mark the place where the
precompiled header was found, and its filename. When ‘~fpreprocessed’ is in
use, GCC recognizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only
really suitable as input to GCC. It is switched on by ‘-save-temps’.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may
be absolute or it may be relative to GCC’s current directory.

Chapter 3: GCC Command Options 99

-XC

-X c++

-x objective-c
-X assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, “.m’, or ‘.S’. Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic

mode.

Note: Previous versions of c¢pp accepted a ‘~lang’ option which selected both
the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘-1’ option.

-std=standard

—ansi

Specify the standard to which the code should conform. Currently CPP knows
about C and C++ standards; others may be added in the future.

standard may be one of:
1is09899:1990

c89 The ISO C standard from 1990. ‘c89’ is the customary shorthand
for this version of the standard.

The ‘-ansi’ option is equivalent to ‘-std=c89’.

1s09899:199409
The 1990 C standard, as amended in 1994.

1509899:1999

c99

is09899:199x

c9x The revised ISO C standard, published in December 1999. Before
publication, this was known as C9X.

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99

gnu9x The 1999 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

gnu++98 The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

Split the include path. Any directories specified with ‘-1’ options before ‘-I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘-1’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.

In addition, ‘-~I-’ inhibits the use of the directory of the current file direc-
tory as the first search directory for #include "file". This option has been
deprecated.

100 Using the GNU Compiler Collection (GCC)

-nostdinc
Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I” options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++
Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

—include file
Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-~include’ options are given, the files are included in the order they
appear on the command line.

-imacros file
Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by
‘~include’.

-idirafter dir
Search dir for header files, but do it after all directories specified with ‘-I” and
the standard system directories have been exhausted. dir is treated as a system
include directory.

-iprefix prefix
Specify prefix as the prefix for subsequent ‘~iwithprefix’ options. If the prefix
represents a directory, you should include the final ¢/’.

-iwithprefix dir

-iwithprefixbefore dir
Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-iwithprefixbefore’ puts it
in the same place ‘-1’ would; ‘-iwithprefix’ puts it where ‘~idirafter’ would.

—-isysroot dir
This option is like the ‘~-sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.

—-isystem dir
Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories.

Chapter 3: GCC Command Options 101

-iquote dir
Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-I’ and before
the standard system directories.

-fdollars-in-identifiers
Accept ‘$’ in identifiers.

-fextended-identifiers
Accept universal character names in identifiers. This option is experimental; in
a future version of GCC, it will be enabled by default for C99 and C++.

-fpreprocessed

Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

‘~fpreprocessed’ is implicit if the input file has one of the extensions ‘.i’,

“.ii” or ‘.mi’. These are the extensions that GCC uses for preprocessed files
created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character con-
stants. The default is UTF-32 or UTF-16, whichever corresponds to the width
of wchar_t. As with ‘~-fexec-charset’, charset can be any encoding supported
by the system’s iconv library routine; however, you will have problems with
encodings that do not fit exactly in wchar_t.

-finput-charset=charset
Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command line option. Currently
the command line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

-fworking-directory
Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.

102

Using the GNU Compiler Collection (GCC)

When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it’s present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

-fno-show-column

Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-A predicate=answer

Make an assertion with the predicate predicate and answer answer. This form is
preferred to the older form ‘~A predicate (answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer

—-dCHARS

Cancel an assertion with the predicate predicate and answer answer.

CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler
proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

‘™ Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.
‘D’ Like ‘M’ except in two respects: it does mot include the predefined

macros, and it outputs both the ‘#define’ directives and the result
of preprocessing. Both kinds of output go to the standard output

file.

‘N’ Like ‘D’, but emit only the macro names, not their expansions.

‘T Output ‘#include’ directives in addition to the result of prepro-
cessing.

Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

Chapter 3: GCC Command Options 103

-CC

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#’.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘~CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.

The ‘-CC’ option is generally used to support lint comments.

-traditional-cpp

-trigraphs

-remap

--help

Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO
C preprocessors.

Process trigraph sequences. These are three-character sequences, all starting
with ‘7?7’ that are defined by ISO C to stand for single characters. For example,
“?7/’ stands for ‘\’, so ‘> ??7/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.

The nine trigraphs and their replacements are
Trigraph: ?7(?7) ?7< ?T> ?7= 7?7/ 7?77 7?71 77—
Replacement: [] { } # \ - | -

Enable special code to work around file systems which only permit very short
file names, such as MS-DOS.

--target-help

-version
—--version

Print text describing all the command line options instead of preprocessing
anything.

Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with ‘. ..x’ and a valid one with *...!" .

Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.

104 Using the GNU Compiler Collection (GCC)

3.12 Passing Options to the Assembler
You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option
Pass option as an option to the assembler. You can use this to supply system-
specific assembler options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘~Xassembler’ twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options]|, page 17.

-llibrary

-1 library
Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.o -1z bar.o’ searches library ‘z’ after file ‘foo.0o’ but before
‘bar.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-1’ option and specifying a file

Chapter 3: GCC Command Options 105

-lobjc

9y

name is that ‘-1
directories.

surrounds library with ‘1ib’ and ‘.a’ and searches several

You need this special case of the ‘-1’ option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs

-nostdlib

-pie

-rdynamic

-static

Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used normally,
unless ‘-nostartfiles’ is used. The compiler may generate calls to memcmp,
memset, memcpy and memmove. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other mechanism
when this option is specified.

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker. The
compiler may generate calls to memcmp, memset, memcpy and memmove. These
entries are usually resolved by entries in libc. These entry points should be
supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’; a library of internal subroutines that GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘-1gcc’ as
well. This ensures that you have no unresolved references to internal GCC
library subroutines. (For example, ‘__main’, used to ensure C++ constructors
will be called; see section “collect2” in GNU Compiler Collection (GCC) In-
ternals.)

Produce a position independent executable on targets which support it. For
predictable results, you must also specify the same set of options that were
used to generate code (‘-fpie’, ‘~fPIE’, or model suboptions) when you specify
this option.

Pass the flag ‘~export-dynamic’ to the ELF linker, on targets that support
it. This instructs the linker to add all symbols, not only used ones, to the
dynamic symbol table. This option is needed for some uses of dlopen or to
allow obtaining backtraces from within a program.

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

106

-shared

Using the GNU Compiler Collection (GCC)

Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options that were used to generate code
(‘-fpic’, ‘-fPIC’, or model suboptions) when you specify this option.*

-shared-libgcc
-static-libgcc

-symbolic

On systems that provide ‘libgcc’ as a shared library, these options force the
use of either the shared or static version respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.

There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘libgcc’.

Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find
that they will not always be linked with the shared ‘libgcc’. If GCC finds, at
its configuration time, that you have a non-GNU linker or a GNU linker that
does not support option ‘-—eh-frame-hdr’, it will link the shared version of
‘libgcc’ into shared libraries by default. Otherwise, it will take advantage of
the linker and optimize away the linking with the shared version of ‘libgcc’,
linking with the static version of libgcec by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation costs at
library load time.

However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘libgcc’.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-X1linker
-z -Xlinker defs’). Only a few systems support this option.

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

Chapter 3: GCC Command Options 107

3

pass ‘-assert definitions’, you must write ‘-Xlinker -assert -Xlinker
definitions’. It does not work to write ‘-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what
the linker expects.

-W1l,option
Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

-u symbol
Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the
compiler:

-Idir Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘~isystem’ for that). If you
use more than one ‘-I’ option, the directories are scanned in left-to-right order;
the standard system directories come after.

If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘-I’, the ‘-I’ option will be ignored. The directory will
still be searched but as a system directory at its normal position in the system
include chain. This is to ensure that GCC’s procedure to fix buggy system
headers and the ordering for the include_next directive are not inadvertently
changed. If you really need to change the search order for system directories,
use the ‘-nostdinc’ and/or ‘~isystem’ options.

-iquotedir
Add the directory dir to the head of the list of directories to be searched for
header files only for the case of ‘#include "file"’; they are not searched for
‘#include <file>’, otherwise just like ‘-I’.

-Ldir Add directory dir to the list of directories to be searched for ‘-1’.

-Bprefix This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘ccl’,
‘as’ and ‘1d’. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options|, page 115).
For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if
any. If that name is not found, or if ‘-B’ was not specified, the driver tries two
standard prefixes, which are ‘/usr/1ib/gcc/’ and ‘/usr/local/lib/gcc/’. If
neither of those results in a file name that is found, the unmodified program

108

Using the GNU Compiler Collection (GCC)

name is searched for using the directories specified in your PATH environment
variable.

The compiler will check to see if the path provided by the ‘-B’ refers to a
directory, and if necessary it will add a directory separator character at the end
of the path.

‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into ‘-isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The run-time support file ‘libgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those
means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 196.

As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it will be replaced by ‘[dir/]include’.
This is to help with boot-strapping the compiler.

-specs=file

Process file after the compiler reads in the standard ‘specs’ file, in order
to override the defaults that the ‘gcc’ driver program uses when determin-
ing what switches to pass to ‘ccl’, ‘ccilplus’, ‘as’, ‘1d’, etc. More than one
‘-specs=file’ can be specified on the command line, and they are processed
in order, from left to right.

--sysroot=dir

-I-

Use dir as the logical root directory for headers and libraries. For example, if
the compiler would normally search for headers in ‘/usr/include’ and libraries
in ‘/usr/1ib’, it will instead search ‘dir/usr/include’ and ‘dir/usr/1lib’.

If you use both this option and the ‘~isysroot’ option, then the ‘--sysroot’
option will apply to libraries, but the ‘~isysroot’ option will apply to header
files.

The GNU linker (beginning with version 2.16) has the necessary support for
this option. If your linker does not support this option, the header file aspect
of ‘~-sysroot’ will still work, but the library aspect will not.

4 4

This option has been deprecated. Please use ‘~iquote’ instead for ‘-I’ direc-
tories before the ‘-I-" and remove the ‘-I-’. Any directories you specify with
‘-1’ options before the ‘~I-’ option are searched only for the case of ‘#include
"file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘=1’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ direc-
tories are used this way.)

Chapter 3: GCC Command Options 109

In addition, the ‘-I-’ option inhibits the use of the current directory (where
the current input file came from) as the first search directory for ‘#include
"file"’. There is no way to override this effect of ‘-I-". With ‘-I.’ you
can specify searching the directory which was current when the compiler was
invoked. That is not exactly the same as what the preprocessor does by default,
but it is often satisfactory.

‘~I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

3.15 Specifying subprocesses and the switches to pass to
them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do
the work of compiling, assembling and linking. GCC interprets its command-line parameters
and uses these to deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled by spec strings. In
most cases there is one spec string for each program that GCC can invoke, but a few
programs have multiple spec strings to control their behavior. The spec strings built into
GCC can be overridden by using the ‘~specs=" command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line and it can be one of the following;:

%command Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>

Search for file and insert its text at the current point in the specs
file.

hinclude_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

%rename old_name new_name
Rename the spec string old_name to new_name.

* [spec_name] :

This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered
to be the text for the spec string. If this results in an empty string then the
spec will be deleted. (Or, if the spec did not exist, then nothing will happened.)
Otherwise, if the spec does not currently exist a new spec will be created. If the
spec does exist then its contents will be overridden by the text of this directive,
unless the first character of that text is the ‘+’ character, in which case the text
will be appended to the spec.

[suffix]:
Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the

110

Using the GNU Compiler Collection (GCC)

indicated suffix. When the compiler encounters an input file with the named
suffix, it will processes the spec string in order to work out how to compile that
file. For example:

A

z-compile -input %i
This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘~input’ and with the result of performing the ‘%i’ substitution. (See below.)

As an alternative to providing a spec string, the text that follows a suffix di-
rective can be one of the following:

Q@language
This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:
ZZ:
Qc++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:

name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will
add an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this

list.

asm
asm_fi
cpp
ccl
cclplu
endfil
link
lib
libgcc
linker
predef

Options to pass to the assembler

nal Options to pass to the assembler post-processor
Options to pass to the C preprocessor
Options to pass to the C compiler

s Options to pass to the C++ compiler

e Object files to include at the end of the link
Options to pass to the linker
Libraries to include on the command line to the linker
Decides which GCC support library to pass to the linker
Sets the name of the linker

ines Defines to be passed to the C preprocessor

signed_char Defines to pass to CPP to say whether char is signed

startf

by default
ile Object files to include at the start of the limnk

Here is a small example of a spec file:

Yirename 1lib old_1ib
*1ib:
--start-group -lgcc -lc -levall --end-group %(old_1lib)

This example renames the spec called ‘1ib’ to ‘01d_1ib’ and then overrides the previous
definition of ‘1ib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.

Chapter 3: GCC Command Options 111

Spec strings are a list of command-line options to be passed to their corresponding pro-
gram. In addition, the spec strings can contain ‘);’-prefixed sequences to substitute variable
text or to conditionally insert text into the command line. Using these constructs it is
possible to generate quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

yAA
%hi
%b
%B

%d

hgsuffix

Yusuffix

%Usuffix

hjsuffix

%|suffix
Ymsuffix

Substitute one ‘%’ into the program name or argument.
Substitute the name of the input file being processed.

Substitute the basename of the input file being processed. This is the substring
up to (and not including) the last period and not including the directory.

This is the same as ‘%b’, but include the file suffix (text after the last period).

Marks the argument containing or following the ‘/%d’ as a temporary file name,
so that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this
contributes no text to the argument.

Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%d’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
hg.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.0 ccUVUUAU.s’ . suffix
matches the regexp ‘[.A-Za-z]#*’ or the special string ‘%0’, which is treated
exactly as if ‘%0’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

Like ‘%g’, but generates a new temporary file name even if ‘fusuffix’ was
already seen.

Substitutes the last file name generated with ‘fusuffix’, generating a new one
if there is no such last file name. In the absence of any ‘fusuffix’, this is
just like ‘Ygsuffix’, except they don’t share the same suffix space, so ‘%g.s
... WU.s ... %g.s ... %U.s” would involve the generation of two distinct file
names, one for each ‘%g.s’ and another for each ‘%4U.s’. Previously, ‘%U’ was
simply substituted with a file name chosen for the previous ‘%u’, without regard
to any appended suffix.

Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if save-temps is off; otherwise, substitute the name of a temporary file, just like
‘%u’. This temporary file is not meant for communication between processes,
but rather as a junk disposal mechanism.

Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘%|’ substitutes a single
dash and ‘%m’ substitutes nothing at all. These are the two most common
ways to instruct a program that it should read from standard input or write

112 Using the GNU Compiler Collection (GCC)
to standard output. If you need something more elaborate you can use an
‘%{pipe:X}’ construct: see for example ‘f/lang-specs.h’.

%.SUFFIX Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is
subsequently output with ‘%*’. SUFFIX is terminated by the next space or %.

yATS Marks the argument containing or following the ‘%w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ will substitute later.

%o Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%0’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they will be linked.

%0 Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form
complete file names. The handling is such that ‘%0’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently
support additional suffix characters following ‘%0’ as they would following, for
example, ‘.o’

hp Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

WP Like ‘%p’, but puts ‘__’ before and after the name of each predefined macro,
except for macros that start