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Introduction

This manual documents how to use the GNU compilers, as well as their features and incom-
patibilities, and how to report bugs. It corresponds to GCC version 4.1.2. The internals
of the GNU compilers, including how to port them to new targets and some information
about how to write front ends for new languages, are documented in a separate manual.
See section “Introduction” in GNU Compiler Collection (GCC) Internals.
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1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, and Ada.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.
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2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

GCC supports three versions of the C standard, although support for the most recent
version is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or
‘-std=iso9899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 21.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMD1; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘-std=iso9899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/gcc-4.1/c99status.html for details. To select this standard, use
‘-std=c99’ or ‘-std=iso9899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in two Technical Corrigenda published
in 2001 and 2004. GCC does not support the uncorrected version.

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 5 [Extensions to the C Language Family], page 213.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with
GNU extensions). The default, if no C language dialect options are given, is ‘-std=gnu89’;
this will change to ‘-std=gnu99’ in some future release when the C99 support is complete.
Some features that are part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMD1,
also those in <iso646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In ad-
dition, complex types, added in C99, are not required for freestanding implementations. The
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standard also defines two environments for programs, a freestanding environment, required
of all implementations and which may not have library facilities beyond those required of
freestanding implementations, where the handling of program startup and termination are
implementation-defined, and a hosted environment, which is not required, in which all the
library facilities are provided and startup is through a function int main (void) or int
main (int, char *[]). An OS kernel would be a freestanding environment; a program
using the facilities of an operating system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘-ffreestanding’; it will then define __STDC_HOSTED__ to 0 and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 21.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 10.6 [Standard Libraries], page 395.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C or Objective-C++. The most author-
itative manual is “Object-Oriented Programming and the Objective-C Language”, available
at a number of web sites:
• http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ is

a recent (and periodically updated) version;
• http://www.toodarkpark.org/computers/objc/ is an older example;
• http://www.gnustep.org and http://gcc.gnu.org/readings.html have additional

useful information.

There is no standard for treelang, which is a sample language front end for GCC. Its only
purpose is as a sample for people wishing to write a new language for GCC. The language
is documented in ‘gcc/treelang/treelang.texi’ which can be turned into info or HTML
format.

See section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See section “Standards” in The GNU Fortran 95 Compiler, for details of standards sup-
ported by gfortran.

See section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.
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3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘-c’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs], page 20, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very
different from ‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for example,
‘-fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. This manual documents
only one of these two forms, whichever one is not the default.

See [Option Index], page 447, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 17.

-c -S -E -o file -combine -pipe -pass-exit-codes

-x language -v -### --help --target-help --version

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 21.

-ansi -std=standard -aux-info filename

-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fms-extensions

-trigraphs -no-integrated-cpp -traditional -traditional-cpp

-fallow-single-precision -fcond-mismatch

-fsigned-bitfields -fsigned-char

-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 25.
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-fabi-version=n -fno-access-control -fcheck-new

-fconserve-space -ffriend-injection -fno-const-strings

-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords

-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions

-fno-nonansi-builtins -fno-operator-names

-fno-optional-diags -fpermissive

-frepo -fno-rtti -fstats -ftemplate-depth-n

-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++

-fno-default-inline -fvisibility-inlines-hidden

-Wabi -Wctor-dtor-privacy

-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wno-deprecated -Wstrict-null-sentinel

-Wno-non-template-friend -Wold-style-cast

-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 32.

-fconstant-string-class=class-name

-fgnu-runtime -fnext-runtime

-fno-nil-receivers

-fobjc-call-cxx-cdtors

-fobjc-direct-dispatch

-fobjc-exceptions

-fobjc-gc

-freplace-objc-classes

-fzero-link

-gen-decls

-Wassign-intercept

-Wno-protocol -Wselector

-Wstrict-selector-match

-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 36.

-fmessage-length=n

-fdiagnostics-show-location=[once|every-line]

-fdiagnostics-show-options

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings], page 36.

-fsyntax-only -pedantic -pedantic-errors

-w -Wextra -Wall -Waggregate-return -Wno-attributes

-Wc++-compat -Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment

-Wconversion -Wno-deprecated-declarations

-Wdisabled-optimization -Wno-div-by-zero -Wno-endif-labels

-Werror -Werror-implicit-function-declaration

-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2

-Wno-format-extra-args -Wformat-nonliteral

-Wformat-security -Wformat-y2k

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int

-Wimport -Wno-import -Winit-self -Winline
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-Wno-int-to-pointer-cast

-Wno-invalid-offsetof -Winvalid-pch

-Wlarger-than-len -Wunsafe-loop-optimizations -Wlong-long

-Wmain -Wmissing-braces -Wmissing-field-initializers

-Wmissing-format-attribute -Wmissing-include-dirs

-Wmissing-noreturn

-Wno-multichar -Wnonnull -Wpacked -Wpadded

-Wparentheses -Wpointer-arith -Wno-pointer-to-int-cast

-Wredundant-decls

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wstack-protector

-Wstrict-aliasing -Wstrict-aliasing=2

-Wswitch -Wswitch-default -Wswitch-enum

-Wsystem-headers -Wtrigraphs -Wundef -Wuninitialized

-Wunknown-pragmas -Wno-pragmas -Wunreachable-code

-Wunused -Wunused-function -Wunused-label -Wunused-parameter

-Wunused-value -Wunused-variable -Wvariadic-macros

-Wvolatile-register-var -Wwrite-strings

C-only Warning Options
-Wbad-function-cast -Wmissing-declarations

-Wmissing-prototypes -Wnested-externs -Wold-style-definition

-Wstrict-prototypes -Wtraditional

-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 53.

-dletters -dumpspecs -dumpmachine -dumpversion

-fdump-unnumbered -fdump-translation-unit[-n ]
-fdump-class-hierarchy[-n ]
-fdump-ipa-all -fdump-ipa-cgraph

-fdump-tree-all

-fdump-tree-original[-n ]
-fdump-tree-optimized[-n ]
-fdump-tree-inlined[-n ]
-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias

-fdump-tree-ch

-fdump-tree-ssa[-n ] -fdump-tree-pre[-n ]
-fdump-tree-ccp[-n ] -fdump-tree-dce[-n ]
-fdump-tree-gimple[-raw] -fdump-tree-mudflap[-n ]
-fdump-tree-dom[-n ]
-fdump-tree-dse[-n ]
-fdump-tree-phiopt[-n ]
-fdump-tree-forwprop[-n ]
-fdump-tree-copyrename[-n ]
-fdump-tree-nrv -fdump-tree-vect

-fdump-tree-sink

-fdump-tree-sra[-n ]
-fdump-tree-salias

-fdump-tree-fre[-n ]
-fdump-tree-vrp[-n ]
-ftree-vectorizer-verbose=n

-fdump-tree-storeccp[-n ]
-feliminate-dwarf2-dups -feliminate-unused-debug-types

-feliminate-unused-debug-symbols -fmem-report -fprofile-arcs

-frandom-seed=string -fsched-verbose=n

-ftest-coverage -ftime-report -fvar-tracking

-g -glevel -gcoff -gdwarf-2

-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+
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-p -pg -print-file-name=library -print-libgcc-file-name

-print-multi-directory -print-multi-lib

-print-prog-name=program -print-search-dirs -Q

-save-temps -time

Optimization Options
See Section 3.10 [Options that Control Optimization], page 65.

-falign-functions=n -falign-jumps=n

-falign-labels=n -falign-loops=n

-fbounds-check -fmudflap -fmudflapth -fmudflapir

-fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize

-fbranch-target-load-optimize2 -fbtr-bb-exclusive

-fcaller-saves -fcprop-registers -fcse-follow-jumps

-fcse-skip-blocks -fcx-limited-range -fdata-sections

-fdelayed-branch -fdelete-null-pointer-checks -fearly-inlining

-fexpensive-optimizations -ffast-math -ffloat-store

-fforce-addr -ffunction-sections

-fgcse -fgcse-lm -fgcse-sm -fgcse-las -fgcse-after-reload

-floop-optimize -fcrossjumping -fif-conversion -fif-conversion2

-finline-functions -finline-functions-called-once

-finline-limit=n -fkeep-inline-functions

-fkeep-static-consts -fmerge-constants -fmerge-all-constants

-fmodulo-sched -fno-branch-count-reg

-fno-default-inline -fno-defer-pop -floop-optimize2 -fmove-loop-invariants

-fno-function-cse -fno-guess-branch-probability

-fno-inline -fno-math-errno -fno-peephole -fno-peephole2

-funsafe-math-optimizations -funsafe-loop-optimizations -ffinite-math-only

-fno-trapping-math -fno-zero-initialized-in-bss

-fomit-frame-pointer -foptimize-register-move

-foptimize-sibling-calls -fprefetch-loop-arrays

-fprofile-generate -fprofile-use

-fregmove -frename-registers

-freorder-blocks -freorder-blocks-and-partition -freorder-functions

-frerun-cse-after-loop -frerun-loop-opt

-frounding-math -fschedule-insns -fschedule-insns2

-fno-sched-interblock -fno-sched-spec -fsched-spec-load

-fsched-spec-load-dangerous

-fsched-stalled-insns=n -fsched-stalled-insns-dep=n

-fsched2-use-superblocks

-fsched2-use-traces -freschedule-modulo-scheduled-loops

-fsignaling-nans -fsingle-precision-constant

-fstack-protector -fstack-protector-all

-fstrength-reduce -fstrict-aliasing -ftracer -fthread-jumps

-funroll-all-loops -funroll-loops -fpeel-loops

-fsplit-ivs-in-unroller -funswitch-loops

-fvariable-expansion-in-unroller

-ftree-pre -ftree-ccp -ftree-dce -ftree-loop-optimize

-ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -fivopts

-ftree-dominator-opts -ftree-dse -ftree-copyrename -ftree-sink

-ftree-ch -ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize

-ftree-vect-loop-version -ftree-salias -fweb

-ftree-copy-prop -ftree-store-ccp -ftree-store-copy-prop -fwhole-program

--param name=value -O -O0 -O1 -O2 -O3 -Os

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 94.

-Aquestion=answer

-A-question [=answer ]
-C -dD -dI -dM -dN
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-Dmacro [=defn ] -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir

-iwithprefixbefore dir -isystem dir

-isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc

-P -fworking-directory -remap

-trigraphs -undef -Umacro -Wp,option

-Xpreprocessor option

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 104.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 104.

object-file-name -llibrary

-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic

-s -static -static-libgcc -shared -shared-libgcc -symbolic

-Wl,option -Xlinker option

-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 107.

-Bprefix -Idir -iquotedir -Ldir -specs=file -I- --sysroot=dir

Target Options
See Section 3.16 [Target Options], page 115.

-V version -b machine

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations], page 116.
ARC Options

-EB -EL

-mmangle-cpu -mcpu=cpu -mtext=text-section

-mdata=data-section -mrodata=readonly-data-section

ARM Options
-mapcs-frame -mno-apcs-frame

-mabi=name

-mapcs-stack-check -mno-apcs-stack-check

-mapcs-float -mno-apcs-float

-mapcs-reentrant -mno-apcs-reentrant

-msched-prolog -mno-sched-prolog

-mlittle-endian -mbig-endian -mwords-little-endian

-mfloat-abi=name -msoft-float -mhard-float -mfpe

-mthumb-interwork -mno-thumb-interwork

-mcpu=name -march=name -mfpu=name

-mstructure-size-boundary=n

-mabort-on-noreturn

-mlong-calls -mno-long-calls

-msingle-pic-base -mno-single-pic-base

-mpic-register=reg

-mnop-fun-dllimport

-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns

-mpoke-function-name

-mthumb -marm
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-mtpcs-frame -mtpcs-leaf-frame

-mcaller-super-interworking -mcallee-super-interworking

-mtp=name

AVR Options
-mmcu=mcu -msize -minit-stack=n -mno-interrupts

-mcall-prologues -mno-tablejump -mtiny-stack -mint8

Blackfin Options
-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer

-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly

-mlow-64k -mno-low64k -mid-shared-library

-mno-id-shared-library -mshared-library-id=n

-mlong-calls -mno-long-calls

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu

-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects

-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt

-melf -maout -melinux -mlinux -sim -sim2

-mmul-bug-workaround -mno-mul-bug-workaround

CRX Options
-mmac -mpush-args

Darwin Options
-all_load -allowable_client -arch -arch_errors_fatal

-arch_only -bind_at_load -bundle -bundle_loader

-client_name -compatibility_version -current_version

-dead_strip

-dependency-file -dylib_file -dylinker_install_name

-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL

-force_flat_namespace -headerpad_max_install_names

-image_base -init -install_name -keep_private_externs

-multi_module -multiply_defined -multiply_defined_unused

-noall_load -no_dead_strip_inits_and_terms

-nofixprebinding -nomultidefs -noprebind -noseglinkedit

-pagezero_size -prebind -prebind_all_twolevel_modules

-private_bundle -read_only_relocs -sectalign

-sectobjectsymbols -whyload -seg1addr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr

-seg_addr_table -seg_addr_table_filename -seglinkedit

-segprot -segs_read_only_addr -segs_read_write_addr

-single_module -static -sub_library -sub_umbrella

-twolevel_namespace -umbrella -undefined

-unexported_symbols_list -weak_reference_mismatches

-whatsloaded -F -gused -gfull -mmacosx-version-min=version

-mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float -malpha-as -mgas

-mieee -mieee-with-inexact -mieee-conformant

-mfp-trap-mode=mode -mfp-rounding-mode=mode

-mtrap-precision=mode -mbuild-constants

-mcpu=cpu-type -mtune=cpu-type

-mbwx -mmax -mfix -mcix

-mfloat-vax -mfloat-ieee
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-mexplicit-relocs -msmall-data -mlarge-data

-msmall-text -mlarge-text

-mmemory-latency=time

DEC Alpha/VMS Options
-mvms-return-codes

FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64

-mhard-float -msoft-float

-malloc-cc -mfixed-cc -mdword -mno-dword

-mdouble -mno-double

-mmedia -mno-media -mmuladd -mno-muladd

-mfdpic -minline-plt -mgprel-ro -multilib-library-pic

-mlinked-fp -mlong-calls -malign-labels

-mlibrary-pic -macc-4 -macc-8

-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move

-moptimize-membar -mno-optimize-membar

-mscc -mno-scc -mcond-exec -mno-cond-exec

-mvliw-branch -mno-vliw-branch

-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec

-mno-nested-cond-exec -mtomcat-stats

-mTLS -mtls

-mcpu=cpu

H8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300

HPPA Options
-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing

-mfast-indirect-calls -mgas -mgnu-ld -mhp-ld

-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls

-mlong-load-store -mno-big-switch -mno-disable-fpregs

-mno-disable-indexing -mno-fast-indirect-calls -mno-gas

-mno-jump-in-delay -mno-long-load-store

-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0

-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime

-mschedule=cpu-type -mspace-regs -msio -mwsio

-munix=unix-std -nolibdld -static -threads

i386 and x86-64 Options
-mtune=cpu-type -march=cpu-type

-mfpmath=unit

-masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float -msvr3-shlib

-mno-wide-multiply -mrtd -malign-double

-mpreferred-stack-boundary=num

-mmmx -msse -msse2 -msse3 -m3dnow

-mthreads -mno-align-stringops -minline-all-stringops

-mpush-args -maccumulate-outgoing-args -m128bit-long-double

-m96bit-long-double -mregparm=num -msseregparm

-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs

-mcmodel=code-model

-m32 -m64 -mlarge-data-threshold=num

IA-64 Options
-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic

-mvolatile-asm-stop -mregister-names -mno-sdata
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-mconstant-gp -mauto-pic -minline-float-divide-min-latency

-minline-float-divide-max-throughput

-minline-int-divide-min-latency

-minline-int-divide-max-throughput

-minline-sqrt-min-latency -minline-sqrt-max-throughput

-mno-dwarf2-asm -mearly-stop-bits

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -mt -pthread -milp32 -mlp64

M32R/D Options
-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops

-missue-rate=number

-mbranch-cost=number

-mmodel=code-size-model-type

-msdata=sdata-type

-mno-flush-func -mflush-func=name

-mno-flush-trap -mflush-trap=number

-G num

M32C Options
-mcpu=cpu -msim -memregs=number

M680x0 Options
-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040

-m68060 -mcpu32 -m5200 -m68881 -mbitfield -mc68000 -mc68020

-mnobitfield -mrtd -mshort -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data

-mshared-library-id=n -mid-shared-library -mno-id-shared-library

M68hc1x Options
-m6811 -m6812 -m68hc11 -m68hc12 -m68hcs12

-mauto-incdec -minmax -mlong-calls -mshort

-msoft-reg-count=count

MCore Options
-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates

-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields

-m4byte-functions -mno-4byte-functions -mcallgraph-data

-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim

-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MIPS Options
-EL -EB -march=arch -mtune=arch

-mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips64

-mips16 -mno-mips16 -mabi=abi -mabicalls -mno-abicalls

-mxgot -mno-xgot -mgp32 -mgp64 -mfp32 -mfp64

-mhard-float -msoft-float -msingle-float -mdouble-float

-mdsp -mpaired-single -mips3d

-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -membedded-data -mno-embedded-data

-muninit-const-in-rodata -mno-uninit-const-in-rodata

-msplit-addresses -mno-split-addresses

-mexplicit-relocs -mno-explicit-relocs

-mcheck-zero-division -mno-check-zero-division

-mdivide-traps -mdivide-breaks

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls

-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400

-mfix-vr4120 -mno-fix-vr4120 -mfix-vr4130
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-mfix-sb1 -mno-fix-sb1

-mflush-func=func -mno-flush-func

-mbranch-likely -mno-branch-likely

-mfp-exceptions -mno-fp-exceptions

-mvr4130-align -mno-vr4130-align

MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu

-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols

-melf -mbranch-predict -mno-branch-predict -mbase-addresses

-mno-base-addresses -msingle-exit -mno-single-exit

MN10300 Options
-mmult-bug -mno-mult-bug

-mam33 -mno-am33

-mam33-2 -mno-am33-2

-mreturn-pointer-on-d0

-mno-crt0 -mrelax

MT Options
-mno-crt0 -mbacc -msim

-march=cpu-type

PDP-11 Options
-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10

-mbcopy -mbcopy-builtin -mint32 -mno-int16

-mint16 -mno-int32 -mfloat32 -mno-float64

-mfloat64 -mno-float32 -mabshi -mno-abshi

-mbranch-expensive -mbranch-cheap

-msplit -mno-split -munix-asm -mdec-asm

PowerPC Options See RS/6000 and PowerPC Options.
RS/6000 and PowerPC Options

-mcpu=cpu-type

-mtune=cpu-type

-mpower -mno-power -mpower2 -mno-power2

-mpowerpc -mpowerpc64 -mno-powerpc

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mfprnd -mno-fprnd

-mnew-mnemonics -mold-mnemonics

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc

-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple

-mstring -mno-string -mupdate -mno-update

-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align

-mstrict-align -mno-strict-align -mrelocatable

-mno-relocatable -mrelocatable-lib -mno-relocatable-lib

-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian

-mdynamic-no-pic -maltivec -mswdiv

-mprioritize-restricted-insns=priority

-msched-costly-dep=dependence_type

-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd

-maix-struct-return -msvr4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt

-misel -mno-isel

-misel=yes -misel=no
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-mspe -mno-spe

-mspe=yes -mspe=no

-mvrsave -mno-vrsave

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mvxworks -mwindiss -G num -pthread

S/390 and zSeries Options
-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack

-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd

-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard

SH Options
-m1 -m2 -m2e -m3 -m3e

-m4-nofpu -m4-single-only -m4-single -m4

-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al

-m5-64media -m5-64media-nofpu

-m5-32media -m5-32media-nofpu

-m5-compact -m5-compact-nofpu

-mb -ml -mdalign -mrelax

-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave

-mieee -misize -mpadstruct -mspace

-mprefergot -musermode -multcost=number -mdiv=strategy

-mdivsi3_libfunc=name

-madjust-unroll -mindexed-addressing -mgettrcost=number -mpt-fixed

-minvalid-symbols

SPARC Options
-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-m32 -m64 -mapp-regs -mno-app-regs

-mfaster-structs -mno-faster-structs

-mfpu -mno-fpu -mhard-float -msoft-float

-mhard-quad-float -msoft-quad-float

-mimpure-text -mno-impure-text -mlittle-endian

-mstack-bias -mno-stack-bias

-munaligned-doubles -mno-unaligned-doubles

-mv8plus -mno-v8plus -mvis -mno-vis -threads -pthreads -pthread

System V Options
-Qy -Qn -YP,paths -Ym,dir

TMS320C3x/C4x Options
-mcpu=cpu -mbig -msmall -mregparm -mmemparm

-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload

-mrpts=count -mrptb -mdb -mloop-unsigned

-mparallel-insns -mparallel-mpy -mpreserve-float

V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep

-mprolog-function -mno-prolog-function -mspace

-mtda=n -msda=n -mzda=n

-mapp-regs -mno-app-regs

-mdisable-callt -mno-disable-callt

-mv850e1



Chapter 3: GCC Command Options 17

-mv850e

-mv850 -mbig-switch

VAX Options
-mg -mgnu -munix

x86-64 Options See i386 and x86-64 Options.
Xstormy16 Options

-msim

Xtensa Options
-mconst16 -mno-const16

-mfused-madd -mno-fused-madd

-mtext-section-literals -mno-text-section-literals

-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions], page 190.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -funwind-tables

-fasynchronous-unwind-tables

-finhibit-size-directive -finstrument-functions

-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE

-fno-jump-tables

-freg-struct-return -fshared-data -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check

-fstack-limit-register=reg -fstack-limit-symbol=sym

-fargument-alias -fargument-noalias

-fargument-noalias-global -fleading-underscore

-ftls-model=model

-ftrapv -fwrapv -fbounds-check

-fvisibility

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the ‘libobjc’ library
to make an Objective-C program work.

file.mi Objective-C source code which should not be preprocessed.
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file.mm
file.M Objective-C++ source code. Note that you must link with the ‘libobjc’ library

to make an Objective-C++ program work. Note that ‘.M’ refers to a literal
capital M.

file.mii Objective-C++ source code which should not be preprocessed.

file.h C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header.

file.cc
file.cp
file.cxx
file.cpp
file.CPP
file.c++
file.C C++ source code which must be preprocessed. Note that in ‘.cxx’, the last two

letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

file.mm
file.M Objective-C++ source code which must be preprocessed.

file.mii Objective-C++ source code which should not be preprocessed.

file.hh
file.H C++ header file to be turned into a precompiled header.

file.f
file.for
file.FOR Fixed form Fortran source code which should not be preprocessed.

file.F
file.fpp
file.FPP Fixed form Fortran source code which must be preprocessed (with the tradi-

tional preprocessor).

file.f90
file.f95 Free form Fortran source code which should not be preprocessed.

file.F90
file.F95 Free form Fortran source code which must be preprocessed (with the traditional

preprocessor).

file.ads Ada source code file which contains a library unit declaration (a declaration of
a package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.

file.S Assembler code which must be preprocessed.
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other An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

c c-header c-cpp-output

c++ c++-header c++-cpp-output

objective-c objective-c-header objective-c-cpp-output

objective-c++ objective-c++-header objective-c++-cpp-output

assembler assembler-with-cpp

ada

f95 f95-cpp-input

java

treelang

-x none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,
the gcc program will instead return with numerically highest error produced
by any phase that returned an error indication.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-c’, ‘-S’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix
‘.c’, ‘.i’, ‘.s’, etc., with ‘.o’.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the
suffix ‘.c’, ‘.i’, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.
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-o file Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.
If ‘-o’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix ’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source.suffix.gch’, and all preprocessed C source
on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

-### Like ‘-v’ except the commands are not executed and all command arguments
are quoted. This is useful for shell scripts to capture the driver-generated
command lines.

-pipe Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

-combine If you are compiling multiple source files, this option tells the driver to pass
all the source files to the compiler at once (for those languages for which the
compiler can handle this). This will allow intermodule analysis (IMA) to be
performed by the compiler. Currently the only language for which this is sup-
ported is C. If you pass source files for multiple languages to the driver, using
this option, the driver will invoke the compiler(s) that support IMA once each,
passing each compiler all the source files appropriate for it. For those languages
that do not support IMA this option will be ignored, and the compiler will be
invoked once for each source file in that language. If you use this option in con-
junction with ‘-save-temps’, the compiler will generate multiple pre-processed
files (one for each source file), but only one (combined) ‘.o’ or ‘.s’ file.

--help Print (on the standard output) a description of the command line options un-
derstood by gcc. If the ‘-v’ option is also specified then ‘--help’ will also be
passed on to the various processes invoked by gcc, so that they can display the
command line options they accept. If the ‘-Wextra’ option is also specified then
command line options which have no documentation associated with them will
also be displayed.

--target-help
Print (on the standard output) a description of target specific command line
options for each tool.

--version
Display the version number and copyrights of the invoked GCC.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’ or ‘.H’; and preprocessed C++ files use the
suffix ‘.ii’. GCC recognizes files with these names and compiles them as C++ programs
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even if you call the compiler the same way as for compiling C programs (usually with the
name gcc).

However, C++ programs often require class libraries as well as a compiler that understands
the C++ language—and under some circumstances, you might want to compile programs
or header files from standard input, or otherwise without a suffix that flags them as C++
programs. You might also like to precompile a C header file with a ‘.h’ extension to be
used in C++ compilations. g++ is a program that calls GCC with the default language set
to C++, and automatically specifies linking against the C++ library. On many systems, g++
is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 21, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 25, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, support all ISO C90 programs. In C++ mode, remove GNU exten-
sions that conflict with ISO C++.
This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ‘//’ comments as well as the inline keyword.
The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.
The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8
[Warning Options], page 36.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.
Functions which would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions with ‘-ansi’ is
used. See Section 5.46 [Other built-in functions provided by GCC], page 291,
for details of the functions affected.
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-std= Determine the language standard. This option is currently only supported when
compiling C or C++. A value for this option must be provided; possible values
are

‘c89’
‘iso9899:1990’

ISO C90 (same as ‘-ansi’).

‘iso9899:199409’
ISO C90 as modified in amendment 1.

‘c99’
‘c9x’
‘iso9899:1999’
‘iso9899:199x’

ISO C99. Note that this standard is not yet fully supported;
see http://gcc.gnu.org/gcc-4.1/c99status.html for more in-
formation. The names ‘c9x’ and ‘iso9899:199x’ are deprecated.

‘gnu89’ Default, ISO C90 plus GNU extensions (including some C99 fea-
tures).

‘gnu99’
‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented

in GCC, this will become the default. The name ‘gnu9x’ is depre-
cated.

‘c++98’ The 1998 ISO C++ standard plus amendments.

‘gnu++98’ The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

Even when this option is not specified, you can still use some of the features of
newer standards in so far as they do not conflict with previous C standards. For
example, you may use __restrict__ even when ‘-std=c99’ is not specified.
The ‘-std’ options specifying some version of ISO C have the same effects as
‘-ansi’, except that features that were not in ISO C90 but are in the specified
version (for example, ‘//’ comments and the inline keyword in ISO C99) are
not disabled.
See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
these standard versions.

-aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.
Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘O’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
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of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘-ansi’ implies ‘-fno-asm’.
In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.46 [Other built-in functions provided by GCC], page 291, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.
GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘-Wformat’
for bad calls to printf, when printf is built in, and strlen is known not to
modify global memory.
With the ‘-fno-builtin-function ’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
this is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function ’ option; if you wish to enable built-in
functions selectively when using ‘-fno-builtin’ or ‘-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))

#define strcpy(d, s) __builtin_strcpy ((d), (s))

-fhosted

Assert that compilation takes place in a hosted environment. This implies
‘-fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding
Assert that compilation takes place in a freestanding environment. This implies
‘-fno-builtin’. A freestanding environment is one in which the standard
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library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘-fno-hosted’.
See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

-fms-extensions
Accept some non-standard constructs used in Microsoft header files.
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 5.50 [Unnamed struct/union fields within
structs/unions], page 355, for details.

-trigraphs
Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘-trigraphs’.

-no-integrated-cpp
Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "cc1", "cc1plus", or "cc1obj" via the ‘-B’ option. The
user supplied compilation step can then add in an additional preprocessing
step after normal preprocessing but before compiling. The default is to use the
integrated cpp (internal cpp)
The semantics of this option will change if "cc1", "cc1plus", and "cc1obj" are
merged.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘-E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-funsigned-char
Let the type char be unsigned, like unsigned char.
Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.
Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.
The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.
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Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘-funsigned-char’. Likewise, the option ‘-fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed
types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs;
but you can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g++ -g -frepo -O -c firstClass.C

In this example, only ‘-frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. Version 2 is the version of the C++ ABI that
first appeared in G++ 3.4. Version 1 is the version of the C++ ABI that first
appeared in G++ 3.2. Version 0 will always be the version that conforms most
closely to the C++ ABI specification. Therefore, the ABI obtained using version
0 will change as ABI bugs are fixed.
The default is version 2.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new
Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new will only return 0 if it is declared
‘throw()’, in which case the compiler will always check the return value even
without this option. In all other cases, when operator new has a non-empty
exception specification, memory exhaustion is signalled by throwing std::bad_
alloc. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two definitions were merged.



26 Using the GNU Compiler Collection (GCC)

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-ffriend-injection
Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were
documented to work this way in the old Annotated C++ Reference Manual, and
versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function which is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

-fno-const-strings
Give string constants type char * instead of type const char *. By default,
G++ uses type const char * as required by the standard. Even if you use
‘-fno-const-strings’, you cannot actually modify the value of a string con-
stant.

This option might be removed in a future release of G++. For maximum porta-
bility, you should structure your code so that it works with string constants
that have type const char *.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run-
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler will still optimize based on the specifications, so throwing
an unexpected exception will result in undefined behavior.

-ffor-scope
-fno-for-scope

If ‘-ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘-fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.
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-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘-fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 6.5 [Template
Instantiation], page 365, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘-fpermissive’ will allow some nonconforming code to com-
pile.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘-fno-implicit-templates’. See Section 6.5 [Template Instantiation],
page 365, for more information.

-fno-rtti
Disable generation of information about every class with virtual functions
for use by the C++ runtime type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed.
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-fstats Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

-fvisibility-inlines-hidden
Causes all inlined methods to be marked with __attribute__ ((visibility
("hidden"))) so that they do not appear in the export table of a DSO and do
not require a PLT indirection when used within the DSO. Enabling this option
can have a dramatic effect on load and link times of a DSO as it massively
reduces the size of the dynamic export table when the library makes heavy use
of templates. While it can cause bloating through duplication of code within
each DSO where it is used, often the wastage is less than the considerable space
occupied by a long symbol name in the export table which is typical when
using templates and namespaces. For even more savings, combine with the
‘-fvisibility=hidden’ switch.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior
code and has no benefits. This option may be removed in a future release of
G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Sec-
tion 3.10 [Options That Control Optimization], page 65. Note that these func-
tions will have linkage like inline functions; they just won’t be inlined by default.
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-Wabi (C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated will be compatible.
You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.
The known incompatibilities at this point include:
• Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:
struct A { virtual void f(); int f1 : 1; };

struct B : public A { int f2 : 1; };

In this case, G++ will place B::f2 into the same byte asA::f1; other com-
pilers will not. You can avoid this problem by explicitly padding A so that
its size is a multiple of the byte size on your platform; that will cause G++
and other compilers to layout B identically.

• Incorrect handling of tail-padding for virtual bases. G++ does not use tail
padding when laying out virtual bases. For example:

struct A { virtual void f(); char c1; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};

In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is
a multiple of its alignment (ignoring virtual base classes); that will cause
G++ and other compilers to layout C identically.

• Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:

union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union
too small by the number of bits in an int.

• Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {

A a;

virtual void f ();

};

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed
at offset zero. G++ mistakenly believes that the A data member of B is
already at offset zero.

• Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.
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template <typename Q>

void f(typename Q::X) {}

template <template <typename> class Q>

void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions.

-Wnon-virtual-dtor (C++ only)
Warn when a class appears to be polymorphic, thereby requiring a virtual
destructor, yet it declares a non-virtual one. This warning is enabled by ‘-Wall’.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

A(): j (0), i (1) { }

};

The compiler will rearrange the member initializers for ‘i’ and ‘j’ to match
the declaration order of the members, emitting a warning to that effect. This
warning is enabled by ‘-Wall’.

The following ‘-W...’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ book:
• Item 11: Define a copy constructor and an assignment operator for classes

with dynamically allocated memory.
• Item 12: Prefer initialization to assignment in constructors.
• Item 14: Make destructors virtual in base classes.
• Item 15: Have operator= return a reference to *this.
• Item 23: Don’t try to return a reference when you must return an object.

Also warn about violations of the following style guidelines from Scott Meyers’
More Effective C++ book:
• Item 6: Distinguish between prefix and postfix forms of increment and

decrement operators.
• Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.10 [Deprecated
Features], page 369.
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-Wstrict-null-sentinel (C++ only)
Warn also about the use of an uncasted NULL as sentinel. When compiling only
with GCC this is a valid sentinel, as NULL is defined to __null. Although it is
a null pointer constant not a null pointer, it is guaranteed to of the same size
as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ only)
Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘-Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘-Wno-non-template-friend’ which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:

struct A {

virtual void f();

};

struct B: public A {

void f(int);

};

the A class version of f is hidden in B, and code like:
B* b;

b->f();

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ would try to preserve unsignedness, but the
standard mandates the current behavior.

struct A {

operator int ();
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A& operator = (int);

};

main ()

{

A a,b;

a = b;

}

In this example, G++ will synthesize a default ‘A& operator = (const A&);’,
while cfront will use the user-defined ‘operator =’.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-C
and Objective-C++ programs, but you can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g -fgnu-runtime -O -c some_class.m

In this example, ‘-fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘-Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). The ‘-fconstant-cfstrings’ option, if also present,
will override the ‘-fconstant-string-class’ setting and cause @"..." literals
to be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches (e.g., [receiver
message:arg]) in this translation unit ensure that the receiver is not nil.
This allows for more efficient entry points in the runtime to be used. Currently,



Chapter 3: GCC Command Options 33

this option is only available in conjunction with the NeXT runtime on Mac
OS X 10.3 and later.

-fobjc-call-cxx-cdtors
For each Objective-C class, check if any of its instance variables is a C++ object
with a non-trivial default constructor. If so, synthesize a special - (id) .cxx_
construct instance method that will run non-trivial default constructors on
any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
so, synthesize a special - (void) .cxx_destruct method that will run all such
default destructors, in reverse order.
The - (id) .cxx_construct and/or - (void) .cxx_destruct methods
thusly generated will only operate on instance variables declared in the
current Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods will be
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods will be invoked immediately before the
runtime deallocates an object instance.
As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. Currently, this option is only available
in conjunction with the NeXT runtime on Mac OS X 10.3 and later.

@try {

...

@throw expr;

...

}

@catch (AnObjCClass *exc) {

...

@throw expr;

...

@throw;

...

}

@catch (AnotherClass *exc) {

...

}

@catch (id allOthers) {

...

}

@finally {

...

@throw expr;
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...

}

The @throw statement may appear anywhere in an Objective-C or Objective-
C++ program; when used inside of a @catch block, the @throw may appear
without an argument (as shown above), in which case the object caught by the
@catch will be rethrown.
Note that only (pointers to) Objective-C objects may be thrown and caught
using this scheme. When an object is thrown, it will be caught by the nearest
@catch clause capable of handling objects of that type, analogously to how
catch blocks work in C++ and Java. A @catch(id ...) clause (as shown
above) may also be provided to catch any and all Objective-C exceptions not
caught by previous @catch clauses (if any).
The @finally clause, if present, will be executed upon exit from the imme-
diately preceding @try ... @catch section. This will happen regardless of
whether any exceptions are thrown, caught or rethrown inside the @try ...
@catch section, analogously to the behavior of the finally clause in Java.
There are several caveats to using the new exception mechanism:
• Although currently designed to be binary compatible with NS_HANDLER-

style idioms provided by the NSException class, the new exceptions can
only be used on Mac OS X 10.3 (Panther) and later systems, due to addi-
tional functionality needed in the (NeXT) Objective-C runtime.

• As mentioned above, the new exceptions do not support handling types
other than Objective-C objects. Furthermore, when used from Objective-
C++, the Objective-C exception model does not interoperate with C++
exceptions at this time. This means you cannot @throw an exception from
Objective-C and catch it in C++, or vice versa (i.e., throw ... @catch).

The ‘-fobjc-exceptions’ switch also enables the use of synchronization blocks
for thread-safe execution:

@synchronized (ObjCClass *guard) {

...

}

Upon entering the @synchronized block, a thread of execution shall first check
whether a lock has been placed on the corresponding guard object by another
thread. If it has, the current thread shall wait until the other thread relinquishes
its lock. Once guard becomes available, the current thread will place its own
lock on it, execute the code contained in the @synchronized block, and finally
relinquish the lock (thereby making guard available to other threads).
Unlike Java, Objective-C does not allow for entire methods to be marked
@synchronized. Note that throwing exceptions out of @synchronized blocks
is allowed, and will cause the guarding object to be unlocked properly.

-fobjc-gc
Enable garbage collection (GC) in Objective-C and Objective-C++ programs.

-freplace-objc-classes
Emit a special marker instructing ld(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
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in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link
When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘-fzero-link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘-Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector
Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘-fsyntax-only’ option is being
used.

-Wstrict-selector-match
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler will omit such warnings if any differences found are
confined to types which share the same size and alignment.
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-Wundeclared-selector
Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, . . . ). The options described below can be used to control the diag-
nostic messages formatting algorithm, e.g. how many characters per line, how often source
location information should be reported. Right now, only the C++ front end can honor these
options. However it is expected, in the near future, that the remaining front ends would be
able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-show-options
This option instructs the diagnostic machinery to add text to each diagnos-
tic emitted, which indicates which command line option directly controls that
diagnostic, when such an option is known to the diagnostic machinery.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erro-
neous but which are risky or suggest there may have been an error.
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You can request many specific warnings with options beginning ‘-W’, for example
‘-Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

The following options control the amount and kinds of warnings produced by GCC; for
further, language-specific options also refer to Section 3.5 [C++ Dialect Options], page 25
and Section 3.6 [Objective-C and Objective-C++ Dialect Options], page 32.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.
Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.
‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files
should use these escape routes; application programs should avoid them. See
Section 5.38 [Alternate Keywords], page 284.
Some users try to use ‘-pedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.
A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.
Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu89’ or ‘gnu99’, there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-
tures the compiler supports with the given option, and there would be nothing
to warn about.)

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.
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-Wno-import
Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment. This warning is
enabled by ‘-Wall’.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 5.24 [Function Attributes],
page 229), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘-ffreestanding’ or ‘-fno-builtin’.
The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-pedantic’ is used with ‘-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 21.
Since ‘-Wformat’ also checks for null format arguments for several functions,
‘-Wformat’ also implies ‘-Wnonnull’.
‘-Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wformat-y2k’, ‘-Wno-format-extra-args’,
‘-Wno-format-zero-length’, ‘-Wformat-nonliteral’, ‘-Wformat-security’,
and ‘-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wformat-y2k
If ‘-Wformat’ is specified, also warn about strftime formats which may yield
only a two-digit year.

-Wno-format-extra-args
If ‘-Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.
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Where the unused arguments lie between used arguments that are specified
with ‘$’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option will
suppress the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wno-format-zero-length
If ‘-Wformat’ is specified, do not warn about zero-length formats. The C stan-
dard specifies that zero-length formats are allowed.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
a va_list.

-Wformat-security
If ‘-Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘-Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.
‘-Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘-Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables which are initialized with themselves. Note
this option can only be used with the ‘-Wuninitialized’ option, which in turn
only works with ‘-O1’ and above.
For example, GCC will warn about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:

int f()

{

int i = i;

return i;

}

-Wimplicit-int
Warn when a declaration does not specify a type. This warning is enabled by
‘-Wall’.
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-Wimplicit-function-declaration
-Werror-implicit-function-declaration

Give a warning (or error) whenever a function is used before being declared.
The form ‘-Wno-error-implicit-function-declaration’ is not supported.
This warning is enabled by ‘-Wall’ (as a warning, not an error).

-Wimplicit
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.

-Wmain Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by ‘-Wall’.

-Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2] = { 0, 1, 2, 3 };

int b[2][2] = { { 0, 1 }, { 2, 3 } };

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)
Warn if a user-supplied include directory does not exist.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about. Only the warning
for an assignment used as a truth value is supported when compiling C++; the
other warnings are only supported when compiling C.
Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
? 1 : 0) <= z’, which is a different interpretation from that of ordinary math-
ematical notation.
Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

{

if (a)

if (b)

foo ();

else

bar ();

}

In C, every else branch belongs to the innermost possible if statement, which
in this example is if (b). This is often not what the programmer expected, as
illustrated in the above example by indentation the programmer chose. When
there is the potential for this confusion, GCC will issue a warning when this flag
is specified. To eliminate the warning, add explicit braces around the innermost
if statement so there is no way the else could belong to the enclosing if. The
resulting code would look like this:
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{

if (a)

{

if (b)

foo ();

else

bar ();

}

}

This warning is enabled by ‘-Wall’.

-Wsequence-point
Warn about code that may have undefined semantics because of violations of
sequence point rules in the C standard.

The C standard defines the order in which expressions in a C program are eval-
uated in terms of sequence points, which represent a partial ordering between
the execution of parts of the program: those executed before the sequence point,
and those executed after it. These occur after the evaluation of a full expression
(one which is not part of a larger expression), after the evaluation of the first
operand of a &&, ||, ? : or , (comma) operator, before a function is called (but
after the evaluation of its arguments and the expression denoting the called
function), and in certain other places. Other than as expressed by the sequence
point rules, the order of evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression with no
sequence point between them, the order in which the functions are called is not
specified. However, the standards committee have ruled that function calls do
not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C standard specifies that “Between the previous and next se-
quence point an object shall have its stored value modified at most once by the
evaluation of an expression. Furthermore, the prior value shall be read only to
determine the value to be stored.”. If a program breaks these rules, the results
on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
a[i++] = i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The present implementation of this option only works for C programs. A future
implementation may also work for C++ programs.

The C standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’.
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-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.
For C, also warn if the return type of a function has a type qualifier such
as const. Such a type qualifier has no effect, since the value returned by
a function is not an lvalue. ISO C prohibits qualified void return types on
function definitions, so such return types always receive a warning even without
this option.
For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.
This warning is enabled by ‘-Wall’.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used. This warning is enabled
by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘-Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 247).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.
To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 247).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.



Chapter 3: GCC Command Options 43

To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 247).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used. This
warning is enabled by ‘-Wall’.
To suppress this warning cast the expression to ‘void’.

-Wunused All the above ‘-Wunused’ options combined.
In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call.
These warnings are possible only in optimizing compilation, because they re-
quire data flow information that is computed only when optimizing. If you
don’t specify ‘-O’, you simply won’t get these warnings.
If you want to warn about code which uses the uninitialized value of the variable
in its own initializer, use the ‘-Winit-self’ option.
These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables which are uninitialized or
clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings will depend on the precise optimization
options and version of GCC used.
Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.
These warnings are made optional because GCC is not smart enough to see all
the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:

{

int x;

switch (y)

{

case 1: x = 1;

break;

case 2: x = 4;

break;

case 3: x = 5;

}

foo (x);

}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. Here is another common case:

{

int save_y;
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if (change_y) save_y = y, y = new_y;

...

if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.
This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.
The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place which would cause a problem.
Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 5.24 [Function Attributes],
page 229.
This warning is enabled by ‘-Wall’.

-Wunknown-pragmas
Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued for
unknown pragmas in system header files. This is not the case if the warnings
were only enabled by the ‘-Wall’ command line option.

-Wno-pragmas
Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘-Wunknown-pragmas’.

-Wstrict-aliasing
This option is only active when ‘-fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to catch
the more common pitfalls. It is included in ‘-Wall’.

-Wstrict-aliasing=2
This option is only active when ‘-fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. This warning catches more cases than ‘-Wstrict-aliasing’, but
it will also give a warning for some ambiguous cases that are safe.

-Wall All of the above ‘-W’ options combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with macros. This
also enables some language-specific warnings described in Section 3.5 [C++ Di-
alect Options], page 25 and Section 3.6 [Objective-C and Objective-C++ Dialect
Options], page 32.

The following ‘-W...’ options are not implied by ‘-Wall’. Some of them warn about
constructions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the warning.
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-Wextra (This option used to be called ‘-W’. The older name is still supported, but the
newer name is more descriptive.) Print extra warning messages for these events:

• A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

foo (a)

{

if (a > 0)

return a;

}

• An expression-statement or the left-hand side of a comma expression con-
tains no side effects. To suppress the warning, cast the unused expression
to void. For example, an expression such as ‘x[i,j]’ will cause a warning,
but ‘x[(void)i,j]’ will not.

• An unsigned value is compared against zero with ‘<’ or ‘>=’.

• Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

• If ‘-Wall’ or ‘-Wunused’ is also specified, warn about unused arguments.

• A comparison between signed and unsigned values could produce an in-
correct result when the signed value is converted to unsigned. (But don’t
warn if ‘-Wno-sign-compare’ is also specified.)

• An aggregate has an initializer which does not initialize all
members. This warning can be independently controlled by
‘-Wmissing-field-initializers’.

• A function parameter is declared without a type specifier in K&R-style
functions:

void foo(bar) { }

• An empty body occurs in an ‘if’ or ‘else’ statement.

• A pointer is compared against integer zero with ‘<’, ‘<=’, ‘>’, or ‘>=’.

• A variable might be changed by ‘longjmp’ or ‘vfork’.

• Any of several floating-point events that often indicate errors, such as over-
flow, underflow, loss of precision, etc.

• (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

• (C++ only) A non-static reference or non-static ‘const’ member appears in
a class without constructors.

• (C++ only) Ambiguous virtual bases.

• (C++ only) Subscripting an array which has been declared ‘register’.

• (C++ only) Taking the address of a variable which has been declared
‘register’.

• (C++ only) A base class is not initialized in a derived class’ copy construc-
tor.
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-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers
Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘-Wunknown-pragmas’ must also be used.

-Wfloat-equal
Warn if floating point values are used in equality comparisons.
The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs which should be avoided.
• Macro parameters that appear within string literals in the macro body. In

traditional C macro replacement takes place within string literals, but does
not in ISO C.

• In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore ‘-Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘#’ does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some
traditional implementations would not recognize ‘#elif’, so it suggests
avoiding it altogether.

• A function-like macro that appears without arguments.
• The unary plus operator.
• The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant

suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
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macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

• A function declared external in one block and then used after the end of
the block.

• A switch statement has an operand of type long.
• A non-static function declaration follows a static one. This construct

is not accepted by some traditional C compilers.
• The ISO type of an integer constant has a different width or signedness

from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

• Usage of ISO string concatenation is detected.
• Initialization of automatic aggregates.
• Identifier conflicts with labels. Traditional C lacks a separate namespace

for labels.
• Initialization of unions. If the initializer is zero, the warning is omitted.

This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

• Conversions by prototypes between fixed/floating point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wconversion’.

• Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features will appear in your code when using libiberty’s traditional C
compatibility macros, PARAMS and VPARAMS. This warning is also bypassed
for nested functions because that feature is already a GCC extension and
thus not relevant to traditional C compatibility.

-Wdeclaration-after-statement (C only)
Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 5.23 [Mixed Declarations], page 229.

-Wundef Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels
Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wshadow Warn whenever a local variable shadows another local variable, parameter or
global variable or whenever a built-in function is shadowed.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.
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-Wunsafe-loop-optimizations
Warn if the loop cannot be optimized because the compiler could
not assume anything on the bounds of the loop indices. With
‘-funsafe-loop-optimizations’ warn if the compiler made such
assumptions.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wbad-function-cast (C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-Wc++-compat
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning;
when compiling C++, warn about the deprecated conversion from string con-
stants to char *. These warnings will help you find at compile time code that
can try to write into a string constant, but only if you have been very careful
about using const in declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make ‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.
Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
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is also enabled by ‘-Wextra’; to get the other warnings of ‘-Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This will not stop
errors for incorrect use of supported attributes.

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration which specifies the argument types.)

-Wold-style-definition (C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations (C only)
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.

-Wmissing-field-initializers
Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code would cause such a warning, because x.h is implicitly zero:

struct s { int f, g, h; };

struct s x = { 3, 4 };

This option does not warn about designated initializers, so the following mod-
ification would not trigger a warning:

struct s { int f, g, h; };

struct s x = { .f = 3, .g = 4 };

This warning is included in ‘-Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken
to manually verify functions actually do not ever return before adding the
noreturn attribute, otherwise subtle code generation bugs could be introduced.
You will not get a warning for main in hosted C environments.

-Wmissing-format-attribute
Warn about function pointers which might be candidates for format attributes.
Note these are only possible candidates, not absolute ones. GCC will guess that
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function pointers with format attributes that are used in assignment, initial-
ization, parameter passing or return statements should have a corresponding
format attribute in the resulting type. I.e. the left-hand side of the assignment
or initialization, the type of the parameter variable, or the return type of the
containing function respectively should also have a format attribute to avoid
the warning.
GCC will also warn about function definitions which might be candidates for
format attributes. Again, these are only possible candidates. GCC will guess
that format attributes might be appropriate for any function that calls a func-
tion like vprintf or vscanf, but this might not always be the case, and some
functions for which format attributes are appropriate may not be detected.

-Wno-multichar
Do not warn if a multicharacter constant (‘’FOOF’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>
In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers which have not been normalized; this option controls that warning.
There are four levels of warning that GCC supports. The default is
‘-Wnormalized=nfc’, which warns about any identifier which is not in the ISO
10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.
Unfortunately, there are some characters which ISO C and ISO C++ allow in
identifiers that when turned into NFC aren’t allowable as identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘-Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.
You can switch the warning off for all characters by writing
‘-Wnormalized=none’. You would only want to do this if you were
using some other normalization scheme (like “D”), because otherwise you can
easily create bugs that are literally impossible to see.
Some characters in ISO 10646 have distinct meanings but look identical in
some fonts or display methodologies, especially once formatting has been ap-
plied. For instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”,
will display just like a regular n which has been placed in a superscript. ISO
10646 defines the NFKC normalisation scheme to convert all these into a stan-
dard form as well, and GCC will warn if your code is not in NFKC if you
use ‘-Wnormalized=nfkc’. This warning is comparable to warning about every
identifier that contains the letter O because it might be confused with the digit
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0, and so is not the default, but may be useful as a local coding convention if
the programming environment is unable to be fixed to display these characters
distinctly.

-Wno-deprecated-declarations
Do not warn about uses of functions, variables, and types marked as deprecated
by using the deprecated attribute. (see Section 5.24 [Function Attributes],
page 229, see Section 5.31 [Variable Attributes], page 247, see Section 5.32
[Type Attributes], page 252.)

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {

int x;

char a, b, c, d;

} __attribute__((packed));

struct bar {

char z;

struct foo f;

};

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C only)
Warn if an extern declaration is encountered within a function.

-Wunreachable-code
Warn if the compiler detects that code will never be executed.
This option is intended to warn when the compiler detects that at least a whole
line of source code will never be executed, because some condition is never
satisfied or because it is after a procedure that never returns.
It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should
be taken when removing apparently-unreachable code.
For instance, when a function is inlined, a warning may mean that the line is
unreachable in only one inlined copy of the function.
This option is not made part of ‘-Wall’ because in a debugging version of a
program there is often substantial code which checks correct functioning of the
program and is, hopefully, unreachable because the program does work. An-
other common use of unreachable code is to provide behavior which is selectable
at compile-time.
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-Winline Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared
in system headers.
The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘-Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ only)
Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types. (Such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor.) This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.
The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast (C only)
Suppress warnings from casts to pointer type of an integer of a different size.

-Wno-pointer-to-int-cast (C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 199) is found in the search path but can’t be used.

-Wlong-long
Warn if ‘long long’ type is used. This is default. To inhibit the warning
messages, use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-Wno-long-long’
are taken into account only when ‘-pedantic’ flag is used.

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘-Wno-variadic-macros’.

-Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers were unable to handle the code effectively. Often, the
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problem is that your code is too big or too complex; GCC will refuse to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-pedantic’, which can be disabled with ‘-Wno-pointer-sign’.

-Werror Make all warnings into errors.

-Wstack-protector
This option is only active when ‘-fstack-protector’ is active. It warns about
functions that will not be protected against stack smashing.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging informa-
tion.

On most systems that use stabs format, ‘-g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but will probably make other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the
extra information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, or ‘-gvms’
(see below).

GCC allows you to use ‘-g’ with ‘-O’. The shortcuts taken by optimized code
may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results
or their values were already at hand; some statements may execute in different
places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

-ggdb Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.
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-feliminate-unused-debug-symbols
Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

-gstabs+ Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

-gcoff Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is sup-
ported). This is the format used by DBX on IRIX 6. With this option, GCC
uses features of DWARF version 3 when they are useful; version 3 is upward
compatible with version 2, but may still cause problems for older debuggers.

-gvms Produce debugging information in VMS debug format (if that is supported).
This is the format used by DEBUG on VMS systems.

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gvmslevel

Request debugging information and also use level to specify how much infor-
mation. The default level is 2.
Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.
Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.
‘-gdwarf-2’ does not accept a concatenated debug level, because GCC used
to support an option ‘-gdwarf’ that meant to generate debug information in
version 1 of the DWARF format (which is very different from version 2), and
it would have been too confusing. That debug format is long obsolete, but the
option cannot be changed now. Instead use an additional ‘-glevel ’ option to
change the debug level for DWARF2.
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-feliminate-dwarf2-dups
Compress DWARF2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF2 debugging information with ‘-gdwarf-2’.

-p Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-pg Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-Q Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report
Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report
Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-fprofile-arcs
Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘-fbranch-probabilities’), or for test
coverage analysis (‘-ftest-coverage’). Each object file’s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘-o dir/foo.o’). See Section 9.5 [Cross-profiling],
page 387.

--coverage
This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘-fprofile-arcs’ ‘-ftest-coverage’ (when com-
piling) and ‘-lgcov’ (when linking). See the documentation for those options
for more details.
• Compile the source files with ‘-fprofile-arcs’ plus optimization and

code generation options. For test coverage analysis, use the additional
‘-ftest-coverage’ option. You do not need to profile every source file in
a program.

• Link your object files with ‘-lgcov’ or ‘-fprofile-arcs’ (the latter implies
the former).

• Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
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concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

• For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘-fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 65).

• For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘-fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

-ftest-coverage
Produce a notes file that the gcov code-coverage utility (see Chapter 9 [gcov—a
Test Coverage Program], page 381) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘-fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data will match the source files more closely, if
you do not optimize.

-dletters
-fdump-rtl-pass

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RTL-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to
the dumpname. dumpname is generated from the name of the output file, if
explicitly specified and it is not an executable, otherwise it is the basename of
the source file.

Most debug dumps can be enabled either passing a letter to the ‘-d’ option, or
with a long ‘-fdump-rtl’ switch; here are the possible letters for use in letters
and pass, and their meanings:

-dA Annotate the assembler output with miscellaneous debugging in-
formation.

-db
-fdump-rtl-bp

Dump after computing branch probabilities, to ‘file.09.bp’.

-dB
-fdump-rtl-bbro

Dump after block reordering, to ‘file.30.bbro’.
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-dc
-fdump-rtl-combine

Dump after instruction combination, to the file ‘file.17.combine’.

-dC
-fdump-rtl-ce1
-fdump-rtl-ce2

‘-dC’ and ‘-fdump-rtl-ce1’ enable dumping after the first if
conversion, to the file ‘file.11.ce1’. ‘-dC’ and ‘-fdump-rtl-ce2’
enable dumping after the second if conversion, to the file
‘file.18.ce2’.

-dd
-fdump-rtl-btl
-fdump-rtl-dbr

‘-dd’ and ‘-fdump-rtl-btl’ enable dumping after branch target
load optimization, to ‘file.31.btl’. ‘-dd’ and ‘-fdump-rtl-dbr’
enable dumping after delayed branch scheduling, to ‘file.36.dbr’.

-dD Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

-dE
-fdump-rtl-ce3

Dump after the third if conversion, to ‘file.28.ce3’.

-df
-fdump-rtl-cfg
-fdump-rtl-life

‘-df’ and ‘-fdump-rtl-cfg’ enable dumping after control and data
flow analysis, to ‘file.08.cfg’. ‘-df’ and ‘-fdump-rtl-cfg’ en-
able dumping dump after life analysis, to ‘file.16.life’.

-dg
-fdump-rtl-greg

Dump after global register allocation, to ‘file.23.greg’.

-dG
-fdump-rtl-gcse
-fdump-rtl-bypass

‘-dG’ and ‘-fdump-rtl-gcse’ enable dumping after GCSE,
to ‘file.05.gcse’. ‘-dG’ and ‘-fdump-rtl-bypass’ enable
dumping after jump bypassing and control flow optimizations, to
‘file.07.bypass’.

-dh
-fdump-rtl-eh

Dump after finalization of EH handling code, to ‘file.02.eh’.

-di
-fdump-rtl-sibling

Dump after sibling call optimizations, to ‘file.01.sibling’.
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-dj
-fdump-rtl-jump

Dump after the first jump optimization, to ‘file.03.jump’.

-dk
-fdump-rtl-stack

Dump after conversion from registers to stack, to ‘file.33.stack’.

-dl
-fdump-rtl-lreg

Dump after local register allocation, to ‘file.22.lreg’.

-dL
-fdump-rtl-loop
-fdump-rtl-loop2

‘-dL’ and ‘-fdump-rtl-loop’ enable dumping after the
first loop optimization pass, to ‘file.06.loop’. ‘-dL’ and
‘-fdump-rtl-loop2’ enable dumping after the second pass, to
‘file.13.loop2’.

-dm
-fdump-rtl-sms

Dump after modulo scheduling, to ‘file.20.sms’.

-dM
-fdump-rtl-mach

Dump after performing the machine dependent reorganization pass,
to ‘file.35.mach’.

-dn
-fdump-rtl-rnreg

Dump after register renumbering, to ‘file.29.rnreg’.

-dN
-fdump-rtl-regmove

Dump after the register move pass, to ‘file.19.regmove’.

-do
-fdump-rtl-postreload

Dump after post-reload optimizations, to ‘file.24.postreload’.

-dr
-fdump-rtl-expand

Dump after RTL generation, to ‘file.00.expand’.

-dR
-fdump-rtl-sched2

Dump after the second scheduling pass, to ‘file.32.sched2’.

-ds
-fdump-rtl-cse

Dump after CSE (including the jump optimization that sometimes
follows CSE), to ‘file.04.cse’.
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-dS
-fdump-rtl-sched

Dump after the first scheduling pass, to ‘file.21.sched’.

-dt
-fdump-rtl-cse2

Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to ‘file.15.cse2’.

-dT
-fdump-rtl-tracer

Dump after running tracer, to ‘file.12.tracer’.

-dV
-fdump-rtl-vpt
-fdump-rtl-vartrack

‘-dV’ and ‘-fdump-rtl-vpt’ enable dumping after the
value profile transformations, to ‘file.10.vpt’. ‘-dV’ and
‘-fdump-rtl-vartrack’ enable dumping after variable tracking,
to ‘file.34.vartrack’.

-dw
-fdump-rtl-flow2

Dump after the second flow pass, to ‘file.26.flow2’.

-dz
-fdump-rtl-peephole2

Dump after the peephole pass, to ‘file.27.peephole2’.

-dZ
-fdump-rtl-web

Dump after live range splitting, to ‘file.14.web’.

-da
-fdump-rtl-all

Produce all the dumps listed above.

-dH Produce a core dump whenever an error occurs.

-dm Print statistics on memory usage, at the end of the run, to standard
error.

-dp Annotate the assembler output with a comment indicating which
pattern and alternative was used. The length of each instruction is
also printed.

-dP Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

-dv For each of the other indicated dump files (either with ‘-d’ or
‘-fdump-rtl-pass ’), dump a representation of the control flow
graph suitable for viewing with VCG to ‘file.pass.vcg’.

-dx Just generate RTL for a function instead of compiling it. Usually
used with ‘r’ (‘-fdump-rtl-expand’).
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-dy Dump debugging information during parsing, to standard error.

-fdump-unnumbered
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers and line number note output. This makes it more feasible to use
diff on debugging dumps for compiler invocations with different options, in
particular with and without ‘-g’.

-fdump-translation-unit (C++ only)
-fdump-translation-unit-options (C++ only)

Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘-options ’ form is used, options controls the details of the dump as described
for the ‘-fdump-tree’ options.

-fdump-class-hierarchy (C++ only)
-fdump-class-hierarchy-options (C++ only)

Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name.
If the ‘-options ’ form is used, options controls the details of the dump as
described for the ‘-fdump-tree’ options.

-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps; currently the only pro-
duced dump is the ‘cgraph’ dump.

‘cgraph’ Dumps information about call-graph optimization, unused function
removal, and inlining decisions.

-fdump-tree-switch
-fdump-tree-switch-options

Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. If the ‘-options ’ form is used, options is a list of
‘-’ separated options that control the details of the dump. Not all options are
applicable to all dumps, those which are not meaningful will be ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

‘slim’ Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path. When dumping
pretty-printed trees, this option inhibits dumping the bodies of con-
trol structures.
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‘raw’ Print a raw representation of the tree. By default, trees are pretty-
printed into a C-like representation.

‘details’ Enable more detailed dumps (not honored by every dump option).

‘stats’ Enable dumping various statistics about the pass (not honored by
every dump option).

‘blocks’ Enable showing basic block boundaries (disabled in raw dumps).

‘vops’ Enable showing virtual operands for every statement.

‘lineno’ Enable showing line numbers for statements.

‘uid’ Enable showing the unique ID (DECL_UID) for each variable.

‘all’ Turn on all options, except ‘raw’, ‘slim’ and ‘lineno’.

The following tree dumps are possible:

‘original’
Dump before any tree based optimization, to ‘file.original’.

‘optimized’
Dump after all tree based optimization, to ‘file.optimized’.

‘inlined’ Dump after function inlining, to ‘file.inlined’.

‘gimple’ Dump each function before and after the gimplification pass to a
file. The file name is made by appending ‘.gimple’ to the source
file name.

‘cfg’ Dump the control flow graph of each function to a file. The file
name is made by appending ‘.cfg’ to the source file name.

‘vcg’ Dump the control flow graph of each function to a file in VCG
format. The file name is made by appending ‘.vcg’ to the source
file name. Note that if the file contains more than one function, the
generated file cannot be used directly by VCG. You will need to
cut and paste each function’s graph into its own separate file first.

‘ch’ Dump each function after copying loop headers. The file name is
made by appending ‘.ch’ to the source file name.

‘ssa’ Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

‘salias’ Dump structure aliasing variable information to a file. This file
name is made by appending ‘.salias’ to the source file name.

‘alias’ Dump aliasing information for each function. The file name is made
by appending ‘.alias’ to the source file name.

‘ccp’ Dump each function after CCP. The file name is made by append-
ing ‘.ccp’ to the source file name.

‘storeccp’
Dump each function after STORE-CCP. The file name is made by
appending ‘.storeccp’ to the source file name.
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‘pre’ Dump trees after partial redundancy elimination. The file name is
made by appending ‘.pre’ to the source file name.

‘fre’ Dump trees after full redundancy elimination. The file name is
made by appending ‘.fre’ to the source file name.

‘copyprop’
Dump trees after copy propagation. The file name is made by
appending ‘.copyprop’ to the source file name.

‘store_copyprop’
Dump trees after store copy-propagation. The file name is made
by appending ‘.store_copyprop’ to the source file name.

‘dce’ Dump each function after dead code elimination. The file name is
made by appending ‘.dce’ to the source file name.

‘mudflap’ Dump each function after adding mudflap instrumentation. The
file name is made by appending ‘.mudflap’ to the source file name.

‘sra’ Dump each function after performing scalar replacement of aggre-
gates. The file name is made by appending ‘.sra’ to the source file
name.

‘sink’ Dump each function after performing code sinking. The file name
is made by appending ‘.sink’ to the source file name.

‘dom’ Dump each function after applying dominator tree optimizations.
The file name is made by appending ‘.dom’ to the source file name.

‘dse’ Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

‘phiopt’ Dump each function after optimizing PHI nodes into straightline
code. The file name is made by appending ‘.phiopt’ to the source
file name.

‘forwprop’
Dump each function after forward propagating single use variables.
The file name is made by appending ‘.forwprop’ to the source file
name.

‘copyrename’
Dump each function after applying the copy rename optimization.
The file name is made by appending ‘.copyrename’ to the source
file name.

‘nrv’ Dump each function after applying the named return value opti-
mization on generic trees. The file name is made by appending
‘.nrv’ to the source file name.

‘vect’ Dump each function after applying vectorization of loops. The file
name is made by appending ‘.vect’ to the source file name.

‘vrp’ Dump each function after Value Range Propagation (VRP). The
file name is made by appending ‘.vrp’ to the source file name.
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‘all’ Enable all the available tree dumps with the flags provided in this
option.

-ftree-vectorizer-verbose=n
This option controls the amount of debugging output the vectorizer prints.
This information is written to standard error, unless ‘-fdump-tree-all’ or
‘-fdump-tree-vect’ is specified, in which case it is output to the usual dump
listing file, ‘.vect’.

-frandom-seed=string
This option provides a seed that GCC uses when it would otherwise use random
numbers. It is used to generate certain symbol names that have to be different
in every compiled file. It is also used to place unique stamps in coverage data
files and the object files that produce them. You can use the ‘-frandom-seed’
option to produce reproducibly identical object files.
The string should be different for every file you compile.

-fsched-verbose=n
On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to standard
error, unless ‘-dS’ or ‘-dR’ is specified, in which case it is output to the usual
dump listing file, ‘.sched’ or ‘.sched2’ respectively. However for n greater
than nine, the output is always printed to standard error.
For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘-dRS’. For n greater than one, it also output basic block probabilities, de-
tailed ready list information and unit/insn info. For n greater than two, it
includes RTL at abort point, control-flow and regions info. And for n over four,
‘-fsched-verbose’ also includes dependence info.

-save-temps
Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-c -save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the
compiler now normally uses an integrated preprocessor.
When used in combination with the ‘-x’ command line option, ‘-save-temps’
is sensible enough to avoid over writing an input source file with the same
extension as an intermediate file. The corresponding intermediate file may be
obtained by renaming the source file before using ‘-save-temps’.

-time Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done). The output looks like this:

# cc1 0.12 0.01

# as 0.00 0.01

The first number on each line is the “user time”, that is time spent executing
the program itself. The second number is “system time”, time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.
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-fvar-tracking
Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).
It is enabled by default when compiling with optimization (‘-Os’, ‘-O’, ‘-O2’,
...), debugging information (‘-g’) and the debug info format supports it.

-print-file-name=library
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-lib
Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@’ instead of the ‘-’, without spaces between multiple
switches. This is supposed to ease shell-processing.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name‘

-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc will search—and don’t do anything else.
This is useful when gcc prints the error message ‘installation problem,
cannot exec cpp0: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ‘/’. See Section 3.19
[Environment Variables], page 196.

-dumpmachine
Print the compiler’s target machine (for example, ‘i686-pc-linux-gnu’)—and
don’t do anything else.

-dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

-dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files], page 109.
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-feliminate-unused-debug-types
Normally, when producing DWARF2 output, GCC will emit debugging infor-
mation for all types declared in a compilation unit, regardless of whether or not
they are actually used in that compilation unit. Sometimes this is useful, such
as if, in the debugger, you want to cast a value to a type that is not actually
used in your program (but is declared). More often, however, this results in
a significant amount of wasted space. With this option, GCC will avoid pro-
ducing debug symbol output for types that are nowhere used in the source file
being compiled.

3.10 Options That Control Optimization

These options control various sorts of optimizations.
Without any optimization option, the compiler’s goal is to reduce the cost of compilation

and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

The compiler performs optimization based on the knowledge it has of the program. Op-
timization levels ‘-O’ and above, in particular, enable unit-at-a-time mode, which allows
the compiler to consider information gained from later functions in the file when compiling
a function. Compiling multiple files at once to a single output file in unit-at-a-time mode
allows the compiler to use information gained from all of the files when compiling each of
them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed.

-O
-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more

memory for a large function.
With ‘-O’, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.
‘-O’ turns on the following optimization flags:

-fdefer-pop

-fdelayed-branch

-fguess-branch-probability

-fcprop-registers

-floop-optimize

-fif-conversion

-fif-conversion2

-ftree-ccp

-ftree-dce

-ftree-dominator-opts

-ftree-dse

-ftree-ter

-ftree-lrs
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-ftree-sra

-ftree-copyrename

-ftree-fre

-ftree-ch

-funit-at-a-time

-fmerge-constants

‘-O’ also turns on ‘-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.
‘-O’ doesn’t turn on ‘-ftree-sra’ for the Ada compiler. This option must be
explicitly specified on the command line to be enabled for the Ada compiler.

-O2 Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify ‘-O2’. As compared to ‘-O’, this
option increases both compilation time and the performance of the generated
code.
‘-O2’ turns on all optimization flags specified by ‘-O’. It also turns on the
following optimization flags:

-fthread-jumps

-fcrossjumping

-foptimize-sibling-calls

-fcse-follow-jumps -fcse-skip-blocks

-fgcse -fgcse-lm

-fexpensive-optimizations

-fstrength-reduce

-frerun-cse-after-loop -frerun-loop-opt

-fcaller-saves

-fpeephole2

-fschedule-insns -fschedule-insns2

-fsched-interblock -fsched-spec

-fregmove

-fstrict-aliasing

-fdelete-null-pointer-checks

-freorder-blocks -freorder-functions

-falign-functions -falign-jumps

-falign-loops -falign-labels

-ftree-vrp

-ftree-pre

Please note the warning under ‘-fgcse’ about invoking ‘-O2’ on programs that
use computed gotos.

-O3 Optimize yet more. ‘-O3’ turns on all optimizations specified by ‘-O2’
and also turns on the ‘-finline-functions’, ‘-funswitch-loops’ and
‘-fgcse-after-reload’ options.

-O0 Do not optimize. This is the default.

-Os Optimize for size. ‘-Os’ enables all ‘-O2’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.
‘-Os’ disables the following optimization flags:

-falign-functions -falign-jumps -falign-loops

-falign-labels -freorder-blocks -freorder-blocks-and-partition

-fprefetch-loop-arrays -ftree-vect-loop-version
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If you use multiple ‘-O’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag ’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table
below, only one of the forms is listed—the one you typically will use. You can figure out
the other form by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-O’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-O’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.
Disabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load. This option is
now a nop and will be removed in 4.2.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
section “Register Usage” in GNU Compiler Collection (GCC) Internals.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.
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-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.
If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.
Enabled at level ‘-O3’.

-finline-functions-called-once
Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.
Enabled if ‘-funit-at-a-time’ is enabled.

-fearly-inlining
Inline functions marked by always_inline and functions whose body
seems smaller than the function call overhead early before doing
‘-fprofile-generate’ instrumentation and real inlining pass. Doing so makes
profiling significantly cheaper and usually inlining faster on programs having
large chains of nested wrapper functions.
Enabled by default.

-finline-limit=n
By default, GCC limits the size of functions that can be inlined. This flag allows
the control of this limit for functions that are explicitly marked as inline (i.e.,
marked with the inline keyword or defined within the class definition in c++).
n is the size of functions that can be inlined in number of pseudo instructions
(not counting parameter handling). The default value of n is 600. Increasing
this value can result in more inlined code at the cost of compilation time and
memory consumption. Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower programs). This option
is particularly useful for programs that use inlining heavily such as those based
on recursive templates with C++.
Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value ’. The ‘-finline-limit=n ’
option sets some of these parameters as follows:

max-inline-insns-single
is set to n/2.

max-inline-insns-auto
is set to n/2.

min-inline-insns
is set to 130 or n/4, whichever is smaller.
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max-inline-insns-rtl
is set to n.

See below for a documentation of the individual parameters controlling inlining.
Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect
functions using the extern inline extension in GNU C. In C++, emit any and
all inline functions into the object file.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.
GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the ‘-fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating point con-
stants) across compilation units.
This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.
This option implies ‘-fmerge-constants’. In addition to ‘-fmerge-constants’
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating point types. Languages like C or C++ require
each non-automatic variable to have distinct location, so using this option will
result in non-conforming behavior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC, IA-
64 and S/390.
The default is ‘-fbranch-count-reg’, enabled when ‘-fstrength-reduce’ is
enabled.
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-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.
This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.
The default is ‘-ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.
This option turns off this behavior because some programs explicitly rely on
variables going to the data section. E.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.
The default is ‘-fzero-initialized-in-bss’.

-fbounds-check
For front-ends that support it, generate additional code to check that indices
used to access arrays are within the declared range. This is currently only
supported by the Java and Fortran front-ends, where this option defaults to
true and false respectively.

-fmudflap -fmudflapth -fmudflapir
For front-ends that support it (C and C++), instrument all risky pointer/array
dereferencing operations, some standard library string/heap functions, and
some other associated constructs with range/validity tests. Modules so in-
strumented should be immune to buffer overflows, invalid heap use, and some
other classes of C/C++ programming errors. The instrumentation relies on a
separate runtime library (‘libmudflap’), which will be linked into a program
if ‘-fmudflap’ is given at link time. Run-time behavior of the instrumented
program is controlled by the MUDFLAP_OPTIONS environment variable. See env
MUDFLAP_OPTIONS=-help a.out for its options.
Use ‘-fmudflapth’ instead of ‘-fmudflap’ to compile and to link if your pro-
gram is multi-threaded. Use ‘-fmudflapir’, in addition to ‘-fmudflap’ or
‘-fmudflapth’, if instrumentation should ignore pointer reads. This produces
less instrumentation (and therefore faster execution) and still provides some
protection against outright memory corrupting writes, but allows erroneously
read data to propagate within a program.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of itera-
tion variables.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immedi-
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ately following it, depending on whether the condition is known to be true or
false.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been
performed.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-frerun-loop-opt
Run the loop optimizer twice.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better runtime performance if you disable the global common
subexpression elimination pass by adding ‘-fno-gcse’ to the command line.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fgcse-lm
When ‘-fgcse-lm’ is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

-fgcse-sm
When ‘-fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.
When used in conjunction with ‘-fgcse-lm’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

Not enabled at any optimization level.



72 Using the GNU Compiler Collection (GCC)

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).
Not enabled at any optimization level.

-fgcse-after-reload
When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass
is performed after reload. The purpose of this pass is to cleanup redundant
spilling.

-floop-optimize
Perform loop optimizations: move constant expressions out of loops, simplify
exit test conditions and optionally do strength-reduction as well.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-floop-optimize2
Perform loop optimizations using the new loop optimizer. The optimizations
(loop unrolling, peeling and unswitching, loop invariant motion) are enabled by
separate flags.

-funsafe-loop-optimizations
If given, the loop optimizer will assume that loop indices do not overflow, and
that the loops with nontrivial exit condition are not infinite. This enables a
wider range of loop optimizations even if the loop optimizer itself cannot prove
that these assumptions are valid. Using ‘-Wunsafe-loop-optimizations’, the
compiler will warn you if it finds this kind of loop.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and save code size. The resulting code may or may not perform better
than without cross-jumping.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion2.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks for null
pointers. The compiler assumes that dereferencing a null pointer would have
halted the program. If a pointer is checked after it has already been derefer-
enced, it cannot be null.
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In some environments, this assumption is not true, and programs can safely
dereference null pointers. Use ‘-fno-delete-null-pointer-checks’ to disable
this optimization for programs which depend on that behavior.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-foptimize-register-move
-fregmove

Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions.

Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimiza-
tion.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by
default when scheduling before register allocation, i.e. with ‘-fschedule-insns’
or at ‘-O2’ or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
‘-fschedule-insns’ or at ‘-O2’ or higher.



74 Using the GNU Compiler Collection (GCC)

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘-fschedule-insns’ or at
‘-O2’ or higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘-fschedule-insns’ or at
‘-O2’ or higher.

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue of
stalled insns into the ready list, during the second scheduling pass.

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue of
stalled insns. Has an effect only during the second scheduling pass, and only if
‘-fsched-stalled-insns’ is used and its value is not zero.

-fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling algo-
rithm. Superblock scheduling allows motion across basic block boundaries re-
sulting on faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.
This only makes sense when scheduling after register allocation, i.e. with
‘-fschedule-insns2’ or at ‘-O2’ or higher.

-fsched2-use-traces
Use ‘-fsched2-use-superblocks’ algorithm when scheduling after register al-
location and additionally perform code duplication in order to increase the size
of superblocks using tracer pass. See ‘-ftracer’ for details on trace formation.
This mode should produce faster but significantly longer programs. Also with-
out ‘-fbranch-probabilities’ the traces constructed may not match the re-
ality and hurt the performance. This only makes sense when scheduling after
register allocation, i.e. with ‘-fschedule-insns2’ or at ‘-O2’ or higher.

-freschedule-modulo-scheduled-loops
The modulo scheduling comes before the traditional scheduling, if a loop was
modulo scheduled we may want to prevent the later scheduling passes from
changing its schedule, we use this option to control that.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.
This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.
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Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-ftree-pre
Perform Partial Redundancy Elimination (PRE) on trees. This flag is enabled
by default at ‘-O2’ and ‘-O3’.

-ftree-fre
Perform Full Redundancy Elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on all
paths leading to the redundant computation. This analysis faster than PRE,
though it exposes fewer redundancies. This flag is enabled by default at ‘-O’
and higher.

-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at ‘-O’ and higher.

-ftree-store-copy-prop
Perform copy propagation of memory loads and stores. This pass eliminates
unnecessary copy operations in memory references (structures, global variables,
arrays, etc). This flag is enabled by default at ‘-O2’ and higher.

-ftree-salias
Perform structural alias analysis on trees. This flag is enabled by default at
‘-O’ and higher.

-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at ‘-O’
and higher.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at ‘-O’ and
higher.

-ftree-store-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
operates on both local scalar variables and memory stores and loads (global
variables, structures, arrays, etc). This flag is enabled by default at ‘-O2’ and
higher.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at ‘-O’ and higher.

-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at ‘-O’ and higher.

-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag is
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enabled by default at ‘-O’ and higher. It is not enabled for ‘-Os’, since it usually
increases code size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at ‘-O’ and
higher.

-ftree-loop-linear
Perform linear loop transformations on tree. This flag can improve cache per-
formance and allow further loop optimizations to take place.

-ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that
would be hard to handle at RTL level (function calls, operations that expand
to nontrivial sequences of insns). With ‘-funswitch-loops’ it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.

-ftree-loop-ivcanon
Create a canonical counter for number of iterations in the loop for that deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-fivopts Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees.

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at ‘-O’ and higher.

-ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler tem-
poraries to other variables at copy locations, usually resulting in variable names
which more closely resemble the original variables. This flag is enabled by de-
fault at ‘-O’ and higher.

-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at ‘-O’ and higher.

-ftree-lrs
Perform live range splitting during the SSA->normal phase. Distinct live ranges
of a variable are split into unique variables, allowing for better optimization
later. This is enabled by default at ‘-O’ and higher.

-ftree-vectorize
Perform loop vectorization on trees.
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-ftree-vect-loop-version
Perform loop versioning when doing loop vectorization on trees. When a loop
appears to be vectorizable except that data alignment or data dependence can-
not be determined at compile time then vectorized and non-vectorized versions
of the loop are generated along with runtime checks for alignment or depen-
dence to control which version is executed. This option is enabled by default
except at level ‘-Os’ where it is disabled.

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant prop-
agation pass, but instead of values, ranges of values are propagated. This allows
the optimizers to remove unnecessary range checks like array bound checks and
null pointer checks. This is enabled by default at ‘-O2’ and higher. Null pointer
check elimination is only done if ‘-fdelete-null-pointer-checks’ is enabled.

-ftracer Perform tail duplication to enlarge superblock size. This transformation sim-
plifies the control flow of the function allowing other optimizations to do better
job.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘-funroll-loops’ implies both ‘-fstrength-reduce’
and ‘-frerun-cse-after-loop’. This option makes code larger, and may or
may not make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘-funroll-all-loops’
implies the same options as ‘-funroll-loops’,

-fsplit-ivs-in-unroller
Enables expressing of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.

Combination of ‘-fweb’ and CSE is often sufficient to obtain the same effect.
However in cases the loop body is more complicated than a single basic block,
this is not reliable. It also does not work at all on some of the architectures
due to restrictions in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler will create multiple copies of some local variables
when unrolling a loop which can result in superior code.

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

These options may generate better or worse code; results are highly dependent
on the structure of loops within the source code.



78 Using the GNU Compiler Collection (GCC)

-fno-peephole
-fno-peephole2

Disable any machine-specific peephole optimizations. The difference between
‘-fno-peephole’ and ‘-fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.
‘-fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-O2’,
‘-O3’, ‘-Os’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.
GCC will use heuristics to guess branch probabilities if they are not
provided by profiling feedback (‘-fprofile-arcs’). These heuristics
are based on the control flow graph. If some branch probabilities are
specified by ‘__builtin_expect’, then the heuristics will be used to guess
branch probabilities for the rest of the control flow graph, taking the
‘__builtin_expect’ info into account. The interactions between the heuristics
and ‘__builtin_expect’ can be complex, and in some cases, it may be useful
to disable the heuristics so that the effects of ‘__builtin_expect’ are easier
to understand.
The default is ‘-fguess-branch-probability’ at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.
Enabled at levels ‘-O2’, ‘-O3’.

-freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and .o files, to improve paging and cache
locality performance.
This optimization is automatically turned off in the presence of exception han-
dling, for linkonce sections, for functions with a user-defined section attribute
and on any architecture that does not support named sections.

-freorder-functions
Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.
Also profile feedback must be available in to make this option effective. See
‘-fprofile-arcs’ for details.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the
language being compiled. For C (and C++), this activates optimizations based
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on the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.
Pay special attention to code like this:

union a_union {

int i;

double d;

};

int f() {

a_union t;

t.d = 3.0;

return t.i;

}

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with
‘-fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above will work as expected.
However, this code might not:

int f() {

a_union t;

int* ip;

t.d = 3.0;

ip = &t.i;

return *ip;

}

Every language that wishes to perform language-specific alias analysis should
define a function that computes, given an tree node, an alias set for the node.
Nodes in different alias sets are not allowed to alias. For an example, see the C
front-end function c_get_alias_set.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the
next 32-byte boundary, but ‘-falign-functions=24’ would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.
‘-fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean
that functions will not be aligned.
Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘-falign-functions’. This option can easily make code slower, because
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it must insert dummy operations for when the branch target is reached in the
usual flow of the code.
‘-fno-align-labels’ and ‘-falign-labels=1’ are equivalent and mean that
labels will not be aligned.
If ‘-falign-loops’ or ‘-falign-jumps’ are applicable and are greater than this
value, then their values are used instead.
If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
‘-falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.
‘-fno-align-loops’ and ‘-falign-loops=1’ are equivalent and mean that
loops will not be aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘-falign-functions’. In this case, no dummy operations need be executed.
‘-fno-align-jumps’ and ‘-falign-jumps=1’ are equivalent and mean that
loops will not be aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-funit-at-a-time
Parse the whole compilation unit before starting to produce code. This allows
some extra optimizations to take place but consumes more memory (in general).
There are some compatibility issues with unit-at-at-time mode:
• enabling unit-at-a-time mode may change the order in which functions,

variables, and top-level asm statements are emitted, and will likely break
code relying on some particular ordering. The majority of such top-level
asm statements, though, can be replaced by section attributes.

• unit-at-a-time mode removes unreferenced static variables and functions.
This may result in undefined references when an asm statement refers di-
rectly to variables or functions that are otherwise unused. In that case
either the variable/function shall be listed as an operand of the asm state-
ment operand or, in the case of top-level asm statements the attribute used
shall be used on the declaration.

• Static functions now can use non-standard passing conventions that may
break asm statements calling functions directly. Again, attribute used will
prevent this behavior.
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As a temporary workaround, ‘-fno-unit-at-a-time’ can be used, but this
scheme may not be supported by future releases of GCC.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fweb Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables will no longer stay in a
“home register”.
Enabled by default with ‘-funroll-loops’.

-fwhole-program
Assume that the current compilation unit represents whole program being com-
piled. All public functions and variables with the exception of main and those
merged by attribute externally_visible become static functions and in a af-
fect gets more aggressively optimized by interprocedural optimizers. While this
option is equivalent to proper use of static keyword for programs consisting
of single file, in combination with option ‘--combine’ this flag can be used to
compile most of smaller scale C programs since the functions and variables be-
come local for the whole combined compilation unit, not for the single source
file itself.

-fno-cprop-registers
After register allocation and post-register allocation instruction splitting, we
perform a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.
Disabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fprofile-generate
Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use ‘-fprofile-generate’ both when compiling and when linking your
program.
The following options are enabled: -fprofile-arcs, -fprofile-values, -
fvpt.

-fprofile-use
Enable profile feedback directed optimizations, and optimizations generally
profitable only with profile feedback available.
The following options are enabled: -fbranch-probabilities, -fvpt,
-funroll-loops, -fpeel-loops, -ftracer, -fno-loop-optimize.

The following options control compiler behavior regarding floating point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.
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This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘-ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-ffast-math
Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’,
‘-fno-trapping-math’, ‘-ffinite-math-only’, ‘-fno-rounding-math’,
‘-fno-signaling-nans’ and ‘fcx-limited-range’.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

-fno-math-errno
Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘-fmath-errno’.

On Darwin systems, the math library never sets errno. There is therefore
no reason for the compiler to consider the possibility that it might, and
‘-fno-math-errno’ is the default.

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘-fno-unsafe-math-optimizations’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications.

The default is ‘-fno-finite-math-only’.
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-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inex-
act result and invalid operation. This option implies ‘-fno-signaling-nans’.
Setting this option may allow faster code if one relies on “non-stop” IEEE
arithmetic, for example.
This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.
The default is ‘-ftrapping-math’.

-frounding-math
Disable transformations and optimizations that assume default floating point
rounding behavior. This is round-to-zero for all floating point to integer con-
versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating point expressions at compile-time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.
The default is ‘-fno-rounding-math’.
This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command line option will be used to specify the default state for FENV_ACCESS.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘-ftrapping-math’.
This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘-fno-signaling-nans’.
This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant
Treat floating point constant as single precision constant instead of implicitly
converting it to double precision constant.

-fcx-limited-range
-fno-cx-limited-range

When enabled, this option states that a range reduction step is not needed
when performing complex division. The default is ‘-fno-cx-limited-range’,
but is enabled by ‘-ffast-math’.
This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.
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The following options control optimizations that may improve performance, but are not
enabled by any ‘-O’ options. This section includes experimental options that may produce
broken code.

-fbranch-probabilities
After running a program compiled with ‘-fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gcc], page 53), you can compile it a sec-
ond time using ‘-fbranch-probabilities’, to improve optimizations based
on the number of times each branch was taken. When the program com-
piled with ‘-fprofile-arcs’ exits it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file The information in this data file is very
dependent on the structure of the generated code, so you must use the same
source code and the same optimization options for both compilations.
With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to
exactly determine which path is taken more often.

-fprofile-values
If combined with ‘-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.
With ‘-fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions and adds ‘REG_VALUE_PROFILE’ notes to instructions
for their later usage in optimizations.
Enabled with ‘-fprofile-generate’ and ‘-fprofile-use’.

-fvpt If combined with ‘-fprofile-arcs’, it instructs the compiler to add a code to
gather information about values of expressions.
With ‘-fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operation using the knowledge about the value of the
denominator.

-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization will most benefit processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables will no
longer stay in a “home register”.
Enabled by default with ‘-funroll-loops’.

-ftracer Perform tail duplication to enlarge superblock size. This transformation sim-
plifies the control flow of the function allowing other optimizations to do better
job.
Enabled with ‘-fprofile-use’.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘-funroll-loops’ implies ‘-frerun-cse-after-loop’,
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‘-fweb’ and ‘-frename-registers’. It also turns on complete loop peeling (i.e.
complete removal of loops with small constant number of iterations). This
option makes code larger, and may or may not make it run faster.
Enabled with ‘-fprofile-use’.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘-funroll-all-loops’
implies the same options as ‘-funroll-loops’.

-fpeel-loops
Peels the loops for that there is enough information that they do not roll much
(from profile feedback). It also turns on complete loop peeling (i.e. complete
removal of loops with small constant number of iterations).
Enabled with ‘-fprofile-use’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the new loop optimizer. Enabled at
level ‘-O1’

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.
Disabled at level ‘-Os’.

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.
Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format and SPARC processors running Solaris 2 have linkers with
such optimizations. AIX may have these optimizations in the future.
Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging
if you specify both this option and ‘-g’.

-fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading. The use of target registers can typically be exposed only during
reload, thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.
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-fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.

-fbtr-bb-exclusive
When performing branch target register load optimization, don’t reuse branch
target registers in within any basic block.

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.
This includes functions that call alloca, and functions with buffers larger than
8 bytes. The guards are initialized when a function is entered and then checked
when the function exits. If a guard check fails, an error message is printed and
the program exits.

-fstack-protector-all
Like ‘-fstack-protector’ except that all functions are protected.

--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC will not inline functions that contain more
that a certain number of instructions. You can control some of these constants
on the command-line using the ‘--param’ option.
The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.
In each case, the value is an integer. The allowable choices for name are given
in the following table:

salias-max-implicit-fields
The maximum number of fields in a variable without direct struc-
ture accesses for which structure aliasing will consider trying to
track each field. The default is 5

sra-max-structure-size
The maximum structure size, in bytes, at which the scalar replace-
ment of aggregates (SRA) optimization will perform block copies.
The default value, 0, implies that GCC will select the most appro-
priate size itself.

sra-field-structure-ratio
The threshold ratio (as a percentage) between instantiated fields
and the complete structure size. We say that if the ratio of the
number of bytes in instantiated fields to the number of bytes in the
complete structure exceeds this parameter, then block copies are
not used. The default is 75.

max-crossjump-edges
The maximum number of incoming edges to consider for crossjump-
ing. The algorithm used by ‘-fcrossjumping’ is O(N2) in the



Chapter 3: GCC Command Options 87

number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable size.

min-crossjump-insns
The minimum number of instructions which must be matched at
the end of two blocks before crossjumping will be performed on
them. This value is ignored in the case where all instructions in
the block being crossjumped from are matched. The default value
is 5.

max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N2) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored. The default value is 8.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions is searched, the time savings from filling the delay
slot will be minimal so stop searching. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable run time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This param-
eter should be removed when the delay slot code is rewritten to
maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run. The default is 1.

max-pending-list-length
The maximum number of pending dependencies scheduling will al-
low before flushing the current state and starting over. Large func-
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tions with few branches or calls can create excessively large lists
which needlessly consume memory and resources.

max-inline-insns-single
Several parameters control the tree inliner used in gcc. This num-
ber sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
will consider for inlining. This only affects functions declared in-
line and methods implemented in a class declaration (C++). The
default value is 450.

max-inline-insns-auto
When you use ‘-finline-functions’ (included in ‘-O3’), a lot of
functions that would otherwise not be considered for inlining by
the compiler will be investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied. The default value is 90.

large-function-insns
The limit specifying really large functions. For functions
larger than this limit after inlining inlining is constrained by
‘--param large-function-growth’. This parameter is useful
primarily to avoid extreme compilation time caused by non-linear
algorithms used by the backend. This parameter is ignored when
‘-funit-at-a-time’ is not used. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in per-
cents. This parameter is ignored when ‘-funit-at-a-time’ is not
used. The default value is 100 which limits large function growth
to 2.0 times the original size.

large-unit-insns
The limit specifying large translation unit. Growth caused by
inlining of units larger than this limit is limited by ‘--param
inline-unit-growth’. For small units this might be too tight
(consider unit consisting of function A that is inline and B that
just calls A three time. If B is small relative to A, the growth
of unit is 300\% and yet such inlining is very sane. For very
large units consisting of small inlininable functions however
the overall unit growth limit is needed to avoid exponential
explosion of code size. Thus for smaller units, the size is increased
to ‘--param large-unit-insns’ before aplying ‘--param
inline-unit-growth’. The default is 10000

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by
inlining. This parameter is ignored when ‘-funit-at-a-time’ is
not used. The default value is 50 which limits unit growth to 1.5
times the original size.
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max-inline-insns-recursive
max-inline-insns-recursive-auto

Specifies maximum number of instructions out-of-line copy of self
recursive inline function can grow into by performing recursive in-
lining.
For functions declared inline ‘--param max-inline-insns-recursive’
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-O3’) is enabled and ‘--param max-inline-insns-recursive-auto’
is used. The default value is 450.

max-inline-recursive-depth
max-inline-recursive-depth-auto

Specifies maximum recursion depth used by the recursive inlining.
For functions declared inline ‘--param max-inline-recursive-depth’
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-O3’) is enabled and ‘--param max-inline-recursive-depth-auto’
is used. The default value is 450.

min-inline-recursive-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion
depth by increasing the prologue size or complexity of function
body to other optimizers.
When profile feedback is available (see ‘-fprofile-generate’) the
actual recursion depth can be guessed from probability that func-
tion will recurse via given call expression. This parameter lim-
its inlining only to call expression whose probability exceeds given
threshold (in percents). The default value is 10.

inline-call-cost
Specify cost of call instruction relative to simple arithmetics oper-
ations (having cost of 1). Increasing this cost disqualifies inlining
of non-leaf functions and at the same time increases size of leaf
function that is believed to reduce function size by being inlined.
In effect it increases amount of inlining for code having large ab-
straction penalty (many functions that just pass the arguments to
other functions) and decrease inlining for code with low abstraction
penalty. The default value is 16.

max-unrolled-insns
The maximum number of instructions that a loop should have if
that loop is unrolled, and if the loop is unrolled, it determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop should have if that loop is unrolled, and
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if the loop is unrolled, it determines how many times the loop code
is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop should have if
that loop is peeled, and if the loop is peeled, it determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

iv-consider-all-candidates-bound
Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable op-
timizations. Only the most relevant candidates are considered if
there are more candidates, to avoid quadratic time complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

iv-always-prune-cand-set-bound
If number of candidates in the set is smaller than this value, we
always try to remove unnecessary ivs from the set during its opti-
mization when a new iv is added to the set.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

vect-max-version-checks
The maximum number of runtime checks that can be performed
when doing loop versioning in the vectorizer. See option ftree-vect-
loop-version for more information.
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max-iterations-to-track
The maximum number of iterations of a loop the brute force algo-
rithm for analysis of # of iterations of the loop tries to evaluate.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in
program given basic block needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block
in function given basic block needs to have to be considered hot

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where function contain single loop with known
bound and other loop with unknown. We predict the known num-
ber of iterations correctly, while the unknown number of iterations
average to roughly 10. This means that the loop without bounds
would appear artificially cold relative to the other one.

tracer-dynamic-coverage
tracer-dynamic-coverage-feedback

This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.
The ‘tracer-dynamic-coverage-feedback’ is used only when pro-
file feedback is available. The real profiles (as opposed to statically
estimated ones) are much less balanced allowing the threshold to
be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is rather hokey argument, as most of the duplicates will
be eliminated later in cross jumping, so it may be set to much
higher values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

tracer-min-branch-ratio
tracer-min-branch-ratio-feedback

Stop forward growth if the best edge do have probability lower than
this threshold.
Similarly to ‘tracer-dynamic-coverage’ two values are present,
one for compilation for profile feedback and one for compilation
without. The value for compilation with profile feedback needs to
be more conservative (higher) in order to make tracer effective.

max-cse-path-length
Maximum number of basic blocks on path that cse considers. The
default is 10.
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max-cse-insns
The maximum instructions CSE process before flushing. The de-
fault is 1000.

global-var-threshold
Counts the number of function calls (n) and the number of call-
clobbered variables (v). If nxv is larger than this limit, a single
artificial variable will be created to represent all the call-clobbered
variables at function call sites. This artificial variable will then be
made to alias every call-clobbered variable. (done as int * size_t
on the host machine; beware overflow).

max-aliased-vops
Maximum number of virtual operands allowed to represent aliases
before triggering the alias grouping heuristic. Alias grouping re-
duces compile times and memory consumption needed for aliasing
at the expense of precision loss in alias information.

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of "RAM" is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ‘ggc-min-heapsize’ to zero causes a full collection to occur
at every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.
Again, tuning this may improve compilation speed, and has no
effect on code generation.

The default is the smaller of RAM/8, RLIMIT RSS, or a limit
which tries to ensure that RLIMIT DATA or RLIMIT AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.
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max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compile time increase with probably slightly
better performance. The default value is 100.

max-cselib-memory-location
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,
making the compile time increase with probably slightly better per-
formance. The default value is 500.

max-flow-memory-location
Similar as ‘max-cselib-memory-location’ but for dataflow live-
ness. The default value is 100.

reorder-blocks-duplicate
reorder-blocks-duplicate-feedback

Used by basic block reordering pass to decide whether to use un-
conditional branch or duplicate the code on its destination. Code
is duplicated when its estimated size is smaller than this value mul-
tiplied by the estimated size of unconditional jump in the hot spots
of the program.

The ‘reorder-block-duplicate-feedback’ is used only when pro-
file feedback is available and may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots
is more accurate.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.

min-sched-prob
The minimum probability of reaching a source block for interblock
speculative scheduling. The default value is 40.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register. The default is 10000.

integer-share-limit
Small integer constants can use a shared data structure, reducing
the compiler’s memory usage and increasing its speed. This sets the
maximum value of a shared integer constant’s. The default value
is 256.
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min-virtual-mappings
Specifies the minimum number of virtual mappings in the incre-
mental SSA updater that should be registered to trigger the virtual
mappings heuristic defined by virtual-mappings-ratio. The default
value is 100.

virtual-mappings-ratio
If the number of virtual mappings is virtual-mappings-ratio bigger
than the number of virtual symbols to be updated, then the incre-
mental SSA updater switches to a full update for those symbols.
The default ratio is 3.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that will receive stack
smashing protection when ‘-fstack-protection’ is used.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

max-fields-for-field-sensitive
Maximum number of fields in a structure we will treat in a field
sensitive manner during pointer analysis.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options
make sense only together with ‘-E’ because they cause the preprocessor output to be un-
suitable for actual compilation.

You can use ‘-Wp,option ’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

-Xpreprocessor option

Pass option as an option to the preprocessor. You can use this to supply system-
specific preprocessor options which GCC does not know how to recognize.
If you want to pass an option that takes an argument, you must use
‘-Xpreprocessor’ twice, once for the option and once for the argument.

-D name Predefine name as a macro, with definition 1.

-D name=definition
The contents of definition are tokenized and processed as if they appeared dur-
ing translation phase three in a ‘#define’ directive. In particular, the definition
will be truncated by embedded newline characters.
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If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.
If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name(args...)=definition’’ works.
‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All ‘-imacros file ’ and ‘-include file ’ options are processed after all
‘-D’ and ‘-U’ options.

-U name Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

-undef Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

-I dir Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-I’ are searched before the standard system include di-
rectories. If the directory dir is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and the
special treatment of system headers are not defeated .

-o file Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-o’ to specify the output file.

-Wall Turns on all optional warnings which are desirable for normal code. At present
this is ‘-Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of the
preprocessor’s warnings are on by default and have no options to control them.

-Wcomment
-Wcomments

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs
Most trigraphs in comments cannot affect the meaning of the program. How-
ever, a trigraph that would form an escaped newline (‘??/’ at the end of a line)
can, by changing where the comment begins or ends. Therefore, only trigraphs
that would form escaped newlines produce warnings inside a comment.
This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion
without warnings, but get the other ‘-Wall’ warnings, use ‘-trigraphs -Wall
-Wno-trigraphs’.

-Wtraditional
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.
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-Wimport Warn the first time ‘#import’ is used.

-Wundef Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros
Warn about macros defined in the main file that are unused. A macro is used if
it is expanded or tested for existence at least once. The preprocessor will also
warn if the macro has not been used at the time it is redefined or undefined.
Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.
Note: If a macro is actually used, but only used in skipped conditional blocks,
then CPP will report it as unused. To avoid the warning in such a case, you
might improve the scope of the macro’s definition by, for example, moving it
into the first skipped block. Alternatively, you could provide a dummy use with
something like:

#if defined the_macro_causing_the_warning

#endif

-Wendif-labels
Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually
happens in code of the form

#if FOO

...

#else FOO

...

#endif FOO

The second and third FOO should be in comments, but often are not in older
programs. This warning is on by default.

-Werror Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers
Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

-w Suppress all warnings, including those which GNU CPP issues by default.

-pedantic
Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

-pedantic-errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

-M Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
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the names of all the included files, including those coming from ‘-include’ or
‘-imacros’ command line options.
Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the basename of the source file with any suffix replaced with object file suffix.
If there are many included files then the rule is split into several lines using
‘\’-newline. The rule has no commands.
This option does not suppress the preprocessor’s debug output, such as ‘-dM’.
To avoid mixing such debug output with the dependency rules you should ex-
plicitly specify the dependency output file with ‘-MF’, or use an environment
variable like DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables],
page 196). Debug output will still be sent to the regular output stream as
normal.
Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit
‘-w’.

-MM Like ‘-M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.
This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

-MF file When used with ‘-M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.
When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

-MG In conjunction with an option such as ‘-M’ requesting dependency generation,
‘-MG’ assumes missing header files are generated files and adds them to the
dependency list without raising an error. The dependency filename is taken
directly from the #include directive without prepending any path. ‘-MG’ also
suppresses preprocessed output, as a missing header file renders this useless.
This feature is used in automatic updating of makefiles.

-MP This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating the
‘Makefile’ to match.
This is typical output:

test.o: test.c test.h

test.h:

-MT target

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, including any path, deletes any file
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suffix such as ‘.c’, and appends the platform’s usual object suffix. The result
is the target.

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.

For example, ‘-MT ’$(objpfx)foo.o’’ might give
$(objpfx)foo.o: foo.c

-MQ target

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ ’$(objpfx)foo.o’’ gives

$$(objpfx)foo.o: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

-MD ‘-MD’ is equivalent to ‘-M -MF file ’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-o’ option is given. If it is, the driver uses
its argument but with a suffix of ‘.d’, otherwise it take the basename of the
input file and applies a ‘.d’ suffix.

If ‘-MD’ is used in conjunction with ‘-E’, any ‘-o’ switch is understood to specify
the dependency output file (but see [-MF], page 97), but if used without ‘-E’,
each ‘-o’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

-MMD Like ‘-MD’ except mention only user header files, not system header files.

-fpch-deps
When using precompiled headers (see Section 3.20 [Precompiled Headers],
page 199), this flag will cause the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified only the
precompiled header would be listed and not the files that were used to create
it because those files are not consulted when a precompiled header is used.

-fpch-preprocess
This option allows use of a precompiled header (see Section 3.20 [Precompiled
Headers], page 199) together with ‘-E’. It inserts a special #pragma, #pragma
GCC pch_preprocess "<filename>" in the output to mark the place where the
precompiled header was found, and its filename. When ‘-fpreprocessed’ is in
use, GCC recognizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only
really suitable as input to GCC. It is switched on by ‘-save-temps’.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may
be absolute or it may be relative to GCC’s current directory.
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-x c
-x c++
-x objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, ‘.m’, or ‘.S’. Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic
mode.
Note: Previous versions of cpp accepted a ‘-lang’ option which selected both
the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘-l’ option.

-std=standard
-ansi Specify the standard to which the code should conform. Currently CPP knows

about C and C++ standards; others may be added in the future.
standard may be one of:

iso9899:1990
c89 The ISO C standard from 1990. ‘c89’ is the customary shorthand

for this version of the standard.
The ‘-ansi’ option is equivalent to ‘-std=c89’.

iso9899:199409
The 1990 C standard, as amended in 1994.

iso9899:1999
c99
iso9899:199x
c9x The revised ISO C standard, published in December 1999. Before

publication, this was known as C9X.

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99
gnu9x The 1999 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

gnu++98 The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

-I- Split the include path. Any directories specified with ‘-I’ options before ‘-I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘-I’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.
In addition, ‘-I-’ inhibits the use of the directory of the current file direc-
tory as the first search directory for #include "file". This option has been
deprecated.
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-nostdinc
Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++
Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

-include file

Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-include’ options are given, the files are included in the order they
appear on the command line.

-imacros file

Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by
‘-include’.

-idirafter dir

Search dir for header files, but do it after all directories specified with ‘-I’ and
the standard system directories have been exhausted. dir is treated as a system
include directory.

-iprefix prefix

Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final ‘/’.

-iwithprefix dir

-iwithprefixbefore dir

Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-iwithprefixbefore’ puts it
in the same place ‘-I’ would; ‘-iwithprefix’ puts it where ‘-idirafter’ would.

-isysroot dir

This option is like the ‘--sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.

-isystem dir

Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories.
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-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-I’ and before
the standard system directories.

-fdollars-in-identifiers
Accept ‘$’ in identifiers.

-fextended-identifiers
Accept universal character names in identifiers. This option is experimental; in
a future version of GCC, it will be enabled by default for C99 and C++.

-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.
‘-fpreprocessed’ is implicit if the input file has one of the extensions ‘.i’,
‘.ii’ or ‘.mi’. These are the extensions that GCC uses for preprocessed files
created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character con-
stants. The default is UTF-32 or UTF-16, whichever corresponds to the width
of wchar_t. As with ‘-fexec-charset’, charset can be any encoding supported
by the system’s iconv library routine; however, you will have problems with
encodings that do not fit exactly in wchar_t.

-finput-charset=charset
Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command line option. Currently
the command line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

-fworking-directory
Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
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When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it’s present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘-fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-A predicate=answer
Make an assertion with the predicate predicate and answer answer. This form is
preferred to the older form ‘-A predicate(answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer
Cancel an assertion with the predicate predicate and answer answer.

-dCHARS CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler
proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

‘M’ Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.

‘D’ Like ‘M’ except in two respects: it does not include the predefined
macros, and it outputs both the ‘#define’ directives and the result
of preprocessing. Both kinds of output go to the standard output
file.

‘N’ Like ‘D’, but emit only the macro names, not their expansions.

‘I’ Output ‘#include’ directives in addition to the result of prepro-
cessing.

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

-C Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.
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You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#’.

-CC Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.

The ‘-CC’ option is generally used to support lint comments.

-traditional-cpp
Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO
C preprocessors.

-trigraphs
Process trigraph sequences. These are three-character sequences, all starting
with ‘??’, that are defined by ISO C to stand for single characters. For example,
‘??/’ stands for ‘\’, so ‘’??/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.

The nine trigraphs and their replacements are
Trigraph: ??( ??) ??< ??> ??= ??/ ??’ ??! ??-

Replacement: [ ] { } # \ ^ | ~

-remap Enable special code to work around file systems which only permit very short
file names, such as MS-DOS.

--help
--target-help

Print text describing all the command line options instead of preprocessing
anything.

-v Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with ‘...x’ and a valid one with ‘...!’ .

-version
--version

Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.
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3.12 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option

Pass option as an option to the assembler. You can use this to supply system-
specific assembler options which GCC does not know how to recognize.
If you want to pass an option that takes an argument, you must use
‘-Xassembler’ twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

object-file-name

A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-c
-S
-E If any of these options is used, then the linker is not run, and object file names

should not be used as arguments. See Section 3.2 [Overall Options], page 17.

-llibrary
-l library

Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)
It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.o -lz bar.o’ searches library ‘z’ after file ‘foo.o’ but before
‘bar.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.
The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.
The directories searched include several standard system directories plus any
that you specify with ‘-L’.
Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-l’ option and specifying a file
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name is that ‘-l’ surrounds library with ‘lib’ and ‘.a’ and searches several
directories.

-lobjc You need this special case of the ‘-l’ option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles
Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs
Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used normally,
unless ‘-nostartfiles’ is used. The compiler may generate calls to memcmp,
memset, memcpy and memmove. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other mechanism
when this option is specified.

-nostdlib
Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker. The
compiler may generate calls to memcmp, memset, memcpy and memmove. These
entries are usually resolved by entries in libc. These entry points should be
supplied through some other mechanism when this option is specified.
One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines that GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘-lgcc’ as
well. This ensures that you have no unresolved references to internal GCC
library subroutines. (For example, ‘__main’, used to ensure C++ constructors
will be called; see section “collect2” in GNU Compiler Collection (GCC) In-
ternals.)

-pie Produce a position independent executable on targets which support it. For
predictable results, you must also specify the same set of options that were
used to generate code (‘-fpie’, ‘-fPIE’, or model suboptions) when you specify
this option.

-rdynamic
Pass the flag ‘-export-dynamic’ to the ELF linker, on targets that support
it. This instructs the linker to add all symbols, not only used ones, to the
dynamic symbol table. This option is needed for some uses of dlopen or to
allow obtaining backtraces from within a program.

-s Remove all symbol table and relocation information from the executable.

-static On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.
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-shared Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options that were used to generate code
(‘-fpic’, ‘-fPIC’, or model suboptions) when you specify this option.1

-shared-libgcc
-static-libgcc

On systems that provide ‘libgcc’ as a shared library, these options force the
use of either the shared or static version respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.
There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘libgcc’.
Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.
If, instead, you use the GCC driver to create shared libraries, you may find
that they will not always be linked with the shared ‘libgcc’. If GCC finds, at
its configuration time, that you have a non-GNU linker or a GNU linker that
does not support option ‘--eh-frame-hdr’, it will link the shared version of
‘libgcc’ into shared libraries by default. Otherwise, it will take advantage of
the linker and optimize away the linking with the shared version of ‘libgcc’,
linking with the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation costs at
library load time.
However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘libgcc’.

-symbolic
Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-Xlinker
-z -Xlinker defs’). Only a few systems support this option.

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.
If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.
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pass ‘-assert definitions’, you must write ‘-Xlinker -assert -Xlinker
definitions’. It does not work to write ‘-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what
the linker expects.

-Wl,option
Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

-u symbol

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the
compiler:

-Idir Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-I’ option, the directories are scanned in left-to-right order;
the standard system directories come after.
If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘-I’, the ‘-I’ option will be ignored. The directory will
still be searched but as a system directory at its normal position in the system
include chain. This is to ensure that GCC’s procedure to fix buggy system
headers and the ordering for the include next directive are not inadvertently
changed. If you really need to change the search order for system directories,
use the ‘-nostdinc’ and/or ‘-isystem’ options.

-iquotedir
Add the directory dir to the head of the list of directories to be searched for
header files only for the case of ‘#include "file"’; they are not searched for
‘#include <file>’, otherwise just like ‘-I’.

-Ldir Add directory dir to the list of directories to be searched for ‘-l’.

-Bprefix This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.
The compiler driver program runs one or more of the subprograms ‘cpp’, ‘cc1’,
‘as’ and ‘ld’. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options], page 115).
For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if
any. If that name is not found, or if ‘-B’ was not specified, the driver tries two
standard prefixes, which are ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc/’. If
neither of those results in a file name that is found, the unmodified program
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name is searched for using the directories specified in your PATH environment
variable.

The compiler will check to see if the path provided by the ‘-B’ refers to a
directory, and if necessary it will add a directory separator character at the end
of the path.

‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into ‘-isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The run-time support file ‘libgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those
means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 196.

As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it will be replaced by ‘[dir/]include’.
This is to help with boot-strapping the compiler.

-specs=file
Process file after the compiler reads in the standard ‘specs’ file, in order
to override the defaults that the ‘gcc’ driver program uses when determin-
ing what switches to pass to ‘cc1’, ‘cc1plus’, ‘as’, ‘ld’, etc. More than one
‘-specs=file ’ can be specified on the command line, and they are processed
in order, from left to right.

--sysroot=dir
Use dir as the logical root directory for headers and libraries. For example, if
the compiler would normally search for headers in ‘/usr/include’ and libraries
in ‘/usr/lib’, it will instead search ‘dir/usr/include’ and ‘dir/usr/lib’.

If you use both this option and the ‘-isysroot’ option, then the ‘--sysroot’
option will apply to libraries, but the ‘-isysroot’ option will apply to header
files.

The GNU linker (beginning with version 2.16) has the necessary support for
this option. If your linker does not support this option, the header file aspect
of ‘--sysroot’ will still work, but the library aspect will not.

-I- This option has been deprecated. Please use ‘-iquote’ instead for ‘-I’ direc-
tories before the ‘-I-’ and remove the ‘-I-’. Any directories you specify with
‘-I’ options before the ‘-I-’ option are searched only for the case of ‘#include
"file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ direc-
tories are used this way.)
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In addition, the ‘-I-’ option inhibits the use of the current directory (where
the current input file came from) as the first search directory for ‘#include
"file"’. There is no way to override this effect of ‘-I-’. With ‘-I.’ you
can specify searching the directory which was current when the compiler was
invoked. That is not exactly the same as what the preprocessor does by default,
but it is often satisfactory.
‘-I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

3.15 Specifying subprocesses and the switches to pass to
them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do
the work of compiling, assembling and linking. GCC interprets its command-line parameters
and uses these to deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled by spec strings. In
most cases there is one spec string for each program that GCC can invoke, but a few
programs have multiple spec strings to control their behavior. The spec strings built into
GCC can be overridden by using the ‘-specs=’ command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line and it can be one of the following:

%command Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>
Search for file and insert its text at the current point in the specs
file.

%include_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

%rename old_name new_name

Rename the spec string old name to new name.

*[spec_name]:
This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered
to be the text for the spec string. If this results in an empty string then the
spec will be deleted. (Or, if the spec did not exist, then nothing will happened.)
Otherwise, if the spec does not currently exist a new spec will be created. If the
spec does exist then its contents will be overridden by the text of this directive,
unless the first character of that text is the ‘+’ character, in which case the text
will be appended to the spec.

[suffix]:
Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the
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indicated suffix. When the compiler encounters an input file with the named
suffix, it will processes the spec string in order to work out how to compile that
file. For example:

.ZZ:

z-compile -input %i

This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘-input’ and with the result of performing the ‘%i’ substitution. (See below.)
As an alternative to providing a spec string, the text that follows a suffix di-
rective can be one of the following:

@language
This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:

.ZZ:

@c++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:
name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will
add an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this
list.

asm Options to pass to the assembler

asm_final Options to pass to the assembler post-processor

cpp Options to pass to the C preprocessor

cc1 Options to pass to the C compiler

cc1plus Options to pass to the C++ compiler

endfile Object files to include at the end of the link

link Options to pass to the linker

lib Libraries to include on the command line to the linker

libgcc Decides which GCC support library to pass to the linker

linker Sets the name of the linker

predefines Defines to be passed to the C preprocessor

signed_char Defines to pass to CPP to say whether char is signed

by default

startfile Object files to include at the start of the link

Here is a small example of a spec file:
%rename lib old_lib

*lib:

--start-group -lgcc -lc -leval1 --end-group %(old_lib)

This example renames the spec called ‘lib’ to ‘old_lib’ and then overrides the previous
definition of ‘lib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.
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Spec strings are a list of command-line options to be passed to their corresponding pro-
gram. In addition, the spec strings can contain ‘%’-prefixed sequences to substitute variable
text or to conditionally insert text into the command line. Using these constructs it is
possible to generate quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

%% Substitute one ‘%’ into the program name or argument.

%i Substitute the name of the input file being processed.

%b Substitute the basename of the input file being processed. This is the substring
up to (and not including) the last period and not including the directory.

%B This is the same as ‘%b’, but include the file suffix (text after the last period).

%d Marks the argument containing or following the ‘%d’ as a temporary file name,
so that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this
contributes no text to the argument.

%gsuffix Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%d’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
%g.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s’. suffix
matches the regexp ‘[.A-Za-z]*’ or the special string ‘%O’, which is treated
exactly as if ‘%O’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

%usuffix Like ‘%g’, but generates a new temporary file name even if ‘%usuffix ’ was
already seen.

%Usuffix Substitutes the last file name generated with ‘%usuffix ’, generating a new one
if there is no such last file name. In the absence of any ‘%usuffix ’, this is
just like ‘%gsuffix ’, except they don’t share the same suffix space, so ‘%g.s
... %U.s ... %g.s ... %U.s’ would involve the generation of two distinct file
names, one for each ‘%g.s’ and another for each ‘%U.s’. Previously, ‘%U’ was
simply substituted with a file name chosen for the previous ‘%u’, without regard
to any appended suffix.

%jsuffix Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if save-temps is off; otherwise, substitute the name of a temporary file, just like
‘%u’. This temporary file is not meant for communication between processes,
but rather as a junk disposal mechanism.

%|suffix
%msuffix Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘%|’ substitutes a single

dash and ‘%m’ substitutes nothing at all. These are the two most common
ways to instruct a program that it should read from standard input or write
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to standard output. If you need something more elaborate you can use an
‘%{pipe:X}’ construct: see for example ‘f/lang-specs.h’.

%.SUFFIX Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is
subsequently output with ‘%*’. SUFFIX is terminated by the next space or %.

%w Marks the argument containing or following the ‘%w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ will substitute later.

%o Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%o’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they will be linked.

%O Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form
complete file names. The handling is such that ‘%O’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently
support additional suffix characters following ‘%O’ as they would following, for
example, ‘.o’.

%p Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

%P Like ‘%p’, but puts ‘__’ before and after the name of each predefined macro,
except for macros that start with ‘__’ or with ‘_L ’, where L is an uppercase
letter. This is for ISO C.

%I Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’
(made from TARGET_SYSTEM_ROOT), and ‘-isystem’ (made from
COMPILER_PATH and ‘-B’ options) as necessary.

%s Current argument is the name of a library or startup file of some sort. Search
for that file in a standard list of directories and substitute the full name found.

%estr Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

%(name) Substitute the contents of spec string name at this point.

%[name] Like ‘%(...)’ but put ‘__’ around ‘-D’ arguments.

%x{option}
Accumulate an option for ‘%X’.

%X Output the accumulated linker options specified by ‘-Wl’ or a ‘%x’ spec string.

%Y Output the accumulated assembler options specified by ‘-Wa’.

%Z Output the accumulated preprocessor options specified by ‘-Wp’.

%a Process the asm spec. This is used to compute the switches to be passed to the
assembler.
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%A Process the asm_final spec. This is a spec string for passing switches to an
assembler post-processor, if such a program is needed.

%l Process the link spec. This is the spec for computing the command line passed
to the linker. Typically it will make use of the ‘%L %G %S %D and %E’ sequences.

%D Dump out a ‘-L’ option for each directory that GCC believes might contain
startup files. If the target supports multilibs then the current multilib directory
will be prepended to each of these paths.

%L Process the lib spec. This is a spec string for deciding which libraries should
be included on the command line to the linker.

%G Process the libgcc spec. This is a spec string for deciding which GCC support
library should be included on the command line to the linker.

%S Process the startfile spec. This is a spec for deciding which object files
should be the first ones passed to the linker. Typically this might be a file
named ‘crt0.o’.

%E Process the endfile spec. This is a spec string that specifies the last object
files that will be passed to the linker.

%C Process the cpp spec. This is used to construct the arguments to be passed to
the C preprocessor.

%1 Process the cc1 spec. This is used to construct the options to be passed to the
actual C compiler (‘cc1’).

%2 Process the cc1plus spec. This is used to construct the options to be passed
to the actual C++ compiler (‘cc1plus’).

%* Substitute the variable part of a matched option. See below. Note that each
comma in the substituted string is replaced by a single space.

%<S Remove all occurrences of -S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this one will see -S,
‘%’ commands in the spec string after this one will not.

%:function(args)
Call the named function function, passing it args. args is first processed as a
nested spec string, then split into an argument vector in the usual fashion. The
function returns a string which is processed as if it had appeared literally as
part of the current spec.
The following built-in spec functions are provided:

if-exists
The if-exists spec function takes one argument, an absolute
pathname to a file. If the file exists, if-exists returns the path-
name. Here is a small example of its usage:

*startfile:

crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s

if-exists-else
The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is
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an absolute pathname to a file. If the file exists, if-exists-else
returns the pathname. If it does not exist, it returns the second
argument. This way, if-exists-else can be used to select one
file or another, based on the existence of the first. Here is a small
example of its usage:

*startfile:

crt0%O%s %:if-exists(crti%O%s) \

%:if-exists-else(crtbeginT%O%s crtbegin%O%s)

replace-outfile
The replace-outfile spec function takes two arguments. It looks
for the first argument in the outfiles array and replaces it with the
second argument. Here is a small example of its usage:

%{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}

%{S} Substitutes the -S switch, if that switch was given to GCC. If that switch was
not specified, this substitutes nothing. Note that the leading dash is omitted
when specifying this option, and it is automatically inserted if the substitution
is performed. Thus the spec string ‘%{foo}’ would match the command-line
option ‘-foo’ and would output the command line option ‘-foo’.

%W{S} Like %{S} but mark last argument supplied within as a file to be deleted on
failure.

%{S*} Substitutes all the switches specified to GCC whose names start with -S, but
which also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘-I’,
etc. GCC considers ‘-o foo’ as being one switch whose names starts with ‘o’.
%{o*} would substitute this text, including the space. Thus two arguments
would be generated.

%{S*&T*} Like %{S*}, but preserve order of S and T options (the order of S and T in
the spec is not significant). There can be any number of ampersand-separated
variables; for each the wild card is optional. Useful for CPP as ‘%{D*&U*&A*}’.

%{S:X} Substitutes X, if the ‘-S’ switch was given to GCC.

%{!S:X} Substitutes X, if the ‘-S’ switch was not given to GCC.

%{S*:X} Substitutes X if one or more switches whose names start with -S are specified to
GCC. Normally X is substituted only once, no matter how many such switches
appeared. However, if %* appears somewhere in X, then X will be substituted
once for each matching switch, with the %* replaced by the part of that switch
that matched the *.

%{.S:X} Substitutes X, if processing a file with suffix S.

%{!.S:X} Substitutes X, if not processing a file with suffix S.

%{S|P:X} Substitutes X if either -S or -P was given to GCC. This may be combined with
‘!’, ‘.’, and * sequences as well, although they have a stronger binding than
the ‘|’. If %* appears in X, all of the alternatives must be starred, and only the
first matching alternative is substituted.
For example, a spec string like this:
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%{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}

will output the following command-line options from the following input
command-line options:

fred.c -foo -baz

jim.d -bar -boggle

-d fred.c -foo -baz -boggle

-d jim.d -bar -baz -boggle

%{S:X; T:Y; :D}
If S was given to GCC, substitutes X; else if T was given to GCC, substitutes
Y; else substitutes D. There can be as many clauses as you need. This may be
combined with ., !, |, and * as needed.

The conditional text X in a %{S:X} or similar construct may contain other nested ‘%’
constructs or spaces, or even newlines. They are processed as usual, as described above.
Trailing white space in X is ignored. White space may also appear anywhere on the left side
of the colon in these constructs, except between . or * and the corresponding word.

The ‘-O’, ‘-f’, ‘-m’, and ‘-W’ switches are handled specifically in these constructs. If
another value of ‘-O’ or the negated form of a ‘-f’, ‘-m’, or ‘-W’ switch is found later in
the command line, the earlier switch value is ignored, except with {S*} where S is just one
letter, which passes all matching options.

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches
take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide
which input files have been specified without knowing which switches take arguments, and
it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘-l’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called ‘gcc’, or ‘<machine>-gcc’ when
cross-compiling, or ‘<machine>-gcc-<version>’ to run a version other than the one that
was installed last. Sometimes this is inconvenient, so GCC provides options that will switch
to another cross-compiler or version.

-b machine

The argument machine specifies the target machine for compilation.

The value to use for machine is the same as was specified as the machine type
when configuring GCC as a cross-compiler. For example, if a cross-compiler was
configured with ‘configure arm-elf’, meaning to compile for an arm processor
with elf binaries, then you would specify ‘-b arm-elf’ to run that cross com-
piler. Because there are other options beginning with ‘-b’, the configuration
must contain a hyphen.
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-V version

The argument version specifies which version of GCC to run. This is useful
when multiple versions are installed. For example, version might be ‘4.0’,
meaning to run GCC version 4.0.

The ‘-V’ and ‘-b’ options work by running the ‘<machine>-gcc-<version>’ executable,
so there’s no real reason to use them if you can just run that directly.

3.17 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among different installed com-
pilers for completely different target machines, such as VAX vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting
with ‘-m’, to choose among various hardware models or configurations—for example, 68010
vs 68020, floating coprocessor or none. A single installed version of the compiler can compile
for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

3.17.1 ARC Options

These options are defined for ARC implementations:

-EL Compile code for little endian mode. This is the default.

-EB Compile code for big endian mode.

-mmangle-cpu
Prepend the name of the cpu to all public symbol names. In multiple-processor
systems, there are many ARC variants with different instruction and register
set characteristics. This flag prevents code compiled for one cpu to be linked
with code compiled for another. No facility exists for handling variants that
are “almost identical”. This is an all or nothing option.

-mcpu=cpu
Compile code for ARC variant cpu. Which variants are supported depend on
the configuration. All variants support ‘-mcpu=base’, this is the default.

-mtext=text-section
-mdata=data-section
-mrodata=readonly-data-section

Put functions, data, and readonly data in text-section, data-section, and
readonly-data-section respectively by default. This can be overridden with the
section attribute. See Section 5.31 [Variable Attributes], page 247.

3.17.2 ARM Options

These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mabi=name
Generate code for the specified ABI. Permissible values are: ‘apcs-gnu’,
‘atpcs’, ‘aapcs’, ‘aapcs-linux’ and ‘iwmmxt’.
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-mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execu-
tion of the code. Specifying ‘-fomit-frame-pointer’ with this option will
cause the stack frames not to be generated for leaf functions. The default is
‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

-mthumb-interwork
Generate code which supports calling between the ARM and Thumb instruction
sets. Without this option the two instruction sets cannot be reliably used inside
one program. The default is ‘-mno-thumb-interwork’, since slightly larger code
is generated when ‘-mthumb-interwork’ is specified.

-mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function’s body. This means that
all functions will start with a recognizable set of instructions (or in fact one of
a choice from a small set of different function prologues), and this information
can be used to locate the start if functions inside an executable piece of code.
The default is ‘-msched-prolog’.

-mhard-float
Generate output containing floating point instructions. This is the default.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all ARM targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.
‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mfloat-abi=name
Specifies which ABI to use for floating point values. Permissible values are:
‘soft’, ‘softfp’ and ‘hard’.
‘soft’ and ‘hard’ are equivalent to ‘-msoft-float’ and ‘-mhard-float’ re-
spectively. ‘softfp’ allows the generation of floating point instructions, but
still uses the soft-float calling conventions.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default
for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.
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-mwords-little-endian
This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form ‘32107654’. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8.

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to
determine what kind of instructions it can emit when generating assembly
code. Permissible names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘arm6’, ‘arm60’,
‘arm600’, ‘arm610’, ‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’,
‘arm7dmi’, ‘arm70’, ‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’,
‘arm7500’, ‘arm7500fe’, ‘arm7tdmi’, ‘arm7tdmi-s’, ‘arm8’, ‘strongarm’,
‘strongarm110’, ‘strongarm1100’, ‘arm8’, ‘arm810’, ‘arm9’, ‘arm9e’,
‘arm920’, ‘arm920t’, ‘arm922t’, ‘arm946e-s’, ‘arm966e-s’, ‘arm968e-s’,
‘arm926ej-s’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’, ‘arm1020t’, ‘arm1026ej-s’,
‘arm10e’, ‘arm1020e’, ‘arm1022e’, ‘arm1136j-s’, ‘arm1136jf-s’, ‘mpcore’,
‘mpcorenovfp’, ‘arm1176jz-s’, ‘arm1176jzf-s’, ‘xscale’, ‘iwmmxt’, ‘ep9312’.

-mtune=name
This option is very similar to the ‘-mcpu=’ option, except that instead of speci-
fying the actual target processor type, and hence restricting which instructions
can be used, it specifies that GCC should tune the performance of the code as
if the target were of the type specified in this option, but still choosing the in-
structions that it will generate based on the cpu specified by a ‘-mcpu=’ option.
For some ARM implementations better performance can be obtained by using
this option.

-march=name
This specifies the name of the target ARM architecture. GCC uses this name
to determine what kind of instructions it can emit when generating assembly
code. This option can be used in conjunction with or instead of the ‘-mcpu=’
option. Permissible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’,
‘armv4t’, ‘armv5’, ‘armv5t’, ‘armv5te’, ‘armv6’, ‘armv6j’, ‘iwmmxt’, ‘ep9312’.

-mfpu=name
-mfpe=number
-mfp=number

This specifies what floating point hardware (or hardware emulation) is available
on the target. Permissible names are: ‘fpa’, ‘fpe2’, ‘fpe3’, ‘maverick’, ‘vfp’.
‘-mfp’ and ‘-mfpe’ are synonyms for ‘-mfpu’=‘fpe’number, for compatibility
with older versions of GCC.

If ‘-msoft-float’ is specified this specifies the format of floating point values.

-mstructure-size-boundary=n
The size of all structures and unions will be rounded up to a multiple of the
number of bits set by this option. Permissible values are 8, 32 and 64. The
default value varies for different toolchains. For the COFF targeted toolchain
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the default value is 8. A value of 64 is only allowed if the underlying ABI
supports it.

Specifying the larger number can produce faster, more efficient code, but can
also increase the size of the program. Different values are potentially incompati-
ble. Code compiled with one value cannot necessarily expect to work with code
or libraries compiled with another value, if they exchange information using
structures or unions.

-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It
will be executed if the function tries to return.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function will lie outside of the 64 megabyte
addressing range of the offset based version of subroutine call instruction.

Even if this switch is enabled, not all function calls will be turned into long calls.
The heuristic is that static functions, functions which have the ‘short-call’
attribute, functions that are inside the scope of a ‘#pragma no_long_calls’
directive and functions whose definitions have already been compiled within
the current compilation unit, will not be turned into long calls. The exception
to this rule is that weak function definitions, functions with the ‘long-call’
attribute or the ‘section’ attribute, and functions that are within the scope of
a ‘#pragma long_calls’ directive, will always be turned into long calls.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior, as will placing the function calls within the scope of
a ‘#pragma long_calls_off’ directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function pointers.

-mnop-fun-dllimport
Disable support for the dllimport attribute.

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading
it in the prologue for each function. The run-time system is responsible for
initializing this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless
stack-checking is enabled, when R9 is used.

-mcirrus-fix-invalid-insns
Insert NOPs into the instruction stream to in order to work around problems
with invalid Maverick instruction combinations. This option is only valid if the
‘-mcpu=ep9312’ option has been used to enable generation of instructions for
the Cirrus Maverick floating point co-processor. This option is not enabled by
default, since the problem is only present in older Maverick implementations.
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The default can be re-enabled by use of the ‘-mno-cirrus-fix-invalid-insns’
switch.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the
function prologue. The generated code is similar to this:

t0

.ascii "arm_poke_function_name", 0

.align

t1

.word 0xff000000 + (t1 - t0)

arm_poke_function_name

mov ip, sp

stmfd sp!, {fp, ip, lr, pc}

sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits
are set, then we know that there is a function name embedded immediately
preceding this location and has length ((pc[-3]) & 0xff000000).

-mthumb Generate code for the 16-bit Thumb instruction set. The default is to use the
32-bit ARM instruction set.

-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruc-
tion set header which switches to Thumb mode before executing the rest of the
function. This allows these functions to be called from non-interworking code.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute cor-
rectly regardless of whether the target code has been compiled for interworking
or not. There is a small overhead in the cost of executing a function pointer if
this option is enabled.

-mtp=name
Specify the access model for the thread local storage pointer. The valid models
are ‘soft’, which generates calls to __aeabi_read_tp, ‘cp15’, which fetches the
thread pointer from cp15 directly (supported in the arm6k architecture), and
‘auto’, which uses the best available method for the selected processor. The
default setting is ‘auto’.
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3.17.3 AVR Options

These options are defined for AVR implementations:

-mmcu=mcu
Specify ATMEL AVR instruction set or MCU type.
Instruction set avr1 is for the minimal AVR core, not supported by the C com-
piler, only for assembler programs (MCU types: at90s1200, attiny10, attiny11,
attiny12, attiny15, attiny28).
Instruction set avr2 (default) is for the classic AVR core with up to 8K pro-
gram memory space (MCU types: at90s2313, at90s2323, attiny22, at90s2333,
at90s2343, at90s4414, at90s4433, at90s4434, at90s8515, at90c8534, at90s8535).
Instruction set avr3 is for the classic AVR core with up to 128K program mem-
ory space (MCU types: atmega103, atmega603, at43usb320, at76c711).
Instruction set avr4 is for the enhanced AVR core with up to 8K program
memory space (MCU types: atmega8, atmega83, atmega85).
Instruction set avr5 is for the enhanced AVR core with up to 128K program
memory space (MCU types: atmega16, atmega161, atmega163, atmega32, at-
mega323, atmega64, atmega128, at43usb355, at94k).

-msize Output instruction sizes to the asm file.

-minit-stack=N
Specify the initial stack address, which may be a symbol or numeric value,
‘__stack’ is the default.

-mno-interrupts
Generated code is not compatible with hardware interrupts. Code size will be
smaller.

-mcall-prologues
Functions prologues/epilogues expanded as call to appropriate subroutines.
Code size will be smaller.

-mno-tablejump
Do not generate tablejump insns which sometimes increase code size.

-mtiny-stack
Change only the low 8 bits of the stack pointer.

-mint8 Assume int to be 8 bit integer. This affects the sizes of all types: A char will
be 1 byte, an int will be 1 byte, an long will be 2 bytes and long long will be 4
bytes. Please note that this option does not comply to the C standards, but it
will provide you with smaller code size.

3.17.4 Blackfin Options

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘-fomit-frame-pointer’ removes
the frame pointer for all functions which might make debugging harder.
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-mspecld-anomaly
When enabled, the compiler will ensure that the generated code does not contain
speculative loads after jump instructions. This option is enabled by default.

-mno-specld-anomaly
Don’t generate extra code to prevent speculative loads from occurring.

-mcsync-anomaly
When enabled, the compiler will ensure that the generated code does not con-
tain CSYNC or SSYNC instructions too soon after conditional branches. This
option is enabled by default.

-mno-csync-anomaly
Don’t generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.

-mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that the
entire program fits into the low 64k of memory.

-mno-low-64k
Assume that the program is arbitrarily large. This is the default.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This al-
lows for execute in place and shared libraries in an environment without virtual
memory management. This option implies ‘-fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used.
This is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being com-
piled. Specifying a value of 0 will generate more compact code, specifying other
values will force the allocation of that number to the current library but is no
more space or time efficient than omitting this option.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this regis-
ter. This switch is needed if the target function will lie outside of the 24 bit
addressing range of the offset based version of subroutine call instruction.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior. Note these switches have no effect on how the
compiler generates code to handle function calls via function pointers.

3.17.5 CRIS Options

These options are defined specifically for the CRIS ports.
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-march=architecture-type
-mcpu=architecture-type

Generate code for the specified architecture. The choices for architecture-
type are ‘v3’, ‘v8’ and ‘v10’ for respectively ETRAX 4, ETRAX 100, and
ETRAX 100 LX. Default is ‘v0’ except for cris-axis-linux-gnu, where the de-
fault is ‘v10’.

-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code,
except for the ABI and the set of available instructions. The choices for
architecture-type are the same as for ‘-march=architecture-type ’.

-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.

-melinux-stacksize=n
Only available with the ‘cris-axis-aout’ target. Arranges for indications in
the program to the kernel loader that the stack of the program should be set
to n bytes.

-metrax4
-metrax100

The options ‘-metrax4’ and ‘-metrax100’ are synonyms for ‘-march=v3’ and
‘-march=v8’ respectively.

-mmul-bug-workaround
-mno-mul-bug-workaround

Work around a bug in the muls and mulu instructions for CPU models where
it applies. This option is active by default.

-mpdebug Enable CRIS-specific verbose debug-related information in the assembly code.
This option also has the effect to turn off the ‘#NO_APP’ formatted-code indicator
to the assembler at the beginning of the assembly file.

-mcc-init
Do not use condition-code results from previous instruction; always emit com-
pare and test instructions before use of condition codes.

-mno-side-effects
Do not emit instructions with side-effects in addressing modes other than post-
increment.

-mstack-align
-mno-stack-align
-mdata-align
-mno-data-align
-mconst-align
-mno-const-align

These options (no-options) arranges (eliminate arrangements) for the stack-
frame, individual data and constants to be aligned for the maximum single
data access size for the chosen CPU model. The default is to arrange for 32-
bit alignment. ABI details such as structure layout are not affected by these
options.
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-m32-bit
-m16-bit
-m8-bit Similar to the stack- data- and const-align options above, these options arrange

for stack-frame, writable data and constants to all be 32-bit, 16-bit or 8-bit
aligned. The default is 32-bit alignment.

-mno-prologue-epilogue
-mprologue-epilogue

With ‘-mno-prologue-epilogue’, the normal function prologue and epilogue
that sets up the stack-frame are omitted and no return instructions or return
sequences are generated in the code. Use this option only together with visual
inspection of the compiled code: no warnings or errors are generated when
call-saved registers must be saved, or storage for local variable needs to be
allocated.

-mno-gotplt
-mgotplt With ‘-fpic’ and ‘-fPIC’, don’t generate (do generate) instruction sequences

that load addresses for functions from the PLT part of the GOT rather than
(traditional on other architectures) calls to the PLT. The default is ‘-mgotplt’.

-maout Legacy no-op option only recognized with the cris-axis-aout target.

-melf Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-
gnu targets.

-melinux Only recognized with the cris-axis-aout target, where it selects a GNU/linux-
like multilib, include files and instruction set for ‘-march=v8’.

-mlinux Legacy no-op option only recognized with the cris-axis-linux-gnu target.

-sim This option, recognized for the cris-axis-aout and cris-axis-elf arranges to link
with input-output functions from a simulator library. Code, initialized data
and zero-initialized data are allocated consecutively.

-sim2 Like ‘-sim’, but pass linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

3.17.6 CRX Options

These options are defined specifically for the CRX ports.

-mmac Enable the use of multiply-accumulate instructions. Disabled by default.

-mpush-args
Push instructions will be used to pass outgoing arguments when functions are
called. Enabled by default.

3.17.7 Darwin Options

These options are defined for all architectures running the Darwin operating system.
FSF GCC on Darwin does not create “fat” object files; it will create an object file for

the single architecture that it was built to target. Apple’s GCC on Darwin does create
“fat” files if multiple ‘-arch’ options are used; it does so by running the compiler or linker
multiple times and joining the results together with ‘lipo’.
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The subtype of the file created (like ‘ppc7400’ or ‘ppc970’ or ‘i686’) is determined
by the flags that specify the ISA that GCC is targetting, like ‘-mcpu’ or ‘-march’. The
‘-force_cpusubtype_ALL’ option can be used to override this.

The Darwin tools vary in their behavior when presented with an ISA mismatch. The
assembler, ‘as’, will only permit instructions to be used that are valid for the subtype of
the file it is generating, so you cannot put 64-bit instructions in an ‘ppc750’ object file.
The linker for shared libraries, ‘/usr/bin/libtool’, will fail and print an error if asked
to create a shared library with a less restrictive subtype than its input files (for instance,
trying to put a ‘ppc970’ object file in a ‘ppc7400’ library). The linker for executables, ‘ld’,
will quietly give the executable the most restrictive subtype of any of its input files.

-Fdir Add the framework directory dir to the head of the list of directories to be
searched for header files. These directories are interleaved with those specified
by ‘-I’ options and are scanned in a left-to-right order.
A framework directory is a directory with frameworks in it. A framework is a
directory with a ‘"Headers"’ and/or ‘"PrivateHeaders"’ directory contained
directly in it that ends in ‘".framework"’. The name of a framework is the
name of this directory excluding the ‘".framework"’. Headers associated with
the framework are found in one of those two directories, with ‘"Headers"’
being searched first. A subframework is a framework directory that is in a
framework’s ‘"Frameworks"’ directory. Includes of subframework headers can
only appear in a header of a framework that contains the subframework,
or in a sibling subframework header. Two subframeworks are siblings if
they occur in the same framework. A subframework should not have the
same name as a framework, a warning will be issued if this is violated.
Currently a subframework cannot have subframeworks, in the future, the
mechanism may be extended to support this. The standard frameworks can be
found in ‘"/System/Library/Frameworks"’ and ‘"/Library/Frameworks"’.
An example include looks like #include <Framework/header.h>, where
‘Framework’ denotes the name of the framework and header.h is found in the
‘"PrivateHeaders"’ or ‘"Headers"’ directory.

-gused Emit debugging information for symbols that are used. For STABS debugging
format, this enables ‘-feliminate-unused-debug-symbols’. This is by default
ON.

-gfull Emit debugging information for all symbols and types.

-mmacosx-version-min=version
The earliest version of MacOS X that this executable will run on is version.
Typical values of version include 10.1, 10.2, and 10.3.9.
The default for this option is to make choices that seem to be most useful.

-mone-byte-bool
Override the defaults for ‘bool’ so that ‘sizeof(bool)==1’. By default
‘sizeof(bool)’ is ‘4’ when compiling for Darwin/PowerPC and ‘1’ when
compiling for Darwin/x86, so this option has no effect on x86.
Warning: The ‘-mone-byte-bool’ switch causes GCC to generate code that
is not binary compatible with code generated without that switch. Using this
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switch may require recompiling all other modules in a program, including sys-
tem libraries. Use this switch to conform to a non-default data model.

-mfix-and-continue
-ffix-and-continue
-findirect-data

Generate code suitable for fast turn around development. Needed to enable gdb
to dynamically load .o files into already running programs. ‘-findirect-data’
and ‘-ffix-and-continue’ are provided for backwards compatibility.

-all_load
Loads all members of static archive libraries. See man ld(1) for more informa-
tion.

-arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be
fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man ld(1) for more information.

-bundle_loader executable

This option specifies the executable that will be loading the build output file
being linked. See man ld(1) for more information.

-dynamiclib
When passed this option, GCC will produce a dynamic library instead of an
executable when linking, using the Darwin ‘libtool’ command.

-force_cpusubtype_ALL
This causes GCC’s output file to have the ALL subtype, instead of one con-
trolled by the ‘-mcpu’ or ‘-march’ option.
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-allowable_client client_name

-client_name
-compatibility_version
-current_version
-dead_strip
-dependency-file
-dylib_file
-dylinker_install_name
-dynamic
-exported_symbols_list
-filelist
-flat_namespace
-force_flat_namespace
-headerpad_max_install_names
-image_base
-init
-install_name
-keep_private_externs
-multi_module
-multiply_defined
-multiply_defined_unused
-noall_load
-no_dead_strip_inits_and_terms
-nofixprebinding
-nomultidefs
-noprebind
-noseglinkedit
-pagezero_size
-prebind
-prebind_all_twolevel_modules
-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload
-seg1addr
-sectcreate
-sectobjectsymbols
-sectorder
-segaddr
-segs_read_only_addr
-segs_read_write_addr
-seg_addr_table
-seg_addr_table_filename
-seglinkedit
-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module
-static
-sub_library
-sub_umbrella
-twolevel_namespace
-umbrella
-undefined
-unexported_symbols_list
-weak_reference_mismatches
-whatsloaded

These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.
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3.17.8 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for floating-point op-
erations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be
used to perform floating-point operations. Unless they are replaced by routines
that emulate the floating-point operations, or compiled in such a way as to call
such emulations routines, these routines will issue floating-point operations. If
you are compiling for an Alpha without floating-point operations, you must
ensure that the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required
to have floating-point registers.

-mfp-reg
-mno-fp-regs

Generate code that uses (does not use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is
not used, floating point operands are passed in integer registers as if they were
integers and floating-point results are passed in $0 instead of $f0. This is a
non-standard calling sequence, so any function with a floating-point argument
or return value called by code compiled with ‘-mno-fp-regs’ must also be
compiled with that option.

A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any floating-point registers.

-mieee The Alpha architecture implements floating-point hardware optimized for max-
imum performance. It is mostly compliant with the IEEE floating point stan-
dard. However, for full compliance, software assistance is required. This option
generates code fully IEEE compliant code except that the inexact-flag is not
maintained (see below). If this option is turned on, the preprocessor macro
_IEEE_FP is defined during compilation. The resulting code is less efficient but
is able to correctly support denormalized numbers and exceptional IEEE values
such as not-a-number and plus/minus infinity. Other Alpha compilers call this
option ‘-ieee_with_no_inexact’.

-mieee-with-inexact
This is like ‘-mieee’ except the generated code also maintains the IEEE inexact-
flag. Turning on this option causes the generated code to implement fully-
compliant IEEE math. In addition to _IEEE_FP, _IEEE_FP_EXACT is defined as
a preprocessor macro. On some Alpha implementations the resulting code may
execute significantly slower than the code generated by default. Since there is
very little code that depends on the inexact-flag, you should normally not spec-
ify this option. Other Alpha compilers call this option ‘-ieee_with_inexact’.
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-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘-fptm trap-mode ’. The trap mode can be set to one
of four values:

‘n’ This is the default (normal) setting. The only traps that are en-
abled are the ones that cannot be disabled in software (e.g., division
by zero trap).

‘u’ In addition to the traps enabled by ‘n’, underflow traps are enabled
as well.

‘su’ Like ‘su’, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).

‘sui’ Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘-fprm
rounding-mode ’. The rounding-mode can be one of:

‘n’ Normal IEEE rounding mode. Floating point numbers are rounded
towards the nearest machine number or towards the even machine
number in case of a tie.

‘m’ Round towards minus infinity.

‘c’ Chopped rounding mode. Floating point numbers are rounded to-
wards zero.

‘d’ Dynamic rounding mode. A field in the floating point control reg-
ister (fpcr, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies
the fpcr, ‘d’ corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating point traps are imprecise. This means with-
out software assistance it is impossible to recover from a floating trap and
program execution normally needs to be terminated. GCC can generate code
that can assist operating system trap handlers in determining the exact loca-
tion that caused a floating point trap. Depending on the requirements of an
application, different levels of precisions can be selected:

‘p’ Program precision. This option is the default and means a trap
handler can only identify which program caused a floating point
exception.

‘f’ Function precision. The trap handler can determine the function
that caused a floating point exception.

‘i’ Instruction precision. The trap handler can determine the exact
instruction that caused a floating point exception.
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Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘-resumption_safe’.

-mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the
line ‘.eflag 48’ in the function prologue of the generated assembly file. Under
DEC Unix, this has the effect that IEEE-conformant math library routines
will be linked in.

-mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to see if it can construct
it from smaller constants in two or three instructions. If it cannot, it will output
the constant as a literal and generate code to load it from the data segment at
runtime.

Use this option to require GCC to construct all integer constants using code,
even if it takes more instructions (the maximum is six).

You would typically use this option to build a shared library dynamic loader.
Itself a shared library, it must relocate itself in memory before it can find the
variables and constants in its own data segment.

-malpha-as
-mgas Select whether to generate code to be assembled by the vendor-supplied assem-

bler (‘-malpha-as’) or by the GNU assembler ‘-mgas’.

-mbwx
-mno-bwx
-mcix
-mno-cix
-mfix
-mno-fix
-mmax
-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX, FIX

and MAX instruction sets. The default is to use the instruction sets supported
by the CPU type specified via ‘-mcpu=’ option or that of the CPU on which
GCC was built if none was specified.

-mfloat-vax
-mfloat-ieee

Generate code that uses (does not use) VAX F and G floating point arithmetic
instead of IEEE single and double precision.

-mexplicit-relocs
-mno-explicit-relocs

Older Alpha assemblers provided no way to generate symbol relocations except
via assembler macros. Use of these macros does not allow optimal instruction
scheduling. GNU binutils as of version 2.12 supports a new syntax that al-
lows the compiler to explicitly mark which relocations should apply to which
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instructions. This option is mostly useful for debugging, as GCC detects the
capabilities of the assembler when it is built and sets the default accordingly.

-msmall-data
-mlarge-data

When ‘-mexplicit-relocs’ is in effect, static data is accessed via gp-relative
relocations. When ‘-msmall-data’ is used, objects 8 bytes long or smaller are
placed in a small data area (the .sdata and .sbss sections) and are accessed
via 16-bit relocations off of the $gp register. This limits the size of the small
data area to 64KB, but allows the variables to be directly accessed via a single
instruction.

The default is ‘-mlarge-data’. With this option the data area is limited to just
below 2GB. Programs that require more than 2GB of data must use malloc or
mmap to allocate the data in the heap instead of in the program’s data segment.

When generating code for shared libraries, ‘-fpic’ implies ‘-msmall-data’ and
‘-fPIC’ implies ‘-mlarge-data’.

-msmall-text
-mlarge-text

When ‘-msmall-text’ is used, the compiler assumes that the code of the entire
program (or shared library) fits in 4MB, and is thus reachable with a branch in-
struction. When ‘-msmall-data’ is used, the compiler can assume that all local
symbols share the same $gp value, and thus reduce the number of instructions
required for a function call from 4 to 1.

The default is ‘-mlarge-text’.

-mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine type
cpu type. You can specify either the ‘EV’ style name or the corresponding chip
number. GCC supports scheduling parameters for the EV4, EV5 and EV6
family of processors and will choose the default values for the instruction set
from the processor you specify. If you do not specify a processor type, GCC
will default to the processor on which the compiler was built.

Supported values for cpu type are

‘ev4’
‘ev45’
‘21064’ Schedules as an EV4 and has no instruction set extensions.

‘ev5’
‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘ev56’
‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pca56’
‘21164pc’
‘21164PC’ Schedules as an EV5 and supports the BWX and MAX extensions.
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‘ev6’
‘21264’ Schedules as an EV6 and supports the BWX, FIX, and MAX ex-

tensions.

‘ev67’
‘21264a’ Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX

extensions.

-mtune=cpu_type
Set only the instruction scheduling parameters for machine type cpu type. The
instruction set is not changed.

-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependent on the memory
access patterns used by the application and the size of the external cache on
the machine.
Valid options for time are

‘number ’ A decimal number representing clock cycles.

‘L1’
‘L2’
‘L3’
‘main’ The compiler contains estimates of the number of clock cycles for

“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also
called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

3.17.9 DEC Alpha/VMS Options

These ‘-m’ options are defined for the DEC Alpha/VMS implementations:

-mvms-return-codes
Return VMS condition codes from main. The default is to return POSIX style
condition (e.g. error) codes.

3.17.10 FRV Options

-mgpr-32

Only use the first 32 general purpose registers.

-mgpr-64

Use all 64 general purpose registers.

-mfpr-32

Use only the first 32 floating point registers.

-mfpr-64

Use all 64 floating point registers

-mhard-float
Use hardware instructions for floating point operations.
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-msoft-float
Use library routines for floating point operations.

-malloc-cc
Dynamically allocate condition code registers.

-mfixed-cc
Do not try to dynamically allocate condition code registers, only use icc0 and
fcc0.

-mdword

Change ABI to use double word insns.

-mno-dword
Do not use double word instructions.

-mdouble

Use floating point double instructions.

-mno-double
Do not use floating point double instructions.

-mmedia

Use media instructions.

-mno-media
Do not use media instructions.

-mmuladd

Use multiply and add/subtract instructions.

-mno-muladd
Do not use multiply and add/subtract instructions.

-mfdpic

Select the FDPIC ABI, that uses function descriptors to represent pointers to
functions. Without any PIC/PIE-related options, it implies ‘-fPIE’. With
‘-fpic’ or ‘-fpie’, it assumes GOT entries and small data are within a 12-bit
range from the GOT base address; with ‘-fPIC’ or ‘-fPIE’, GOT offsets are
computed with 32 bits.

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’. It’s enabled by default if
optimizing for speed and compiling for shared libraries (i.e., ‘-fPIC’ or ‘-fpic’),
or when an optimization option such as ‘-O3’ or above is present in the command
line.

-mTLS

Assume a large TLS segment when generating thread-local code.

-mtls

Do not assume a large TLS segment when generating thread-local code.
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-mgprel-ro
Enable the use of GPREL relocations in the FDPIC ABI for data that is known to
be in read-only sections. It’s enabled by default, except for ‘-fpic’ or ‘-fpie’:
even though it may help make the global offset table smaller, it trades 1 in-
struction for 4. With ‘-fPIC’ or ‘-fPIE’, it trades 3 instructions for 4, one of
which may be shared by multiple symbols, and it avoids the need for a GOT
entry for the referenced symbol, so it’s more likely to be a win. If it is not,
‘-mno-gprel-ro’ can be used to disable it.

-multilib-library-pic
Link with the (library, not FD) pic libraries. It’s implied by ‘-mlibrary-pic’,
as well as by ‘-fPIC’ and ‘-fpic’ without ‘-mfdpic’. You should never have to
use it explicitly.

-mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever a
stack frame is allocated. This option is enabled by default and can be disabled
with ‘-mno-linked-fp’.

-mlong-calls
Use indirect addressing to call functions outside the current compilation unit.
This allows the functions to be placed anywhere within the 32-bit address space.

-malign-labels
Try to align labels to an 8-byte boundary by inserting nops into the previous
packet. This option only has an effect when VLIW packing is enabled. It
doesn’t create new packets; it merely adds nops to existing ones.

-mlibrary-pic
Generate position-independent EABI code.

-macc-4

Use only the first four media accumulator registers.

-macc-8

Use all eight media accumulator registers.

-mpack

Pack VLIW instructions.

-mno-pack
Do not pack VLIW instructions.

-mno-eflags
Do not mark ABI switches in e flags.

-mcond-move
Enable the use of conditional-move instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-move
Disable the use of conditional-move instructions.



Chapter 3: GCC Command Options 135

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mscc

Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-scc

Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mmulti-cond-exec
Enable optimization of && and || in conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mnested-cond-exec
Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.
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This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-moptimize-membar
This switch removes redundant membar instructions from the compiler generated
code. It is enabled by default.

-mno-optimize-membar
This switch disables the automatic removal of redundant membar instructions
from the generated code.

-mtomcat-stats
Cause gas to print out tomcat statistics.

-mcpu=cpu
Select the processor type for which to generate code. Possible values are ‘frv’,
‘fr550’, ‘tomcat’, ‘fr500’, ‘fr450’, ‘fr405’, ‘fr400’, ‘fr300’ and ‘simple’.

3.17.11 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’. See section “ld and the H8/300” in Using ld, for a fuller
description.

-mh Generate code for the H8/300H.

-ms Generate code for the H8S.

-mn Generate code for the H8S and H8/300H in the normal mode. This switch must
be used either with ‘-mh’ or ‘-ms’.

-ms2600 Generate code for the H8S/2600. This switch must be used with ‘-ms’.

-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on 4 byte
boundaries. ‘-malign-300’ causes them to be aligned on 2 byte boundaries.
This option has no effect on the H8/300.

3.17.12 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0’ for PA 1.0, ‘1.1’ for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered ar-
chitectures will run on higher numbered architectures, but not the other way
around.
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-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0

Synonyms for ‘-march=1.0’, ‘-march=1.1’, and ‘-march=2.0’ respectively.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is nec-
essary for compiling kernels which perform lazy context switching of floating
point registers. If you use this option and attempt to perform floating point
operations, the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC
to generate faster indirect calls and use unscaled index address modes.
Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code which performs faster indirect calls.
This option will not work in the presence of shared libraries or nested functions.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the
HP-UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The
choices for cpu-type are ‘700’ ‘7100’, ‘7100LC’, ‘7200’, ‘7300’ and ‘8000’. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
scheduling option for your machine. The default scheduling is ‘8000’.



138 Using the GNU Compiler Collection (GCC)

-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded target ‘hppa1.1-*-pro’
does provide software floating point support.
‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-msio Generate the predefine, _SIO, for server IO. The default is ‘-mwsio’. This gen-
erates the predefines, __hp9000s700, __hp9000s700__ and _WSIO, for worksta-
tion IO. These options are available under HP-UX and HI-UX.

-mgnu-ld Use GNU ld specific options. This passes ‘-shared’ to ld when building a shared
library. It is the default when GCC is configured, explicitly or implicitly, with
the GNU linker. This option does not have any affect on which ld is called, it
only changes what parameters are passed to that ld. The ld that is called is
determined by the ‘--with-ld’ configure option, GCC’s program search path,
and finally by the user’s PATH. The linker used by GCC can be printed using
‘which ‘gcc -print-prog-name=ld‘’. This option is only available on the 64
bit HP-UX GCC, i.e. configured with ‘hppa*64*-*-hpux*’.

-mhp-ld Use HP ld specific options. This passes ‘-b’ to ld when building a shared library
and passes ‘+Accept TypeMismatch’ to ld on all links. It is the default when
GCC is configured, explicitly or implicitly, with the HP linker. This option does
not have any affect on which ld is called, it only changes what parameters are
passed to that ld. The ld that is called is determined by the ‘--with-ld’ con-
figure option, GCC’s program search path, and finally by the user’s PATH. The
linker used by GCC can be printed using ‘which ‘gcc -print-prog-name=ld‘’.
This option is only available on the 64 bit HP-UX GCC, i.e. configured with
‘hppa*64*-*-hpux*’.

-mlong-calls
Generate code that uses long call sequences. This ensures that a call is always
able to reach linker generated stubs. The default is to generate long calls
only when the distance from the call site to the beginning of the function or
translation unit, as the case may be, exceeds a predefined limit set by the
branch type being used. The limits for normal calls are 7,600,000 and 240,000
bytes, respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are always
limited at 240,000 bytes.
Distances are measured from the beginning of functions when using
the ‘-ffunction-sections’ option, or when using the ‘-mgas’ and
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‘-mno-portable-runtime’ options together under HP-UX with the SOM
linker.

It is normally not desirable to use this option as it will degrade performance.
However, it may be useful in large applications, particularly when partial linking
is used to build the application.

The types of long calls used depends on the capabilities of the assembler and
linker, and the type of code being generated. The impact on systems that
support long absolute calls, and long pic symbol-difference or pc-relative calls
should be relatively small. However, an indirect call is used on 32-bit ELF
systems in pic code and it is quite long.

-munix=unix-std
Generate compiler predefines and select a startfile for the specified UNIX stan-
dard. The choices for unix-std are ‘93’, ‘95’ and ‘98’. ‘93’ is supported on all
HP-UX versions. ‘95’ is available on HP-UX 10.10 and later. ‘98’ is available
on HP-UX 11.11 and later. The default values are ‘93’ for HP-UX 10.00, ‘95’
for HP-UX 10.10 though to 11.00, and ‘98’ for HP-UX 11.11 and later.

‘-munix=93’ provides the same predefines as GCC 3.3 and 3.4. ‘-munix=95’
provides additional predefines for XOPEN_UNIX and _XOPEN_SOURCE_EXTENDED,
and the startfile ‘unix95.o’. ‘-munix=98’ provides additional predefines for
_XOPEN_UNIX, _XOPEN_SOURCE_EXTENDED, _INCLUDE__STDC_A1_SOURCE and _
INCLUDE_XOPEN_SOURCE_500, and the startfile ‘unix98.o’.

It is important to note that this option changes the interfaces for various library
routines. It also affects the operational behavior of the C library. Thus, extreme
care is needed in using this option.

Library code that is intended to operate with more than one UNIX standard
must test, set and restore the variable xpg4 extended mask as appropriate.
Most GNU software doesn’t provide this capability.

-nolibdld
Suppress the generation of link options to search libdld.sl when the ‘-static’
option is specified on HP-UX 10 and later.

-static The HP-UX implementation of setlocale in libc has a dependency on libdld.sl.
There isn’t an archive version of libdld.sl. Thus, when the ‘-static’ option is
specified, special link options are needed to resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to link
with libdld.sl when the ‘-static’ option is specified. This causes the resulting
binary to be dynamic. On the 64-bit port, the linkers generate dynamic binaries
by default in any case. The ‘-nolibdld’ option can be used to prevent the GCC
driver from adding these link options.

-threads Add support for multithreading with the dce thread library under HP-UX. This
option sets flags for both the preprocessor and linker.

3.17.13 Intel 386 and AMD x86-64 Options

These ‘-m’ options are defined for the i386 and x86-64 family of computers:
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-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The choices for cpu-type are:

i386 Original Intel’s i386 CPU.

i486 Intel’s i486 CPU. (No scheduling is implemented for this chip.)

i586, pentium
Intel Pentium CPU with no MMX support.

pentium-mmx
Intel PentiumMMX CPU based on Pentium core with MMX in-
struction set support.

i686, pentiumpro
Intel PentiumPro CPU.

pentium2 Intel Pentium2 CPU based on PentiumPro core with MMX instruc-
tion set support.

pentium3, pentium3m
Intel Pentium3 CPU based on PentiumPro core with MMX and
SSE instruction set support.

pentium-m
Low power version of Intel Pentium3 CPU with MMX, SSE and
SSE2 instruction set support. Used by Centrino notebooks.

pentium4, pentium4m
Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set
support.

prescott Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2
and SSE3 instruction set support.

nocona Improved version of Intel Pentium4 CPU with 64-bit extensions,
MMX, SSE, SSE2 and SSE3 instruction set support.

k6 AMD K6 CPU with MMX instruction set support.

k6-2, k6-3 Improved versions of AMD K6 CPU with MMX and 3dNOW! in-
struction set support.

athlon, athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and
SSE prefetch instructions support.

athlon-4, athlon-xp, athlon-mp
Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced
3dNOW! and full SSE instruction set support.

k8, opteron, athlon64, athlon-fx
AMD K8 core based CPUs with x86-64 instruction set support.
(This supersets MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW!
and 64-bit instruction set extensions.)
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winchip-c6
IDT Winchip C6 CPU, dealt in same way as i486 with additional
MMX instruction set support.

winchip2 IDT Winchip2 CPU, dealt in same way as i486 with additional
MMX and 3dNOW! instruction set support.

c3 Via C3 CPU with MMX and 3dNOW! instruction set support. (No
scheduling is implemented for this chip.)

c3-2 Via C3-2 CPU with MMX and SSE instruction set support. (No
scheduling is implemented for this chip.)

While picking a specific cpu-type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not run on
the i386 without the ‘-march=cpu-type ’ option being used.

-march=cpu-type
Generate instructions for the machine type cpu-type. The choices for cpu-type
are the same as for ‘-mtune’. Moreover, specifying ‘-march=cpu-type ’ implies
‘-mtune=cpu-type ’.

-mcpu=cpu-type
A deprecated synonym for ‘-mtune’.

-m386
-m486
-mpentium
-mpentiumpro

These options are synonyms for ‘-mtune=i386’, ‘-mtune=i486’,
‘-mtune=pentium’, and ‘-mtune=pentiumpro’ respectively. These synonyms
are deprecated.

-mfpmath=unit
Generate floating point arithmetics for selected unit unit. The choices for unit
are:

‘387’ Use the standard 387 floating point coprocessor present majority of
chips and emulated otherwise. Code compiled with this option will
run almost everywhere. The temporary results are computed in
80bit precision instead of precision specified by the type resulting
in slightly different results compared to most of other chips. See
‘-ffloat-store’ for more detailed description.
This is the default choice for i386 compiler.

‘sse’ Use scalar floating point instructions present in the SSE instruction
set. This instruction set is supported by Pentium3 and newer chips,
in the AMD line by Athlon-4, Athlon-xp and Athlon-mp chips. The
earlier version of SSE instruction set supports only single precision
arithmetics, thus the double and extended precision arithmetics is
still done using 387. Later version, present only in Pentium4 and
the future AMD x86-64 chips supports double precision arithmetics
too.
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For the i386 compiler, you need to use ‘-march=cpu-type ’, ‘-msse’
or ‘-msse2’ switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by
default.
The resulting code should be considerably faster in the majority
of cases and avoid the numerical instability problems of 387 code,
but may break some existing code that expects temporaries to be
80bit.
This is the default choice for the x86-64 compiler.

‘sse,387’ Attempt to utilize both instruction sets at once. This effectively
double the amount of available registers and on chips with sepa-
rate execution units for 387 and SSE the execution resources too.
Use this option with care, as it is still experimental, because the
GCC register allocator does not model separate functional units
well resulting in instable performance.

-masm=dialect
Output asm instructions using selected dialect. Supported choices are ‘intel’
or ‘att’ (the default one). Darwin does not support ‘intel’.

-mieee-fp
-mno-ieee-fp

Control whether or not the compiler uses IEEE floating point comparisons.
These handle correctly the case where the result of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.
On machines where a function returns floating point results in the 80387 register
stack, some floating point opcodes may be emitted even if ‘-msoft-float’ is
used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.
The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt instructions for the
387. Specify this option to avoid generating those instructions. This option
is the default on FreeBSD, OpenBSD and NetBSD. This option is overridden
when ‘-march’ indicates that the target cpu will always have an FPU and so the
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instruction will not need emulation. As of revision 2.6.1, these instructions are
not generated unless you also use the ‘-funsafe-math-optimizations’ switch.

-malign-double
-mno-align-double

Control whether GCC aligns double, long double, and long long variables on
a two word boundary or a one word boundary. Aligning double variables on a
two word boundary will produce code that runs somewhat faster on a ‘Pentium’
at the expense of more memory.
On x86-64, ‘-malign-double’ is enabled by default.
Warning: if you use the ‘-malign-double’ switch, structures containing the
above types will be aligned differently than the published application binary
interface specifications for the 386 and will not be binary compatible with struc-
tures in code compiled without that switch.

-m96bit-long-double
-m128bit-long-double

These switches control the size of long double type. The i386 application
binary interface specifies the size to be 96 bits, so ‘-m96bit-long-double’ is
the default in 32 bit mode.
Modern architectures (Pentium and newer) would prefer long double to be
aligned to an 8 or 16 byte boundary. In arrays or structures conforming to the
ABI, this would not be possible. So specifying a ‘-m128bit-long-double’ will
align long double to a 16 byte boundary by padding the long double with an
additional 32 bit zero.
In the x86-64 compiler, ‘-m128bit-long-double’ is the default choice as its
ABI specifies that long double is to be aligned on 16 byte boundary.
Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a long double.
Warning: if you override the default value for your target ABI, the structures
and arrays containing long double variables will change their size as well as
function calling convention for function taking long double will be modified.
Hence they will not be binary compatible with arrays or structures in code
compiled without that switch.

-mmlarge-data-threshold=number
When ‘-mcmodel=medium’ is specified, the data greater than threshold are
placed in large data section. This value must be the same across all object
linked into the binary and defaults to 65535.

-msvr3-shlib
-mno-svr3-shlib

Control whether GCC places uninitialized local variables into the bss or data
segments. ‘-msvr3-shlib’ places them into bss. These options are meaningful
only on System V Release 3.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the ret num instruction, which pops their
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arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.
You can specify that an individual function is called with this calling sequence
with the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option
by using the function attribute ‘cdecl’. See Section 5.24 [Function Attributes],
page 229.
Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.
Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.
In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 5.24 [Function Attributes], page 229.
Warning: if you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-msseregparm
Use SSE register passing conventions for float and double arguments and return
values. You can control this behavior for a specific function by using the func-
tion attribute ‘sseregparm’. See Section 5.24 [Function Attributes], page 229.
Warning: if you use this switch then you must build all modules with the same
value, including any libraries. This includes the system libraries and startup
modules.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If ‘-mpreferred-stack-boundary’ is not specified, the default is 4 (16 bytes or
128 bits).
On Pentium and PentiumPro, double and long double values should be
aligned to an 8 byte boundary (see ‘-malign-double’) or suffer significant run
time performance penalties. On Pentium III, the Streaming SIMD Extension
(SSE) data type __m128 may not work properly if it is not 16 byte aligned.
To ensure proper alignment of this values on the stack, the stack boundary must
be as aligned as that required by any value stored on the stack. Further, every
function must be generated such that it keeps the stack aligned. Thus calling
a function compiled with a higher preferred stack boundary from a function
compiled with a lower preferred stack boundary will most likely misalign the
stack. It is recommended that libraries that use callbacks always use the default
setting.
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This extra alignment does consume extra stack space, and generally increases
code size. Code that is sensitive to stack space usage, such as embedded systems
and operating system kernels, may want to reduce the preferred alignment to
‘-mpreferred-stack-boundary=2’.

-mmmx
-mno-mmx

-msse
-mno-sse

-msse2
-mno-sse2
-msse3
-mno-sse3
-m3dnow
-mno-3dnow

These switches enable or disable the use of instructions in the MMX, SSE, SSE2
or 3DNow! extended instruction sets. These extensions are also available as
built-in functions: see Section 5.47.5 [X86 Built-in Functions], page 305, for
details of the functions enabled and disabled by these switches.

To have SSE/SSE2 instructions generated automatically from floating-point
code (as opposed to 387 instructions), see ‘-mfpmath=sse’.

These options will enable GCC to use these extended instructions in generated
code, even without ‘-mfpmath=sse’. Applications which perform runtime CPU
detection must compile separate files for each supported architecture, using the
appropriate flags. In particular, the file containing the CPU detection code
should be compiled without these options.

-mpush-args
-mno-push-args

Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.

-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will
be computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies ‘-mno-push-args’.

-mthreads
Support thread-safe exception handling on ‘Mingw32’. Code that relies on
thread-safe exception handling must compile and link all code with the
‘-mthreads’ option. When compiling, ‘-mthreads’ defines ‘-D_MT’; when
linking, it links in a special thread helper library ‘-lmingwthrd’ which cleans
up per thread exception handling data.
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-mno-align-stringops
Do not align destination of inlined string operations. This switch reduces code
size and improves performance in case the destination is already aligned, but
GCC doesn’t know about it.

-minline-all-stringops
By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary. This enables more inlining, increase code
size, but may improve performance of code that depends on fast memcpy, strlen
and memset for short lengths.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘-fomit-frame-pointer’ removes
the frame pointer for all functions which might make debugging harder.

-mtls-direct-seg-refs
-mno-tls-direct-seg-refs

Controls whether TLS variables may be accessed with offsets from the TLS
segment register (%gs for 32-bit, %fs for 64-bit), or whether the thread base
pointer must be added. Whether or not this is legal depends on the operating
system, and whether it maps the segment to cover the entire TLS area.
For systems that use GNU libc, the default is on.

These ‘-m’ switches are supported in addition to the above on AMD x86-64 processors in
64-bit environments.

-m32
-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

int, long and pointer to 32 bits and generates code that runs on any i386 system.
The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and
generates code for AMD’s x86-64 architecture.

-mno-red-zone
Do not use a so called red zone for x86-64 code. The red zone is mandated by the
x86-64 ABI, it is a 128-byte area beyond the location of the stack pointer that
will not be modified by signal or interrupt handlers and therefore can be used for
temporary data without adjusting the stack pointer. The flag ‘-mno-red-zone’
disables this red zone.

-mcmodel=small
Generate code for the small code model: the program and its symbols must be
linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs
can be statically or dynamically linked. This is the default code model.

-mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2 GB
of the address space. This model has to be used for Linux kernel code.

-mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2
GB of the address space but symbols can be located anywhere in the address
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space. Programs can be statically or dynamically linked, but building of shared
libraries are not supported with the medium model.

-mcmodel=large
Generate code for the large model: This model makes no assumptions about
addresses and sizes of sections. Currently GCC does not implement this model.

3.17.14 IA-64 Options

These are the ‘-m’ options defined for the Intel IA-64 architecture.

-mbig-endian
Generate code for a big endian target. This is the default for HP-UX.

-mlittle-endian
Generate code for a little endian target. This is the default for AIX5 and
GNU/Linux.

-mgnu-as
-mno-gnu-as

Generate (or don’t) code for the GNU assembler. This is the default.

-mgnu-ld
-mno-gnu-ld

Generate (or don’t) code for the GNU linker. This is the default.

-mno-pic Generate code that does not use a global pointer register. The result is not
position independent code, and violates the IA-64 ABI.

-mvolatile-asm-stop
-mno-volatile-asm-stop

Generate (or don’t) a stop bit immediately before and after volatile asm state-
ments.

-mregister-names
-mno-register-names

Generate (or don’t) ‘in’, ‘loc’, and ‘out’ register names for the stacked registers.
This may make assembler output more readable.

-mno-sdata
-msdata Disable (or enable) optimizations that use the small data section. This may be

useful for working around optimizer bugs.

-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful
when compiling kernel code.

-mauto-pic
Generate code that is self-relocatable. This implies ‘-mconstant-gp’. This is
useful when compiling firmware code.

-minline-float-divide-min-latency
Generate code for inline divides of floating point values using the minimum
latency algorithm.
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-minline-float-divide-max-throughput
Generate code for inline divides of floating point values using the maximum
throughput algorithm.

-minline-int-divide-min-latency
Generate code for inline divides of integer values using the minimum latency
algorithm.

-minline-int-divide-max-throughput
Generate code for inline divides of integer values using the maximum through-
put algorithm.

-minline-sqrt-min-latency
Generate code for inline square roots using the minimum latency algorithm.

-minline-sqrt-max-throughput
Generate code for inline square roots using the maximum throughput algorithm.

-mno-dwarf2-asm
-mdwarf2-asm

Don’t (or do) generate assembler code for the DWARF2 line number debugging
info. This may be useful when not using the GNU assembler.

-mearly-stop-bits
-mno-early-stop-bits

Allow stop bits to be placed earlier than immediately preceding the instruction
that triggered the stop bit. This can improve instruction scheduling, but does
not always do so.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

-mtls-size=tls-size
Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64.

-mtune=cpu-type
Tune the instruction scheduling for a particular CPU, Valid values are itanium,
itanium1, merced, itanium2, and mckinley.

-mt
-pthread Add support for multithreading using the POSIX threads library. This option

sets flags for both the preprocessor and linker. It does not affect the thread
safety of object code produced by the compiler or that of libraries supplied with
it. These are HP-UX specific flags.

-milp32
-mlp64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits. These are HP-UX specific flags.
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3.17.15 M32C Options

-mcpu=name
Select the CPU for which code is generated. name may be one of ‘r8c’ for
the R8C/Tiny series, ‘m16c’ for the M16C (up to /60) series, ‘m32cm’ for the
M16C/80 series, or ‘m32c’ for the M32C/80 series.

-msim Specifies that the program will be run on the simulator. This causes an alternate
runtime library to be linked in which supports, for example, file I/O. You must
not use this option when generating programs that will run on real hardware;
you must provide your own runtime library for whatever I/O functions are
needed.

-memregs=number
Specifies the number of memory-based pseudo-registers GCC will use during
code generation. These pseudo-registers will be used like real registers, so there
is a tradeoff between GCC’s ability to fit the code into available registers, and
the performance penalty of using memory instead of registers. Note that all
modules in a program must be compiled with the same value for this option.
Because of that, you must not use this option with the default runtime libraries
gcc builds.

3.17.16 M32R/D Options

These ‘-m’ options are defined for Renesas M32R/D architectures:

-m32r2 Generate code for the M32R/2.

-m32rx Generate code for the M32R/X.

-m32r Generate code for the M32R. This is the default.

-mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction), and assume all subroutines are reach-
able with the bl instruction. This is the default.
The addressability of a particular object can be set with the model attribute.

-mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and assume all
subroutines are reachable with the bl instruction.

-mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subrou-
tines may not be reachable with the bl instruction (the compiler will generate
the much slower seth/add3/jl instruction sequence).

-msdata=none
Disable use of the small data area. Variables will be put into one of ‘.data’,
‘bss’, or ‘.rodata’ (unless the section attribute has been specified). This is
the default.
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The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of
these sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate
special code to reference them.

-msdata=use
Put small global and static data in the small data area, and generate special
instructions to reference them.

-G num Put global and static objects less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss sections. The default
value of num is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’
for this option to have any effect.

All modules should be compiled with the same ‘-G num ’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker will give
an error message—incorrect code will not be generated.

-mdebug Makes the M32R specific code in the compiler display some statistics that might
help in debugging programs.

-malign-loops
Align all loops to a 32-byte boundary.

-mno-align-loops
Do not enforce a 32-byte alignment for loops. This is the default.

-missue-rate=number
Issue number instructions per cycle. number can only be 1 or 2.

-mbranch-cost=number
number can only be 1 or 2. If it is 1 then branches will be preferred over
conditional code, if it is 2, then the opposite will apply.

-mflush-trap=number
Specifies the trap number to use to flush the cache. The default is 12. Valid
numbers are between 0 and 15 inclusive.

-mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.

-mflush-func=name
Specifies the name of the operating system function to call to flush the cache.
The default is flush cache, but a function call will only be used if a trap is not
available.

-mno-flush-func
Indicates that there is no OS function for flushing the cache.
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3.17.17 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default values for these options
depends on which style of 68000 was selected when the compiler was configured; the defaults
for the most common choices are given below.

-m68000
-mc68000 Generate output for a 68000. This is the default when the compiler is configured

for 68000-based systems.

Use this option for microcontrollers with a 68000 or EC000 core, including the
68008, 68302, 68306, 68307, 68322, 68328 and 68356.

-m68020
-mc68020 Generate output for a 68020. This is the default when the compiler is configured

for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating point. This is the
default for most 68020 systems unless ‘--nfp’ was specified when the compiler
was configured.

-m68030 Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be em-
ulated by software on the 68040. Use this option if your 68040 does not have
code to emulate those instructions.

-m68060 Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems.

This option inhibits the use of 68020 and 68881/68882 instructions that have
to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

-mcpu32 Generate output for a CPU32. This is the default when the compiler is config-
ured for CPU32-based systems.

Use this option for microcontrollers with a CPU32 or CPU32+ core, including
the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

-m5200 Generate output for a 520X “coldfire” family cpu. This is the default when the
compiler is configured for 520X-based systems.

Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5202.

-m68020-40
Generate output for a 68040, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.
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-m68020-60
Generate output for a 68060, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68060.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all m68k targets. Normally the facilities
of the machine’s usual C compiler are used, but this can’t be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘m68k-*-aout’
and ‘m68k-*-coff’ do provide software floating point support.

-mshort Consider type int to be 16 bits wide, like short int. Additionally, parameters
passed on the stack are also aligned to a 16-bit boundary even on targets whose
API mandates promotion to 32-bit.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’, ‘-mcpu32’ and ‘-m5200’
options imply ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies ‘-mbitfield’.
This is the default if you use a configuration designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their argu-
ments while returning. This saves one instruction in the caller since there is no
need to pop the arguments there.
This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.
In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)
The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-malign-int
-mno-align-int

Control whether GCC aligns int, long, long long, float, double, and long
double variables on a 32-bit boundary (‘-malign-int’) or a 16-bit boundary
(‘-mno-align-int’). Aligning variables on 32-bit boundaries produces code
that runs somewhat faster on processors with 32-bit busses at the expense of
more memory.
Warning: if you use the ‘-malign-int’ switch, GCC will align structures con-
taining the above types differently than most published application binary in-
terface specifications for the m68k.
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-mpcrel Use the pc-relative addressing mode of the 68000 directly, instead of using a
global offset table. At present, this option implies ‘-fpic’, allowing at most a
16-bit offset for pc-relative addressing. ‘-fPIC’ is not presently supported with
‘-mpcrel’, though this could be supported for 68020 and higher processors.

-mno-strict-align
-mstrict-align

Do not (do) assume that unaligned memory references will be handled by the
system.

-msep-data
Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute in place in an environ-
ment without virtual memory management. This option implies ‘-fPIC’.

-mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This al-
lows for execute in place and shared libraries in an environment without virtual
memory management. This option implies ‘-fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used.
This is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being com-
piled. Specifying a value of 0 will generate more compact code, specifying other
values will force the allocation of that number to the current library but is no
more space or time efficient than omitting this option.

3.17.18 M68hc1x Options

These are the ‘-m’ options defined for the 68hc11 and 68hc12 microcontrollers. The default
values for these options depends on which style of microcontroller was selected when the
compiler was configured; the defaults for the most common choices are given below.

-m6811
-m68hc11 Generate output for a 68HC11. This is the default when the compiler is con-

figured for 68HC11-based systems.

-m6812
-m68hc12 Generate output for a 68HC12. This is the default when the compiler is con-

figured for 68HC12-based systems.

-m68S12
-m68hcs12

Generate output for a 68HCS12.
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-mauto-incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement
addressing modes.

-minmax
-nominmax

Enable the use of 68HC12 min and max instructions.

-mlong-calls
-mno-long-calls

Treat all calls as being far away (near). If calls are assumed to be far away, the
compiler will use the call instruction to call a function and the rtc instruction
for returning.

-mshort Consider type int to be 16 bits wide, like short int.

-msoft-reg-count=count
Specify the number of pseudo-soft registers which are used for the code gener-
ation. The maximum number is 32. Using more pseudo-soft register may or
may not result in better code depending on the program. The default is 4 for
68HC11 and 2 for 68HC12.

3.17.19 MCore Options

These are the ‘-m’ options defined for the Motorola M*Core processors.

-mhardlit
-mno-hardlit

Inline constants into the code stream if it can be done in two instructions or
less.

-mdiv
-mno-div Use the divide instruction. (Enabled by default).

-mrelax-immediate
-mno-relax-immediate

Allow arbitrary sized immediates in bit operations.

-mwide-bitfields
-mno-wide-bitfields

Always treat bit-fields as int-sized.

-m4byte-functions
-mno-4byte-functions

Force all functions to be aligned to a four byte boundary.

-mcallgraph-data
-mno-callgraph-data

Emit callgraph information.

-mslow-bytes
-mno-slow-bytes

Prefer word access when reading byte quantities.
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-mlittle-endian
-mbig-endian

Generate code for a little endian target.

-m210
-m340 Generate code for the 210 processor.

3.17.20 MIPS Options

-EB Generate big-endian code.

-EL Generate little-endian code. This is the default for ‘mips*el-*-*’ configura-
tions.

-march=arch
Generate code that will run on arch, which can be the name of a generic MIPS
ISA, or the name of a particular processor. The ISA names are: ‘mips1’,
‘mips2’, ‘mips3’, ‘mips4’, ‘mips32’, ‘mips32r2’, and ‘mips64’. The processor
names are: ‘4kc’, ‘4km’, ‘4kp’, ‘5kc’, ‘5kf’, ‘20kc’, ‘24k’, ‘24kc’, ‘24kf’, ‘24kx’,
‘m4k’, ‘orion’, ‘r2000’, ‘r3000’, ‘r3900’, ‘r4000’, ‘r4400’, ‘r4600’, ‘r4650’,
‘r6000’, ‘r8000’, ‘rm7000’, ‘rm9000’, ‘sb1’, ‘sr71000’, ‘vr4100’, ‘vr4111’,
‘vr4120’, ‘vr4130’, ‘vr4300’, ‘vr5000’, ‘vr5400’ and ‘vr5500’. The special
value ‘from-abi’ selects the most compatible architecture for the selected ABI
(that is, ‘mips1’ for 32-bit ABIs and ‘mips3’ for 64-bit ABIs).
In processor names, a final ‘000’ can be abbreviated as ‘k’ (for example,
‘-march=r2k’). Prefixes are optional, and ‘vr’ may be written ‘r’.
GCC defines two macros based on the value of this option. The first is
‘_MIPS_ARCH’, which gives the name of target architecture, as a string. The
second has the form ‘_MIPS_ARCH_foo ’, where foo is the capitalized value
of ‘_MIPS_ARCH’. For example, ‘-march=r2000’ will set ‘_MIPS_ARCH’ to
‘"r2000"’ and define the macro ‘_MIPS_ARCH_R2000’.
Note that the ‘_MIPS_ARCH’ macro uses the processor names given above. In
other words, it will have the full prefix and will not abbreviate ‘000’ as ‘k’.
In the case of ‘from-abi’, the macro names the resolved architecture (either
‘"mips1"’ or ‘"mips3"’). It names the default architecture when no ‘-march’
option is given.

-mtune=arch
Optimize for arch. Among other things, this option controls the way instruc-
tions are scheduled, and the perceived cost of arithmetic operations. The list
of arch values is the same as for ‘-march’.
When this option is not used, GCC will optimize for the processor specified by
‘-march’. By using ‘-march’ and ‘-mtune’ together, it is possible to generate
code that will run on a family of processors, but optimize the code for one
particular member of that family.
‘-mtune’ defines the macros ‘_MIPS_TUNE’ and ‘_MIPS_TUNE_foo ’, which work
in the same way as the ‘-march’ ones described above.

-mips1 Equivalent to ‘-march=mips1’.
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-mips2 Equivalent to ‘-march=mips2’.

-mips3 Equivalent to ‘-march=mips3’.

-mips4 Equivalent to ‘-march=mips4’.

-mips32 Equivalent to ‘-march=mips32’.

-mips32r2
Equivalent to ‘-march=mips32r2’.

-mips64 Equivalent to ‘-march=mips64’.

-mips16
-mno-mips16

Generate (do not generate) MIPS16 code. If GCC is targetting a MIPS32 or
MIPS64 architecture, it will make use of the MIPS16e ASE.

-mabi=32
-mabi=o64
-mabi=n32
-mabi=64
-mabi=eabi

Generate code for the given ABI.
Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates
64-bit code when you select a 64-bit architecture, but you can use ‘-mgp32’ to
get 32-bit code instead.
For information about the O64 ABI, see http://gcc.gnu.org/projects/mipso64-abi.html.

-mabicalls
-mno-abicalls

Generate (do not generate) SVR4-style position-independent code.
‘-mabicalls’ is the default for SVR4-based systems.

-mxgot
-mno-xgot

Lift (do not lift) the usual restrictions on the size of the global offset table.
GCC normally uses a single instruction to load values from the GOT. While
this is relatively efficient, it will only work if the GOT is smaller than about
64k. Anything larger will cause the linker to report an error such as:

relocation truncated to fit: R_MIPS_GOT16 foobar

If this happens, you should recompile your code with ‘-mxgot’. It should then
work with very large GOTs, although it will also be less efficient, since it will
take three instructions to fetch the value of a global symbol.
Note that some linkers can create multiple GOTs. If you have such a linker,
you should only need to use ‘-mxgot’ when a single object file accesses more
than 64k’s worth of GOT entries. Very few do.
These options have no effect unless GCC is generating position independent
code.

-mgp32 Assume that general-purpose registers are 32 bits wide.
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-mgp64 Assume that general-purpose registers are 64 bits wide.

-mfp32 Assume that floating-point registers are 32 bits wide.

-mfp64 Assume that floating-point registers are 64 bits wide.

-mhard-float
Use floating-point coprocessor instructions.

-msoft-float
Do not use floating-point coprocessor instructions. Implement floating-point
calculations using library calls instead.

-msingle-float
Assume that the floating-point coprocessor only supports single-precision oper-
ations.

-mdouble-float
Assume that the floating-point coprocessor supports double-precision opera-
tions. This is the default.

-mdsp
-mno-dsp Use (do not use) the MIPS DSP ASE. See Section 5.47.6 [MIPS DSP Built-in

Functions], page 312.
-mpaired-single
-mno-paired-single

Use (do not use) paired-single floating-point instructions. See Section 5.47.7
[MIPS Paired-Single Support], page 315. This option can only be used when
generating 64-bit code and requires hardware floating-point support to be en-
abled.

-mips3d
-mno-mips3d

Use (do not use) the MIPS-3D ASE. See Section 5.47.7.3 [MIPS-3D Built-in
Functions], page 317. The option ‘-mips3d’ implies ‘-mpaired-single’.

-mlong64 Force long types to be 64 bits wide. See ‘-mlong32’ for an explanation of the
default and the way that the pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.
The default size of ints, longs and pointers depends on the ABI. All the
supported ABIs use 32-bit ints. The n64 ABI uses 64-bit longs, as does the
64-bit EABI; the others use 32-bit longs. Pointers are the same size as longs,
or the same size as integer registers, whichever is smaller.

-msym32
-mno-sym32

Assume (do not assume) that all symbols have 32-bit values, regardless of
the selected ABI. This option is useful in combination with ‘-mabi=64’ and
‘-mno-abicalls’ because it allows GCC to generate shorter and faster refer-
ences to symbolic addresses.

-G num Put global and static items less than or equal to num bytes into the small data
or bss section instead of the normal data or bss section. This allows the data
to be accessed using a single instruction.
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All modules should be compiled with the same ‘-G num ’ value.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

Put uninitialized const variables in the read-only data section. This option is
only meaningful in conjunction with ‘-membedded-data’.

-msplit-addresses
-mno-split-addresses

Enable (disable) use of the %hi() and %lo() assembler relocation operators.
This option has been superseded by ‘-mexplicit-relocs’ but is retained for
backwards compatibility.

-mexplicit-relocs
-mno-explicit-relocs

Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by ‘-mno-explicit-relocs’, is to use as-
sembler macros instead.

‘-mexplicit-relocs’ is the default if GCC was configured to use an assembler
that supports relocation operators.

-mcheck-zero-division
-mno-check-zero-division

Trap (do not trap) on integer division by zero. The default is
‘-mcheck-zero-division’.

-mdivide-traps
-mdivide-breaks

MIPS systems check for division by zero by generating either a conditional
trap or a break instruction. Using traps results in smaller code, but is only
supported on MIPS II and later. Also, some versions of the Linux kernel have
a bug that prevents trap from generating the proper signal (SIGFPE). Use
‘-mdivide-traps’ to allow conditional traps on architectures that support them
and ‘-mdivide-breaks’ to force the use of breaks.

The default is usually ‘-mdivide-traps’, but this can be overridden at configure
time using ‘--with-divide=breaks’. Divide-by-zero checks can be completely
disabled using ‘-mno-check-zero-division’.

-mmemcpy
-mno-memcpy

Force (do not force) the use of memcpy() for non-trivial block moves. The de-
fault is ‘-mno-memcpy’, which allows GCC to inline most constant-sized copies.
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-mlong-calls
-mno-long-calls

Disable (do not disable) use of the jal instruction. Calling functions using
jal is more efficient but requires the caller and callee to be in the same 256
megabyte segment.
This option has no effect on abicalls code. The default is ‘-mno-long-calls’.

-mmad
-mno-mad Enable (disable) use of the mad, madu and mul instructions, as provided by the

R4650 ISA.

-mfused-madd
-mno-fused-madd

Enable (disable) use of the floating point multiply-accumulate instructions,
when they are available. The default is ‘-mfused-madd’.
When multiply-accumulate instructions are used, the intermediate product is
calculated to infinite precision and is not subject to the FCSR Flush to Zero
bit. This may be undesirable in some circumstances.

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files
(with a ‘.s’ suffix) when assembling them.

-mfix-r4000
-mno-fix-r4000

Work around certain R4000 CPU errata:
− A double-word or a variable shift may give an incorrect result if executed

immediately after starting an integer division.
− A double-word or a variable shift may give an incorrect result if executed

while an integer multiplication is in progress.
− An integer division may give an incorrect result if started in a delay slot of

a taken branch or a jump.

-mfix-r4400
-mno-fix-r4400

Work around certain R4400 CPU errata:
− A double-word or a variable shift may give an incorrect result if executed

immediately after starting an integer division.

-mfix-vr4120
-mno-fix-vr4120

Work around certain VR4120 errata:
− dmultu does not always produce the correct result.
− div and ddiv do not always produce the correct result if one of the operands

is negative.

The workarounds for the division errata rely on special functions in ‘libgcc.a’.
At present, these functions are only provided by the mips64vr*-elf configura-
tions.
Other VR4120 errata require a nop to be inserted between certain pairs of
instructions. These errata are handled by the assembler, not by GCC itself.
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-mfix-vr4130
Work around the VR4130 mflo/mfhi errata. The workarounds are implemented
by the assembler rather than by GCC, although GCC will avoid using mflo and
mfhi if the VR4130 macc, macchi, dmacc and dmacchi instructions are available
instead.

-mfix-sb1
-mno-fix-sb1

Work around certain SB-1 CPU core errata. (This flag currently works around
the SB-1 revision 2 “F1” and “F2” floating point errata.)

-mflush-func=func
-mno-flush-func

Specifies the function to call to flush the I and D caches, or to not call any such
function. If called, the function must take the same arguments as the common
_flush_func(), that is, the address of the memory range for which the cache
is being flushed, the size of the memory range, and the number 3 (to flush
both caches). The default depends on the target GCC was configured for, but
commonly is either ‘_flush_func’ or ‘__cpu_flush’.

-mbranch-likely
-mno-branch-likely

Enable or disable use of Branch Likely instructions, regardless of the default
for the selected architecture. By default, Branch Likely instructions may be
generated if they are supported by the selected architecture. An exception
is for the MIPS32 and MIPS64 architectures and processors which implement
those architectures; for those, Branch Likely instructions will not be generated
by default because the MIPS32 and MIPS64 architectures specifically deprecate
their use.

-mfp-exceptions
-mno-fp-exceptions

Specifies whether FP exceptions are enabled. This affects how we schedule FP
instructions for some processors. The default is that FP exceptions are enabled.
For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes. Otherwise, we can only use one
FP pipe.

-mvr4130-align
-mno-vr4130-align

The VR4130 pipeline is two-way superscalar, but can only issue two instructions
together if the first one is 8-byte aligned. When this option is enabled, GCC
will align pairs of instructions that it thinks should execute in parallel.
This option only has an effect when optimizing for the VR4130. It normally
makes code faster, but at the expense of making it bigger. It is enabled by
default at optimization level ‘-O3’.

3.17.21 MMIX Options

These options are defined for the MMIX:
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-mlibfuncs
-mno-libfuncs

Specify that intrinsic library functions are being compiled, passing all values in
registers, no matter the size.

-mepsilon
-mno-epsilon

Generate floating-point comparison instructions that compare with respect to
the rE epsilon register.

-mabi=mmixware
-mabi=gnu

Generate code that passes function parameters and return values that (in the
called function) are seen as registers $0 and up, as opposed to the GNU ABI
which uses global registers $231 and up.

-mzero-extend
-mno-zero-extend

When reading data from memory in sizes shorter than 64 bits, use (do not use)
zero-extending load instructions by default, rather than sign-extending ones.

-mknuthdiv
-mno-knuthdiv

Make the result of a division yielding a remainder have the same sign as the
divisor. With the default, ‘-mno-knuthdiv’, the sign of the remainder follows
the sign of the dividend. Both methods are arithmetically valid, the latter being
almost exclusively used.

-mtoplevel-symbols
-mno-toplevel-symbols

Prepend (do not prepend) a ‘:’ to all global symbols, so the assembly code can
be used with the PREFIX assembly directive.

-melf Generate an executable in the ELF format, rather than the default ‘mmo’ format
used by the mmix simulator.

-mbranch-predict
-mno-branch-predict

Use (do not use) the probable-branch instructions, when static branch predic-
tion indicates a probable branch.

-mbase-addresses
-mno-base-addresses

Generate (do not generate) code that uses base addresses. Using a base address
automatically generates a request (handled by the assembler and the linker)
for a constant to be set up in a global register. The register is used for one or
more base address requests within the range 0 to 255 from the value held in the
register. The generally leads to short and fast code, but the number of different
data items that can be addressed is limited. This means that a program that
uses lots of static data may require ‘-mno-base-addresses’.
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-msingle-exit
-mno-single-exit

Force (do not force) generated code to have a single exit point in each function.

3.17.22 MN10300 Options

These ‘-m’ options are defined for Matsushita MN10300 architectures:

-mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.

-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MN10300
processors.

-mam33 Generate code which uses features specific to the AM33 processor.

-mno-am33
Do not generate code which uses features specific to the AM33 processor. This
is the default.

-mreturn-pointer-on-d0
When generating a function which returns a pointer, return the pointer in both
a0 and d0. Otherwise, the pointer is returned only in a0, and attempts to call
such functions without a prototype would result in errors. Note that this option
is on by default; use ‘-mno-return-pointer-on-d0’ to disable it.

-mno-crt0
Do not link in the C run-time initialization object file.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an effect when used on the command line for the final link step.
This option makes symbolic debugging impossible.

3.17.23 MT Options

These ‘-m’ options are defined for Morpho MT architectures:

-march=cpu-type
Generate code that will run on cpu-type, which is the name of a system repre-
senting a certain processor type. Possible values for cpu-type are ‘ms1-64-001’,
‘ms1-16-002’, ‘ms1-16-003’ and ‘ms2’.
When this option is not used, the default is ‘-march=ms1-16-002’.

-mbacc Use byte loads and stores when generating code.

-mno-bacc
Do not use byte loads and stores when generating code.

-msim Use simulator runtime

-mno-crt0
Do not link in the C run-time initialization object file ‘crti.o’. Other run-time
initialization and termination files such as ‘startup.o’ and ‘exit.o’ are still
included on the linker command line.
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3.17.24 PDP-11 Options

These options are defined for the PDP-11:

-mfpu Use hardware FPP floating point. This is the default. (FIS floating point on
the PDP-11/40 is not supported.)

-msoft-float
Do not use hardware floating point.

-mac0 Return floating-point results in ac0 (fr0 in Unix assembler syntax).

-mno-ac0 Return floating-point results in memory. This is the default.

-m40 Generate code for a PDP-11/40.

-m45 Generate code for a PDP-11/45. This is the default.

-m10 Generate code for a PDP-11/10.

-mbcopy-builtin
Use inline movmemhi patterns for copying memory. This is the default.

-mbcopy Do not use inline movmemhi patterns for copying memory.

-mint16
-mno-int32

Use 16-bit int. This is the default.

-mint32
-mno-int16

Use 32-bit int.

-mfloat64
-mno-float32

Use 64-bit float. This is the default.

-mfloat32
-mno-float64

Use 32-bit float.

-mabshi Use abshi2 pattern. This is the default.

-mno-abshi
Do not use abshi2 pattern.

-mbranch-expensive
Pretend that branches are expensive. This is for experimenting with code gen-
eration only.

-mbranch-cheap
Do not pretend that branches are expensive. This is the default.

-msplit Generate code for a system with split I&D.

-mno-split
Generate code for a system without split I&D. This is the default.
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-munix-asm
Use Unix assembler syntax. This is the default when configured for
‘pdp11-*-bsd’.

-mdec-asm
Use DEC assembler syntax. This is the default when configured for any PDP-11
target other than ‘pdp11-*-bsd’.

3.17.25 PowerPC Options

These are listed under See Section 3.17.26 [RS/6000 and PowerPC Options], page 164.

3.17.26 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower
-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt
-mpowerpc64
-mno-powerpc64
-mmfcrf
-mno-mfcrf
-mpopcntb
-mno-popcntb
-mfprnd
-mno-fprnd

GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The POWER instruction set are those instructions supported by
the ‘rios’ chip set used in the original RS/6000 systems and the PowerPC
instruction set is the architecture of the Freescale MPC5xx, MPC6xx, MPC8xx
microprocessors, and the IBM 4xx, 6xx, and follow-on microprocessors.
Neither architecture is a subset of the other. However there is a large com-
mon subset of instructions supported by both. An MQ register is included in
processors supporting the POWER architecture.
You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GCC. Specifying the ‘-mcpu=cpu_type ’ overrides the specification of these
options. We recommend you use the ‘-mcpu=cpu_type ’ option rather than the
options listed above.
The ‘-mpower’ option allows GCC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying ‘-mpower2’
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implies ‘-power’ and also allows GCC to generate instructions that are present
in the POWER2 architecture but not the original POWER architecture.
The ‘-mpowerpc’ option allows GCC to generate instructions that are
found only in the 32-bit subset of the PowerPC architecture. Specifying
‘-mpowerpc-gpopt’ implies ‘-mpowerpc’ and also allows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying ‘-mpowerpc-gfxopt’ implies
‘-mpowerpc’ and also allows GCC to use the optional PowerPC architecture
instructions in the Graphics group, including floating-point select.
The ‘-mmfcrf’ option allows GCC to generate the move from condition register
field instruction implemented on the POWER4 processor and other processors
that support the PowerPC V2.01 architecture. The ‘-mpopcntb’ option allows
GCC to generate the popcount and double precision FP reciprocal estimate
instruction implemented on the POWER5 processor and other processors that
support the PowerPC V2.02 architecture. The ‘-mfprnd’ option allows GCC to
generate the FP round to integer instructions implemented on the POWER5+
processor and other processors that support the PowerPC V2.03 architecture.
The ‘-mpowerpc64’ option allows GCC to generate the additional 64-bit instruc-
tions that are found in the full PowerPC64 architecture and to treat GPRs as
64-bit, doubleword quantities. GCC defaults to ‘-mno-powerpc64’.
If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GCC will use only the
instructions in the common subset of both architectures plus some special
AIX common-mode calls, and will not use the MQ register. Specifying both
‘-mpower’ and ‘-mpowerpc’ permits GCC to use any instruction from either
architecture and to allow use of the MQ register; specify this for the Motorola
MPC601.

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler code. With
‘-mnew-mnemonics’, GCC uses the assembler mnemonics defined for the
PowerPC architecture. With ‘-mold-mnemonics’ it uses the assembler
mnemonics defined for the POWER architecture. Instructions defined in
only one architecture have only one mnemonic; GCC uses that mnemonic
irrespective of which of these options is specified.
GCC defaults to the mnemonics appropriate for the architecture in use. Spec-
ifying ‘-mcpu=cpu_type ’ sometimes overrides the value of these option. Un-
less you are building a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead accept the de-
fault.

-mcpu=cpu_type
Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu type. Supported values for
cpu type are ‘401’, ‘403’, ‘405’, ‘405fp’, ‘440’, ‘440fp’, ‘505’, ‘601’, ‘602’,
‘603’, ‘603e’, ‘604’, ‘604e’, ‘620’, ‘630’, ‘740’, ‘7400’, ‘7450’, ‘750’, ‘801’, ‘821’,
‘823’, ‘860’, ‘970’, ‘8540’, ‘ec603e’, ‘G3’, ‘G4’, ‘G5’, ‘power’, ‘power2’, ‘power3’,
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‘power4’, ‘power5’, ‘power5+’, ‘power6’, ‘common’, ‘powerpc’, ‘powerpc64’,
‘rios’, ‘rios1’, ‘rios2’, ‘rsc’, and ‘rs64’.

‘-mcpu=common’ selects a completely generic processor. Code generated under
this option will run on any POWER or PowerPC processor. GCC will use
only the instructions in the common subset of both architectures, and will not
use the MQ register. GCC assumes a generic processor model for scheduling
purposes.

‘-mcpu=power’, ‘-mcpu=power2’, ‘-mcpu=powerpc’, and ‘-mcpu=powerpc64’
specify generic POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601),
and 64-bit PowerPC architecture machine types, with an appropriate, generic
processor model assumed for scheduling purposes.

The other options specify a specific processor. Code generated under those
options will run best on that processor, and may not run at all on others.

The ‘-mcpu’ options automatically enable or disable the following options:
‘-maltivec’, ‘-mfprnd’, ‘-mhard-float’, ‘-mmfcrf’, ‘-mmultiple’,
‘-mnew-mnemonics’, ‘-mpopcntb’, ‘-mpower’, ‘-mpower2’, ‘-mpowerpc64’,
‘-mpowerpc-gpopt’, ‘-mpowerpc-gfxopt’, ‘-mstring’. The particular options
set for any particular CPU will vary between compiler versions, depending
on what setting seems to produce optimal code for that CPU; it doesn’t
necessarily reflect the actual hardware’s capabilities. If you wish to set an
individual option to a particular value, you may specify it after the ‘-mcpu’
option, like ‘-mcpu=970 -mno-altivec’.

On AIX, the ‘-maltivec’ and ‘-mpowerpc64’ options are not enabled or disabled
by the ‘-mcpu’ option at present because AIX does not have full support for
these options. You may still enable or disable them individually if you’re sure
it’ll work in your environment.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu type, but
do not set the architecture type, register usage, or choice of mnemonics,
as ‘-mcpu=cpu_type ’ would. The same values for cpu type are used for
‘-mtune’ as for ‘-mcpu’. If both are specified, the code generated will use
the architecture, registers, and mnemonics set by ‘-mcpu’, but the scheduling
parameters set by ‘-mtune’.

-mswdiv
-mno-swdiv

Generate code to compute division as reciprocal estimate and iterative refine-
ment, creating opportunities for increased throughput. This feature requires:
optional PowerPC Graphics instruction set for single precision and FRE instruc-
tion for double precision, assuming divides cannot generate user-visible traps,
and the domain values not include Infinities, denormals or zero denominator.

-maltivec
-mno-altivec

Generate code that uses (does not use) AltiVec instructions, and also enable the
use of built-in functions that allow more direct access to the AltiVec instruction
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set. You may also need to set ‘-mabi=altivec’ to adjust the current ABI with
AltiVec ABI enhancements.

-mvrsave

-mno-vrsave
Generate VRSAVE instructions when generating AltiVec code.

-msecure-plt
Generate code that allows ld and ld.so to build executables and shared libraries
with non-exec .plt and .got sections. This is a PowerPC 32-bit SYSV ABI
option.

-mbss-plt
Generate code that uses a BSS .plt section that ld.so fills in, and requires .plt
and .got sections that are both writable and executable. This is a PowerPC
32-bit SYSV ABI option.

-misel
-mno-isel

This switch enables or disables the generation of ISEL instructions.

-misel=yes/no
This switch has been deprecated. Use ‘-misel’ and ‘-mno-isel’ instead.

-mspe
-mno-isel

This switch enables or disables the generation of SPE simd instructions.

-mspe=yes/no
This option has been deprecated. Use ‘-mspe’ and ‘-mno-spe’ instead.

-mfloat-gprs=yes/single/double/no
-mfloat-gprs

This switch enables or disables the generation of floating point operations on
the general purpose registers for architectures that support it.

The argument yes or single enables the use of single-precision floating point
operations.

The argument double enables the use of single and double-precision floating
point operations.

The argument no disables floating point operations on the general purpose
registers.

This option is currently only available on the MPC854x.

-m32
-m64 Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets

(including GNU/Linux). The 32-bit environment sets int, long and pointer
to 32 bits and generates code that runs on any PowerPC variant. The 64-bit
environment sets int to 32 bits and long and pointer to 64 bits, and generates
code for PowerPC64, as for ‘-mpowerpc64’.
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-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case,
GCC will allocate at least one TOC entry for each unique non-automatic vari-
able reference in your program. GCC will also place floating-point constants in
the TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents
GCC from putting floating-point constants in the TOC and ‘-mno-sum-in-toc’
forces GCC to generate code to calculate the sum of an address and a constant
at run-time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly slower and
larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these
options, specify ‘-mminimal-toc’ instead. This option causes GCC to make
only one TOC entry for every file. When you specify this option, GCC will
produce code that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that contain less frequently
executed code.

-maix64
-maix32 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long

type, and the infrastructure needed to support them. Specifying ‘-maix64’
implies ‘-mpowerpc64’ and ‘-mpowerpc’, while ‘-maix32’ disables the 64-bit
ABI and implies ‘-mno-powerpc64’. GCC defaults to ‘-maix32’.

-mxl-compat
-mno-xl-compat

Produce code that conforms more closely to IBM XL compiler semantics when
using AIX-compatible ABI. Pass floating-point arguments to prototyped func-
tions beyond the register save area (RSA) on the stack in addition to argument
FPRs. Do not assume that most significant double in 128-bit long double value
is properly rounded when comparing values and converting to double. Use XL
symbol names for long double support routines.

The AIX calling convention was extended but not initially documented to han-
dle an obscure K&R C case of calling a function that takes the address of
its arguments with fewer arguments than declared. IBM XL compilers access
floating point arguments which do not fit in the RSA from the stack when a
subroutine is compiled without optimization. Because always storing floating-
point arguments on the stack is inefficient and rarely needed, this option is not
enabled by default and only is necessary when calling subroutines compiled by
IBM XL compilers without optimization.
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-mpe Support IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the ap-
plication to run. The system must have PE installed in the standard loca-
tion (‘/usr/lpp/ppe.poe/’), or the ‘specs’ file must be overridden with the
‘-specs=’ option to specify the appropriate directory location. The Parallel
Environment does not support threads, so the ‘-mpe’ option and the ‘-pthread’
option are incompatible.

-malign-natural
-malign-power

On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
‘-malign-natural’ overrides the ABI-defined alignment of larger types, such
as floating-point doubles, on their natural size-based boundary. The option
‘-malign-power’ instructs GCC to follow the ABI-specified alignment rules.
GCC defaults to the standard alignment defined in the ABI.

On 64-bit Darwin, natural alignment is the default, and ‘-malign-power’ is not
supported.

-msoft-float
-mhard-float

Generate code that does not use (uses) the floating-point register set. Software
floating point emulation is provided if you use the ‘-msoft-float’ option, and
pass the option to GCC when linking.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated by
default on POWER systems, and not generated on PowerPC systems. Do not
use ‘-mmultiple’ on little endian PowerPC systems, since those instructions
do not work when the processor is in little endian mode. The exceptions are
PPC740 and PPC750 which permit the instructions usage in little endian mode.

-mstring
-mno-string

Generate code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block
moves. These instructions are generated by default on POWER systems, and
not generated on PowerPC systems. Do not use ‘-mstring’ on little endian
PowerPC systems, since those instructions do not work when the processor is
in little endian mode. The exceptions are PPC740 and PPC750 which permit
the instructions usage in little endian mode.

-mupdate
-mno-update

Generate code that uses (does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default. If you use ‘-mno-update’, there is a small
window between the time that the stack pointer is updated and the address of
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the previous frame is stored, which means code that walks the stack frame
across interrupts or signals may get corrupted data.

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
floating is used.

-mno-bit-align
-mbit-align

On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the bit-field.
For example, by default a structure containing nothing but 8 unsigned bit-
fields of length 1 would be aligned to a 4 byte boundary and have a size of 4
bytes. By using ‘-mno-bit-align’, the structure would be aligned to a 1 byte
boundary and be one byte in size.

-mno-strict-align
-mstrict-align

On System V.4 and embedded PowerPC systems do not (do) assume that un-
aligned memory references will be handled by the system.

-mrelocatable
-mno-relocatable

On embedded PowerPC systems generate code that allows (does not allow)
the program to be relocated to a different address at runtime. If you use
‘-mrelocatable’ on any module, all objects linked together must be compiled
with ‘-mrelocatable’ or ‘-mrelocatable-lib’.

-mrelocatable-lib
-mno-relocatable-lib

On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. Modules compiled
with ‘-mrelocatable-lib’ can be linked with either modules compiled without
‘-mrelocatable’ and ‘-mrelocatable-lib’ or with modules compiled with the
‘-mrelocatable’ options.

-mno-toc
-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that reg-

ister 2 contains a pointer to a global area pointing to the addresses used in the
program.

-mlittle
-mlittle-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in little endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

-mbig
-mbig-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in big endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’.
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-mdynamic-no-pic
On Darwin and Mac OS X systems, compile code so that it is not relocatable,
but that its external references are relocatable. The resulting code is suitable
for applications, but not shared libraries.

-mprioritize-restricted-insns=priority
This option controls the priority that is assigned to dispatch-slot restricted
instructions during the second scheduling pass. The argument priority takes
the value 0/1/2 to assign no/highest/second-highest priority to dispatch slot
restricted instructions.

-msched-costly-dep=dependence_type
This option controls which dependences are considered costly by the target
during instruction scheduling. The argument dependence type takes one of the
following values: no: no dependence is costly, all: all dependences are costly,
true store to load: a true dependence from store to load is costly, store to load:
any dependence from store to load is costly, number: any dependence which
latency >= number is costly.

-minsert-sched-nops=scheme
This option controls which nop insertion scheme will be used during the second
scheduling pass. The argument scheme takes one of the following values: no:
Don’t insert nops. pad: Pad with nops any dispatch group which has vacant
issue slots, according to the scheduler’s grouping. regroup exact: Insert nops
to force costly dependent insns into separate groups. Insert exactly as many
nops as needed to force an insn to a new group, according to the estimated
processor grouping. number: Insert nops to force costly dependent insns into
separate groups. Insert number nops to force an insn to a new group.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless
you configured GCC using ‘powerpc-*-eabiaix’.

-mcall-sysv-eabi
Specify both ‘-mcall-sysv’ and ‘-meabi’ options.

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv’ and ‘-mno-eabi’ options.

-mcall-solaris
On System V.4 and embedded PowerPC systems compile code for the Solaris
operating system.

-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-
based GNU system.

-mcall-gnu
On System V.4 and embedded PowerPC systems compile code for the Hurd-
based GNU system.
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-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.

-maix-struct-return
Return all structures in memory (as specified by the AIX ABI).

-msvr4-struct-return
Return structures smaller than 8 bytes in registers (as specified by the SVR4
ABI).

-mabi=abi-type
Extend the current ABI with a particular extension, or remove such extension.
Valid values are altivec, no-altivec, spe, no-spe, ibmlongdouble, ieeelongdouble.

-mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change the
default ABI, instead it adds the SPE ABI extensions to the current ABI.

-mabi=no-spe
Disable Booke SPE ABI extensions for the current ABI.

-mabi=ibmlongdouble
Change the current ABI to use IBM extended precision long double. This is a
PowerPC 32-bit SYSV ABI option.

-mabi=ieeelongdouble
Change the current ABI to use IEEE extended precision long double. This is a
PowerPC 32-bit Linux ABI option.

-mprototype
-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to vari-
able argument functions are properly prototyped. Otherwise, the compiler must
insert an instruction before every non prototyped call to set or clear bit 6
of the condition code register (CR) to indicate whether floating point values
were passed in the floating point registers in case the function takes a variable
arguments. With ‘-mprototype’, only calls to prototyped variable argument
functions will set or clear the bit.

-msim On embedded PowerPC systems, assume that the startup module is called
‘sim-crt0.o’ and that the standard C libraries are ‘libsim.a’ and ‘libc.a’.
This is the default for ‘powerpc-*-eabisim’. configurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libmvme.a’ and ‘libc.a’.

-mads On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libads.a’ and ‘libc.a’.

-myellowknife
On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libyk.a’ and ‘libc.a’.
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-mvxworks
On System V.4 and embedded PowerPC systems, specify that you are compiling
for a VxWorks system.

-mwindiss
Specify that you are compiling for the WindISS simulation environment.

-memb On embedded PowerPC systems, set the PPC EMB bit in the ELF flags header
to indicate that ‘eabi’ extended relocations are used.

-meabi
-mno-eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of modifications
to the System V.4 specifications. Selecting ‘-meabi’ means that the stack is
aligned to an 8 byte boundary, a function __eabi is called to from main to set
up the eabi environment, and the ‘-msdata’ option can use both r2 and r13
to point to two separate small data areas. Selecting ‘-mno-eabi’ means that
the stack is aligned to a 16 byte boundary, do not call an initialization function
from main, and the ‘-msdata’ option will only use r13 to point to a single small
data area. The ‘-meabi’ option is on by default if you configured GCC using
one of the ‘powerpc*-*-eabi*’ options.

-msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized const
global and static data in the ‘.sdata2’ section, which is pointed to by register
r2. Put small initialized non-const global and static data in the ‘.sdata’
section, which is pointed to by register r13. Put small uninitialized global and
static data in the ‘.sbss’ section, which is adjacent to the ‘.sdata’ section.
The ‘-msdata=eabi’ option is incompatible with the ‘-mrelocatable’ option.
The ‘-msdata=eabi’ option also sets the ‘-memb’ option.

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section, which is pointed to by register r13. Put small
uninitialized global and static data in the ‘.sbss’ section, which is adjacent
to the ‘.sdata’ section. The ‘-msdata=sysv’ option is incompatible with the
‘-mrelocatable’ option.

-msdata=default
-msdata On System V.4 and embedded PowerPC systems, if ‘-meabi’ is used, com-

pile code the same as ‘-msdata=eabi’, otherwise compile code the same as
‘-msdata=sysv’.

-msdata-data
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section. Put small uninitialized global and static data in
the ‘.sbss’ section. Do not use register r13 to address small data however.
This is the default behavior unless other ‘-msdata’ options are used.
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-msdata=none
-mno-sdata

On embedded PowerPC systems, put all initialized global and static data in
the ‘.data’ section, and all uninitialized data in the ‘.bss’ section.

-G num On embedded PowerPC systems, put global and static items less than or equal
to num bytes into the small data or bss sections instead of the normal data or
bss section. By default, num is 8. The ‘-G num ’ switch is also passed to the
linker. All modules should be compiled with the same ‘-G num ’ value.

-mregnames
-mno-regnames

On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.

-mlongcall
-mno-longcall

Default to making all function calls indirectly, using a register, so that functions
which reside further than 32 megabytes (33,554,432 bytes) from the current lo-
cation can be called. This setting can be overridden by the shortcall function
attribute, or by #pragma longcall(0).
Some linkers are capable of detecting out-of-range calls and generating glue
code on the fly. On these systems, long calls are unnecessary and generate
slower code. As of this writing, the AIX linker can do this, as can the GNU
linker for PowerPC/64. It is planned to add this feature to the GNU linker for
32-bit PowerPC systems as well.
On Darwin/PPC systems, #pragma longcall will generate “jbsr callee, L42”,
plus a “branch island” (glue code). The two target addresses represent the
callee and the “branch island”. The Darwin/PPC linker will prefer the first
address and generate a “bl callee” if the PPC “bl” instruction will reach the
callee directly; otherwise, the linker will generate “bl L42” to call the “branch
island”. The “branch island” is appended to the body of the calling function;
it computes the full 32-bit address of the callee and jumps to it.
On Mach-O (Darwin) systems, this option directs the compiler emit to the glue
for every direct call, and the Darwin linker decides whether to use or discard
it.
In the future, we may cause GCC to ignore all longcall specifications when the
linker is known to generate glue.

-pthread Adds support for multithreading with the pthreads library. This option sets
flags for both the preprocessor and linker.

3.17.27 S/390 and zSeries Options

These are the ‘-m’ options defined for the S/390 and zSeries architecture.

-mhard-float
-msoft-float

Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When ‘-msoft-float’ is specified, functions
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in ‘libgcc.a’ will be used to perform floating-point operations. When
‘-mhard-float’ is specified, the compiler generates IEEE floating-point
instructions. This is the default.

-mlong-double-64
-mlong-double-128

These switches control the size of long double type. A size of 64bit makes the
long double type equivalent to the double type. This is the default.

-mbackchain
-mno-backchain

Store (do not store) the address of the caller’s frame as backchain pointer into
the callee’s stack frame. A backchain may be needed to allow debugging us-
ing tools that do not understand DWARF-2 call frame information. When
‘-mno-packed-stack’ is in effect, the backchain pointer is stored at the bottom
of the stack frame; when ‘-mpacked-stack’ is in effect, the backchain is placed
into the topmost word of the 96/160 byte register save area.
In general, code compiled with ‘-mbackchain’ is call-compatible with code com-
piled with ‘-mmo-backchain’; however, use of the backchain for debugging pur-
poses usually requires that the whole binary is built with ‘-mbackchain’. Note
that the combination of ‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’
is not supported. In order to build a linux kernel use ‘-msoft-float’.
The default is to not maintain the backchain.

-mpacked-stack
-mno-packed-stack

Use (do not use) the packed stack layout. When ‘-mno-packed-stack’ is spec-
ified, the compiler uses the all fields of the 96/160 byte register save area
only for their default purpose; unused fields still take up stack space. When
‘-mpacked-stack’ is specified, register save slots are densely packed at the top
of the register save area; unused space is reused for other purposes, allowing for
more efficient use of the available stack space. However, when ‘-mbackchain’
is also in effect, the topmost word of the save area is always used to store the
backchain, and the return address register is always saved two words below the
backchain.
As long as the stack frame backchain is not used, code generated
with ‘-mpacked-stack’ is call-compatible with code generated with
‘-mno-packed-stack’. Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes. Such code is not call-compatible with
code compiled with ‘-mpacked-stack’. Also, note that the combination of
‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’ is not supported. In
order to build a linux kernel use ‘-msoft-float’.
The default is to not use the packed stack layout.

-msmall-exec
-mno-small-exec

Generate (or do not generate) code using the bras instruction to do subroutine
calls. This only works reliably if the total executable size does not exceed 64k.
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The default is to use the basr instruction instead, which does not have this
limitation.

-m64
-m31 When ‘-m31’ is specified, generate code compliant to the GNU/Linux for S/390

ABI. When ‘-m64’ is specified, generate code compliant to the GNU/Linux for
zSeries ABI. This allows GCC in particular to generate 64-bit instructions. For
the ‘s390’ targets, the default is ‘-m31’, while the ‘s390x’ targets default to
‘-m64’.

-mzarch
-mesa When ‘-mzarch’ is specified, generate code using the instructions available on

z/Architecture. When ‘-mesa’ is specified, generate code using the instructions
available on ESA/390. Note that ‘-mesa’ is not possible with ‘-m64’. When
generating code compliant to the GNU/Linux for S/390 ABI, the default is
‘-mesa’. When generating code compliant to the GNU/Linux for zSeries ABI,
the default is ‘-mzarch’.

-mmvcle
-mno-mvcle

Generate (or do not generate) code using the mvcle instruction to perform
block moves. When ‘-mno-mvcle’ is specified, use a mvc loop instead. This is
the default unless optimizing for size.

-mdebug
-mno-debug

Print (or do not print) additional debug information when compiling. The
default is to not print debug information.

-march=cpu-type
Generate code that will run on cpu-type, which is the name of a system repre-
senting a certain processor type. Possible values for cpu-type are ‘g5’, ‘g6’,
‘z900’, and ‘z990’. When generating code using the instructions available
on z/Architecture, the default is ‘-march=z900’. Otherwise, the default is
‘-march=g5’.

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The list of cpu-type values is the
same as for ‘-march’. The default is the value used for ‘-march’.

-mtpf-trace
-mno-tpf-trace

Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system. This option is off by default, even when
compiling for the TPF OS.

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
floating point is used.
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-mwarn-framesize=framesize
Emit a warning if the current function exceeds the given frame size. Because
this is a compile time check it doesn’t need to be a real problem when the
program runs. It is intended to identify functions which most probably cause
a stack overflow. It is useful to be used in an environment with limited stack
size e.g. the linux kernel.

-mwarn-dynamicstack
Emit a warning if the function calls alloca or uses dynamically sized arrays.
This is generally a bad idea with a limited stack size.

-mstack-guard=stack-guard
-mstack-size=stack-size

These arguments always have to be used in conjunction. If they are present
the s390 back end emits additional instructions in the function prologue which
trigger a trap if the stack size is stack-guard bytes above the stack-size (remem-
ber that the stack on s390 grows downward). These options are intended to
be used to help debugging stack overflow problems. The additionally emitted
code causes only little overhead and hence can also be used in production like
systems without greater performance degradation. The given values have to be
exact powers of 2 and stack-size has to be greater than stack-guard without
exceeding 64k. In order to be efficient the extra code makes the assumption
that the stack starts at an address aligned to the value given by stack-size.

3.17.28 SH Options

These ‘-m’ options are defined for the SH implementations:

-m1 Generate code for the SH1.

-m2 Generate code for the SH2.

-m2e Generate code for the SH2e.

-m3 Generate code for the SH3.

-m3e Generate code for the SH3e.

-m4-nofpu
Generate code for the SH4 without a floating-point unit.

-m4-single-only
Generate code for the SH4 with a floating-point unit that only supports single-
precision arithmetic.

-m4-single
Generate code for the SH4 assuming the floating-point unit is in single-precision
mode by default.

-m4 Generate code for the SH4.

-m4a-nofpu
Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-
point unit is not used.
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-m4a-single-only
Generate code for the SH4a, in such a way that no double-precision floating
point operations are used.

-m4a-single
Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.

-m4a Generate code for the SH4a.

-m4al Same as ‘-m4a-nofpu’, except that it implicitly passes ‘-dsp’ to the assembler.
GCC doesn’t generate any DSP instructions at the moment.

-mb Compile code for the processor in big endian mode.

-ml Compile code for the processor in little endian mode.

-mdalign Align doubles at 64-bit boundaries. Note that this changes the calling conven-
tions, and thus some functions from the standard C library will not work unless
you recompile it first with ‘-mdalign’.

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’.

-mbigtable
Use 32-bit offsets in switch tables. The default is to use 16-bit offsets.

-mfmovd Enable the use of the instruction fmovd.

-mhitachi
Comply with the calling conventions defined by Renesas.

-mrenesas
Comply with the calling conventions defined by Renesas.

-mno-renesas
Comply with the calling conventions defined for GCC before the Renesas con-
ventions were available. This option is the default for all targets of the SH
toolchain except for ‘sh-symbianelf’.

-mnomacsave
Mark the MAC register as call-clobbered, even if ‘-mhitachi’ is given.

-mieee Increase IEEE-compliance of floating-point code. At the moment, this is equiv-
alent to ‘-fno-finite-math-only’. When generating 16 bit SH opcodes, get-
ting IEEE-conforming results for comparisons of NANs / infinities incurs extra
overhead in every floating point comparison, therefore the default is set to
‘-ffinite-math-only’.

-misize Dump instruction size and location in the assembly code.

-mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes, which is
incompatible with the SH ABI.

-mspace Optimize for space instead of speed. Implied by ‘-Os’.
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-mprefergot
When generating position-independent code, emit function calls using the
Global Offset Table instead of the Procedure Linkage Table.

-musermode
Generate a library function call to invalidate instruction cache entries, after
fixing up a trampoline. This library function call doesn’t assume it can write
to the whole memory address space. This is the default when the target is
sh-*-linux*.

-multcost=number
Set the cost to assume for a multiply insn.

-mdiv=strategy
Set the division strategy to use for SHmedia code. strategy must be one of:
call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call, inv:call2, inv:fp . "fp"
performs the operation in floating point. This has a very high latency, but
needs only a few instructions, so it might be a good choice if your code has
enough easily exploitable ILP to allow the compiler to schedule the floating
point instructions together with other instructions. Division by zero causes a
floating point exception. "inv" uses integer operations to calculate the inverse
of the divisor, and then multiplies the dividend with the inverse. This strategy
allows cse and hoisting of the inverse calculation. Division by zero calculates an
unspecified result, but does not trap. "inv:minlat" is a variant of "inv" where
if no cse / hoisting opportunities have been found, or if the entire operation
has been hoisted to the same place, the last stages of the inverse calculation are
intertwined with the final multiply to reduce the overall latency, at the expense
of using a few more instructions, and thus offering fewer scheduling opportuni-
ties with other code. "call" calls a library function that usually implements the
inv:minlat strategy. This gives high code density for m5-*media-nofpu compila-
tions. "call2" uses a different entry point of the same library function, where it
assumes that a pointer to a lookup table has already been set up, which exposes
the pointer load to cse / code hoisting optimizations. "inv:call", "inv:call2" and
"inv:fp" all use the "inv" algorithm for initial code generation, but if the code
stays unoptimized, revert to the "call", "call2", or "fp" strategies, respectively.
Note that the potentially-trapping side effect of division by zero is carried by a
separate instruction, so it is possible that all the integer instructions are hoisted
out, but the marker for the side effect stays where it is. A recombination to
fp operations or a call is not possible in that case. "inv20u" and "inv20l" are
variants of the "inv:minlat" strategy. In the case that the inverse calculation
was nor separated from the multiply, they speed up division where the dividend
fits into 20 bits (plus sign where applicable), by inserting a test to skip a num-
ber of operations in this case; this test slows down the case of larger dividends.
inv20u assumes the case of a such a small dividend to be unlikely, and inv20l
assumes it to be likely.

-mdivsi3_libfunc=name
Set the name of the library function used for 32 bit signed division to name.
This only affect the name used in the call and inv:call division strategies, and
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the compiler will still expect the same sets of input/output/clobbered registers
as if this option was not present.

-madjust-unroll
Throttle unrolling to avoid thrashing target registers. This option only has an
effect if the gcc code base supports the TARGET ADJUST UNROLL MAX
target hook.

-mindexed-addressing
Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
This is only safe if the hardware and/or OS implement 32 bit wrap-around
semantics for the indexed addressing mode. The architecture allows the imple-
mentation of processors with 64 bit MMU, which the OS could use to get 32
bit addressing, but since no current hardware implementation supports this or
any other way to make the indexed addressing mode safe to use in the 32 bit
ABI, the default is -mno-indexed-addressing.

-mgettrcost=number
Set the cost assumed for the gettr instruction to number. The default is 2 if
‘-mpt-fixed’ is in effect, 100 otherwise.

-mpt-fixed
Assume pt* instructions won’t trap. This will generally generate better sched-
uled code, but is unsafe on current hardware. The current architecture defini-
tion says that ptabs and ptrel trap when the target anded with 3 is 3. This
has the unintentional effect of making it unsafe to schedule ptabs / ptrel be-
fore a branch, or hoist it out of a loop. For example, do global ctors, a part
of libgcc that runs constructors at program startup, calls functions in a list
which is delimited by -1. With the -mpt-fixed option, the ptabs will be done
before testing against -1. That means that all the constructors will be run a bit
quicker, but when the loop comes to the end of the list, the program crashes
because ptabs loads -1 into a target register. Since this option is unsafe for
any hardware implementing the current architecture specification, the default
is -mno-pt-fixed. Unless the user specifies a specific cost with ‘-mgettrcost’,
-mno-pt-fixed also implies ‘-mgettrcost=100’; this deters register allocation
using target registers for storing ordinary integers.

-minvalid-symbols
Assume symbols might be invalid. Ordinary function symbols generated
by the compiler will always be valid to load with movi/shori/ptabs or
movi/shori/ptrel, but with assembler and/or linker tricks it is possible
to generate symbols that will cause ptabs / ptrel to trap. This option is
only meaningful when ‘-mno-pt-fixed’ is in effect. It will then prevent
cross-basic-block cse, hoisting and most scheduling of symbol loads. The
default is ‘-mno-invalid-symbols’.

3.17.29 SPARC Options

These ‘-m’ options are supported on the SPARC:
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-mno-app-regs
-mapp-regs

Specify ‘-mapp-regs’ to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this
option.

-mfpu
-mhard-float

Generate output containing floating point instructions. This is the default.

-mno-fpu
-msoft-float

Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘sparc-*-aout’
and ‘sparclite-*-*’ do provide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating point instructions.

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating
point instructions. The functions called are those specified in the SPARC ABI.
This is the default.

As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the ‘-msoft-quad-float’
option is the default.

-mno-unaligned-doubles
-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the default.

With ‘-munaligned-doubles’, GCC assumes that doubles have 8 byte align-
ment only if they are contained in another type, or if they have an absolute
address. Otherwise, it assumes they have 4 byte alignment. Specifying this
option avoids some rare compatibility problems with code generated by other
compilers. It is not the default because it results in a performance loss, espe-
cially for floating point code.
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-mno-faster-structs
-mfaster-structs

With ‘-mfaster-structs’, the compiler assumes that structures should have
8 byte alignment. This enables the use of pairs of ldd and std instructions
for copies in structure assignment, in place of twice as many ld and st pairs.
However, the use of this changed alignment directly violates the SPARC ABI.
Thus, it’s intended only for use on targets where the developer acknowledges
that their resulting code will not be directly in line with the rules of the ABI.

-mimpure-text
‘-mimpure-text’, used in addition to ‘-shared’, tells the compiler to not pass
‘-z text’ to the linker when linking a shared object. Using this option, you can
link position-dependent code into a shared object.
‘-mimpure-text’ suppresses the “relocations remain against allocatable but
non-writable sections” linker error message. However, the necessary reloca-
tions will trigger copy-on-write, and the shared object is not actually shared
across processes. Instead of using ‘-mimpure-text’, you should compile all
source code with ‘-fpic’ or ‘-fPIC’.
This option is only available on SunOS and Solaris.

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. Supported values for cpu type are ‘v7’, ‘cypress’,
‘v8’, ‘supersparc’, ‘sparclite’, ‘f930’, ‘f934’, ‘hypersparc’, ‘sparclite86x’,
‘sparclet’, ‘tsc701’, ‘v9’, ‘ultrasparc’, and ‘ultrasparc3’.
Default instruction scheduling parameters are used for values that select an
architecture and not an implementation. These are ‘v7’, ‘v8’, ‘sparclite’,
‘sparclet’, ‘v9’.
Here is a list of each supported architecture and their supported implementa-
tions.

v7: cypress

v8: supersparc, hypersparc

sparclite: f930, f934, sparclite86x

sparclet: tsc701

v9: ultrasparc, ultrasparc3

By default (unless configured otherwise), GCC generates code for the V7 vari-
ant of the SPARC architecture. With ‘-mcpu=cypress’, the compiler addition-
ally optimizes it for the Cypress CY7C602 chip, as used in the SPARCSta-
tion/SPARCServer 3xx series. This is also appropriate for the older SPARC-
Station 1, 2, IPX etc.
With ‘-mcpu=v8’, GCC generates code for the V8 variant of the SPARC archi-
tecture. The only difference from V7 code is that the compiler emits the integer
multiply and integer divide instructions which exist in SPARC-V8 but not in
SPARC-V7. With ‘-mcpu=supersparc’, the compiler additionally optimizes it
for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000
series.
With ‘-mcpu=sparclite’, GCC generates code for the SPARClite variant of the
SPARC architecture. This adds the integer multiply, integer divide step and
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scan (ffs) instructions which exist in SPARClite but not in SPARC-V7. With
‘-mcpu=f930’, the compiler additionally optimizes it for the Fujitsu MB86930
chip, which is the original SPARClite, with no FPU. With ‘-mcpu=f934’, the
compiler additionally optimizes it for the Fujitsu MB86934 chip, which is the
more recent SPARClite with FPU.

With ‘-mcpu=sparclet’, GCC generates code for the SPARClet variant of the
SPARC architecture. This adds the integer multiply, multiply/accumulate,
integer divide step and scan (ffs) instructions which exist in SPARClet but
not in SPARC-V7. With ‘-mcpu=tsc701’, the compiler additionally optimizes
it for the TEMIC SPARClet chip.

With ‘-mcpu=v9’, GCC generates code for the V9 variant of the SPARC archi-
tecture. This adds 64-bit integer and floating-point move instructions, 3 addi-
tional floating-point condition code registers and conditional move instructions.
With ‘-mcpu=ultrasparc’, the compiler additionally optimizes it for the Sun
UltraSPARC I/II chips. With ‘-mcpu=ultrasparc3’, the compiler additionally
optimizes it for the Sun UltraSPARC III chip.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu type, but do
not set the instruction set or register set that the option ‘-mcpu=cpu_type ’
would.

The same values for ‘-mcpu=cpu_type ’ can be used for ‘-mtune=cpu_type ’,
but the only useful values are those that select a particular cpu implemen-
tation. Those are ‘cypress’, ‘supersparc’, ‘hypersparc’, ‘f930’, ‘f934’,
‘sparclite86x’, ‘tsc701’, ‘ultrasparc’, and ‘ultrasparc3’.

-mv8plus
-mno-v8plus

With ‘-mv8plus’, GCC generates code for the SPARC-V8+ ABI. The difference
from the V8 ABI is that the global and out registers are considered 64-bit
wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9
processors.

-mvis
-mno-vis With ‘-mvis’, GCC generates code that takes advantage of the UltraSPARC

Visual Instruction Set extensions. The default is ‘-mno-vis’.

These ‘-m’ options are supported in addition to the above on SPARC-V9 processors in
64-bit environments:

-mlittle-endian
Generate code for a processor running in little-endian mode. It is only available
for a few configurations and most notably not on Solaris and Linux.

-m32
-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits.
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-mcmodel=medlow
Generate code for the Medium/Low code model: 64-bit addresses, programs
must be linked in the low 32 bits of memory. Programs can be statically or
dynamically linked.

-mcmodel=medmid
Generate code for the Medium/Middle code model: 64-bit addresses, programs
must be linked in the low 44 bits of memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.

-mcmodel=medany
Generate code for the Medium/Anywhere code model: 64-bit addresses, pro-
grams may be linked anywhere in memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.

-mcmodel=embmedany
Generate code for the Medium/Anywhere code model for embedded systems:
64-bit addresses, the text and data segments must be less than 2GB in size, both
starting anywhere in memory (determined at link time). The global register
%g4 points to the base of the data segment. Programs are statically linked and
PIC is not supported.

-mstack-bias
-mno-stack-bias

With ‘-mstack-bias’, GCC assumes that the stack pointer, and frame pointer
if present, are offset by −2047 which must be added back when making stack
frame references. This is the default in 64-bit mode. Otherwise, assume no
such offset is present.

These switches are supported in addition to the above on Solaris:

-threads Add support for multithreading using the Solaris threads library. This option
sets flags for both the preprocessor and linker. This option does not affect
the thread safety of object code produced by the compiler or that of libraries
supplied with it.

-pthreads
Add support for multithreading using the POSIX threads library. This option
sets flags for both the preprocessor and linker. This option does not affect
the thread safety of object code produced by the compiler or that of libraries
supplied with it.

-pthread This is a synonym for ‘-pthreads’.

3.17.30 Options for System V

These additional options are available on System V Release 4 for compatibility with other
compilers on those systems:

-G Create a shared object. It is recommended that ‘-symbolic’ or ‘-shared’ be
used instead.
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-Qy Identify the versions of each tool used by the compiler, in a .ident assembler
directive in the output.

-Qn Refrain from adding .ident directives to the output file (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-l’.

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this
option.

3.17.31 TMS320C3x/C4x Options

These ‘-m’ options are defined for TMS320C3x/C4x implementations:

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. Supported values for cpu type are ‘c30’, ‘c31’, ‘c32’,
‘c40’, and ‘c44’. The default is ‘c40’ to generate code for the TMS320C40.

-mbig-memory
-mbig
-msmall-memory
-msmall Generates code for the big or small memory model. The small memory model

assumed that all data fits into one 64K word page. At run-time the data page
(DP) register must be set to point to the 64K page containing the .bss and .data
program sections. The big memory model is the default and requires reloading
of the DP register for every direct memory access.

-mbk
-mno-bk Allow (disallow) allocation of general integer operands into the block count

register BK.

-mdb
-mno-db Enable (disable) generation of code using decrement and branch, DBcond(D),

instructions. This is enabled by default for the C4x. To be on the safe side,
this is disabled for the C3x, since the maximum iteration count on the C3x is
223 + 1 (but who iterates loops more than 223 times on the C3x?). Note that
GCC will try to reverse a loop so that it can utilize the decrement and branch
instruction, but will give up if there is more than one memory reference in the
loop. Thus a loop where the loop counter is decremented can generate slightly
more efficient code, in cases where the RPTB instruction cannot be utilized.

-mdp-isr-reload
-mparanoid

Force the DP register to be saved on entry to an interrupt service routine (ISR),
reloaded to point to the data section, and restored on exit from the ISR. This
should not be required unless someone has violated the small memory model
by modifying the DP register, say within an object library.

-mmpyi
-mno-mpyi

For the C3x use the 24-bit MPYI instruction for integer multiplies instead of
a library call to guarantee 32-bit results. Note that if one of the operands is
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a constant, then the multiplication will be performed using shifts and adds. If
the ‘-mmpyi’ option is not specified for the C3x, then squaring operations are
performed inline instead of a library call.

-mfast-fix
-mno-fast-fix

The C3x/C4x FIX instruction to convert a floating point value to an integer
value chooses the nearest integer less than or equal to the floating point value
rather than to the nearest integer. Thus if the floating point number is negative,
the result will be incorrectly truncated an additional code is necessary to detect
and correct this case. This option can be used to disable generation of the
additional code required to correct the result.

-mrptb
-mno-rptb

Enable (disable) generation of repeat block sequences using the RPTB instruc-
tion for zero overhead looping. The RPTB construct is only used for innermost
loops that do not call functions or jump across the loop boundaries. There is no
advantage having nested RPTB loops due to the overhead required to save and
restore the RC, RS, and RE registers. This is enabled by default with ‘-O2’.

-mrpts=count
-mno-rpts

Enable (disable) the use of the single instruction repeat instruction RPTS. If a
repeat block contains a single instruction, and the loop count can be guaranteed
to be less than the value count, GCC will emit a RPTS instruction instead of
a RPTB. If no value is specified, then a RPTS will be emitted even if the loop
count cannot be determined at compile time. Note that the repeated instruction
following RPTS does not have to be reloaded from memory each iteration, thus
freeing up the CPU buses for operands. However, since interrupts are blocked
by this instruction, it is disabled by default.

-mloop-unsigned
-mno-loop-unsigned

The maximum iteration count when using RPTS and RPTB (and DB on the
C40) is 231 + 1 since these instructions test if the iteration count is negative to
terminate the loop. If the iteration count is unsigned there is a possibility than
the 231 + 1 maximum iteration count may be exceeded. This switch allows an
unsigned iteration count.

-mti Try to emit an assembler syntax that the TI assembler (asm30) is happy with.
This also enforces compatibility with the API employed by the TI C3x C com-
piler. For example, long doubles are passed as structures rather than in floating
point registers.

-mregparm
-mmemparm

Generate code that uses registers (stack) for passing arguments to functions.
By default, arguments are passed in registers where possible rather than by
pushing arguments on to the stack.
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-mparallel-insns
-mno-parallel-insns

Allow the generation of parallel instructions. This is enabled by default with
‘-O2’.

-mparallel-mpy
-mno-parallel-mpy

Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
provided ‘-mparallel-insns’ is also specified. These instructions have tight
register constraints which can pessimize the code generation of large functions.

3.17.32 V850 Options

These ‘-m’ options are defined for V850 implementations:

-mlong-calls
-mno-long-calls

Treat all calls as being far away (near). If calls are assumed to be far away,
the compiler will always load the functions address up into a register, and call
indirect through the pointer.

-mno-ep
-mep Do not optimize (do optimize) basic blocks that use the same index pointer 4

or more times to copy pointer into the ep register, and use the shorter sld and
sst instructions. The ‘-mep’ option is on by default if you optimize.

-mno-prolog-function
-mprolog-function

Do not use (do use) external functions to save and restore registers at the
prologue and epilogue of a function. The external functions are slower, but use
less code space if more than one function saves the same number of registers.
The ‘-mprolog-function’ option is on by default if you optimize.

-mspace Try to make the code as small as possible. At present, this just turns on the
‘-mep’ and ‘-mprolog-function’ options.

-mtda=n Put static or global variables whose size is n bytes or less into the tiny data
area that register ep points to. The tiny data area can hold up to 256 bytes in
total (128 bytes for byte references).

-msda=n Put static or global variables whose size is n bytes or less into the small data
area that register gp points to. The small data area can hold up to 64 kilobytes.

-mzda=n Put static or global variables whose size is n bytes or less into the first 32
kilobytes of memory.

-mv850 Specify that the target processor is the V850.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mapp-regs
This option will cause r2 and r5 to be used in the code generated by the compiler.
This setting is the default.
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-mno-app-regs
This option will cause r2 and r5 to be treated as fixed registers.

-mv850e1 Specify that the target processor is the V850E1. The preprocessor constants
‘__v850e1__’ and ‘__v850e__’ will be defined if this option is used.

-mv850e Specify that the target processor is the V850E. The preprocessor constant
‘__v850e__’ will be defined if this option is used.

If neither ‘-mv850’ nor ‘-mv850e’ nor ‘-mv850e1’ are defined then a default tar-
get processor will be chosen and the relevant ‘__v850*__’ preprocessor constant
will be defined.

The preprocessor constants ‘__v850’ and ‘__v851__’ are always defined, regard-
less of which processor variant is the target.

-mdisable-callt
This option will suppress generation of the CALLT instruction for the v850e and
v850e1 flavors of the v850 architecture. The default is ‘-mno-disable-callt’
which allows the CALLT instruction to be used.

3.17.33 VAX Options

These ‘-m’ options are defined for the VAX:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix
assembler for the VAX cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that you will assemble
with the GNU assembler.

-mg Output code for g-format floating point numbers instead of d-format.

3.17.34 x86-64 Options

These are listed under See Section 3.17.13 [i386 and x86-64 Options], page 139.

3.17.35 Xstormy16 Options

These options are defined for Xstormy16:

-msim Choose startup files and linker script suitable for the simulator.

3.17.36 Xtensa Options

These options are supported for Xtensa targets:

-mconst16
-mno-const16

Enable or disable use of CONST16 instructions for loading constant values. The
CONST16 instruction is currently not a standard option from Tensilica. When
enabled, CONST16 instructions are always used in place of the standard L32R in-
structions. The use of CONST16 is enabled by default only if the L32R instruction
is not available.
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-mfused-madd
-mno-fused-madd

Enable or disable use of fused multiply/add and multiply/subtract instructions
in the floating-point option. This has no effect if the floating-point option
is not also enabled. Disabling fused multiply/add and multiply/subtract in-
structions forces the compiler to use separate instructions for the multiply and
add/subtract operations. This may be desirable in some cases where strict
IEEE 754-compliant results are required: the fused multiply add/subtract in-
structions do not round the intermediate result, thereby producing results with
more bits of precision than specified by the IEEE standard. Disabling fused
multiply add/subtract instructions also ensures that the program output is not
sensitive to the compiler’s ability to combine multiply and add/subtract oper-
ations.

-mtext-section-literals
-mno-text-section-literals

Control the treatment of literal pools. The default is ‘-mno-text-section-literals’,
which places literals in a separate section in the output file. This allows the
literal pool to be placed in a data RAM/ROM, and it also allows the linker to
combine literal pools from separate object files to remove redundant literals
and improve code size. With ‘-mtext-section-literals’, the literals are
interspersed in the text section in order to keep them as close as possible to
their references. This may be necessary for large assembly files.

-mtarget-align
-mno-target-align

When this option is enabled, GCC instructs the assembler to automatically align
instructions to reduce branch penalties at the expense of some code density. The
assembler attempts to widen density instructions to align branch targets and
the instructions following call instructions. If there are not enough preceding
safe density instructions to align a target, no widening will be performed. The
default is ‘-mtarget-align’. These options do not affect the treatment of auto-
aligned instructions like LOOP, which the assembler will always align, either by
widening density instructions or by inserting no-op instructions.

-mlongcalls
-mno-longcalls

When this option is enabled, GCC instructs the assembler to translate direct
calls to indirect calls unless it can determine that the target of a direct call is
in the range allowed by the call instruction. This translation typically occurs
for calls to functions in other source files. Specifically, the assembler translates
a direct CALL instruction into an L32R followed by a CALLX instruction. The
default is ‘-mno-longcalls’. This option should be used in programs where
the call target can potentially be out of range. This option is implemented in
the assembler, not the compiler, so the assembly code generated by GCC will
still show direct call instructions—look at the disassembled object code to see
the actual instructions. Note that the assembler will use an indirect call for
every cross-file call, not just those that really will be out of range.
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3.17.37 zSeries Options

These are listed under See Section 3.17.27 [S/390 and zSeries Options], page 174.

3.18 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code genera-
tion.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fbounds-check
For front-ends that support it, generate additional code to check that indices
used to access arrays are within the declared range. This is currently only
supported by the Java and Fortran front-ends, where this option defaults to
true and false respectively.

-ftrapv This option generates traps for signed overflow on addition, subtraction, mul-
tiplication operations.

-fwrapv This option instructs the compiler to assume that signed arithmetic overflow of
addition, subtraction and multiplication wraps around using twos-complement
representation. This flag enables some optimizations and disables others. This
option is enabled by default for the Java front-end, as required by the Java
language specification.

-fexceptions
Enable exception handling. Generates extra code needed to propagate excep-
tions. For some targets, this implies GCC will generate frame unwind informa-
tion for all functions, which can produce significant data size overhead, although
it does not affect execution. If you do not specify this option, GCC will enable
it by default for languages like C++ which normally require exception handling,
and disable it for languages like C that do not normally require it. However,
you may need to enable this option when compiling C code that needs to inter-
operate properly with exception handlers written in C++. You may also wish
to disable this option if you are compiling older C++ programs that don’t use
exception handling.

-fnon-call-exceptions
Generate code that allows trapping instructions to throw exceptions. Note that
this requires platform-specific runtime support that does not exist everywhere.
Moreover, it only allows trapping instructions to throw exceptions, i.e. memory
references or floating point instructions. It does not allow exceptions to be
thrown from arbitrary signal handlers such as SIGALRM.

-funwind-tables
Similar to ‘-fexceptions’, except that it will just generate any needed static
data, but will not affect the generated code in any other way. You will normally
not enable this option; instead, a language processor that needs this handling
would enable it on your behalf.
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-fasynchronous-unwind-tables
Generate unwind table in dwarf2 format, if supported by target machine. The
table is exact at each instruction boundary, so it can be used for stack unwinding
from asynchronous events (such as debugger or garbage collector).

-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather
than in registers. This convention is less efficient, but it has the advantage
of allowing intercallability between GCC-compiled files and files compiled with
other compilers, particularly the Portable C Compiler (pcc).
The precise convention for returning structures in memory depends on the tar-
get configuration macros.
Short structures and unions are those whose size and alignment match that of
some integer type.
Warning: code compiled with the ‘-fpcc-struct-return’ switch is not binary
compatible with code compiled with the ‘-freg-struct-return’ switch. Use
it to conform to a non-default application binary interface.

-freg-struct-return
Return struct and union values in registers when possible. This is more effi-
cient for small structures than ‘-fpcc-struct-return’.
If you specify neither ‘-fpcc-struct-return’ nor ‘-freg-struct-return’,
GCC defaults to whichever convention is standard for the target. If there is
no standard convention, GCC defaults to ‘-fpcc-struct-return’, except on
targets where GCC is the principal compiler. In those cases, we can choose
the standard, and we chose the more efficient register return alternative.
Warning: code compiled with the ‘-freg-struct-return’ switch is not binary
compatible with code compiled with the ‘-fpcc-struct-return’ switch. Use
it to conform to a non-default application binary interface.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range
of possible values. Specifically, the enum type will be equivalent to the smallest
integer type which has enough room.
Warning: the ‘-fshort-enums’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fshort-double
Use the same size for double as for float.
Warning: the ‘-fshort-double’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fshort-wchar
Override the underlying type for ‘wchar_t’ to be ‘short unsigned int’ instead
of the default for the target. This option is useful for building programs to run
under WINE.
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Warning: the ‘-fshort-wchar’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fshared-data
Requests that the data and non-const variables of this compilation be shared
data rather than private data. The distinction makes sense only on certain
operating systems, where shared data is shared between processes running the
same program, while private data exists in one copy per process.

-fno-common
In C, allocate even uninitialized global variables in the data section of the object
file, rather than generating them as common blocks. This has the effect that
if the same variable is declared (without extern) in two different compilations,
you will get an error when you link them. The only reason this might be useful
is if you wish to verify that the program will work on other systems which
always work this way.

-fno-ident
Ignore the ‘#ident’ directive.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at lo-
cations far apart in memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need
to read the generated assembly code (perhaps while debugging the compiler
itself).
‘-fno-verbose-asm’, the default, causes the extra information to be omitted
and is useful when comparing two assembler files.

-fpic Generate position-independent code (PIC) suitable for use in a shared library,
if supported for the target machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic loader resolves the GOT
entries when the program starts (the dynamic loader is not part of GCC; it
is part of the operating system). If the GOT size for the linked executable
exceeds a machine-specific maximum size, you get an error message from the
linker indicating that ‘-fpic’ does not work; in that case, recompile with ‘-fPIC’
instead. (These maximums are 8k on the SPARC and 32k on the m68k and
RS/6000. The 386 has no such limit.)
Position-independent code requires special support, and therefore works only on
certain machines. For the 386, GCC supports PIC for System V but not for the
Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

-fPIC If supported for the target machine, emit position-independent code, suitable
for dynamic linking and avoiding any limit on the size of the global offset table.
This option makes a difference on the m68k, PowerPC and SPARC.
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Position-independent code requires special support, and therefore works only
on certain machines.

-fpie
-fPIE These options are similar to ‘-fpic’ and ‘-fPIC’, but generated position inde-

pendent code can be only linked into executables. Usually these options are
used when ‘-pie’ GCC option will be used during linking.

-fno-jump-tables
Do not use jump tables for switch statements even where it would be more effi-
cient than other code generation strategies. This option is of use in conjunction
with ‘-fpic’ or ‘-fPIC’ for building code which forms part of a dynamic linker
and cannot reference the address of a jump table. On some targets, jump tables
do not require a GOT and this option is not needed.

-ffixed-reg
Treat the register named reg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
fixed role).
reg must be the name of a register. The register names accepted are machine-
specific and are defined in the REGISTER_NAMES macro in the machine descrip-
tion macro file.
This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocable register that is clobbered by func-
tion calls. It may be allocated for temporaries or variables that do not live
across a call. Functions compiled this way will not save and restore the register
reg.
It is an error to used this flag with the frame pointer or stack pointer. Use
of this flag for other registers that have fixed pervasive roles in the machine’s
execution model will produce disastrous results.
This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.
It is an error to used this flag with the frame pointer or stack pointer. Use
of this flag for other registers that have fixed pervasive roles in the machine’s
execution model will produce disastrous results.
A different sort of disaster will result from the use of this flag for a register in
which function values may be returned.
This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct[=n]
Without a value specified, pack all structure members together without holes.
When a value is specified (which must be a small power of two), pack structure
members according to this value, representing the maximum alignment (that
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is, objects with default alignment requirements larger than this will be output
potentially unaligned at the next fitting location.

Warning: the ‘-fpack-struct’ switch causes GCC to generate code that is
not binary compatible with code generated without that switch. Additionally,
it makes the code suboptimal. Use it to conform to a non-default application
binary interface.

-finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just after func-
tion entry and just before function exit, the following profiling functions will
be called with the address of the current function and its call site. (On some
platforms, __builtin_return_address does not work beyond the current func-
tion, so the call site information may not be available to the profiling functions
otherwise.)

void __cyg_profile_func_enter (void *this_fn,

void *call_site);

void __cyg_profile_func_exit (void *this_fn,

void *call_site);

The first argument is the address of the start of the current function, which
may be looked up exactly in the symbol table.

This instrumentation is also done for functions expanded inline in other func-
tions. The profiling calls will indicate where, conceptually, the inline function
is entered and exited. This means that addressable versions of such functions
must be available. If all your uses of a function are expanded inline, this may
mean an additional expansion of code size. If you use ‘extern inline’ in your
C code, an addressable version of such functions must be provided. (This is
normally the case anyways, but if you get lucky and the optimizer always ex-
pands the functions inline, you might have gotten away without providing static
copies.)

A function may be given the attribute no_instrument_function, in which
case this instrumentation will not be done. This can be used, for example, for
the profiling functions listed above, high-priority interrupt routines, and any
functions from which the profiling functions cannot safely be called (perhaps
signal handlers, if the profiling routines generate output or allocate memory).

-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but only rarely need to specify it in a single-threaded environment
since stack overflow is automatically detected on nearly all systems if there is
only one stack.

Note that this switch does not actually cause checking to be done; the operating
system must do that. The switch causes generation of code to ensure that the
operating system sees the stack being extended.
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-fstack-limit-register=reg
-fstack-limit-symbol=sym
-fno-stack-limit

Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If the stack would grow
beyond the value, a signal is raised. For most targets, the signal is raised before
the stack overruns the boundary, so it is possible to catch the signal without
taking special precautions.
For instance, if the stack starts at absolute address ‘0x80000000’ and grows
downwards, you can use the flags ‘-fstack-limit-symbol=__stack_limit’
and ‘-Wl,--defsym,__stack_limit=0x7ffe0000’ to enforce a stack limit of
128KB. Note that this may only work with the GNU linker.

-fargument-alias
-fargument-noalias
-fargument-noalias-global

Specify the possible relationships among parameters and between parameters
and global data.
‘-fargument-alias’ specifies that arguments (parameters) may alias each other
and may alias global storage.
‘-fargument-noalias’ specifies that arguments do not alias each other, but
may alias global storage.
‘-fargument-noalias-global’ specifies that arguments do not alias each other
and do not alias global storage.
Each language will automatically use whatever option is required by the lan-
guage standard. You should not need to use these options yourself.

-fleading-underscore
This option and its counterpart, ‘-fno-leading-underscore’, forcibly change
the way C symbols are represented in the object file. One use is to help link
with legacy assembly code.
Warning: the ‘-fleading-underscore’ switch causes GCC to generate code
that is not binary compatible with code generated without that switch. Use it
to conform to a non-default application binary interface. Not all targets provide
complete support for this switch.

-ftls-model=model
Alter the thread-local storage model to be used (see Section 5.51 [Thread-
Local], page 356). The model argument should be one of global-dynamic,
local-dynamic, initial-exec or local-exec.
The default without ‘-fpic’ is initial-exec; with ‘-fpic’ the default is
global-dynamic.

-fvisibility=default|internal|hidden|protected
Set the default ELF image symbol visibility to the specified option—all symbols
will be marked with this unless overridden within the code. Using this feature
can very substantially improve linking and load times of shared object libraries,
produce more optimized code, provide near-perfect API export and prevent
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symbol clashes. It is strongly recommended that you use this in any shared
objects you distribute.

Despite the nomenclature, default always means public ie; available to be
linked against from outside the shared object. protected and internal are
pretty useless in real-world usage so the only other commonly used option will
be hidden. The default if ‘-fvisibility’ isn’t specified is default, i.e., make
every symbol public—this causes the same behavior as previous versions of
GCC.

A good explanation of the benefits offered by ensuring ELF symbols have
the correct visibility is given by “How To Write Shared Libraries” by Ulrich
Drepper (which can be found at http://people.redhat.com/~drepper/)—
however a superior solution made possible by this option to marking things
hidden when the default is public is to make the default hidden and
mark things public. This is the norm with DLL’s on Windows and with
‘-fvisibility=hidden’ and __attribute__ ((visibility("default")))
instead of __declspec(dllexport) you get almost identical semantics with
identical syntax. This is a great boon to those working with cross-platform
projects.

For those adding visibility support to existing code, you may find ‘#pragma GCC
visibility’ of use. This works by you enclosing the declarations you wish to
set visibility for with (for example) ‘#pragma GCC visibility push(hidden)’
and ‘#pragma GCC visibility pop’. Bear in mind that symbol visibility should
be viewed as part of the API interface contract and thus all new code should
always specify visibility when it is not the default ie; declarations only for
use within the local DSO should always be marked explicitly as hidden as so
to avoid PLT indirection overheads—making this abundantly clear also aids
readability and self-documentation of the code. Note that due to ISO C++
specification requirements, operator new and operator delete must always be of
default visibility.

An overview of these techniques, their benefits and how to use them is at
http://gcc.gnu.org/wiki/Visibility.

3.19 Environment Variables Affecting GCC

This section describes several environment variables that affect how GCC operates. Some
of them work by specifying directories or prefixes to use when searching for various kinds
of files. Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and
‘-L’ (see Section 3.14 [Directory Options], page 107). These take precedence over places
specified using environment variables, which in turn take precedence over those specified by
the configuration of GCC. See section “Controlling the Compilation Driver ‘gcc’” in GNU
Compiler Collection (GCC) Internals.
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LANG
LC_CTYPE
LC_MESSAGES
LC_ALL These environment variables control the way that GCC uses localization in-

formation that allow GCC to work with different national conventions. GCC
inspects the locale categories LC_CTYPE and LC_MESSAGES if it has been config-
ured to do so. These locale categories can be set to any value supported by
your installation. A typical value is ‘en_GB.UTF-8’ for English in the United
Kingdom encoded in UTF-8.

The LC_CTYPE environment variable specifies character classification. GCC uses
it to determine the character boundaries in a string; this is needed for some
multibyte encodings that contain quote and escape characters that would oth-
erwise be interpreted as a string end or escape.

The LC_MESSAGES environment variable specifies the language to use in diag-
nostic messages.

If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and
LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the
LANG environment variable. If none of these variables are set, GCC defaults to
traditional C English behavior.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses
temporary files to hold the output of one stage of compilation which is to be
used as input to the next stage: for example, the output of the preprocessor,
which is the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the
subprograms executed by the compiler. No slash is added when this prefix is
combined with the name of a subprogram, but you can specify a prefix that
ends with a slash if you wish.

If GCC_EXEC_PREFIX is not set, GCC will attempt to figure out an appropriate
prefix to use based on the pathname it was invoked with.

If GCC cannot find the subprogram using the specified prefix, it tries looking
in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is ‘prefix/lib/gcc/’ where prefix is
the value of prefix when you ran the ‘configure’ script.

Other prefixes specified with ‘-B’ take precedence over this prefix.

This prefix is also used for finding files such as ‘crt0.o’ that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories
to search for header files. For each of the standard directories whose name
normally begins with ‘/usr/local/lib/gcc’ (more precisely, with the value
of GCC_INCLUDE_DIR), GCC tries replacing that beginning with the specified
prefix to produce an alternate directory name. Thus, with ‘-Bfoo/’, GCC will
search ‘foo/bar’ where it would normally search ‘/usr/local/lib/bar’. These
alternate directories are searched first; the standard directories come next.



198 Using the GNU Compiler Collection (GCC)

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of directories, much like
PATH. GCC tries the directories thus specified when searching for subprograms,
if it can’t find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of directories, much like
PATH. When configured as a native compiler, GCC tries the directories thus
specified when searching for special linker files, if it can’t find them using GCC_
EXEC_PREFIX. Linking using GCC also uses these directories when searching for
ordinary libraries for the ‘-l’ option (but directories specified with ‘-L’ come
first).

LANG This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used when
character literals, string literals and comments are parsed in C and C++. When
the compiler is configured to allow multibyte characters, the following values
for LANG are recognized:

‘C-JIS’ Recognize JIS characters.

‘C-SJIS’ Recognize SJIS characters.

‘C-EUCJP’ Recognize EUCJP characters.

If LANG is not defined, or if it has some other value, then the compiler will use
mblen and mbtowc as defined by the default locale to recognize and translate
multibyte characters.

Some additional environments variables affect the behavior of the preprocessor.

CPATH
C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

Each variable’s value is a list of directories separated by a special character,
much like PATH, in which to look for header files. The special character, PATH_
SEPARATOR, is target-dependent and determined at GCC build time. For Mi-
crosoft Windows-based targets it is a semicolon, and for almost all other targets
it is a colon.
CPATH specifies a list of directories to be searched as if specified with ‘-I’, but
after any paths given with ‘-I’ options on the command line. This environment
variable is used regardless of which language is being preprocessed.
The remaining environment variables apply only when preprocessing the par-
ticular language indicated. Each specifies a list of directories to be searched as
if specified with ‘-isystem’, but after any paths given with ‘-isystem’ options
on the command line.
In all these variables, an empty element instructs the compiler to search its
current working directory. Empty elements can appear at the beginning or end
of a path. For instance, if the value of CPATH is :/special/include, that has
the same effect as ‘-I. -I/special/include’.
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DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output dependencies for Make
based on the non-system header files processed by the compiler. System header
files are ignored in the dependency output.
The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the
Make rules are written to that file, guessing the target name from the source
file name. Or the value can have the form ‘file target ’, in which case the
rules are written to file file using target as the target name.
In other words, this environment variable is equivalent to combining the options
‘-MM’ and ‘-MF’ (see Section 3.11 [Preprocessor Options], page 94), with an
optional ‘-MT’ switch too.

SUNPRO_DEPENDENCIES
This variable is the same as DEPENDENCIES_OUTPUT (see above), except that
system header files are not ignored, so it implies ‘-M’ rather than ‘-MM’. However,
the dependence on the main input file is omitted. See Section 3.11 [Preprocessor
Options], page 94.

3.20 Using Precompiled Headers

Often large projects have many header files that are included in every source file. The time
the compiler takes to process these header files over and over again can account for nearly
all of the time required to build the project. To make builds faster, GCC allows users to
‘precompile’ a header file; then, if builds can use the precompiled header file they will be
much faster.

To create a precompiled header file, simply compile it as you would any other file, if
necessary using the ‘-x’ option to make the driver treat it as a C or C++ header file. You
will probably want to use a tool like make to keep the precompiled header up-to-date when
the headers it contains change.

A precompiled header file will be searched for when #include is seen in the compilation.
As it searches for the included file (see section “Search Path” in The C Preprocessor) the
compiler looks for a precompiled header in each directory just before it looks for the include
file in that directory. The name searched for is the name specified in the #include with
‘.gch’ appended. If the precompiled header file can’t be used, it is ignored.

For instance, if you have #include "all.h", and you have ‘all.h.gch’ in the same
directory as ‘all.h’, then the precompiled header file will be used if possible, and the
original header will be used otherwise.

Alternatively, you might decide to put the precompiled header file in a directory and use
‘-I’ to ensure that directory is searched before (or instead of) the directory containing the
original header. Then, if you want to check that the precompiled header file is always used,
you can put a file of the same name as the original header in this directory containing an
#error command.

This also works with ‘-include’. So yet another way to use precompiled headers, good
for projects not designed with precompiled header files in mind, is to simply take most
of the header files used by a project, include them from another header file, precompile
that header file, and ‘-include’ the precompiled header. If the header files have guards
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against multiple inclusion, they will be skipped because they’ve already been included (in
the precompiled header).

If you need to precompile the same header file for different languages, targets, or compiler
options, you can instead make a directory named like ‘all.h.gch’, and put each precom-
piled header in the directory, perhaps using ‘-o’. It doesn’t matter what you call the files
in the directory, every precompiled header in the directory will be considered. The first
precompiled header encountered in the directory that is valid for this compilation will be
used; they’re searched in no particular order.

There are many other possibilities, limited only by your imagination, good sense, and the
constraints of your build system.

A precompiled header file can be used only when these conditions apply:
• Only one precompiled header can be used in a particular compilation.
• A precompiled header can’t be used once the first C token is seen. You can have

preprocessor directives before a precompiled header; you can even include a precompiled
header from inside another header, so long as there are no C tokens before the #include.

• The precompiled header file must be produced for the same language as the current
compilation. You can’t use a C precompiled header for a C++ compilation.

• The precompiled header file must have been produced by the same compiler binary as
the current compilation is using.

• Any macros defined before the precompiled header is included must either be defined
in the same way as when the precompiled header was generated, or must not affect the
precompiled header, which usually means that they don’t appear in the precompiled
header at all.
The ‘-D’ option is one way to define a macro before a precompiled header is included;
using a #define can also do it. There are also some options that define macros im-
plicitly, like ‘-O’ and ‘-Wdeprecated’; the same rule applies to macros defined this
way.

• If debugging information is output when using the precompiled header, using ‘-g’ or
similar, the same kind of debugging information must have been output when building
the precompiled header. However, a precompiled header built using ‘-g’ can be used
in a compilation when no debugging information is being output.

• The same ‘-m’ options must generally be used when building and using the precompiled
header. See Section 3.17 [Submodel Options], page 116, for any cases where this rule
is relaxed.

• Each of the following options must be the same when building and using the precom-
piled header:

-fexceptions -funit-at-a-time

• Some other command-line options starting with ‘-f’, ‘-p’, or ‘-O’ must be defined in
the same way as when the precompiled header was generated. At present, it’s not clear
which options are safe to change and which are not; the safest choice is to use exactly
the same options when generating and using the precompiled header. The following
are known to be safe:

-fmessage-length= -fpreprocessed -fsched-interblock -fsched-spec -fsched-spec-load -

fsched-spec-load-dangerous -fsched-verbose=<number> -fschedule-insns -fvisibility= -

pedantic-errors
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For all of these except the last, the compiler will automatically ignore the precompiled
header if the conditions aren’t met. If you find an option combination that doesn’t work
and doesn’t cause the precompiled header to be ignored, please consider filing a bug report,
see Chapter 11 [Bugs], page 407.

If you do use differing options when generating and using the precompiled header, the
actual behavior will be a mixture of the behavior for the options. For instance, if you use
‘-g’ to generate the precompiled header but not when using it, you may or may not get
debugging information for routines in the precompiled header.

3.21 Running Protoize

The program protoize is an optional part of GCC. You can use it to add prototypes to a
program, thus converting the program to ISO C in one respect. The companion program
unprotoize does the reverse: it removes argument types from any prototypes that are
found.

When you run these programs, you must specify a set of source files as command line
arguments. The conversion programs start out by compiling these files to see what functions
they define. The information gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all eligible to be converted;
any files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert
only source and header files in the current directory. You can specify additional directories
whose files should be converted with the ‘-d directory ’ option. You can also specify
particular files to exclude with the ‘-x file ’ option. A file is converted if it is eligible,
its directory name matches one of the specified directory names, and its name within the
directory has not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and func-
tion declarations to specify the types of the arguments. The only ones not rewritten are
those for varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file, to
make them available for any calls that precede the function’s definition. Or it can insert
prototype declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to
remove any argument types, and rewriting function definitions to the old-style pre-ISO
form.

Both conversion programs print a warning for any function declaration or definition that
they can’t convert. You can suppress these warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source file. The original
file is renamed to a name ending with ‘.save’ (for DOS, the saved filename ends in ‘.sav’
without the original ‘.c’ suffix). If the ‘.save’ (‘.sav’ for DOS) file already exists, then the
source file is simply discarded.

protoize and unprotoize both depend on GCC itself to scan the program and collect
information about the functions it uses. So neither of these programs will work until GCC
is installed.
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Here is a table of the options you can use with protoize and unprotoize. Each option
works with both programs unless otherwise stated.

-B directory

Look for the file ‘SYSCALLS.c.X’ in directory, instead of the usual directory
(normally ‘/usr/local/lib’). This file contains prototype information about
standard system functions. This option applies only to protoize.

-c compilation-options

Use compilation-options as the options when running gcc to produce the ‘.X’
files. The special option ‘-aux-info’ is always passed in addition, to tell gcc
to write a ‘.X’ file.
Note that the compilation options must be given as a single argument to
protoize or unprotoize. If you want to specify several gcc options, you must
quote the entire set of compilation options to make them a single word in the
shell.
There are certain gcc arguments that you cannot use, because they would
produce the wrong kind of output. These include ‘-g’, ‘-O’, ‘-c’, ‘-S’, and ‘-o’
If you include these in the compilation-options, they are ignored.

-C Rename files to end in ‘.C’ (‘.cc’ for DOS-based file systems) instead of ‘.c’.
This is convenient if you are converting a C program to C++. This option
applies only to protoize.

-g Add explicit global declarations. This means inserting explicit declarations at
the beginning of each source file for each function that is called in the file and
was not declared. These declarations precede the first function definition that
contains a call to an undeclared function. This option applies only to protoize.

-i string

Indent old-style parameter declarations with the string string. This option
applies only to protoize.
unprotoize converts prototyped function definitions to old-style function def-
initions, where the arguments are declared between the argument list and the
initial ‘{’. By default, unprotoize uses five spaces as the indentation. If you
want to indent with just one space instead, use ‘-i " "’.

-k Keep the ‘.X’ files. Normally, they are deleted after conversion is finished.

-l Add explicit local declarations. protoize with ‘-l’ inserts a prototype dec-
laration for each function in each block which calls the function without any
declaration. This option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions
that would have been done without ‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted. Use this option
with caution.

-p program

Use the program program as the compiler. Normally, the name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.
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-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s source files, then
you should generate that file’s ‘.X’ file specially, by running gcc on that source file with the
appropriate options and the option ‘-aux-info’. Then run protoize on the entire set of
files. protoize will use the existing ‘.X’ file because it is newer than the source file. For
example:

gcc -Dfoo=bar file1.c -aux-info file1.X

protoize *.c

You need to include the special files along with the rest in the protoize command, even
though their ‘.X’ files already exist, because otherwise they won’t get converted.

See Section 10.9 [Protoize Caveats], page 400, for more information on how to use
protoize successfully.
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4 C Implementation-defined behavior

A conforming implementation of ISO C is required to document its choice of behavior in
each of the areas that are designated “implementation defined”. The following lists all such
areas, along with the section numbers from the ISO/IEC 9899:1990 and ISO/IEC 9899:1999
standards. Some areas are only implementation-defined in one version of the standard.

Some choices depend on the externally determined ABI for the platform (in-
cluding standard character encodings) which GCC follows; these are listed as
“determined by ABI” below. See Chapter 8 [Binary Compatibility], page 377, and
http://gcc.gnu.org/readings.html. Some choices are documented in the preprocessor
manual. See section “Implementation-defined behavior” in The C Preprocessor. Some
choices are made by the library and operating system (or other environment when
compiling for a freestanding environment); refer to their documentation for details.

4.1 Translation

• How a diagnostic is identified (C90 3.7, C99 3.10, C90 and C99 5.1.1.3).

Diagnostics consist of all the output sent to stderr by GCC.
• Whether each nonempty sequence of white-space characters other than new-line is

retained or replaced by one space character in translation phase 3 (C90 and C99 5.1.1.2).

See section “Implementation-defined behavior” in The C Preprocessor.

4.2 Environment

The behavior of most of these points are dependent on the implementation of the C library,
and are not defined by GCC itself.
• The mapping between physical source file multibyte characters and the source character

set in translation phase 1 (C90 and C99 5.1.1.2).

See section “Implementation-defined behavior” in The C Preprocessor.

4.3 Identifiers

• Which additional multibyte characters may appear in identifiers and their correspon-
dence to universal character names (C99 6.4.2).

See section “Implementation-defined behavior” in The C Preprocessor.
• The number of significant initial characters in an identifier (C90 6.1.2, C90 and C99

5.2.4.1, C99 6.4.2).

For internal names, all characters are significant. For external names, the number of
significant characters are defined by the linker; for almost all targets, all characters are
significant.

• Whether case distinctions are significant in an identifier with external linkage (C90
6.1.2).

This is a property of the linker. C99 requires that case distinctions are always significant
in identifiers with external linkage and systems without this property are not supported
by GCC.
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4.4 Characters

• The number of bits in a byte (C90 3.4, C99 3.6).

Determined by ABI.
• The values of the members of the execution character set (C90 and C99 5.2.1).

Determined by ABI.
• The unique value of the member of the execution character set produced for each of

the standard alphabetic escape sequences (C90 and C99 5.2.2).

Determined by ABI.
• The value of a char object into which has been stored any character other than a

member of the basic execution character set (C90 6.1.2.5, C99 6.2.5).

Determined by ABI.
• Which of signed char or unsigned char has the same range, representation, and be-

havior as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99 6.2.5, C99 6.3.1.1).

Determined by ABI. The options ‘-funsigned-char’ and ‘-fsigned-char’ change the
default. See Section 3.4 [Options Controlling C Dialect], page 21.

• The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and
C99 5.1.1.2).

Determined by ABI.
• The value of an integer character constant containing more than one character or

containing a character or escape sequence that does not map to a single-byte execution
character (C90 6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.
• The value of a wide character constant containing more than one multibyte character,

or containing a multibyte character or escape sequence not represented in the extended
execution character set (C90 6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.
• The current locale used to convert a wide character constant consisting of a single

multibyte character that maps to a member of the extended execution character set
into a corresponding wide character code (C90 6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.
• The current locale used to convert a wide string literal into corresponding wide char-

acter codes (C90 6.1.4, C99 6.4.5).

See section “Implementation-defined behavior” in The C Preprocessor.
• The value of a string literal containing a multibyte character or escape sequence not

represented in the execution character set (C90 6.1.4, C99 6.4.5).

See section “Implementation-defined behavior” in The C Preprocessor.

4.5 Integers

• Any extended integer types that exist in the implementation (C99 6.2.5).

GCC does not support any extended integer types.
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• Whether signed integer types are represented using sign and magnitude, two’s comple-
ment, or one’s complement, and whether the extraordinary value is a trap representa-
tion or an ordinary value (C99 6.2.6.2).

GCC supports only two’s complement integer types, and all bit patterns are ordinary
values.

• The rank of any extended integer type relative to another extended integer type with
the same precision (C99 6.3.1.1).

GCC does not support any extended integer types.
• The result of, or the signal raised by, converting an integer to a signed integer type when

the value cannot be represented in an object of that type (C90 6.2.1.2, C99 6.3.1.3).

For conversion to a type of width N , the value is reduced modulo 2N to be within range
of the type; no signal is raised.

• The results of some bitwise operations on signed integers (C90 6.3, C99 6.5).

Bitwise operators act on the representation of the value including both the sign and
value bits, where the sign bit is considered immediately above the highest-value value
bit. Signed ‘>>’ acts on negative numbers by sign extension.
GCC does not use the latitude given in C99 only to treat certain aspects of signed ‘<<’
as undefined, but this is subject to change.

• The sign of the remainder on integer division (C90 6.3.5).

GCC always follows the C99 requirement that the result of division is truncated towards
zero.

4.6 Floating point

• The accuracy of the floating-point operations and of the library functions in <math.h>
and <complex.h> that return floating-point results (C90 and C99 5.2.4.2.2).

The accuracy is unknown.
• The rounding behaviors characterized by non-standard values of FLT_ROUNDS

(C90 and C99 5.2.4.2.2).

GCC does not use such values.
• The evaluation methods characterized by non-standard negative values of FLT_EVAL_

METHOD (C99 5.2.4.2.2).

GCC does not use such values.
• The direction of rounding when an integer is converted to a floating-point number that

cannot exactly represent the original value (C90 6.2.1.3, C99 6.3.1.4).

C99 Annex F is followed.
• The direction of rounding when a floating-point number is converted to a narrower

floating-point number (C90 6.2.1.4, C99 6.3.1.5).

C99 Annex F is followed.
• How the nearest representable value or the larger or smaller representable value im-

mediately adjacent to the nearest representable value is chosen for certain floating
constants (C90 6.1.3.1, C99 6.4.4.2).

C99 Annex F is followed.
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• Whether and how floating expressions are contracted when not disallowed by the FP_
CONTRACT pragma (C99 6.5).

Expressions are currently only contracted if ‘-funsafe-math-optimizations’ or
‘-ffast-math’ are used. This is subject to change.

• The default state for the FENV_ACCESS pragma (C99 7.6.1).

This pragma is not implemented, but the default is to “off” unless ‘-frounding-math’
is used in which case it is “on”.

• Additional floating-point exceptions, rounding modes, environments, and classifica-
tions, and their macro names (C99 7.6, C99 7.12).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

• The default state for the FP_CONTRACT pragma (C99 7.12.2).

This pragma is not implemented. Expressions are currently only contracted if
‘-funsafe-math-optimizations’ or ‘-ffast-math’ are used. This is subject to
change.

• Whether the “inexact” floating-point exception can be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 conformant implementa-
tion (C99 F.9).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

• Whether the “underflow” (and “inexact”) floating-point exception can be raised when
a result is tiny but not inexact in an IEC 60559 conformant implementation (C99 F.9).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

4.7 Arrays and pointers

• The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 6.3.2.3).

A cast from pointer to integer discards most-significant bits if the pointer representation
is larger than the integer type, sign-extends1 if the pointer representation is smaller
than the integer type, otherwise the bits are unchanged.
A cast from integer to pointer discards most-significant bits if the pointer representation
is smaller than the integer type, extends according to the signedness of the integer type
if the pointer representation is larger than the integer type, otherwise the bits are
unchanged.
When casting from pointer to integer and back again, the resulting pointer must ref-
erence the same object as the original pointer, otherwise the behavior is undefined.
That is, one may not use integer arithmetic to avoid the undefined behavior of pointer
arithmetic as proscribed in C99 6.5.6/8.

• The size of the result of subtracting two pointers to elements of the same array (C90
6.3.6, C99 6.5.6).

The value is as specified in the standard and the type is determined by the ABI.

1 Future versions of GCC may zero-extend, or use a target-defined ptr_extend pattern. Do not rely on
sign extension.
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4.8 Hints

• The extent to which suggestions made by using the register storage-class specifier
are effective (C90 6.5.1, C99 6.7.1).

The register specifier affects code generation only in these ways:
• When used as part of the register variable extension, see Section 5.37 [Explicit Reg

Vars], page 282.
• When ‘-O0’ is in use, the compiler allocates distinct stack memory for all variables

that do not have the register storage-class specifier; if register is specified, the
variable may have a shorter lifespan than the code would indicate and may never
be placed in memory.

• On some rare x86 targets, setjmp doesn’t save the registers in all circumstances.
In those cases, GCC doesn’t allocate any variables in registers unless they are
marked register.

• The extent to which suggestions made by using the inline function specifier are effective
(C99 6.7.4).

GCC will not inline any functions if the ‘-fno-inline’ option is used or if ‘-O0’ is
used. Otherwise, GCC may still be unable to inline a function for many reasons; the
‘-Winline’ option may be used to determine if a function has not been inlined and why
not.

4.9 Structures, unions, enumerations, and bit-fields

• A member of a union object is accessed using a member of a different type (C90 6.3.2.3).

The relevant bytes of the representation of the object are treated as an object of the
type used for the access. This may be a trap representation.

• Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned
int bit-field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99 6.7.2.1).

By default it is treated as signed int but this may be changed by the
‘-funsigned-bitfields’ option.

• Allowable bit-field types other than _Bool, signed int, and unsigned int (C99
6.7.2.1).

No other types are permitted in strictly conforming mode.
• Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 6.7.2.1).

Determined by ABI.
• The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 6.7.2.1).

Determined by ABI.
• The alignment of non-bit-field members of structures (C90 6.5.2.1, C99 6.7.2.1).

Determined by ABI.
• The integer type compatible with each enumerated type (C90 6.5.2.2, C99 6.7.2.2).

Normally, the type is unsigned int if there are no negative values in the enumeration,
otherwise int. If ‘-fshort-enums’ is specified, then if there are negative values it is
the first of signed char, short and int that can represent all the values, otherwise it



210 Using the GNU Compiler Collection (GCC)

is the first of unsigned char, unsigned short and unsigned int that can represent
all the values.
On some targets, ‘-fshort-enums’ is the default; this is determined by the ABI.

4.10 Qualifiers

• What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99
6.7.3).

Such an object is normally accessed by pointers and used for accessing hardware. In
most expressions, it is intuitively obvious what is a read and what is a write. For
example

volatile int *dst = somevalue;

volatile int *src = someothervalue;

*dst = *src;

will cause a read of the volatile object pointed to by src and store the value into the
volatile object pointed to by dst. There is no guarantee that these reads and writes
are atomic, especially for objects larger than int.
However, if the volatile storage is not being modified, and the value of the volatile
storage is not used, then the situation is less obvious. For example

volatile int *src = somevalue;

*src;

According to the C standard, such an expression is an rvalue whose type is the unqual-
ified version of its original type, i.e. int. Whether GCC interprets this as a read of
the volatile object being pointed to or only as a request to evaluate the expression for
its side-effects depends on this type.
If it is a scalar type, or on most targets an aggregate type whose only member object
is of a scalar type, or a union type whose member objects are of scalar types, the
expression is interpreted by GCC as a read of the volatile object; in the other cases,
the expression is only evaluated for its side-effects.

4.11 Declarators

• The maximum number of declarators that may modify an arithmetic, structure or
union type (C90 6.5.4).

GCC is only limited by available memory.

4.12 Statements

• The maximum number of case values in a switch statement (C90 6.6.4.2).

GCC is only limited by available memory.

4.13 Preprocessing directives

See section “Implementation-defined behavior” in The C Preprocessor, for details of these
aspects of implementation-defined behavior.
• How sequences in both forms of header names are mapped to headers or external source

file names (C90 6.1.7, C99 6.4.7).
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• Whether the value of a character constant in a constant expression that controls con-
ditional inclusion matches the value of the same character constant in the execution
character set (C90 6.8.1, C99 6.10.1).

• Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion may have a negative value (C90 6.8.1, C99 6.10.1).

• The places that are searched for an included ‘<>’ delimited header, and how the places
are specified or the header is identified (C90 6.8.2, C99 6.10.2).

• How the named source file is searched for in an included ‘""’ delimited header (C90
6.8.2, C99 6.10.2).

• The method by which preprocessing tokens (possibly resulting from macro expansion)
in a #include directive are combined into a header name (C90 6.8.2, C99 6.10.2).

• The nesting limit for #include processing (C90 6.8.2, C99 6.10.2).

• Whether the ‘#’ operator inserts a ‘\’ character before the ‘\’ character that begins a
universal character name in a character constant or string literal (C99 6.10.3.2).

• The behavior on each recognized non-STDC #pragma directive (C90 6.8.6, C99 6.10.6).

See section “Pragmas” in The C Preprocessor, for details of pragmas accepted by GCC
on all targets. See Section 5.49 [Pragmas Accepted by GCC], page 352, for details of
target-specific pragmas.

• The definitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available (C90 6.8.8, C99 6.10.8).

4.14 Library functions

The behavior of most of these points are dependent on the implementation of the C library,
and are not defined by GCC itself.
• The null pointer constant to which the macro NULL expands (C90 7.1.6, C99 7.17).

In <stddef.h>, NULL expands to ((void *)0). GCC does not provide the other headers
which define NULL and some library implementations may use other definitions in those
headers.

4.15 Architecture

• The values or expressions assigned to the macros specified in the headers <float.h>,
<limits.h>, and <stdint.h> (C90 and C99 5.2.4.2, C99 7.18.2, C99 7.18.3).

Determined by ABI.
• The number, order, and encoding of bytes in any object (when not explicitly specified

in this International Standard) (C99 6.2.6.1).

Determined by ABI.
• The value of the result of the sizeof operator (C90 6.3.3.4, C99 6.5.3.4).

Determined by ABI.

4.16 Locale-specific behavior

The behavior of these points are dependent on the implementation of the C library, and are
not defined by GCC itself.
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5 Extensions to the C Language Family

GNU C provides several language features not found in ISO standard C. (The ‘-pedantic’
option directs GCC to print a warning message if any of these features is used.) To test for
the availability of these features in conditional compilation, check for a predefined macro
__GNUC__, which is always defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in
C++. See Chapter 6 [Extensions to the C++ Language], page 361, for extensions that apply
only to C++.

Some features that are in ISO C99 but not C89 or C++ are also, as extensions, accepted
by GCC in C89 mode and in C++.

5.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C.
This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in
this construct, parentheses go around the braces. For example:

({ int y = foo (); int z;

if (y > 0) z = y;

else z = - y;

z; })

is a valid (though slightly more complex than necessary) expression for the absolute value
of foo ().

The last thing in the compound statement should be an expression followed by a semi-
colon; the value of this subexpression serves as the value of the entire construct. (If you use
some other kind of statement last within the braces, the construct has type void, and thus
effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined
as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side
effects. In GNU C, if you know the type of the operands (here taken as int), you can define
the macro safely as follows:

#define maxint(a,b) \

({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit-field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use typeof
(see Section 5.6 [Typeof], page 219).

In G++, the result value of a statement expression undergoes array and function pointer
decay, and is returned by value to the enclosing expression. For instance, if A is a class,
then
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A a;

({a;}).Foo ()

will construct a temporary A object to hold the result of the statement expression, and that
will be used to invoke Foo. Therefore the this pointer observed by Foo will not be the
address of a.

Any temporaries created within a statement within a statement expression will be de-
stroyed at the statement’s end. This makes statement expressions inside macros slightly
different from function calls. In the latter case temporaries introduced during argument
evaluation will be destroyed at the end of the statement that includes the function call. In
the statement expression case they will be destroyed during the statement expression. For
instance,

#define macro(a) ({__typeof__(a) b = (a); b + 3; })

template<typename T> T function(T a) { T b = a; return b + 3; }

void foo ()

{

macro (X ());

function (X ());

}

will have different places where temporaries are destroyed. For the macro case, the tem-
porary X will be destroyed just after the initialization of b. In the function case that
temporary will be destroyed when the function returns.

These considerations mean that it is probably a bad idea to use statement-expressions of
this form in header files that are designed to work with C++. (Note that some versions of
the GNU C Library contained header files using statement-expression that lead to precisely
this bug.)

Jumping into a statement expression with goto or using a switch statement outside the
statement expression with a case or default label inside the statement expression is not
permitted. Jumping into a statement expression with a computed goto (see Section 5.3
[Labels as Values], page 215) yields undefined behavior. Jumping out of a statement ex-
pression is permitted, but if the statement expression is part of a larger expression then
it is unspecified which other subexpressions of that expression have been evaluated except
where the language definition requires certain subexpressions to be evaluated before or after
the statement expression. In any case, as with a function call the evaluation of a statement
expression is not interleaved with the evaluation of other parts of the containing expression.
For example,

foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();

will call foo and bar1 and will not call baz but may or may not call bar2. If bar2 is called,
it will be called after foo and before bar1

5.2 Locally Declared Labels

GCC allows you to declare local labels in any nested block scope. A local label is just like
an ordinary label, but you can only reference it (with a goto statement, or by taking its
address) within the block in which it was declared.

A local label declaration looks like this:
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__label__ label;

or
__label__ label1, label2, /* . . . */;

Local label declarations must come at the beginning of the block, before any ordinary
declarations or statements.

The label declaration defines the label name, but does not define the label itself. You must
do this in the usual way, with label:, within the statements of the statement expression.

The local label feature is useful for complex macros. If a macro contains nested loops, a
goto can be useful for breaking out of them. However, an ordinary label whose scope is the
whole function cannot be used: if the macro can be expanded several times in one function,
the label will be multiply defined in that function. A local label avoids this problem. For
example:

#define SEARCH(value, array, target) \

do { \

__label__ found; \

typeof (target) _SEARCH_target = (target); \

typeof (*(array)) *_SEARCH_array = (array); \

int i, j; \

int value; \

for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \

if (_SEARCH_array[i][j] == _SEARCH_target) \

{ (value) = i; goto found; } \

(value) = -1; \

found:; \

} while (0)

This could also be written using a statement-expression:
#define SEARCH(array, target) \

({ \

__label__ found; \

typeof (target) _SEARCH_target = (target); \

typeof (*(array)) *_SEARCH_array = (array); \

int i, j; \

int value; \

for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \

if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \

value = -1; \

found: \

value; \

})

Local label declarations also make the labels they declare visible to nested functions, if
there are any. See Section 5.4 [Nested Functions], page 216, for details.

5.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function)
with the unary operator ‘&&’. The value has type void *. This value is a constant and can
be used wherever a constant of that type is valid. For example:

void *ptr;
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/* . . . */

ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed
goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:
goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.

Such an array of label values serves a purpose much like that of the switch statement.
The switch statement is cleaner, so use that rather than an array unless the problem does
not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. If you do that,
totally unpredictable things will happen. The best way to avoid this is to store the label
address only in automatic variables and never pass it as an argument.

An alternate way to write the above example is
static const int array[] = { &&foo - &&foo, &&bar - &&foo,

&&hack - &&foo };

goto *(&&foo + array[i]);

This is more friendly to code living in shared libraries, as it reduces the number of dynamic
relocations that are needed, and by consequence, allows the data to be read-only.

5.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are not
supported for GNU C++.) The nested function’s name is local to the block where it is
defined. For example, here we define a nested function named square, and call it twice:

foo (double a, double b)

{

double square (double z) { return z * z; }

return square (a) + square (b);

}

The nested function can access all the variables of the containing function that are visible
at the point of its definition. This is called lexical scoping. For example, here we show a
nested function which uses an inherited variable named offset:

1 The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C,
where one can do more than simply store label addresses in label variables.
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bar (int *array, int offset, int size)

{

int access (int *array, int index)

{ return array[index + offset]; }

int i;

/* . . . */

for (i = 0; i < size; i++)

/* . . . */ access (array, i) /* . . . */

}

Nested function definitions are permitted within functions in the places where variable
definitions are allowed; that is, in any block, mixed with the other declarations and state-
ments in the block.

It is possible to call the nested function from outside the scope of its name by storing its
address or passing the address to another function:

hack (int *array, int size)

{

void store (int index, int value)

{ array[index] = value; }

intermediate (store, size);

}

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array.
But this technique works only so long as the containing function (hack, in this example)
does not exit.

If you try to call the nested function through its address after the containing function has
exited, all hell will break loose. If you try to call it after a containing scope level has exited,
and if it refers to some of the variables that are no longer in scope, you may be lucky, but
it’s not wise to take the risk. If, however, the nested function does not refer to anything
that has gone out of scope, you should be safe.

GCC implements taking the address of a nested function using a technique called tram-
polines. A paper describing them is available as

http://people.debian.org/~aaronl/Usenix88-lexic.pdf.

A nested function can jump to a label inherited from a containing function, provided
the label was explicitly declared in the containing function (see Section 5.2 [Local Labels],
page 214). Such a jump returns instantly to the containing function, exiting the nested
function which did the goto and any intermediate functions as well. Here is an example:
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bar (int *array, int offset, int size)

{

__label__ failure;

int access (int *array, int index)

{

if (index > size)

goto failure;

return array[index + offset];

}

int i;

/* . . . */

for (i = 0; i < size; i++)

/* . . . */ access (array, i) /* . . . */

/* . . . */

return 0;

/* Control comes here from access

if it detects an error. */

failure:

return -1;

}

A nested function always has no linkage. Declaring one with extern or static is erro-
neous. If you need to declare the nested function before its definition, use auto (which is
otherwise meaningless for function declarations).

bar (int *array, int offset, int size)

{

__label__ failure;

auto int access (int *, int);

/* . . . */

int access (int *array, int index)

{

if (index > size)

goto failure;

return array[index + offset];

}

/* . . . */

}

5.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function
received, and call another function with the same arguments, without knowing the number
or types of the arguments.

You can also record the return value of that function call, and later return that value,
without knowing what data type the function tried to return (as long as your caller expects
that data type).

However, these built-in functions may interact badly with some sophisticated features or
other extensions of the language. It is, therefore, not recommended to use them outside
very simple functions acting as mere forwarders for their arguments.

[Built-in Function]void * __builtin_apply_args ()
This built-in function returns a pointer to data describing how to perform a call with
the same arguments as were passed to the current function.
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The function saves the arg pointer register, structure value address, and all registers
that might be used to pass arguments to a function into a block of memory allocated
on the stack. Then it returns the address of that block.

[Built-in Function]void * __builtin_apply (void (*function )(), void
*arguments, size t size )

This built-in function invokes function with a copy of the parameters described by
arguments and size.
The value of arguments should be the value returned by __builtin_apply_args.
The argument size specifies the size of the stack argument data, in bytes.
This function returns a pointer to data describing how to return whatever value was
returned by function. The data is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for size. The value is used by
__builtin_apply to compute the amount of data that should be pushed on the stack
and copied from the incoming argument area.

[Built-in Function]void __builtin_return (void *result )
This built-in function returns the value described by result from the containing func-
tion. You should specify, for result, a value returned by __builtin_apply.

5.6 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of
this keyword looks like sizeof, but the construct acts semantically like a type name defined
with typedef.

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of pointers to functions; the type described is that of the
values of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.
If you are writing a header file that must work when included in ISO C programs, write

__typeof__ instead of typeof. See Section 5.38 [Alternate Keywords], page 284.
A typeof-construct can be used anywhere a typedef name could be used. For example,

you can use it in a declaration, in a cast, or inside of sizeof or typeof.
typeof is often useful in conjunction with the statements-within-expressions feature.

Here is how the two together can be used to define a safe “maximum” macro that operates
on any arithmetic type and evaluates each of its arguments exactly once:

#define max(a,b) \

({ typeof (a) _a = (a); \

typeof (b) _b = (b); \

_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables is to avoid
conflicts with variable names that occur within the expressions that are substituted for a
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and b. Eventually we hope to design a new form of declaration syntax that allows you to
declare variables whose scopes start only after their initializers; this will be a more reliable
way to prevent such conflicts.

Some more examples of the use of typeof:

• This declares y with the type of what x points to.
typeof (*x) y;

• This declares y as an array of such values.
typeof (*x) y[4];

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, rewrite it with these macros:

#define pointer(T) typeof(T *)

#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

Compatibility Note: In addition to typeof, GCC 2 supported a more limited extension
which permitted one to write

typedef T = expr;

with the effect of declaring T to have the type of the expression expr. This extension does
not work with GCC 3 (versions between 3.0 and 3.2 will crash; 3.2.1 and later give an error).
Code which relies on it should be rewritten to use typeof:

typedef typeof(expr) T;

This will work with all versions of GCC.

5.7 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand
is nonzero, its value is the value of the conditional expression.

Therefore, the expression
x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to
x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain a
side effect. Then repeating the operand in the middle would perform the side effect twice.
Omitting the middle operand uses the value already computed without the undesirable
effects of recomputing it.
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5.8 Double-Word Integers

ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension
GCC supports them in C89 mode and in C++. Simply write long long int for a signed
integer, or unsigned long long int for an unsigned integer. To make an integer constant
of type long long int, add the suffix ‘LL’ to the integer. To make an integer constant of
type unsigned long long int, add the suffix ‘ULL’ to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction,
and bitwise boolean operations on these types are open-coded on all types of machines.
Multiplication is open-coded if the machine supports fullword-to-doubleword a widening
multiply instruction. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special library routines that
come with GCC.

There may be pitfalls when you use long long types for function arguments, unless you
declare function prototypes. If a function expects type int for its argument, and you pass
a value of type long long int, confusion will result because the caller and the subroutine
will disagree about the number of bytes for the argument. Likewise, if the function expects
long long int and you pass int. The best way to avoid such problems is to use prototypes.

5.9 Complex Numbers

ISO C99 supports complex floating data types, and as an extension GCC supports them in
C89 mode and in C++, and supports complex integer data types which are not part of ISO
C99. You can declare complex types using the keyword _Complex. As an extension, the
older GNU keyword __complex__ is also supported.

For example, ‘_Complex double x;’ declares x as a variable whose real part and imagi-
nary part are both of type double. ‘_Complex short int y;’ declares y to have real and
imaginary parts of type short int; this is not likely to be useful, but it shows that the set
of complex types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one; they are
equivalent). For example, 2.5fi has type _Complex float and 3i has type _Complex int.
Such a constant always has a pure imaginary value, but you can form any complex value
you like by adding one to a real constant. This is a GNU extension; if you have an ISO
C99 conforming C library (such as GNU libc), and want to construct complex constants of
floating type, you should include <complex.h> and use the macros I or _Complex_I instead.

To extract the real part of a complex-valued expression exp, write __real__ exp . Like-
wise, use __imag__ to extract the imaginary part. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions crealf, creal, creall, cimagf, cimag
and cimagl, declared in <complex.h> and also provided as built-in functions by GCC.

The operator ‘~’ performs complex conjugation when used on a value with a complex
type. This is a GNU extension; for values of floating type, you should use the ISO C99
functions conjf, conj and conjl, declared in <complex.h> and also provided as built-in
functions by GCC.

GCC can allocate complex automatic variables in a noncontiguous fashion; it’s even
possible for the real part to be in a register while the imaginary part is on the stack (or
vice-versa). Only the DWARF2 debug info format can represent this, so use of DWARF2 is



222 Using the GNU Compiler Collection (GCC)

recommended. If you are using the stabs debug info format, GCC describes a noncontiguous
complex variable as if it were two separate variables of noncomplex type. If the variable’s
actual name is foo, the two fictitious variables are named foo$real and foo$imag. You
can examine and set these two fictitious variables with your debugger.

5.10 Hex Floats

ISO C99 supports floating-point numbers written not only in the usual decimal notation,
such as 1.55e1, but also numbers such as 0x1.fp3 written in hexadecimal format. As
a GNU extension, GCC supports this in C89 mode (except in some cases when strictly
conforming) and in C++. In that format the ‘0x’ hex introducer and the ‘p’ or ‘P’ exponent
field are mandatory. The exponent is a decimal number that indicates the power of 2 by
which the significant part will be multiplied. Thus ‘0x1.f’ is 115

16
, ‘p3’ multiplies it by 8,

and the value of 0x1.fp3 is the same as 1.55e1.
Unlike for floating-point numbers in the decimal notation the exponent is always required

in the hexadecimal notation. Otherwise the compiler would not be able to resolve the
ambiguity of, e.g., 0x1.f. This could mean 1.0f or 1.9375 since ‘f’ is also the extension
for floating-point constants of type float.

5.11 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a
structure which is really a header for a variable-length object:

struct line {

int length;

char contents[0];

};

struct line *thisline = (struct line *)

malloc (sizeof (struct line) + this_length);

thisline->length = this_length;

In ISO C90, you would have to give contents a length of 1, which means either you
waste space or complicate the argument to malloc.

In ISO C99, you would use a flexible array member, which is slightly different in syntax
and semantics:
• Flexible array members are written as contents[] without the 0.
• Flexible array members have incomplete type, and so the sizeof operator may not

be applied. As a quirk of the original implementation of zero-length arrays, sizeof
evaluates to zero.

• Flexible array members may only appear as the last member of a struct that is
otherwise non-empty.

• A structure containing a flexible array member, or a union containing such a structure
(possibly recursively), may not be a member of a structure or an element of an array.
(However, these uses are permitted by GCC as extensions.)

GCC versions before 3.0 allowed zero-length arrays to be statically initialized, as if they
were flexible arrays. In addition to those cases that were useful, it also allowed initializations
in situations that would corrupt later data. Non-empty initialization of zero-length arrays is
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now treated like any case where there are more initializer elements than the array holds, in
that a suitable warning about "excess elements in array" is given, and the excess elements
(all of them, in this case) are ignored.

Instead GCC allows static initialization of flexible array members. This is equivalent to
defining a new structure containing the original structure followed by an array of sufficient
size to contain the data. I.e. in the following, f1 is constructed as if it were declared like
f2.

struct f1 {

int x; int y[];

} f1 = { 1, { 2, 3, 4 } };

struct f2 {

struct f1 f1; int data[3];

} f2 = { { 1 }, { 2, 3, 4 } };

The convenience of this extension is that f1 has the desired type, eliminating the need to
consistently refer to f2.f1.

This has symmetry with normal static arrays, in that an array of unknown size is also
written with [].

Of course, this extension only makes sense if the extra data comes at the end of a top-level
object, as otherwise we would be overwriting data at subsequent offsets. To avoid undue
complication and confusion with initialization of deeply nested arrays, we simply disallow
any non-empty initialization except when the structure is the top-level object. For example:

struct foo { int x; int y[]; };

struct bar { struct foo z; };

struct foo a = { 1, { 2, 3, 4 } }; // Valid.
struct bar b = { { 1, { 2, 3, 4 } } }; // Invalid.
struct bar c = { { 1, { } } }; // Valid.
struct foo d[1] = { { 1 { 2, 3, 4 } } }; // Invalid.

5.12 Structures With No Members

GCC permits a C structure to have no members:
struct empty {

};

The structure will have size zero. In C++, empty structures are part of the language. G++
treats empty structures as if they had a single member of type char.

5.13 Arrays of Variable Length

Variable-length automatic arrays are allowed in ISO C99, and as an extension GCC accepts
them in C89 mode and in C++. (However, GCC’s implementation of variable-length arrays
does not yet conform in detail to the ISO C99 standard.) These arrays are declared like any
other automatic arrays, but with a length that is not a constant expression. The storage
is allocated at the point of declaration and deallocated when the brace-level is exited. For
example:

FILE *

concat_fopen (char *s1, char *s2, char *mode)

{

char str[strlen (s1) + strlen (s2) + 1];
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strcpy (str, s1);

strcat (str, s2);

return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The
function alloca is available in many other C implementations (but not in all). On the
other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca
exists until the containing function returns. The space for a variable-length array is deal-
located as soon as the array name’s scope ends. (If you use both variable-length arrays
and alloca in the same function, deallocation of a variable-length array will also deallocate
anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:
struct entry

tester (int len, char data[len][len])

{

/* . . . */

}

The length of an array is computed once when the storage is allocated and is remembered
for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward
declaration in the parameter list—another GNU extension.

struct entry

tester (int len; char data[len][len], int len)

{

/* . . . */

}

The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the
purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter list.
They can be separated by commas or semicolons, but the last one must end with a semicolon,
which is followed by the “real” parameter declarations. Each forward declaration must
match a “real” declaration in parameter name and data type. ISO C99 does not support
parameter forward declarations.

5.14 Macros with a Variable Number of Arguments.

In the ISO C standard of 1999, a macro can be declared to accept a variable number of
arguments much as a function can. The syntax for defining the macro is similar to that of
a function. Here is an example:

#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)

Here ‘...’ is a variable argument. In the invocation of such a macro, it represents the
zero or more tokens until the closing parenthesis that ends the invocation, including any
commas. This set of tokens replaces the identifier __VA_ARGS__ in the macro body wherever
it appears. See the CPP manual for more information.
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GCC has long supported variadic macros, and used a different syntax that allowed you
to give a name to the variable arguments just like any other argument. Here is an example:

#define debug(format, args...) fprintf (stderr, format, args)

This is in all ways equivalent to the ISO C example above, but arguably more readable
and descriptive.

GNU CPP has two further variadic macro extensions, and permits them to be used with
either of the above forms of macro definition.

In standard C, you are not allowed to leave the variable argument out entirely; but you
are allowed to pass an empty argument. For example, this invocation is invalid in ISO C,
because there is no comma after the string:

debug ("A message")

GNU CPP permits you to completely omit the variable arguments in this way. In the
above examples, the compiler would complain, though since the expansion of the macro still
has the extra comma after the format string.

To help solve this problem, CPP behaves specially for variable arguments used with the
token paste operator, ‘##’. If instead you write

#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)

and if the variable arguments are omitted or empty, the ‘##’ operator causes the pre-
processor to remove the comma before it. If you do provide some variable arguments in
your macro invocation, GNU CPP does not complain about the paste operation and instead
places the variable arguments after the comma. Just like any other pasted macro argument,
these arguments are not macro expanded.

5.15 Slightly Looser Rules for Escaped Newlines

Recently, the preprocessor has relaxed its treatment of escaped newlines. Previously, the
newline had to immediately follow a backslash. The current implementation allows white-
space in the form of spaces, horizontal and vertical tabs, and form feeds between the back-
slash and the subsequent newline. The preprocessor issues a warning, but treats it as a valid
escaped newline and combines the two lines to form a single logical line. This works within
comments and tokens, as well as between tokens. Comments are not treated as whitespace
for the purposes of this relaxation, since they have not yet been replaced with spaces.

5.16 Non-Lvalue Arrays May Have Subscripts

In ISO C99, arrays that are not lvalues still decay to pointers, and may be subscripted,
although they may not be modified or used after the next sequence point and the unary
‘&’ operator may not be applied to them. As an extension, GCC allows such arrays to
be subscripted in C89 mode, though otherwise they do not decay to pointers outside C99
mode. For example, this is valid in GNU C though not valid in C89:

struct foo {int a[4];};

struct foo f();

bar (int index)

{

return f().a[index];

}
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5.17 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on
pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and
returns 1.

The option ‘-Wpointer-arith’ requests a warning if these extensions are used.

5.18 Non-Constant Initializers

As in standard C++ and ISO C99, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an example of an
initializer with run-time varying elements:

foo (float f, float g)

{

float beat_freqs[2] = { f-g, f+g };

/* . . . */

}

5.19 Compound Literals

ISO C99 supports compound literals. A compound literal looks like a cast containing an
initializer. Its value is an object of the type specified in the cast, containing the elements
specified in the initializer; it is an lvalue. As an extension, GCC supports compound literals
in C89 mode and in C++.

Usually, the specified type is a structure. Assume that struct foo and structure are
declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a compound literal:
structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:
{

struct foo temp = {x + y, ’a’, 0};

structure = temp;

}

You can also construct an array. If all the elements of the compound literal are (made
up of) simple constant expressions, suitable for use in initializers of objects of static storage
duration, then the compound literal can be coerced to a pointer to its first element and
used in such an initializer, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Compound literals for scalar types and union types are is also allowed, but then the
compound literal is equivalent to a cast.

As a GNU extension, GCC allows initialization of objects with static storage duration
by compound literals (which is not possible in ISO C99, because the initializer is not a
constant). It is handled as if the object was initialized only with the bracket enclosed list if
the types of the compound literal and the object match. The initializer list of the compound
literal must be constant. If the object being initialized has array type of unknown size, the
size is determined by compound literal size.
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static struct foo x = (struct foo) {1, ’a’, ’b’};

static int y[] = (int []) {1, 2, 3};

static int z[] = (int [3]) {1};

The above lines are equivalent to the following:
static struct foo x = {1, ’a’, ’b’};

static int y[] = {1, 2, 3};

static int z[] = {1, 0, 0};

5.20 Designated Initializers

Standard C89 requires the elements of an initializer to appear in a fixed order, the same as
the order of the elements in the array or structure being initialized.

In ISO C99 you can give the elements in any order, specifying the array indices or structure
field names they apply to, and GNU C allows this as an extension in C89 mode as well.
This extension is not implemented in GNU C++.

To specify an array index, write ‘[index] =’ before the element value. For example,
int a[6] = { [4] = 29, [2] = 15 };

is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being initialized is auto-
matic.

An alternative syntax for this which has been obsolete since GCC 2.5 but GCC still
accepts is to write ‘[index]’ before the element value, with no ‘=’.

To initialize a range of elements to the same value, write ‘[first ... last] = value ’.
This is a GNU extension. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

If the value in it has side-effects, the side-effects will happen only once, not for each initial-
ized field by the range initializer.
Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with ‘.fieldname =’
before the element value. For example, given the following structure,

struct point { int x, y; };

the following initialization
struct point p = { .y = yvalue, .x = xvalue };

is equivalent to
struct point p = { xvalue, yvalue };

Another syntax which has the same meaning, obsolete since GCC 2.5, is ‘fieldname:’,
as shown here:

struct point p = { y: yvalue, x: xvalue };

The ‘[index]’ or ‘.fieldname ’ is known as a designator. You can also use a designator
(or the obsolete colon syntax) when initializing a union, to specify which element of the
union should be used. For example,

union foo { int i; double d; };

union foo f = { .d = 4 };
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will convert 4 to a double to store it in the union using the second element. By contrast,
casting 4 to type union foo would store it into the union as the integer i, since it is an
integer. (See Section 5.22 [Cast to Union], page 228.)

You can combine this technique of naming elements with ordinary C initialization of
successive elements. Each initializer element that does not have a designator applies to the
next consecutive element of the array or structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to
int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are
characters or belong to an enum type. For example:

int whitespace[256]

= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

You can also write a series of ‘.fieldname ’ and ‘[index]’ designators before an ‘=’ to
specify a nested subobject to initialize; the list is taken relative to the subobject correspond-
ing to the closest surrounding brace pair. For example, with the ‘struct point’ declaration
above:

struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };

If the same field is initialized multiple times, it will have value from the last initialization.
If any such overridden initialization has side-effect, it is unspecified whether the side-effect
happens or not. Currently, GCC will discard them and issue a warning.

5.21 Case Ranges

You can specify a range of consecutive values in a single case label, like this:
case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer
value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:
case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when you
use it with integer values. For example, write this:

case 1 ... 5:

rather than this:
case 1...5:

5.22 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union type.
You can specify the type either with union tag or with a typedef name. A cast to union
is actually a constructor though, not a cast, and hence does not yield an lvalue like normal
casts. (See Section 5.19 [Compound Literals], page 226.)

The types that may be cast to the union type are those of the members of the union.
Thus, given the following union and variables:
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union foo { int i; double d; };

int x;

double y;

both x and y can be cast to type union foo.
Using the cast as the right-hand side of an assignment to a variable of union type is

equivalent to storing in a member of the union:
union foo u;

/* . . . */

u = (union foo) x ≡ u.i = x

u = (union foo) y ≡ u.d = y

You can also use the union cast as a function argument:
void hack (union foo);

/* . . . */

hack ((union foo) x);

5.23 Mixed Declarations and Code

ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound
statements. As an extension, GCC also allows this in C89 mode. For example, you could
do:

int i;

/* . . . */

i++;

int j = i + 2;

Each identifier is visible from where it is declared until the end of the enclosing block.

5.24 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help
the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making
a declaration. This keyword is followed by an attribute specification inside double
parentheses. The following attributes are currently defined for functions on all targets:
noreturn, returns_twice, noinline, always_inline, flatten, pure, const, nothrow,
sentinel, format, format_arg, no_instrument_function, section, constructor,
destructor, used, unused, deprecated, weak, malloc, alias, warn_unused_result,
nonnull and externally_visible. Several other attributes are defined for functions
on particular target systems. Other attributes, including section are supported for
variables declarations (see Section 5.31 [Variable Attributes], page 247) and for types (see
Section 5.32 [Type Attributes], page 252).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __noreturn__ instead of noreturn.

See Section 5.25 [Attribute Syntax], page 242, for details of the exact syntax for using
attributes.

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,
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void __f () { /* Do something. */; }

void f () __attribute__ ((weak, alias ("__f")));

declares ‘f’ to be a weak alias for ‘__f’. In C++, the mangled name for the
target must be used. It is an error if ‘__f’ is not defined in the same translation
unit.

Not all target machines support this attribute.

always_inline
Generally, functions are not inlined unless optimization is specified. For func-
tions declared inline, this attribute inlines the function even if no optimization
level was specified.

flatten Generally, inlining into a function is limited. For a function marked with this
attribute, every call inside this function will be inlined, if possible. Whether
the function itself is considered for inlining depends on its size and the current
inlining parameters. The flatten attribute only works reliably in unit-at-a-
time mode.

cdecl On the Intel 386, the cdecl attribute causes the compiler to assume that the
calling function will pop off the stack space used to pass arguments. This is
useful to override the effects of the ‘-mrtd’ switch.

const Many functions do not examine any values except their arguments, and have
no effects except the return value. Basically this is just slightly more strict
class than the pure attribute below, since function is not allowed to read global
memory.

Note that a function that has pointer arguments and examines the data pointed
to must not be declared const. Likewise, a function that calls a non-const
function usually must not be const. It does not make sense for a const function
to return void.

The attribute const is not implemented in GCC versions earlier than 2.5. An
alternative way to declare that a function has no side effects, which works in
the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the ‘const’ must be attached to the return value.

constructor
destructor

The constructor attribute causes the function to be called automatically be-
fore execution enters main (). Similarly, the destructor attribute causes the
function to be called automatically after main () has completed or exit () has
been called. Functions with these attributes are useful for initializing data that
will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective-C.
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deprecated
The deprecated attribute results in a warning if the function is used anywhere
in the source file. This is useful when identifying functions that are expected
to be removed in a future version of a program. The warning also includes the
location of the declaration of the deprecated function, to enable users to easily
find further information about why the function is deprecated, or what they
should do instead. Note that the warnings only occurs for uses:

int old_fn () __attribute__ ((deprecated));

int old_fn ();

int (*fn_ptr)() = old_fn;

results in a warning on line 3 but not line 2.
The deprecated attribute can also be used for variables and types (see Sec-
tion 5.31 [Variable Attributes], page 247, see Section 5.32 [Type Attributes],
page 252.)

dllexport
On Microsoft Windows targets and Symbian OS targets the dllexport at-
tribute causes the compiler to provide a global pointer to a pointer in a DLL,
so that it can be referenced with the dllimport attribute. On Microsoft Win-
dows targets, the pointer name is formed by combining _imp__ and the function
or variable name.
You can use __declspec(dllexport) as a synonym for __attribute__
((dllexport)) for compatibility with other compilers.
On systems that support the visibility attribute, this attribute also implies
“default” visibility, unless a visibility attribute is explicitly specified. You
should avoid the use of dllexport with “hidden” or “internal” visibility; in the
future GCC may issue an error for those cases.
Currently, the dllexport attribute is ignored for inlined functions, unless the
‘-fkeep-inline-functions’ flag has been used. The attribute is also ignored
for undefined symbols.
When applied to C++ classes, the attribute marks defined non-inlined member
functions and static data members as exports. Static consts initialized in-class
are not marked unless they are also defined out-of-class.
For Microsoft Windows targets there are alternative methods for including the
symbol in the DLL’s export table such as using a ‘.def’ file with an EXPORTS
section or, with GNU ld, using the ‘--export-all’ linker flag.

dllimport
On Microsoft Windows and Symbian OS targets, the dllimport attribute
causes the compiler to reference a function or variable via a global pointer
to a pointer that is set up by the DLL exporting the symbol. The attribute
implies extern storage. On Microsoft Windows targets, the pointer name is
formed by combining _imp__ and the function or variable name.
You can use __declspec(dllimport) as a synonym for __attribute__
((dllimport)) for compatibility with other compilers.
Currently, the attribute is ignored for inlined functions. If the attribute is ap-
plied to a symbol definition, an error is reported. If a symbol previously declared
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dllimport is later defined, the attribute is ignored in subsequent references,
and a warning is emitted. The attribute is also overridden by a subsequent
declaration as dllexport.
When applied to C++ classes, the attribute marks non-inlined member functions
and static data members as imports. However, the attribute is ignored for
virtual methods to allow creation of vtables using thunks.
On the SH Symbian OS target the dllimport attribute also has another affect—
it can cause the vtable and run-time type information for a class to be exported.
This happens when the class has a dllimport’ed constructor or a non-inline, non-
pure virtual function and, for either of those two conditions, the class also has
a inline constructor or destructor and has a key function that is defined in the
current translation unit.
For Microsoft Windows based targets the use of the dllimport attribute on
functions is not necessary, but provides a small performance benefit by elimi-
nating a thunk in the DLL. The use of the dllimport attribute on imported
variables was required on older versions of the GNU linker, but can now be
avoided by passing the ‘--enable-auto-import’ switch to the GNU linker. As
with functions, using the attribute for a variable eliminates a thunk in the DLL.
One drawback to using this attribute is that a pointer to a function or variable
marked as dllimport cannot be used as a constant address. On Microsoft
Windows targets, the attribute can be disabled for functions by setting the
‘-mnop-fun-dllimport’ flag.

eightbit_data
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the
specified variable should be placed into the eight bit data section. The compiler
will generate more efficient code for certain operations on data in the eight bit
data area. Note the eight bit data area is limited to 256 bytes of data.
You must use GAS and GLD from GNU binutils version 2.7 or later for this
attribute to work correctly.

exception_handler
Use this attribute on the Blackfin to indicate that the specified function is an
exception handler. The compiler will generate function entry and exit sequences
suitable for use in an exception handler when this attribute is present.

far On 68HC11 and 68HC12 the far attribute causes the compiler to use a call-
ing convention that takes care of switching memory banks when entering and
leaving a function. This calling convention is also the default when using the
‘-mlong-calls’ option.
On 68HC12 the compiler will use the call and rtc instructions to call and
return from a function.
On 68HC11 the compiler will generate a sequence of instructions to invoke a
board-specific routine to switch the memory bank and call the real function.
The board-specific routine simulates a call. At the end of a function, it will
jump to a board-specific routine instead of using rts. The board-specific return
routine simulates the rtc.



Chapter 5: Extensions to the C Language Family 233

fastcall On the Intel 386, the fastcall attribute causes the compiler to pass the first
argument (if of integral type) in the register ECX and the second argument (if
of integral type) in the register EDX. Subsequent and other typed arguments
are passed on the stack. The called function will pop the arguments off the
stack. If the number of arguments is variable all arguments are pushed on the
stack.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf, strftime
or strfmon style arguments which should be type-checked against a format
string. For example, the declaration:

extern int

my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.
The parameter archetype determines how the format string is interpreted, and
should be printf, scanf, strftime or strfmon. (You can also use __printf_
_, __scanf__, __strftime__ or __strfmon__.) The parameter string-index
specifies which argument is the format string argument (starting from 1), while
first-to-check is the number of the first argument to check against the format
string. For functions where the arguments are not available to be checked (such
as vprintf), specify the third parameter as zero. In this case the compiler
only checks the format string for consistency. For strftime formats, the third
parameter is required to be zero. Since non-static C++ methods have an implicit
this argument, the arguments of such methods should be counted from two,
not one, when giving values for string-index and first-to-check.
In the example above, the format string (my_format) is the second argument
of the function my_print, and the arguments to check start with the third
argument, so the correct parameters for the format attribute are 2 and 3.
The format attribute allows you to identify your own functions which take
format strings as arguments, so that GCC can check the calls to these functions
for errors. The compiler always (unless ‘-ffreestanding’ or ‘-fno-builtin’
is used) checks formats for the standard library functions printf, fprintf,
sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and vsprintf
whenever such warnings are requested (using ‘-Wformat’), so there is no need
to modify the header file ‘stdio.h’. In C99 mode, the functions snprintf,
vsnprintf, vscanf, vfscanf and vsscanf are also checked. Except in strictly
conforming C standard modes, the X/Open function strfmon is also checked
as are printf_unlocked and fprintf_unlocked. See Section 3.4 [Options
Controlling C Dialect], page 21.
The target may provide additional types of format checks. See Section 5.48
[Format Checks Specific to Particular Target Machines], page 352.

format_arg (string-index)
The format_arg attribute specifies that a function takes a format string for
a printf, scanf, strftime or strfmon style function and modifies it (for ex-
ample, to translate it into another language), so the result can be passed to
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a printf, scanf, strftime or strfmon style function (with the remaining ar-
guments to the format function the same as they would have been for the
unmodified string). For example, the declaration:

extern char *

my_dgettext (char *my_domain, const char *my_format)

__attribute__ ((format_arg (2)));

causes the compiler to check the arguments in calls to a printf, scanf,
strftime or strfmon type function, whose format string argument is a
call to the my_dgettext function, for consistency with the format string
argument my_format. If the format_arg attribute had not been specified, all
the compiler could tell in such calls to format functions would be that the
format string argument is not constant; this would generate a warning when
‘-Wformat-nonliteral’ is used, but the calls could not be checked without
the attribute.
The parameter string-index specifies which argument is the format string argu-
ment (starting from one). Since non-static C++ methods have an implicit this
argument, the arguments of such methods should be counted from two.
The format-arg attribute allows you to identify your own functions which
modify format strings, so that GCC can check the calls to printf, scanf,
strftime or strfmon type function whose operands are a call to one of your
own function. The compiler always treats gettext, dgettext, and dcgettext
in this manner except when strict ISO C support is requested by ‘-ansi’ or an
appropriate ‘-std’ option, or ‘-ffreestanding’ or ‘-fno-builtin’ is used. See
Section 3.4 [Options Controlling C Dialect], page 21.

function_vector
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the spec-
ified function should be called through the function vector. Calling a function
through the function vector will reduce code size, however; the function vector
has a limited size (maximum 128 entries on the H8/300 and 64 entries on the
H8/300H and H8S) and shares space with the interrupt vector.
You must use GAS and GLD from GNU binutils version 2.7 or later for this
attribute to work correctly.

interrupt
Use this attribute on the ARM, AVR, C4x, CRX, M32C, M32R/D, MS1, and
Xstormy16 ports to indicate that the specified function is an interrupt handler.
The compiler will generate function entry and exit sequences suitable for use in
an interrupt handler when this attribute is present.
Note, interrupt handlers for the Blackfin, m68k, H8/300, H8/300H, H8S, and
SH processors can be specified via the interrupt_handler attribute.
Note, on the AVR, interrupts will be enabled inside the function.
Note, for the ARM, you can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:

void f () __attribute__ ((interrupt ("IRQ")));

Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UN-
DEF.
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interrupt_handler
Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH
to indicate that the specified function is an interrupt handler. The compiler
will generate function entry and exit sequences suitable for use in an interrupt
handler when this attribute is present.

kspisusp When used together with interrupt_handler, exception_handler or nmi_
handler, code will be generated to load the stack pointer from the USP register
in the function prologue.

long_call/short_call
This attribute specifies how a particular function is called on ARM. Both
attributes override the ‘-mlong-calls’ (see Section 3.17.2 [ARM Options],
page 116) command line switch and #pragma long_calls settings. The long_
call attribute causes the compiler to always call the function by first loading
its address into a register and then using the contents of that register. The
short_call attribute always places the offset to the function from the call site
into the ‘BL’ instruction directly.

longcall/shortcall
On the Blackfin, RS/6000 and PowerPC, the longcall attribute causes the
compiler to always call this function via a pointer, just as it would if the
‘-mlongcall’ option had been specified. The shortcall attribute causes the
compiler not to do this. These attributes override both the ‘-mlongcall’ switch
and, on the RS/6000 and PowerPC, the #pragma longcall setting.

See Section 3.17.26 [RS/6000 and PowerPC Options], page 164, for more infor-
mation on whether long calls are necessary.

long_call
This attribute specifies how a particular function is called on MIPS. The
attribute overrides the ‘-mlong-calls’ (see Section 3.17.20 [MIPS Options],
page 155) command line switch. This attribute causes the compiler to always
call the function by first loading its address into a register, and then using the
contents of that register.

malloc The malloc attribute is used to tell the compiler that a function may be treated
as if any non-NULL pointer it returns cannot alias any other pointer valid when
the function returns. This will often improve optimization. Standard functions
with this property include malloc and calloc. realloc-like functions have this
property as long as the old pointer is never referred to (including comparing it
to the new pointer) after the function returns a non-NULL value.

model (model-name)
On the M32R/D, use this attribute to set the addressability of an object, and of
the code generated for a function. The identifier model-name is one of small,
medium, or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction), and are callable with the bl instruc-
tion.
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Medium model objects may live anywhere in the 32-bit address space (the
compiler will generate seth/add3 instructions to load their addresses), and are
callable with the bl instruction.

Large model objects may live anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and may not be
reachable with the bl instruction (the compiler will generate the much slower
seth/add3/jl instruction sequence).

On IA-64, use this attribute to set the addressability of an object. At present,
the only supported identifier for model-name is small, indicating addressabil-
ity via “small” (22-bit) addresses (so that their addresses can be loaded with
the addl instruction). Caveat: such addressing is by definition not position
independent and hence this attribute must not be used for objects defined by
shared libraries.

naked Use this attribute on the ARM, AVR, C4x and IP2K ports to indicate that the
specified function does not need prologue/epilogue sequences generated by the
compiler. It is up to the programmer to provide these sequences.

near On 68HC11 and 68HC12 the near attribute causes the compiler to use the
normal calling convention based on jsr and rts. This attribute can be used to
cancel the effect of the ‘-mlong-calls’ option.

nesting Use this attribute together with interrupt_handler, exception_handler or
nmi_handler to indicate that the function entry code should enable nested
interrupts or exceptions.

nmi_handler
Use this attribute on the Blackfin to indicate that the specified function is an
NMI handler. The compiler will generate function entry and exit sequences
suitable for use in an NMI handler when this attribute is present.

no_instrument_function
If ‘-finstrument-functions’ is given, profiling function calls will be generated
at entry and exit of most user-compiled functions. Functions with this attribute
will not be so instrumented.

noinline This function attribute prevents a function from being considered for inlining.

nonnull (arg-index, ...)
The nonnull attribute specifies that some function parameters should be non-
null pointers. For instance, the declaration:

extern void *

my_memcpy (void *dest, const void *src, size_t len)

__attribute__((nonnull (1, 2)));

causes the compiler to check that, in calls to my_memcpy, arguments dest and
src are non-null. If the compiler determines that a null pointer is passed in
an argument slot marked as non-null, and the ‘-Wnonnull’ option is enabled, a
warning is issued. The compiler may also choose to make optimizations based
on the knowledge that certain function arguments will not be null.
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If no argument index list is given to the nonnull attribute, all pointer arguments
are marked as non-null. To illustrate, the following declaration is equivalent to
the previous example:

extern void *

my_memcpy (void *dest, const void *src, size_t len)

__attribute__((nonnull));

noreturn A few standard library functions, such as abort and exit, cannot return. GCC
knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));

void

fatal (/* . . . */)

{

/* . . . */ /* Print error message. */ /* . . . */

exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return.
It can then optimize without regard to what would happen if fatal ever did
return. This makes slightly better code. More importantly, it helps avoid
spurious warnings of uninitialized variables.
The noreturn keyword does not affect the exceptional path when that applies:
a noreturn-marked function may still return to the caller by throwing an ex-
ception or calling longjmp.
Do not assume that registers saved by the calling function are restored before
calling the noreturn function.
It does not make sense for a noreturn function to have a return type other
than void.
The attribute noreturn is not implemented in GCC versions earlier than 2.5.
An alternative way to declare that a function does not return, which works in
the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

This approach does not work in GNU C++.

nothrow The nothrow attribute is used to inform the compiler that a function cannot
throw an exception. For example, most functions in the standard C library can
be guaranteed not to throw an exception with the notable exceptions of qsort
and bsearch that take function pointer arguments. The nothrow attribute is
not implemented in GCC versions earlier than 3.3.

pure Many functions have no effects except the return value and their return value
depends only on the parameters and/or global variables. Such a function can
be subject to common subexpression elimination and loop optimization just as
an arithmetic operator would be. These functions should be declared with the
attribute pure. For example,
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int square (int) __attribute__ ((pure));

says that the hypothetical function square is safe to call fewer times than the
program says.
Some of common examples of pure functions are strlen or memcmp. Inter-
esting non-pure functions are functions with infinite loops or those depending
on volatile memory or other system resource, that may change between two
consecutive calls (such as feof in a multithreading environment).
The attribute pure is not implemented in GCC versions earlier than 2.96.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass arguments
number one to number if they are of integral type in registers EAX, EDX,
and ECX instead of on the stack. Functions that take a variable number of
arguments will continue to be passed all of their arguments on the stack.
Beware that on some ELF systems this attribute is unsuitable for global func-
tions in shared libraries with lazy binding (which is the default). Lazy binding
will send the first call via resolving code in the loader, which might assume
EAX, EDX and ECX can be clobbered, as per the standard calling conven-
tions. Solaris 8 is affected by this. GNU systems with GLIBC 2.1 or higher,
and FreeBSD, are believed to be safe since the loaders there save all registers.
(Lazy binding can be disabled with the linker or the loader if desired, to avoid
the problem.)

sseregparm
On the Intel 386 with SSE support, the sseregparm attribute causes the com-
piler to pass up to 3 floating point arguments in SSE registers instead of on
the stack. Functions that take a variable number of arguments will continue to
pass all of their floating point arguments on the stack.

returns_twice
The returns_twice attribute tells the compiler that a function may return
more than one time. The compiler will ensure that all registers are dead before
calling such a function and will emit a warning about the variables that may be
clobbered after the second return from the function. Examples of such functions
are setjmp and vfork. The longjmp-like counterpart of such function, if any,
might need to be marked with the noreturn attribute.

saveall Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
all registers except the stack pointer should be saved in the prologue regardless
of whether they are used or not.

section ("section-name")
Normally, the compiler places the code it generates in the text section. Some-
times, however, you need additional sections, or you need certain particular
functions to appear in special sections. The section attribute specifies that a
function lives in a particular section. For example, the declaration:

extern void foobar (void) __attribute__ ((section ("bar")));

puts the function foobar in the bar section.
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Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

sentinel This function attribute ensures that a parameter in a function call is an explicit
NULL. The attribute is only valid on variadic functions. By default, the sentinel
is located at position zero, the last parameter of the function call. If an optional
integer position argument P is supplied to the attribute, the sentinel must be
located at position P counting backwards from the end of the argument list.

__attribute__ ((sentinel))

is equivalent to

__attribute__ ((sentinel(0)))

The attribute is automatically set with a position of 0 for the built-in functions
execl and execlp. The built-in function execle has the attribute set with a
position of 1.

A valid NULL in this context is defined as zero with any pointer type. If your
system defines the NULL macro with an integer type then you need to add
an explicit cast. GCC replaces stddef.h with a copy that redefines NULL
appropriately.

The warnings for missing or incorrect sentinels are enabled with ‘-Wformat’.

short_call
See long call/short call.

shortcall
See longcall/shortcall.

signal Use this attribute on the AVR to indicate that the specified function is a signal
handler. The compiler will generate function entry and exit sequences suitable
for use in a signal handler when this attribute is present. Interrupts will be
disabled inside the function.

sp_switch
Use this attribute on the SH to indicate an interrupt_handler function should
switch to an alternate stack. It expects a string argument that names a global
variable holding the address of the alternate stack.

void *alt_stack;

void f () __attribute__ ((interrupt_handler,

sp_switch ("alt_stack")));

stdcall On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless it
takes a variable number of arguments.

tiny_data
Use this attribute on the H8/300H and H8S to indicate that the specified vari-
able should be placed into the tiny data section. The compiler will generate
more efficient code for loads and stores on data in the tiny data section. Note
the tiny data area is limited to slightly under 32kbytes of data.



240 Using the GNU Compiler Collection (GCC)

trap_exit
Use this attribute on the SH for an interrupt_handler to return using trapa
instead of rte. This attribute expects an integer argument specifying the trap
number to be used.

unused This attribute, attached to a function, means that the function is meant to be
possibly unused. GCC will not produce a warning for this function.

used This attribute, attached to a function, means that code must be emitted for the
function even if it appears that the function is not referenced. This is useful,
for example, when the function is referenced only in inline assembly.

visibility ("visibility_type")
The visibility attribute on ELF targets causes the declaration to be emitted
with default, hidden, protected or internal visibility.

void __attribute__ ((visibility ("protected")))

f () { /* Do something. */; }

int i __attribute__ ((visibility ("hidden")));

See the ELF gABI for complete details, but the short story is:

default Default visibility is the normal case for ELF. This value is available
for the visibility attribute to override other options that may change
the assumed visibility of symbols.

hidden Hidden visibility indicates that the symbol will not be placed into
the dynamic symbol table, so no other module (executable or
shared library) can reference it directly.

internal Internal visibility is like hidden visibility, but with additional pro-
cessor specific semantics. Unless otherwise specified by the psABI,
GCC defines internal visibility to mean that the function is never
called from another module. Note that hidden symbols, while they
cannot be referenced directly by other modules, can be referenced
indirectly via function pointers. By indicating that a symbol can-
not be called from outside the module, GCC may for instance omit
the load of a PIC register since it is known that the calling function
loaded the correct value.

protected Protected visibility indicates that the symbol will be placed in the
dynamic symbol table, but that references within the defining mod-
ule will bind to the local symbol. That is, the symbol cannot be
overridden by another module.

Not all ELF targets support this attribute.

warn_unused_result
The warn_unused_result attribute causes a warning to be emitted if a caller of
the function with this attribute does not use its return value. This is useful for
functions where not checking the result is either a security problem or always
a bug, such as realloc.

int fn () __attribute__ ((warn_unused_result));

int foo ()
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{

if (fn () < 0) return -1;

fn ();

return 0;

}

results in warning on line 5.

weak The weak attribute causes the declaration to be emitted as a weak symbol
rather than a global. This is primarily useful in defining library functions which
can be overridden in user code, though it can also be used with non-function
declarations. Weak symbols are supported for ELF targets, and also for a.out
targets when using the GNU assembler and linker.

weakref
weakref ("target")

The weakref attribute marks a declaration as a weak reference. Without ar-
guments, it should be accompanied by an alias attribute naming the target
symbol. Optionally, the target may be given as an argument to weakref itself.
In either case, weakref implicitly marks the declaration as weak. Without a
target, given as an argument to weakref or to alias, weakref is equivalent to
weak.

extern int x() __attribute__ ((weakref ("y")));

/* is equivalent to... */

extern int x() __attribute__ ((weak, weakref, alias ("y")));

/* and to... */

extern int x() __attribute__ ((weakref));

extern int x() __attribute__ ((alias ("y")));

A weak reference is an alias that does not by itself require a definition to be
given for the target symbol. If the target symbol is only referenced through
weak references, then the becomes a weak undefined symbol. If it is directly
referenced, however, then such strong references prevail, and a definition will
be required for the symbol, not necessarily in the same translation unit.
The effect is equivalent to moving all references to the alias to a separate trans-
lation unit, renaming the alias to the aliased symbol, declaring it as weak,
compiling the two separate translation units and performing a reloadable link
on them.

externally_visible
This attribute, attached to a global variable or function nullify effect of
‘-fwhole-program’ command line option, so the object remain visible outside
the current compilation unit

You can specify multiple attributes in a declaration by separating them by commas within
the double parentheses or by immediately following an attribute declaration with another
attribute declaration.

Some people object to the __attribute__ feature, suggesting that ISO C’s #pragma
should be used instead. At the time __attribute__ was designed, there were two reasons
for not doing this.
1. It is impossible to generate #pragma commands from a macro.
2. There is no telling what the same #pragma might mean in another compiler.
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These two reasons applied to almost any application that might have been proposed for
#pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated
from macros. In addition, a #pragma GCC namespace is now in use for GCC-specific prag-
mas. However, it has been found convenient to use __attribute__ to achieve a natural
attachment of attributes to their corresponding declarations, whereas #pragma GCC is of use
for constructs that do not naturally form part of the grammar. See section “Miscellaneous
Preprocessing Directives” in The GNU C Preprocessor.

5.25 Attribute Syntax

This section describes the syntax with which __attribute__ may be used, and the con-
structs to which attribute specifiers bind, for the C language. Some details may vary for
C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms
described here may not be successfully parsed in all cases.

There are some problems with the semantics of attributes in C++. For example, there
are no manglings for attributes, although they may affect code generation, so problems
may arise when attributed types are used in conjunction with templates or overloading.
Similarly, typeid does not distinguish between types with different attributes. Support for
attributes in C++ may be restricted in future to attributes on declarations only, but not on
nested declarators.

See Section 5.24 [Function Attributes], page 229, for details of the semantics of attributes
applying to functions. See Section 5.31 [Variable Attributes], page 247, for details of the
semantics of attributes applying to variables. See Section 5.32 [Type Attributes], page 252,
for details of the semantics of attributes applying to structure, union and enumerated types.

An attribute specifier is of the form __attribute__ ((attribute-list)). An attribute
list is a possibly empty comma-separated sequence of attributes, where each attribute is
one of the following:

• Empty. Empty attributes are ignored.
• A word (which may be an identifier such as unused, or a reserved word such as const).
• A word, followed by, in parentheses, parameters for the attribute. These parameters

take one of the following forms:
• An identifier. For example, mode attributes use this form.
• An identifier followed by a comma and a non-empty comma-separated list of ex-

pressions. For example, format attributes use this form.
• A possibly empty comma-separated list of expressions. For example, format_arg

attributes use this form with the list being a single integer constant expression,
and alias attributes use this form with the list being a single string constant.

An attribute specifier list is a sequence of one or more attribute specifiers, not separated
by any other tokens.

In GNU C, an attribute specifier list may appear after the colon following a label, other
than a case or default label. The only attribute it makes sense to use after a label is
unused. This feature is intended for code generated by programs which contains labels that
may be unused but which is compiled with ‘-Wall’. It would not normally be appropriate
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to use in it human-written code, though it could be useful in cases where the code that
jumps to the label is contained within an #ifdef conditional. GNU C++ does not permit
such placement of attribute lists, as it is permissible for a declaration, which could begin
with an attribute list, to be labelled in C++. Declarations cannot be labelled in C90 or C99,
so the ambiguity does not arise there.

An attribute specifier list may appear as part of a struct, union or enum specifier. It
may go either immediately after the struct, union or enum keyword, or after the closing
brace. It is ignored if the content of the structure, union or enumerated type is not defined
in the specifier in which the attribute specifier list is used—that is, in usages such as struct
__attribute__((foo)) bar with no following opening brace. Where attribute specifiers
follow the closing brace, they are considered to relate to the structure, union or enumerated
type defined, not to any enclosing declaration the type specifier appears in, and the type
defined is not complete until after the attribute specifiers.

Otherwise, an attribute specifier appears as part of a declaration, counting declarations
of unnamed parameters and type names, and relates to that declaration (which may be
nested in another declaration, for example in the case of a parameter declaration), or to
a particular declarator within a declaration. Where an attribute specifier is applied to a
parameter declared as a function or an array, it should apply to the function or array rather
than the pointer to which the parameter is implicitly converted, but this is not yet correctly
implemented.

Any list of specifiers and qualifiers at the start of a declaration may contain attribute
specifiers, whether or not such a list may in that context contain storage class specifiers.
(Some attributes, however, are essentially in the nature of storage class specifiers, and only
make sense where storage class specifiers may be used; for example, section.) There is one
necessary limitation to this syntax: the first old-style parameter declaration in a function
definition cannot begin with an attribute specifier, because such an attribute applies to the
function instead by syntax described below (which, however, is not yet implemented in this
case). In some other cases, attribute specifiers are permitted by this grammar but not yet
supported by the compiler. All attribute specifiers in this place relate to the declaration as
a whole. In the obsolescent usage where a type of int is implied by the absence of type
specifiers, such a list of specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.

At present, the first parameter in a function prototype must have some type specifier
which is not an attribute specifier; this resolves an ambiguity in the interpretation of void
f(int (__attribute__((foo)) x)), but is subject to change. At present, if the parenthe-
ses of a function declarator contain only attributes then those attributes are ignored, rather
than yielding an error or warning or implying a single parameter of type int, but this is
subject to change.

An attribute specifier list may appear immediately before a declarator (other than the
first) in a comma-separated list of declarators in a declaration of more than one identifier
using a single list of specifiers and qualifiers. Such attribute specifiers apply only to the
identifier before whose declarator they appear. For example, in

__attribute__((noreturn)) void d0 (void),

__attribute__((format(printf, 1, 2))) d1 (const char *, ...),

d2 (void)
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the noreturn attribute applies to all the functions declared; the format attribute only
applies to d1.

An attribute specifier list may appear immediately before the comma, = or semicolon
terminating the declaration of an identifier other than a function definition. At present,
such attribute specifiers apply to the declared object or function, but in future they may
attach to the outermost adjacent declarator. In simple cases there is no difference, but, for
example, in

void (****f)(void) __attribute__((noreturn));

at present the noreturn attribute applies to f, which causes a warning since f is not a
function, but in future it may apply to the function ****f. The precise semantics of what
attributes in such cases will apply to are not yet specified. Where an assembler name for
an object or function is specified (see Section 5.36 [Asm Labels], page 281), at present the
attribute must follow the asm specification; in future, attributes before the asm specification
may apply to the adjacent declarator, and those after it to the declared object or function.

An attribute specifier list may, in future, be permitted to appear after the declarator in
a function definition (before any old-style parameter declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside the [] of a pa-
rameter array declarator, in the C99 construct by which such qualifiers are applied to the
pointer to which the array is implicitly converted. Such attribute specifiers apply to the
pointer, not to the array, but at present this is not implemented and they are ignored.

An attribute specifier list may appear at the start of a nested declarator. At present,
there are some limitations in this usage: the attributes correctly apply to the declarator,
but for most individual attributes the semantics this implies are not implemented. When
attribute specifiers follow the * of a pointer declarator, they may be mixed with any type
qualifiers present. The following describes the formal semantics of this syntax. It will make
the most sense if you are familiar with the formal specification of declarators in the ISO C
standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration T D1, where T contains
declaration specifiers that specify a type Type (such as int) and D1 is a declarator that
contains an identifier ident. The type specified for ident for derived declarators whose type
does not include an attribute specifier is as in the ISO C standard.

If D1 has the form ( attribute-specifier-list D ), and the declaration T D specifies
the type “derived-declarator-type-list Type” for ident, then T D1 specifies the type “derived-
declarator-type-list attribute-specifier-list Type” for ident.

If D1 has the form * type-qualifier-and-attribute-specifier-list D, and the dec-
laration T D specifies the type “derived-declarator-type-list Type” for ident, then T D1 spec-
ifies the type “derived-declarator-type-list type-qualifier-and-attribute-specifier-list Type”
for ident.

For example,
void (__attribute__((noreturn)) ****f) (void);

specifies the type “pointer to pointer to pointer to pointer to non-returning function return-
ing void”. As another example,

char *__attribute__((aligned(8))) *f;
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specifies the type “pointer to 8-byte-aligned pointer to char”. Note again that this does not
work with most attributes; for example, the usage of ‘aligned’ and ‘noreturn’ attributes
given above is not yet supported.

For compatibility with existing code written for compiler versions that did not implement
attributes on nested declarators, some laxity is allowed in the placing of attributes. If an
attribute that only applies to types is applied to a declaration, it will be treated as applying
to the type of that declaration. If an attribute that only applies to declarations is applied
to the type of a declaration, it will be treated as applying to that declaration; and, for
compatibility with code placing the attributes immediately before the identifier declared,
such an attribute applied to a function return type will be treated as applying to the
function type, and such an attribute applied to an array element type will be treated as
applying to the array type. If an attribute that only applies to function types is applied to
a pointer-to-function type, it will be treated as applying to the pointer target type; if such
an attribute is applied to a function return type that is not a pointer-to-function type, it
will be treated as applying to the function type.

5.26 Prototypes and Old-Style Function Definitions

GNU C extends ISO C to allow a function prototype to override a later old-style non-
prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */

#ifdef __STDC__

#define P(x) x

#else

#define P(x) ()

#endif

/* Prototype function declaration. */

int isroot P((uid_t));

/* Old-style function definition. */

int

isroot (x) /* ??? lossage here ??? */

uid_t x;

{

return x == 0;

}

Suppose the type uid_t happens to be short. ISO C does not allow this example,
because subword arguments in old-style non-prototype definitions are promoted. Therefore
in this example the function definition’s argument is really an int, which does not match
the prototype argument type of short.

This restriction of ISO C makes it hard to write code that is portable to traditional C
compilers, because the programmer does not know whether the uid_t type is short, int,
or long. Therefore, in cases like these GNU C allows a prototype to override a later old-
style definition. More precisely, in GNU C, a function prototype argument type overrides
the argument type specified by a later old-style definition if the former type is the same as
the latter type before promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);
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int

isroot (uid_t x)

{

return x == 0;

}

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

5.27 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’ and continue until
the end of the line. Many other C implementations allow such comments, and they are
included in the 1999 C standard. However, C++ style comments are not recognized if you
specify an ‘-std’ option specifying a version of ISO C before C99, or ‘-ansi’ (equivalent to
‘-std=c89’).

5.28 Dollar Signs in Identifier Names

In GNU C, you may normally use dollar signs in identifier names. This is because many
traditional C implementations allow such identifiers. However, dollar signs in identifiers are
not supported on a few target machines, typically because the target assembler does not
allow them.

5.29 The Character 〈ESC〉 in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII
character 〈ESC〉.

5.30 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the
minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte
boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On
more traditional machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type
even at an odd address. For these machines, __alignof__ reports the recommended align-
ment of a type.

If the operand of __alignof__ is an lvalue rather than a type, its value is the required
alignment for its type, taking into account any minimum alignment specified with GCC’s
__attribute__ extension (see Section 5.31 [Variable Attributes], page 247). For example,
after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is 1, even though its actual alignment is probably 2 or
4, the same as __alignof__ (int).

It is an error to ask for the alignment of an incomplete type.
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5.31 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure
fields. This keyword is followed by an attribute specification inside double parentheses.
Some attributes are currently defined generically for variables. Other attributes are defined
for variables on particular target systems. Other attributes are available for functions
(see Section 5.24 [Function Attributes], page 229) and for types (see Section 5.32 [Type
Attributes], page 252). Other front ends might define more attributes (see Chapter 6
[Extensions to the C++ Language], page 361).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __aligned__ instead of aligned.

See Section 5.25 [Attribute Syntax], page 242, for details of the exact syntax for using
attributes.

aligned (alignment)
This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On
a 68040, this could be used in conjunction with an asm expression to access the
move16 instruction which requires 16-byte aligned operands.
You can also specify the alignment of structure fields. For example, to create a
double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces
the union to be double-word aligned.
As in the preceding examples, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given variable or structure field. Alter-
natively, you can leave out the alignment factor and just ask the compiler to
align a variable or field to the maximum useful alignment for the target machine
you are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the declared variable or
field to the largest alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables or fields
that you have aligned this way.
The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
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linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

cleanup (cleanup_function)
The cleanup attribute runs a function when the variable goes out of scope.
This attribute can only be applied to auto function scope variables; it may not
be applied to parameters or variables with static storage duration. The function
must take one parameter, a pointer to a type compatible with the variable. The
return value of the function (if any) is ignored.
If ‘-fexceptions’ is enabled, then cleanup function will be run during the stack
unwinding that happens during the processing of the exception. Note that the
cleanup attribute does not allow the exception to be caught, only to perform
an action. It is undefined what happens if cleanup function does not return
normally.

common
nocommon The common attribute requests GCC to place a variable in “common” storage.

The nocommon attribute requests the opposite—to allocate space for it directly.
These attributes override the default chosen by the ‘-fno-common’ and
‘-fcommon’ flags respectively.

deprecated
The deprecated attribute results in a warning if the variable is used anywhere
in the source file. This is useful when identifying variables that are expected
to be removed in a future version of a program. The warning also includes the
location of the declaration of the deprecated variable, to enable users to easily
find further information about why the variable is deprecated, or what they
should do instead. Note that the warning only occurs for uses:

extern int old_var __attribute__ ((deprecated));

extern int old_var;

int new_fn () { return old_var; }

results in a warning on line 3 but not line 2.
The deprecated attribute can also be used for functions and types (see Sec-
tion 5.24 [Function Attributes], page 229, see Section 5.32 [Type Attributes],
page 252.)

mode (mode)
This attribute specifies the data type for the declaration—whichever type cor-
responds to the mode mode. This in effect lets you request an integer or floating
point type according to its width.
You may also specify a mode of ‘byte’ or ‘__byte__’ to indicate the mode
corresponding to a one-byte integer, ‘word’ or ‘__word__’ for the mode of a one-
word integer, and ‘pointer’ or ‘__pointer__’ for the mode used to represent
pointers.

packed The packed attribute specifies that a variable or structure field should have the
smallest possible alignment—one byte for a variable, and one bit for a field,
unless you specify a larger value with the aligned attribute.
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Here is a structure in which the field x is packed, so that it immediately follows
a:

struct foo

{

char a;

int x[2] __attribute__ ((packed));

};

section ("section-name")
Normally, the compiler places the objects it generates in sections like data and
bss. Sometimes, however, you need additional sections, or you need certain
particular variables to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable (or function) lives
in a particular section. For example, this small program uses several specific
section names:

struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };

struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };

char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };

int init_data __attribute__ ((section ("INITDATA"))) = 0;

main()

{

/* Initialize stack pointer */

init_sp (stack + sizeof (stack));

/* Initialize initialized data */

memcpy (&init_data, &data, &edata - &data);

/* Turn on the serial ports */

init_duart (&a);

init_duart (&b);

}

Use the section attribute with an initialized definition of a global variable,
as shown in the example. GCC issues a warning and otherwise ignores the
section attribute in uninitialized variable declarations.
You may only use the section attribute with a fully initialized global definition
because of the way linkers work. The linker requires each object be defined once,
with the exception that uninitialized variables tentatively go in the common (or
bss) section and can be multiply “defined”. You can force a variable to be
initialized with the ‘-fno-common’ flag or the nocommon attribute.
Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

shared On Microsoft Windows, in addition to putting variable definitions in a named
section, the section can also be shared among all running copies of an executable
or DLL. For example, this small program defines shared data by putting it in
a named section shared and marking the section shareable:

int foo __attribute__((section ("shared"), shared)) = 0;

int

main()
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{

/* Read and write foo. All running
copies see the same value. */

return 0;

}

You may only use the shared attribute along with section attribute with a
fully initialized global definition because of the way linkers work. See section
attribute for more information.
The shared attribute is only available on Microsoft Windows.

tls_model ("tls_model")
The tls_model attribute sets thread-local storage model (see Section 5.51
[Thread-Local], page 356) of a particular __thread variable, overriding
‘-ftls-model=’ command line switch on a per-variable basis. The tls model
argument should be one of global-dynamic, local-dynamic, initial-exec
or local-exec.
Not all targets support this attribute.

unused This attribute, attached to a variable, means that the variable is meant to be
possibly unused. GCC will not produce a warning for this variable.

vector_size (bytes)
This attribute specifies the vector size for the variable, measured in bytes. For
example, the declaration:

int foo __attribute__ ((vector_size (16)));

causes the compiler to set the mode for foo, to be 16 bytes, divided into int
sized units. Assuming a 32-bit int (a vector of 4 units of 4 bytes), the corre-
sponding mode of foo will be V4SI.
This attribute is only applicable to integral and float scalars, although arrays,
pointers, and function return values are allowed in conjunction with this con-
struct.
Aggregates with this attribute are invalid, even if they are of the same size as
a corresponding scalar. For example, the declaration:

struct S { int a; };

struct S __attribute__ ((vector_size (16))) foo;

is invalid even if the size of the structure is the same as the size of the int.

selectany
The selectany attribute causes an initialized global variable to have link-once
semantics. When multiple definitions of the variable are encountered by the
linker, the first is selected and the remainder are discarded. Following usage
by the Microsoft compiler, the linker is told not to warn about size or content
differences of the multiple definitions.
Although the primary usage of this attribute is for POD types, the attribute can
also be applied to global C++ objects that are initialized by a constructor. In
this case, the static initialization and destruction code for the object is emitted
in each translation defining the object, but the calls to the constructor and
destructor are protected by a link-once guard variable.
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The selectany attribute is only available on Microsoft Windows targets.
You can use __declspec (selectany) as a synonym for __attribute__
((selectany)) for compatibility with other compilers.

weak The weak attribute is described in See Section 5.24 [Function Attributes],
page 229.

dllimport
The dllimport attribute is described in See Section 5.24 [Function Attributes],
page 229.

dlexport The dllexport attribute is described in See Section 5.24 [Function Attributes],
page 229.

5.31.1 M32R/D Variable Attributes

One attribute is currently defined for the M32R/D.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object. The
identifier model-name is one of small, medium, or large, representing each of
the code models.

Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction).

Medium and large model objects may live anywhere in the 32-bit address space
(the compiler will generate seth/add3 instructions to load their addresses).

5.31.2 i386 Variable Attributes

Two attributes are currently defined for i386 configurations: ms_struct and gcc_struct

ms_struct
gcc_struct

If packed is used on a structure, or if bit-fields are used it may be that the
Microsoft ABI packs them differently than GCC would normally pack them.
Particularly when moving packed data between functions compiled with GCC
and the native Microsoft compiler (either via function call or as data in a file),
it may be necessary to access either format.

Currently ‘-m[no-]ms-bitfields’ is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler.

5.31.3 Xstormy16 Variable Attributes

One attribute is currently defined for xstormy16 configurations: below100

below100

If a variable has the below100 attribute (BELOW100 is allowed also), GCC will
place the variable in the first 0x100 bytes of memory and use special opcodes
to access it. Such variables will be placed in either the .bss_below100 section
or the .data_below100 section.
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5.32 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and union
types when you define such types. This keyword is followed by an attribute specification
inside double parentheses. Six attributes are currently defined for types: aligned, packed,
transparent_union, unused, deprecated and may_alias. Other attributes are defined
for functions (see Section 5.24 [Function Attributes], page 229) and for variables (see Sec-
tion 5.31 [Variable Attributes], page 247).

You may also specify any one of these attributes with ‘__’ preceding and following its
keyword. This allows you to use these attributes in header files without being concerned
about a possible macro of the same name. For example, you may use __aligned__ instead
of aligned.

You may specify the aligned and transparent_union attributes either in a typedef
declaration or just past the closing curly brace of a complete enum, struct or union type
definition and the packed attribute only past the closing brace of a definition.

You may also specify attributes between the enum, struct or union tag and the name of
the type rather than after the closing brace.

See Section 5.25 [Attribute Syntax], page 242, for details of the exact syntax for using
attributes.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for variables of the
specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8)));

typedef int more_aligned_int __attribute__ ((aligned (8)));

force the compiler to insure (as far as it can) that each variable whose type
is struct S or more_aligned_int will be allocated and aligned at least on a
8-byte boundary. On a SPARC, having all variables of type struct S aligned to
8-byte boundaries allows the compiler to use the ldd and std (doubleword load
and store) instructions when copying one variable of type struct S to another,
thus improving run-time efficiency.
Note that the alignment of any given struct or union type is required by the
ISO C standard to be at least a perfect multiple of the lowest common multiple
of the alignments of all of the members of the struct or union in question. This
means that you can effectively adjust the alignment of a struct or union type
by attaching an aligned attribute to any one of the members of such a type,
but the notation illustrated in the example above is a more obvious, intuitive,
and readable way to request the compiler to adjust the alignment of an entire
struct or union type.
As in the preceding example, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given struct or union type. Alterna-
tively, you can leave out the alignment factor and just ask the compiler to
align a type to the maximum useful alignment for the target machine you are
compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the type to the largest
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alignment which is ever used for any data type on the target machine you are
compiling for. Doing this can often make copy operations more efficient, be-
cause the compiler can use whatever instructions copy the biggest chunks of
memory when performing copies to or from the variables which have types that
you have aligned this way.
In the example above, if the size of each short is 2 bytes, then the size of the
entire struct S type is 6 bytes. The smallest power of two which is greater
than or equal to that is 8, so the compiler sets the alignment for the entire
struct S type to 8 bytes.
Note that although you can ask the compiler to select a time-efficient alignment
for a given type and then declare only individual stand-alone objects of that
type, the compiler’s ability to select a time-efficient alignment is primarily useful
only when you plan to create arrays of variables having the relevant (efficiently
aligned) type. If you declare or use arrays of variables of an efficiently-aligned
type, then it is likely that your program will also be doing pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the relevant type,
and the code that the compiler generates for these pointer arithmetic operations
will often be more efficient for efficiently-aligned types than for other types.
The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

packed This attribute, attached to struct or union type definition, specifies that each
member (other than zero-width bitfields) of the structure or union is placed
to minimize the memory required. When attached to an enum definition, it
indicates that the smallest integral type should be used.
Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members. Specifying
the ‘-fshort-enums’ flag on the line is equivalent to specifying the packed
attribute on all enum definitions.
In the following example struct my_packed_struct’s members are packed
closely together, but the internal layout of its s member is not packed—to
do that, struct my_unpacked_struct would need to be packed too.

struct my_unpacked_struct

{

char c;

int i;

};

struct __attribute__ ((__packed__)) my_packed_struct

{

char c;
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int i;

struct my_unpacked_struct s;

};

You may only specify this attribute on the definition of a enum, struct or union,
not on a typedef which does not also define the enumerated type, structure or
union.

transparent_union
This attribute, attached to a union type definition, indicates that any function
parameter having that union type causes calls to that function to be treated in
a special way.
First, the argument corresponding to a transparent union type can be of any
type in the union; no cast is required. Also, if the union contains a pointer type,
the corresponding argument can be a null pointer constant or a void pointer
expression; and if the union contains a void pointer type, the corresponding
argument can be any pointer expression. If the union member type is a pointer,
qualifiers like const on the referenced type must be respected, just as with
normal pointer conversions.
Second, the argument is passed to the function using the calling conventions of
the first member of the transparent union, not the calling conventions of the
union itself. All members of the union must have the same machine represen-
tation; this is necessary for this argument passing to work properly.
Transparent unions are designed for library functions that have multiple inter-
faces for compatibility reasons. For example, suppose the wait function must
accept either a value of type int * to comply with Posix, or a value of type
union wait * to comply with the 4.1BSD interface. If wait’s parameter were
void *, wait would accept both kinds of arguments, but it would also accept
any other pointer type and this would make argument type checking less useful.
Instead, <sys/wait.h> might define the interface as follows:

typedef union

{

int *__ip;

union wait *__up;

} wait_status_ptr_t __attribute__ ((__transparent_union__));

pid_t wait (wait_status_ptr_t);

This interface allows either int * or union wait * arguments to be passed,
using the int * calling convention. The program can call wait with arguments
of either type:

int w1 () { int w; return wait (&w); }

int w2 () { union wait w; return wait (&w); }

With this interface, wait’s implementation might look like this:
pid_t wait (wait_status_ptr_t p)

{

return waitpid (-1, p.__ip, 0);

}

unused When attached to a type (including a union or a struct), this attribute means
that variables of that type are meant to appear possibly unused. GCC will not
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produce a warning for any variables of that type, even if the variable appears to
do nothing. This is often the case with lock or thread classes, which are usually
defined and then not referenced, but contain constructors and destructors that
have nontrivial bookkeeping functions.

deprecated
The deprecated attribute results in a warning if the type is used anywhere in
the source file. This is useful when identifying types that are expected to be
removed in a future version of a program. If possible, the warning also includes
the location of the declaration of the deprecated type, to enable users to easily
find further information about why the type is deprecated, or what they should
do instead. Note that the warnings only occur for uses and then only if the type
is being applied to an identifier that itself is not being declared as deprecated.

typedef int T1 __attribute__ ((deprecated));

T1 x;

typedef T1 T2;

T2 y;

typedef T1 T3 __attribute__ ((deprecated));

T3 z __attribute__ ((deprecated));

results in a warning on line 2 and 3 but not lines 4, 5, or 6. No warning is
issued for line 4 because T2 is not explicitly deprecated. Line 5 has no warning
because T3 is explicitly deprecated. Similarly for line 6.

The deprecated attribute can also be used for functions and variables (see Sec-
tion 5.24 [Function Attributes], page 229, see Section 5.31 [Variable Attributes],
page 247.)

may_alias
Accesses to objects with types with this attribute are not subjected to type-
based alias analysis, but are instead assumed to be able to alias any other
type of objects, just like the char type. See ‘-fstrict-aliasing’ for more
information on aliasing issues.

Example of use:
typedef short __attribute__((__may_alias__)) short_a;

int

main (void)

{

int a = 0x12345678;

short_a *b = (short_a *) &a;

b[1] = 0;

if (a == 0x12345678)

abort();

exit(0);

}

If you replaced short_a with short in the variable declaration, the above pro-
gram would abort when compiled with ‘-fstrict-aliasing’, which is on by
default at ‘-O2’ or above in recent GCC versions.
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5.32.1 ARM Type Attributes

On those ARM targets that support dllimport (such as Symbian OS), you can
use the notshared attribute to indicate that the virtual table and other similar
data for a class should not be exported from a DLL. For example:

class __declspec(notshared) C {

public:

__declspec(dllimport) C();

virtual void f();

}

__declspec(dllexport)

C::C() {}

In this code, C::C is exported from the current DLL, but the virtual table for
C is not exported. (You can use __attribute__ instead of __declspec if you
prefer, but most Symbian OS code uses __declspec.)

5.32.2 i386 Type Attributes

Two attributes are currently defined for i386 configurations: ms_struct and
gcc_struct

ms_struct
gcc_struct

If packed is used on a structure, or if bit-fields are used it may be that the
Microsoft ABI packs them differently than GCC would normally pack them.
Particularly when moving packed data between functions compiled with GCC
and the native Microsoft compiler (either via function call or as data in a file),
it may be necessary to access either format.
Currently ‘-m[no-]ms-bitfields’ is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler.

To specify multiple attributes, separate them by commas within the double parentheses:
for example, ‘__attribute__ ((aligned (16), packed))’.

5.33 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GCC to integrate that function’s code
into the code for its callers. This makes execution faster by eliminating the function-call
overhead; in addition, if any of the actual argument values are constant, their known values
may permit simplifications at compile time so that not all of the inline function’s code needs
to be included. The effect on code size is less predictable; object code may be larger or
smaller with function inlining, depending on the particular case. Inlining of functions is an
optimization and it really “works” only in optimizing compilation. If you don’t use ‘-O’, no
function is really inline.

Inline functions are included in the ISO C99 standard, but there are currently substantial
differences between what GCC implements and what the ISO C99 standard requires.

To declare a function inline, use the inline keyword in its declaration, like this:
inline int

inc (int *a)

{
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(*a)++;

}

(If you are writing a header file to be included in ISO C programs, write __inline__
instead of inline. See Section 5.38 [Alternate Keywords], page 284.) You can also make
all “simple enough” functions inline with the option ‘-finline-functions’.

Note that certain usages in a function definition can make it unsuitable for inline sub-
stitution. Among these usages are: use of varargs, use of alloca, use of variable sized data
types (see Section 5.13 [Variable Length], page 223), use of computed goto (see Section 5.3
[Labels as Values], page 215), use of nonlocal goto, and nested functions (see Section 5.4
[Nested Functions], page 216). Using ‘-Winline’ will warn when a function marked inline
could not be substituted, and will give the reason for the failure.

Note that in C and Objective-C, unlike C++, the inline keyword does not affect the
linkage of the function.

GCC automatically inlines member functions defined within the class body of C++
programs even if they are not explicitly declared inline. (You can override this with
‘-fno-default-inline’; see Section 3.5 [Options Controlling C++ Dialect], page 25.)

When a function is both inline and static, if all calls to the function are integrated
into the caller, and the function’s address is never used, then the function’s own assembler
code is never referenced. In this case, GCC does not actually output assembler code for
the function, unless you specify the option ‘-fkeep-inline-functions’. Some calls cannot
be integrated for various reasons (in particular, calls that precede the function’s definition
cannot be integrated, and neither can recursive calls within the definition). If there is a
nonintegrated call, then the function is compiled to assembler code as usual. The function
must also be compiled as usual if the program refers to its address, because that can’t be
inlined.

When an inline function is not static, then the compiler must assume that there may be
calls from other source files; since a global symbol can be defined only once in any program,
the function must not be defined in the other source files, so the calls therein cannot be
integrated. Therefore, a non-static inline function is always compiled on its own in the
usual fashion.

If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you refer
to its address explicitly. Such an address becomes an external reference, as if you had only
declared the function, and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to
use it is to put a function definition in a header file with these keywords, and put another
copy of the definition (lacking inline and extern) in a library file. The definition in the
header file will cause most calls to the function to be inlined. If any uses of the function
remain, they will refer to the single copy in the library.

Since GCC eventually will implement ISO C99 semantics for inline functions, it is best
to use static inline only to guarantee compatibility. (The existing semantics will remain
available when ‘-std=gnu89’ is specified, but eventually the default will be ‘-std=gnu99’
and that will implement the C99 semantics, though it does not do so yet.)

GCC does not inline any functions when not optimizing unless you specify the
‘always_inline’ attribute for the function, like this:
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/* Prototype. */

inline void foo (const char) __attribute__((always_inline));

5.34 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can specify the operands of the instruction using
C expressions. This means you need not guess which registers or memory locations will
contain the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output
operand. Each has ‘"f"’ as its operand constraint, saying that a floating point register
is required. The ‘=’ in ‘=f’ indicates that the operand is an output; all output operands’
constraints must use ‘=’. The constraints use the same language used in the machine
description (see Section 5.35 [Constraints], page 264).

Each operand is described by an operand-constraint string followed by the C expression
in parentheses. A colon separates the assembler template from the first output operand and
another separates the last output operand from the first input, if any. Commas separate
the operands within each group. The total number of operands is currently limited to 30;
this limitation may be lifted in some future version of GCC.

If there are no output operands but there are input operands, you must place two con-
secutive colons surrounding the place where the output operands would go.

As of GCC version 3.1, it is also possible to specify input and output operands using
symbolic names which can be referenced within the assembler code. These names are
specified inside square brackets preceding the constraint string, and can be referenced inside
the assembler code using %[name] instead of a percentage sign followed by the operand
number. Using named operands the above example could look like:

asm ("fsinx %[angle],%[output]"

: [output] "=f" (result)

: [angle] "f" (angle));

Note that the symbolic operand names have no relation whatsoever to other C identifiers.
You may use any name you like, even those of existing C symbols, but you must ensure
that no two operands within the same assembler construct use the same symbolic name.

Output operand expressions must be lvalues; the compiler can check this. The input
operands need not be lvalues. The compiler cannot check whether the operands have data
types that are reasonable for the instruction being executed. It does not parse the assembler
instruction template and does not know what it means or even whether it is valid assembler
input. The extended asm feature is most often used for machine instructions the compiler
itself does not know exist. If the output expression cannot be directly addressed (for exam-
ple, it is a bit-field), your constraint must allow a register. In that case, GCC will use the
register as the output of the asm, and then store that register into the output.

The ordinary output operands must be write-only; GCC will assume that the values in
these operands before the instruction are dead and need not be generated. Extended asm
supports input-output or read-write operands. Use the constraint character ‘+’ to indicate
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such an operand and list it with the output operands. You should only use read-write
operands when the constraints for the operand (or the operand in which only some of the
bits are to be changed) allow a register.

You may, as an alternative, logically split its function into two separate operands, one
input operand and one write-only output operand. The connection between them is ex-
pressed by constraints which say they need to be in the same location when the instruction
executes. You can use the same C expression for both operands, or different expressions.
For example, here we write the (fictitious) ‘combine’ instruction with bar as its read-only
source operand and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same location as operand 0.
A number in constraint is allowed only in an input operand and it must refer to an output
operand.

Only a number in the constraint can guarantee that one operand will be in the same place
as another. The mere fact that foo is the value of both operands is not enough to guarantee
that they will be in the same place in the generated assembler code. The following would
not work reliably:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different regis-
ters; GCC knows no reason not to do so. For example, the compiler might find a copy of
the value of foo in one register and use it for operand 1, but generate the output operand
0 in a different register (copying it afterward to foo’s own address). Of course, since the
register for operand 1 is not even mentioned in the assembler code, the result will not work,
but GCC can’t tell that.

As of GCC version 3.1, one may write [name] instead of the operand number for a
matching constraint. For example:

asm ("cmoveq %1,%2,%[result]"

: [result] "=r"(result)

: "r" (test), "r"(new), "[result]"(old));

Sometimes you need to make an asm operand be a specific register, but there’s no matching
constraint letter for that register by itself. To force the operand into that register, use a local
variable for the operand and specify the register in the variable declaration. See Section 5.37
[Explicit Reg Vars], page 282. Then for the asm operand, use any register constraint letter
that matches the register:

register int *p1 asm ("r0") = ...;

register int *p2 asm ("r1") = ...;

register int *result asm ("r0");

asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));

In the above example, beware that a register that is call-clobbered by the target ABI will
be overwritten by any function call in the assignment, including library calls for arithmetic
operators. Assuming it is a call-clobbered register, this may happen to r0 above by the
assignment to p2. If you have to use such a register, use temporary variables for expressions
between the register assignment and use:

int t1 = ...;

register int *p1 asm ("r0") = ...;

register int *p2 asm ("r1") = t1;

register int *result asm ("r0");
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asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));

Some instructions clobber specific hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given as
strings). Here is a realistic example for the VAX:

asm volatile ("movc3 %0,%1,%2"

: /* no outputs */

: "g" (from), "g" (to), "g" (count)

: "r0", "r1", "r2", "r3", "r4", "r5");

You may not write a clobber description in a way that overlaps with an input or output
operand. For example, you may not have an operand describing a register class with one
member if you mention that register in the clobber list. Variables declared to live in specific
registers (see Section 5.37 [Explicit Reg Vars], page 282), and used as asm input or output
operands must have no part mentioned in the clobber description. There is no way for
you to specify that an input operand is modified without also specifying it as an output
operand. Note that if all the output operands you specify are for this purpose (and hence
unused), you will then also need to specify volatile for the asm construct, as described
below, to prevent GCC from deleting the asm statement as unused.

If you refer to a particular hardware register from the assembler code, you will probably
have to list the register after the third colon to tell the compiler the register’s value is
modified. In some assemblers, the register names begin with ‘%’; to produce one ‘%’ in the
assembler code, you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register, add ‘cc’ to the list
of clobbered registers. GCC on some machines represents the condition codes as a specific
hardware register; ‘cc’ serves to name this register. On other machines, the condition code
is handled differently, and specifying ‘cc’ has no effect. But it is valid no matter what the
machine.

If your assembler instructions access memory in an unpredictable fashion, add ‘memory’
to the list of clobbered registers. This will cause GCC to not keep memory values cached in
registers across the assembler instruction and not optimize stores or loads to that memory.
You will also want to add the volatile keyword if the memory affected is not listed in the
inputs or outputs of the asm, as the ‘memory’ clobber does not count as a side-effect of the
asm. If you know how large the accessed memory is, you can add it as input or output but
if this is not known, you should add ‘memory’. As an example, if you access ten bytes of a
string, you can use a memory input like:

{"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}.

Note that in the following example the memory input is necessary, otherwise GCC might
optimize the store to x away:

int foo ()

{

int x = 42;

int *y = &x;

int result;

asm ("magic stuff accessing an ’int’ pointed to by ’%1’"

"=&d" (r) : "a" (y), "m" (*y));

return result;

}

You can put multiple assembler instructions together in a single asm template, separated
by the characters normally used in assembly code for the system. A combination that works
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in most places is a newline to break the line, plus a tab character to move to the instruc-
tion field (written as ‘\n\t’). Sometimes semicolons can be used, if the assembler allows
semicolons as a line-breaking character. Note that some assembler dialects use semicolons
to start a comment. The input operands are guaranteed not to use any of the clobbered
registers, and neither will the output operands’ addresses, so you can read and write the
clobbered registers as many times as you like. Here is an example of multiple instructions
in a template; it assumes the subroutine _foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"

: /* no outputs */

: "g" (from), "g" (to)

: "r9", "r10");

Unless an output operand has the ‘&’ constraint modifier, GCC may allocate it in the same
register as an unrelated input operand, on the assumption the inputs are consumed before
the outputs are produced. This assumption may be false if the assembler code actually
consists of more than one instruction. In such a case, use ‘&’ for each output operand that
may not overlap an input. See Section 5.35.3 [Modifiers], page 267.

If you want to test the condition code produced by an assembler instruction, you must
include a branch and a label in the asm construct, as follows:

asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"

: "g" (result)

: "g" (input));

This assumes your assembler supports local labels, as the GNU assembler and most Unix
assemblers do.

Speaking of labels, jumps from one asm to another are not supported. The compiler’s
optimizers do not know about these jumps, and therefore they cannot take account of them
when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \

({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \

__value; })

Here the variable __arg is used to make sure that the instruction operates on a proper
double value, and to accept only those arguments x which can convert automatically to a
double.

Another way to make sure the instruction operates on the correct data type is to use
a cast in the asm. This is different from using a variable __arg in that it converts more
different types. For example, if the desired type were int, casting the argument to int
would accept a pointer with no complaint, while assigning the argument to an int variable
named __arg would warn about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GCC assumes for optimization purposes the instruction
has no side effects except to change the output operands. This does not mean instructions
with a side effect cannot be used, but you must be careful, because the compiler may
eliminate them if the output operands aren’t used, or move them out of loops, or replace
two with one if they constitute a common subexpression. Also, if your instruction does
have a side effect on a variable that otherwise appears not to change, the old value of the
variable may be reused later if it happens to be found in a register.
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You can prevent an asm instruction from being deleted by writing the keyword volatile
after the asm. For example:

#define get_and_set_priority(new) \

({ int __old; \

asm volatile ("get_and_set_priority %0, %1" \

: "=g" (__old) : "g" (new)); \

__old; })

The volatile keyword indicates that the instruction has important side-effects. GCC will
not delete a volatile asm if it is reachable. (The instruction can still be deleted if GCC
can prove that control-flow will never reach the location of the instruction.) Note that
even a volatile asm instruction can be moved relative to other code, including across jump
instructions. For example, on many targets there is a system register which can be set to
control the rounding mode of floating point operations. You might try setting it with a
volatile asm, like this PowerPC example:

asm volatile("mtfsf 255,%0" : : "f" (fpenv));

sum = x + y;

This will not work reliably, as the compiler may move the addition back before the volatile
asm. To make it work you need to add an artificial dependency to the asm referencing a
variable in the code you don’t want moved, for example:

asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));

sum = x + y;

Similarly, you can’t expect a sequence of volatile asm instructions to remain perfectly
consecutive. If you want consecutive output, use a single asm. Also, GCC will perform
some optimizations across a volatile asm instruction; GCC does not “forget everything”
when it encounters a volatile asm instruction the way some other compilers do.

An asm instruction without any output operands will be treated identically to a volatile
asm instruction.

It is a natural idea to look for a way to give access to the condition code left by the
assembler instruction. However, when we attempted to implement this, we found no way
to make it work reliably. The problem is that output operands might need reloading,
which would result in additional following “store” instructions. On most machines, these
instructions would alter the condition code before there was time to test it. This problem
doesn’t arise for ordinary “test” and “compare” instructions because they don’t have any
output operands.

For reasons similar to those described above, it is not possible to give an assembler
instruction access to the condition code left by previous instructions.

If you are writing a header file that should be includable in ISO C programs, write
__asm__ instead of asm. See Section 5.38 [Alternate Keywords], page 284.

5.34.1 Size of an asm

Some targets require that GCC track the size of each instruction used in order to generate
correct code. Because the final length of an asm is only known by the assembler, GCC
must make an estimate as to how big it will be. The estimate is formed by counting the
number of statements in the pattern of the asm and multiplying that by the length of
the longest instruction on that processor. Statements in the asm are identified by newline
characters and whatever statement separator characters are supported by the assembler; on
most processors this is the ‘;’ character.
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Normally, GCC’s estimate is perfectly adequate to ensure that correct code is generated,
but it is possible to confuse the compiler if you use pseudo instructions or assembler macros
that expand into multiple real instructions or if you use assembler directives that expand to
more space in the object file than would be needed for a single instruction. If this happens
then the assembler will produce a diagnostic saying that a label is unreachable.

5.34.2 i386 floating point asm operands

There are several rules on the usage of stack-like regs in asm operands insns. These rules
apply only to the operands that are stack-like regs:

1. Given a set of input regs that die in an asm operands, it is necessary to know which
are implicitly popped by the asm, and which must be explicitly popped by gcc.

An input reg that is implicitly popped by the asm must be explicitly clobbered, unless
it is constrained to match an output operand.

2. For any input reg that is implicitly popped by an asm, it is necessary to know how to
adjust the stack to compensate for the pop. If any non-popped input is closer to the
top of the reg-stack than the implicitly popped reg, it would not be possible to know
what the stack looked like—it’s not clear how the rest of the stack “slides up”.

All implicitly popped input regs must be closer to the top of the reg-stack than any
input that is not implicitly popped.

It is possible that if an input dies in an insn, reload might use the input reg for an
output reload. Consider this example:

asm ("foo" : "=t" (a) : "f" (b));

This asm says that input B is not popped by the asm, and that the asm pushes a result
onto the reg-stack, i.e., the stack is one deeper after the asm than it was before. But,
it is possible that reload will think that it can use the same reg for both the input and
the output, if input B dies in this insn.

If any input operand uses the f constraint, all output reg constraints must use the &
earlyclobber.

The asm above would be written as
asm ("foo" : "=&t" (a) : "f" (b));

3. Some operands need to be in particular places on the stack. All output operands fall in
this category—there is no other way to know which regs the outputs appear in unless
the user indicates this in the constraints.

Output operands must specifically indicate which reg an output appears in after an
asm. =f is not allowed: the operand constraints must select a class with a single reg.

4. Output operands may not be “inserted” between existing stack regs. Since no 387 op-
code uses a read/write operand, all output operands are dead before the asm operands,
and are pushed by the asm operands. It makes no sense to push anywhere but the top
of the reg-stack.

Output operands must start at the top of the reg-stack: output operands may not
“skip” a reg.

5. Some asm statements may need extra stack space for internal calculations. This can
be guaranteed by clobbering stack registers unrelated to the inputs and outputs.
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Here are a couple of reasonable asms to want to write. This asm takes one input, which
is internally popped, and produces two outputs.

asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));

This asm takes two inputs, which are popped by the fyl2xp1 opcode, and replaces them
with one output. The user must code the st(1) clobber for reg-stack.c to know that
fyl2xp1 pops both inputs.

asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");

5.35 Constraints for asm Operands

Here are specific details on what constraint letters you can use with asm operands. Con-
straints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may have. Constraints
can also require two operands to match.

5.35.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind
of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except
the first. This enables each alternative for different operands to be visually
aligned in the machine description even if they have different number of con-
straints and modifiers.

‘m’ A memory operand is allowed, with any kind of address that the machine sup-
ports in general.

‘o’ A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.
For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.
Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the
target machine has predecrement addressing) and ‘>’ (if the target machine has
preincrement addressing).

‘V’ A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

‘<’ A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.
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‘>’ A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.

‘r’ A register operand is allowed provided that it is in a general register.

‘i’ An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time or
later.

‘n’ An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

‘E’ An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

‘F’ An immediate floating operand (expression code const_double or
const_vector) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

‘s’ An immediate integer operand whose value is not an explicit integer is allowed.
This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘i’? Sometimes it allows better code to be generated.
For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between −128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range −128 to 127”, and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

‘X’ Any operand whatsoever is allowed.

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.
This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There
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is scant chance for ambiguity, since to-date it has never been desirable that
‘10’ be interpreted as matching either operand 1 or operand 0. Should this be
desired, one can use multiple alternatives instead.
This is called a matching constraint and what it really means is that the assem-
bler has only a single operand that fills two roles which asm distinguishes. For
example, an add instruction uses two input operands and an output operand,
but on most CISC machines an add instruction really has only two operands,
one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

‘p’ An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.
‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

other-letters
Other letters can be defined in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’
are defined on the 68000/68020 to stand for data, address and floating point
registers.

5.35.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For ex-
ample, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.
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5.35.3 Constraint Modifier Characters

Here are constraint modifier characters.

‘=’ Means that this operand is write-only for this instruction: the previous value
is discarded and replaced by output data.

‘+’ Means that this operand is both read and written by the instruction.
When the compiler fixes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. ‘=’ identifies an output; ‘+’ identifies an operand that is both input and
output; all other operands are assumed to be input only.
If you specify ‘=’ or ‘+’ in a constraint, you put it in the first character of the
constraint string.

‘&’ Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.
‘&’ applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘&’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.
An input operand can be tied to an earlyclobber operand if its only use as an
input occurs before the early result is written. Adding alternatives of this form
often allows GCC to produce better code when only some of the inputs can be
affected by the earlyclobber. See, for example, the ‘mulsi3’ insn of the ARM.
‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. GCC can
only handle one commutative pair in an asm; if you use more, the compiler
may fail. Note that you need not use the modifier if the two alternatives are
strictly identical; this would only waste time in the reload pass. The modifier is
not operational after register allocation, so the result of define_peephole2 and
define_splits performed after reload cannot rely on ‘%’ to make the intended
insn match.

‘#’ Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are significant only for choosing register preferences.

‘*’ Says that the following character should be ignored when choosing register
preferences. ‘*’ has no effect on the meaning of the constraint as a constraint,
and no effect on reloading.

5.35.4 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use
the constraint letters that usually have very similar meanings across architectures. The
most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers
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respectively; see Section 5.35.1 [Simple Constraints], page 264), and ‘I’, usually the letter
indicating the most common immediate-constant format.

For each machine architecture, the ‘config/machine/machine.h’ file defines additional
constraints. These constraints are used by the compiler itself for instruction generation, as
well as for asm statements; therefore, some of the constraints are not particularly interesting
for asm. The constraints are defined through these macros:

REG_CLASS_FROM_LETTER
Register class constraints (usually lowercase).

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point constants of word size
or smaller precision (usually uppercase).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point constants and for con-
stants of greater than word size precision (usually uppercase).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not required, and is only
defined for some machines.

Inspecting these macro definitions in the compiler source for your machine is the best
way to be certain you have the right constraints. However, here is a summary of the
machine-dependent constraints available on some particular machines.

ARM family—‘arm.h’
f Floating-point register

w VFP floating-point register

F One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or
10.0

G Floating-point constant that would satisfy the constraint ‘F’ if it
were negated

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

J Integer in the range −4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

L Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register
(“m’’ is preferable for asm statements)

R An item in the constant pool
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S A symbol in the text segment of the current file

Uv A memory reference suitable for VFP load/store insns
(reg+constant offset)

Uy A memory reference suitable for iWMMXt load/store instructions.

Uq A memory reference suitable for the ARMv4 ldrsb instruction.

AVR family—‘avr.h’
l Registers from r0 to r15

a Registers from r16 to r23

d Registers from r16 to r31

w Registers from r24 to r31. These registers can be used in ‘adiw’
command

e Pointer register (r26–r31)

b Base pointer register (r28–r31)

q Stack pointer register (SPH:SPL)

t Temporary register r0

x Register pair X (r27:r26)

y Register pair Y (r29:r28)

z Register pair Z (r31:r30)

I Constant greater than −1, less than 64

J Constant greater than −64, less than 1

K Constant integer 2

L Constant integer 0

M Constant that fits in 8 bits

N Constant integer −1

O Constant integer 8, 16, or 24

P Constant integer 1

G A floating point constant 0.0

CRX Architecture—‘crx.h’
b Registers from r0 to r14 (registers without stack pointer)

l Register r16 (64-bit accumulator lo register)

h Register r17 (64-bit accumulator hi register)

k Register pair r16-r17. (64-bit accumulator lo-hi pair)

I Constant that fits in 3 bits

J Constant that fits in 4 bits
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K Constant that fits in 5 bits

L Constant that is one of -1, 4, -4, 7, 8, 12, 16, 20, 32, 48

G Floating point constant that is legal for store immediate

PowerPC and IBM RS6000—‘rs6000.h’
b Address base register

f Floating point register

v Vector register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

z ‘FPMEM’ stack memory for FPR-GPR transfers

I Signed 16-bit constant

J Unsigned 16-bit constant shifted left 16 bits (use ‘L’ instead for
SImode constants)

K Unsigned 16-bit constant

L Signed 16-bit constant shifted left 16 bits

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16-bit constant

G Floating point constant that can be loaded into a register with one
instruction per word

Q Memory operand that is an offset from a register (‘m’ is preferable
for asm statements)

R AIX TOC entry

S Constant suitable as a 64-bit mask operand

T Constant suitable as a 32-bit mask operand

U System V Release 4 small data area reference

MorphoTech family—‘mt.h’
I Constant for an arithmetic insn (16-bit signed integer).

J The constant 0.
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K Constant for a logical insn (16-bit zero-extended integer).

L A constant that can be loaded with lui (i.e. the bottom 16 bits are
zero).

M A constant that takes two words to load (i.e. not matched by I, K,
or L).

N Negative 16-bit constants other than -65536.

O A 15-bit signed integer constant.

P A positive 16-bit constant.

Intel 386—‘i386.h’
q ‘a’, b, c, or d register for the i386. For x86-64 it is equivalent to ‘r’

class (for 8-bit instructions that do not use upper halves).

Q ‘a’, b, c, or d register (for 8-bit instructions, that do use upper
halves).

R Legacy register—equivalent to r class in i386 mode. (for non-8-bit
registers used together with 8-bit upper halves in a single instruc-
tion)

A Specifies the ‘a’ or ‘d’ registers. This is primarily useful for 64-bit
integer values (when in 32-bit mode) intended to be returned with
the ‘d’ register holding the most significant bits and the ‘a’ register
holding the least significant bits.

f Floating point register

t First (top of stack) floating point register

u Second floating point register

a ‘a’ register

b ‘b’ register

c ‘c’ register

C Specifies constant that can be easily constructed in SSE register
without loading it from memory.

d ‘d’ register

D ‘di’ register

S ‘si’ register

x ‘xmm’ SSE register

y MMX register

I Constant in range 0 to 31 (for 32-bit shifts)

J Constant in range 0 to 63 (for 64-bit shifts)

K ‘0xff’
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L ‘0xffff’

M 0, 1, 2, or 3 (shifts for lea instruction)

N Constant in range 0 to 255 (for out instruction)

Z Constant in range 0 to 0xffffffff or symbolic reference known to
fit specified range. (for using immediates in zero extending 32-bit
to 64-bit x86-64 instructions)

e Constant in range −2147483648 to 2147483647 or symbolic refer-
ence known to fit specified range. (for using immediates in 64-bit
x86-64 instructions)

G Standard 80387 floating point constant

Intel IA-64—‘ia64.h’
a General register r0 to r3 for addl instruction

b Branch register

c Predicate register (‘c’ as in “conditional”)

d Application register residing in M-unit

e Application register residing in I-unit

f Floating-point register

m Memory operand. Remember that ‘m’ allows postincrement and
postdecrement which require printing with ‘%Pn’ on IA-64. Use ‘S’
to disallow postincrement and postdecrement.

G Floating-point constant 0.0 or 1.0

I 14-bit signed integer constant

J 22-bit signed integer constant

K 8-bit signed integer constant for logical instructions

L 8-bit adjusted signed integer constant for compare pseudo-ops

M 6-bit unsigned integer constant for shift counts

N 9-bit signed integer constant for load and store postincrements

O The constant zero

P 0 or −1 for dep instruction

Q Non-volatile memory for floating-point loads and stores

R Integer constant in the range 1 to 4 for shladd instruction

S Memory operand except postincrement and postdecrement

FRV—‘frv.h’
a Register in the class ACC_REGS (acc0 to acc7).

b Register in the class EVEN_ACC_REGS (acc0 to acc7).
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c Register in the class CC_REGS (fcc0 to fcc3 and icc0 to icc3).

d Register in the class GPR_REGS (gr0 to gr63).

e Register in the class EVEN_REGS (gr0 to gr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

f Register in the class FPR_REGS (fr0 to fr63).

h Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

l Register in the class LR_REG (the lr register).

q Register in the class QUAD_REGS (gr2 to gr63). Register numbers
not divisible by 4 are excluded not in the class but through the use
of a machine mode larger than 8 bytes.

t Register in the class ICC_REGS (icc0 to icc3).

u Register in the class FCC_REGS (fcc0 to fcc3).

v Register in the class ICR_REGS (cc4 to cc7).

w Register in the class FCR_REGS (cc0 to cc3).

x Register in the class QUAD_FPR_REGS (fr0 to fr63). Register num-
bers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

z Register in the class SPR_REGS (lcr and lr).

A Register in the class QUAD_ACC_REGS (acc0 to acc7).

B Register in the class ACCG_REGS (accg0 to accg7).

C Register in the class CR_REGS (cc0 to cc7).

G Floating point constant zero

I 6-bit signed integer constant

J 10-bit signed integer constant

L 16-bit signed integer constant

M 16-bit unsigned integer constant

N 12-bit signed integer constant that is negative—i.e. in the range of
−2048 to −1

O Constant zero

P 12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.

Blackfin family—‘bfin.h’
a P register
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d D register

z A call clobbered P register.

D Even-numbered D register

W Odd-numbered D register

e Accumulator register.

A Even-numbered accumulator register.

B Odd-numbered accumulator register.

b I register

B B register

f M register

c Registers used for circular buffering, i.e. I, B, or L registers.

C The CC register.

x Any D, P, B, M, I or L register.

y Additional registers typically used only in prologues and epilogues:
RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.

w Any register except accumulators or CC.

Ksh Signed 16 bit integer (in the range -32768 to 32767)

Kuh Unsigned 16 bit integer (in the range 0 to 65535)

Ks7 Signed 7 bit integer (in the range -64 to 63)

Ku7 Unsigned 7 bit integer (in the range 0 to 127)

Ku5 Unsigned 5 bit integer (in the range 0 to 31)

Ks4 Signed 4 bit integer (in the range -8 to 7)

Ks3 Signed 3 bit integer (in the range -3 to 4)

Ku3 Unsigned 3 bit integer (in the range 0 to 7)

Pn Constant n, where n is a single-digit constant in the range 0 to 4.

M1 Constant 255.

M2 Constant 65535.

J An integer constant with exactly a single bit set.

L An integer constant with all bits set except exactly one.

H

Q Any SYMBOL REF.

M32C—‘m32c.c’
Rsp
Rfb
Rsb ‘$sp’, ‘$fb’, ‘$sb’.
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Rcr Any control register, when they’re 16 bits wide (nothing if control registers are
24 bits wide)

Rcl Any control register, when they’re 24 bits wide.

R0w
R1w
R2w
R3w $r0, $r1, $r2, $r3.

R02 $r0 or $r2, or $r2r0 for 32 bit values.

R13 $r1 or $r3, or $r3r1 for 32 bit values.

Rdi A register that can hold a 64 bit value.

Rhl $r0 or $r1 (registers with addressable high/low bytes)

R23 $r2 or $r3

Raa Address registers

Raw Address registers when they’re 16 bits wide.

Ral Address registers when they’re 24 bits wide.

Rqi Registers that can hold QI values.

Rad Registers that can be used with displacements ($a0, $a1, $sb).

Rsi Registers that can hold 32 bit values.

Rhi Registers that can hold 16 bit values.

Rhc Registers chat can hold 16 bit values, including all control registers.

Rra $r0 through R1, plus $a0 and $a1.

Rfl The flags register.

Rmm The memory-based pseudo-registers $mem0 through $mem15.

Rpi Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers
for m32cm, m32c).

Rpa Matches multiple registers in a PARALLEL to form a larger register. Used to
match function return values.

Is3 -8 . . . 7

IS1 -128 . . . 127

IS2 -32768 . . . 32767

IU2 0 . . . 65535

In4 -8 . . . -1 or 1 . . . 8

In5 -16 . . . -1 or 1 . . . 16

In4 -8 . . . -1 or 1 . . . 8

IM2 -65536 . . . -1
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Ilb An 8 bit value with exactly one bit set.

Ilw A 16 bit value with exactly one bit set.

Sd The common src/dest memory addressing modes.

Sa Memory addressed using $a0 or $a1.

Si Memory addressed with immediate addresses.

Ss Memory addressed using the stack pointer ($sp).

Sf Memory addressed using the frame base register ($fb).

Ss Memory addressed using the small base register ($sb).

S1 $r1h

MIPS—‘mips.h’
d General-purpose integer register

f Floating-point register (if available)

h ‘Hi’ register

l ‘Lo’ register

x ‘Hi’ or ‘Lo’ register

y General-purpose integer register

z Floating-point status register

I Signed 16-bit constant (for arithmetic instructions)

J Zero

K Zero-extended 16-bit constant (for logic instructions)

L Constant with low 16 bits zero (can be loaded with lui)

M 32-bit constant which requires two instructions to load (a constant
which is not ‘I’, ‘K’, or ‘L’)

N Negative 16-bit constant

O Exact power of two

P Positive 16-bit constant

G Floating point zero

Q Memory reference that can be loaded with more than one instruc-
tion (‘m’ is preferable for asm statements)

R Memory reference that can be loaded with one instruction (‘m’ is
preferable for asm statements)

S Memory reference in external OSF/rose PIC format (‘m’ is prefer-
able for asm statements)

Motorola 680x0—‘m68k.h’
a Address register
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d Data register

f 68881 floating-point register, if available

I Integer in the range 1 to 8

J 16-bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range −8 to −1

M Signed number whose magnitude is greater than 0x100

G Floating point constant that is not a 68881 constant

Motorola 68HC11 & 68HC12 families—‘m68hc11.h’
a Register ‘a’

b Register ‘b’

d Register ‘d’

q An 8-bit register

t Temporary soft register .tmp

u A soft register .d1 to .d31

w Stack pointer register

x Register ‘x’

y Register ‘y’

z Pseudo register ‘z’ (replaced by ‘x’ or ‘y’ at the end)

A An address register: x, y or z

B An address register: x or y

D Register pair (x:d) to form a 32-bit value

L Constants in the range −65536 to 65535

M Constants whose 16-bit low part is zero

N Constant integer 1 or −1

O Constant integer 16

P Constants in the range −8 to 2

SPARC—‘sparc.h’
f Floating-point register on the SPARC-V8 architecture and lower

floating-point register on the SPARC-V9 architecture.

e Floating-point register. It is equivalent to ‘f’ on the SPARC-V8
architecture and contains both lower and upper floating-point reg-
isters on the SPARC-V9 architecture.

c Floating-point condition code register.
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d Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.

b Floating-point register. It is only valid on the SPARC-V9 architec-
ture when the Visual Instruction Set is available.

h 64-bit global or out register for the SPARC-V8+ architecture.

I Signed 13-bit constant

J Zero

K 32-bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

L A constant in the range supported by movcc instructions

M A constant in the range supported by movrcc instructions

N Same as ‘K’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘K’ for
modes wider than SImode

O The constant 4096

G Floating-point zero

H Signed 13-bit constant, sign-extended to 32 or 64 bits

Q Floating-point constant whose integral representation can be moved
into an integer register using a single sethi instruction

R Floating-point constant whose integral representation can be moved
into an integer register using a single mov instruction

S Floating-point constant whose integral representation can be moved
into an integer register using a high/lo sum instruction sequence

T Memory address aligned to an 8-byte boundary

U Even register

W Memory address for ‘e’ constraint registers

Y Vector zero

TMS320C3x/C4x—‘c4x.h’
a Auxiliary (address) register (ar0-ar7)

b Stack pointer register (sp)

c Standard (32-bit) precision integer register

f Extended (40-bit) precision register (r0-r11)

k Block count register (bk)

q Extended (40-bit) precision low register (r0-r7)

t Extended (40-bit) precision register (r0-r1)
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u Extended (40-bit) precision register (r2-r3)

v Repeat count register (rc)

x Index register (ir0-ir1)

y Status (condition code) register (st)

z Data page register (dp)

G Floating-point zero

H Immediate 16-bit floating-point constant

I Signed 16-bit constant

J Signed 8-bit constant

K Signed 5-bit constant

L Unsigned 16-bit constant

M Unsigned 8-bit constant

N Ones complement of unsigned 16-bit constant

O High 16-bit constant (32-bit constant with 16 LSBs zero)

Q Indirect memory reference with signed 8-bit or index register dis-
placement

R Indirect memory reference with unsigned 5-bit displacement

S Indirect memory reference with 1 bit or index register displacement

T Direct memory reference

U Symbolic address

S/390 and zSeries—‘s390.h’
a Address register (general purpose register except r0)

c Condition code register

d Data register (arbitrary general purpose register)

f Floating-point register

I Unsigned 8-bit constant (0–255)

J Unsigned 12-bit constant (0–4095)

K Signed 16-bit constant (−32768–32767)

L Value appropriate as displacement.

(0..4095)
for short displacement

(-524288..524287)
for long displacement

M Constant integer with a value of 0x7fffffff.
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N Multiple letter constraint followed by 4 parameter letters.

0..9: number of the part counting from most to least signif-
icant

H,Q: mode of the part

D,S,H: mode of the containing operand

0,F: value of the other parts (F—all bits set)

The constraint matches if the specified part of a constant has a
value different from it’s other parts.

Q Memory reference without index register and with short displace-
ment.

R Memory reference with index register and short displacement.

S Memory reference without index register but with long displace-
ment.

T Memory reference with index register and long displacement.

U Pointer with short displacement.

W Pointer with long displacement.

Y Shift count operand.

Xstormy16—‘stormy16.h’
a Register r0.

b Register r1.

c Register r2.

d Register r8.

e Registers r0 through r7.

t Registers r0 and r1.

y The carry register.

z Registers r8 and r9.

I A constant between 0 and 3 inclusive.

J A constant that has exactly one bit set.

K A constant that has exactly one bit clear.

L A constant between 0 and 255 inclusive.

M A constant between −255 and 0 inclusive.

N A constant between −3 and 0 inclusive.

O A constant between 1 and 4 inclusive.

P A constant between −4 and −1 inclusive.
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Q A memory reference that is a stack push.

R A memory reference that is a stack pop.

S A memory reference that refers to a constant address of known
value.

T The register indicated by Rx (not implemented yet).

U A constant that is not between 2 and 15 inclusive.

Z The constant 0.

Xtensa—‘xtensa.h’
a General-purpose 32-bit register

b One-bit boolean register

A MAC16 40-bit accumulator register

I Signed 12-bit integer constant, for use in MOVI instructions

J Signed 8-bit integer constant, for use in ADDI instructions

K Integer constant valid for BccI instructions

L Unsigned constant valid for BccUI instructions

5.36 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable by
writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the assembler code should
be ‘myfoo’ rather than the usual ‘_foo’.

On systems where an underscore is normally prepended to the name of a C function or
variable, this feature allows you to define names for the linker that do not start with an
underscore.

It does not make sense to use this feature with a non-static local variable since such
variables do not have assembler names. If you are trying to put the variable in a particular
register, see Section 5.37 [Explicit Reg Vars], page 282. GCC presently accepts such code
with a warning, but will probably be changed to issue an error, rather than a warning, in
the future.

You cannot use asm in this way in a function definition; but you can get the same effect
by writing a declaration for the function before its definition and putting asm there, like
this:

extern func () asm ("FUNC");

func (x, y)

int x, y;

/* . . . */

It is up to you to make sure that the assembler names you choose do not conflict with
any other assembler symbols. Also, you must not use a register name; that would produce
completely invalid assembler code. GCC does not as yet have the ability to store static
variables in registers. Perhaps that will be added.
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5.37 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You can
also specify the register in which an ordinary register variable should be allocated.
• Global register variables reserve registers throughout the program. This may be useful

in programs such as programming language interpreters which have a couple of global
variables that are accessed very often.

• Local register variables in specific registers do not reserve the registers, except at the
point where they are used as input or output operands in an asm statement and the
asm statement itself is not deleted. The compiler’s data flow analysis is capable of de-
termining where the specified registers contain live values, and where they are available
for other uses. Stores into local register variables may be deleted when they appear to
be dead according to dataflow analysis. References to local register variables may be
deleted or moved or simplified.
These local variables are sometimes convenient for use with the extended asm feature
(see Section 5.34 [Extended Asm], page 258), if you want to write one output of the
assembler instruction directly into a particular register. (This will work provided the
register you specify fits the constraints specified for that operand in the asm.)

5.37.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is
normally saved and restored by function calls on your machine, so that library routines will
not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your
program according to cpu type. The register a5 would be a good choice on a 68000 for a
variable of pointer type. On machines with register windows, be sure to choose a “global”
register that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they name the
registers; then you would need additional conditionals. For example, some 68000 operating
systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically,
but first we need to figure out how it should choose and how to enable you to guide the
choice. No solution is evident.

Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that was compiled without knowledge of this
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variable (i.e. in a different source file in which the variable wasn’t declared). This is because
lose might save the register and put some other value there. For example, you can’t expect
a global register variable to be available in the comparison-function that you pass to qsort,
since qsort might have put something else in that register. (If you are prepared to recompile
qsort with the same global register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not actually use your global
register variable, so that they will not use that register for any other purpose, then it suffices
to specify the compiler option ‘-ffixed-reg ’. You need not actually add a global register
declaration to their source code.

A function which can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the caller
expects to find there on return. Therefore, the function which is the entry point into the
part of the program that uses the global register variable must explicitly save and restore
the value which belongs to its caller.

On most machines, longjmp will restore to each global register variable the value it had
at the time of the setjmp. On some machines, however, longjmp will not change the value
of global register variables. To be portable, the function that called setjmp should make
other arrangements to save the values of the global register variables, and to restore them
in a longjmp. This way, the same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such a
declaration could appear after function definitions, the declaration would be too late to
prevent the register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no
means to supply initial contents for a register.

On the SPARC, there are reports that g3 . . . g7 are suitable registers, but certain library
functions, such as getwd, as well as the subroutines for division and remainder, modify g3
and g4. g1 and g2 are local temporaries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of course, it will not
do to use more than a few of those.

5.37.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this is the same syntax
used for defining global register variables, but for a local variable it would appear within a
function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific
registers are most often useful with explicit assembler instructions (see Section 5.34 [Ex-
tended Asm], page 258). Both of these things generally require that you conditionalize your
program according to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the
registers; then you would need additional conditionals. For example, some 68000 operating
systems call this register %a5.

Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable’s value is not live.
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This option does not guarantee that GCC will generate code that has this variable in the
register you specify at all times. You may not code an explicit reference to this register
in the assembler instruction template part of an asm statement and assume it will always
refer to this variable. However, using the variable as an asm operand guarantees that the
specified register is used for the operand.

Stores into local register variables may be deleted when they appear to be dead according
to dataflow analysis. References to local register variables may be deleted or moved or
simplified.

As for global register variables, it’s recommended that you choose a register which is
normally saved and restored by function calls on your machine, so that library routines
will not clobber it. A common pitfall is to initialize multiple call-clobbered registers with
arbitrary expressions, where a function call or library call for an arithmetic operator will
overwrite a register value from a previous assignment, for example r0 below:

register int *p1 asm ("r0") = ...;

register int *p2 asm ("r1") = ...;

In those cases, a solution is to use a temporary variable for each arbitrary expression.
See [Example of asm with clobbered asm reg], page 259.

5.38 Alternate Keywords

‘-ansi’ and the various ‘-std’ options disable certain keywords. This causes trouble when
you want to use GNU C extensions, or a general-purpose header file that should be usable
by all programs, including ISO C programs. The keywords asm, typeof and inline are
not available in programs compiled with ‘-ansi’ or ‘-std’ (although inline can be used in
a program compiled with ‘-std=c99’). The ISO C99 keyword restrict is only available
when ‘-std=gnu99’ (which will eventually be the default) or ‘-std=c99’ (or the equivalent
‘-std=iso9899:1999’) is used.

The way to solve these problems is to put ‘__’ at the beginning and end of each prob-
lematical keyword. For example, use __asm__ instead of asm, and __inline__ instead of
inline.

Other C compilers won’t accept these alternative keywords; if you want to compile with
another compiler, you can define the alternate keywords as macros to replace them with
the customary keywords. It looks like this:

#ifndef __GNUC__

#define __asm__ asm

#endif

‘-pedantic’ and other options cause warnings for many GNU C extensions. You can pre-
vent such warnings within one expression by writing __extension__ before the expression.
__extension__ has no effect aside from this.

5.39 Incomplete enum Types

You can define an enum tag without specifying its possible values. This results in an incom-
plete type, much like what you get if you write struct foo without describing the elements.
A later declaration which does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is incomplete. However,
you can work with pointers to that type.
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This extension may not be very useful, but it makes the handling of enum more consistent
with the way struct and union are handled.

This extension is not supported by GNU C++.

5.40 Function Names as Strings

GCC provides three magic variables which hold the name of the current function, as a
string. The first of these is __func__, which is part of the C99 standard:

The identifier __func__ is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration

static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing
function. This name is the unadorned name of the function.

__FUNCTION__ is another name for __func__. Older versions of GCC recognize only this
name. However, it is not standardized. For maximum portability, we recommend you use
__func__, but provide a fallback definition with the preprocessor:

#if __STDC_VERSION__ < 199901L

# if __GNUC__ >= 2

# define __func__ __FUNCTION__

# else

# define __func__ "<unknown>"

# endif

#endif

In C, __PRETTY_FUNCTION__ is yet another name for __func__. However, in C++, __
PRETTY_FUNCTION__ contains the type signature of the function as well as its bare name.
For example, this program:

extern "C" {

extern int printf (char *, ...);

}

class a {

public:

void sub (int i)

{

printf ("__FUNCTION__ = %s\n", __FUNCTION__);

printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}

};

int

main (void)

{

a ax;

ax.sub (0);

return 0;

}

gives this output:
__FUNCTION__ = sub

__PRETTY_FUNCTION__ = void a::sub(int)
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These identifiers are not preprocessor macros. In GCC 3.3 and earlier, in C only, __
FUNCTION__ and __PRETTY_FUNCTION__ were treated as string literals; they could be used
to initialize char arrays, and they could be concatenated with other string literals. GCC
3.4 and later treat them as variables, like __func__. In C++, __FUNCTION__ and __PRETTY_
FUNCTION__ have always been variables.

5.41 Getting the Return or Frame Address of a Function

These functions may be used to get information about the callers of a function.

[Built-in Function]void * __builtin_return_address (unsigned int level )
This function returns the return address of the current function, or of one of its callers.
The level argument is number of frames to scan up the call stack. A value of 0 yields
the return address of the current function, a value of 1 yields the return address of
the caller of the current function, and so forth. When inlining the expected behavior
is that the function will return the address of the function that will be returned to.
To work around this behavior use the noinline function attribute.
The level argument must be a constant integer.
On some machines it may be impossible to determine the return address of any
function other than the current one; in such cases, or when the top of the stack has
been reached, this function will return 0 or a random value. In addition, __builtin_
frame_address may be used to determine if the top of the stack has been reached.
This function should only be used with a nonzero argument for debugging purposes.

[Built-in Function]void * __builtin_frame_address (unsigned int level )
This function is similar to __builtin_return_address, but it returns the address of
the function frame rather than the return address of the function. Calling __builtin_
frame_address with a value of 0 yields the frame address of the current function, a
value of 1 yields the frame address of the caller of the current function, and so forth.
The frame is the area on the stack which holds local variables and saved registers.
The frame address is normally the address of the first word pushed on to the stack
by the function. However, the exact definition depends upon the processor and the
calling convention. If the processor has a dedicated frame pointer register, and the
function has a frame, then __builtin_frame_address will return the value of the
frame pointer register.
On some machines it may be impossible to determine the frame address of any function
other than the current one; in such cases, or when the top of the stack has been
reached, this function will return 0 if the first frame pointer is properly initialized by
the startup code.
This function should only be used with a nonzero argument for debugging purposes.

5.42 Using vector instructions through built-in functions

On some targets, the instruction set contains SIMD vector instructions that operate on
multiple values contained in one large register at the same time. For example, on the i386
the MMX, 3Dnow! and SSE extensions can be used this way.

The first step in using these extensions is to provide the necessary data types. This should
be done using an appropriate typedef:
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typedef int v4si __attribute__ ((vector_size (16)));

The int type specifies the base type, while the attribute specifies the vector size for the
variable, measured in bytes. For example, the declaration above causes the compiler to set
the mode for the v4si type to be 16 bytes wide and divided into int sized units. For a
32-bit int this means a vector of 4 units of 4 bytes, and the corresponding mode of foo will
be V4SI.

The vector_size attribute is only applicable to integral and float scalars, although
arrays, pointers, and function return values are allowed in conjunction with this construct.

All the basic integer types can be used as base types, both as signed and as unsigned:
char, short, int, long, long long. In addition, float and double can be used to build
floating-point vector types.

Specifying a combination that is not valid for the current architecture will cause GCC to
synthesize the instructions using a narrower mode. For example, if you specify a variable
of type V4SI and your architecture does not allow for this specific SIMD type, GCC will
produce code that uses 4 SIs.

The types defined in this manner can be used with a subset of normal C operations.
Currently, GCC will allow using the following operators on these types: +, -, *, /, unary
minus, ^, |, &, ~.

The operations behave like C++ valarrays. Addition is defined as the addition of the
corresponding elements of the operands. For example, in the code below, each of the 4
elements in a will be added to the corresponding 4 elements in b and the resulting vector
will be stored in c.

typedef int v4si __attribute__ ((vector_size (16)));

v4si a, b, c;

c = a + b;

Subtraction, multiplication, division, and the logical operations operate in a similar man-
ner. Likewise, the result of using the unary minus or complement operators on a vector type
is a vector whose elements are the negative or complemented values of the corresponding
elements in the operand.

You can declare variables and use them in function calls and returns, as well as in as-
signments and some casts. You can specify a vector type as a return type for a function.
Vector types can also be used as function arguments. It is possible to cast from one vector
type to another, provided they are of the same size (in fact, you can also cast vectors to
and from other datatypes of the same size).

You cannot operate between vectors of different lengths or different signedness without a
cast.

A port that supports hardware vector operations, usually provides a set of built-in func-
tions that can be used to operate on vectors. For example, a function to add two vectors
and multiply the result by a third could look like this:

v4si f (v4si a, v4si b, v4si c)

{

v4si tmp = __builtin_addv4si (a, b);

return __builtin_mulv4si (tmp, c);

}
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5.43 Offsetof

GCC implements for both C and C++ a syntactic extension to implement the offsetof
macro.

primary:

"__builtin_offsetof" "(" typename "," offsetof_member_designator ")"

offsetof_member_designator:

identifier

| offsetof_member_designator "." identifier

| offsetof_member_designator "[" expr "]"

This extension is sufficient such that
#define offsetof(type, member) __builtin_offsetof (type, member)

is a suitable definition of the offsetof macro. In C++, type may be dependent. In either
case, member may consist of a single identifier, or a sequence of member accesses and array
references.

5.44 Built-in functions for atomic memory access

The following builtins are intended to be compatible with those described in the Intel
Itanium Processor-specific Application Binary Interface, section 7.4. As such, they depart
from the normal GCC practice of using the “ builtin ” prefix, and further that they are
overloaded such that they work on multiple types.

The definition given in the Intel documentation allows only for the use of the types int,
long, long long as well as their unsigned counterparts. GCC will allow any integral scalar
or pointer type that is 1, 2, 4 or 8 bytes in length.

Not all operations are supported by all target processors. If a particular operation cannot
be implemented on the target processor, a warning will be generated and a call an external
function will be generated. The external function will carry the same name as the builtin,
with an additional suffix ‘_n ’ where n is the size of the data type.

In most cases, these builtins are considered a full barrier. That is, no memory operand
will be moved across the operation, either forward or backward. Further, instructions will
be issued as necessary to prevent the processor from speculating loads across the operation
and from queuing stores after the operation.

All of the routines are are described in the Intel documentation to take “an optional list
of variables protected by the memory barrier”. It’s not clear what is meant by that; it could
mean that only the following variables are protected, or it could mean that these variables
should in addition be protected. At present GCC ignores this list and protects all variables
which are globally accessible. If in the future we make some use of this list, an empty list
will continue to mean all globally accessible variables.

type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)

These builtins perform the operation suggested by the name, and returns the
value that had previously been in memory. That is,
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{ tmp = *ptr; *ptr op= value; return tmp; }

{ tmp = *ptr; *ptr = ~tmp & value; return tmp; } // nand

type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

These builtins perform the operation suggested by the name, and return the
new value. That is,

{ *ptr op= value; return *ptr; }

{ *ptr = ~*ptr & value; return *ptr; } // nand

bool __sync_bool_compare_and_swap (type *ptr, type oldval type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval type newval, ...)

These builtins perform an atomic compare and swap. That is, if the current
value of *ptr is oldval, then write newval into *ptr .
The “bool” version returns true if the comparison is successful and newval was
written. The “val” version returns the contents of *ptr before the operation.

__sync_synchronize (...)
This builtin issues a full memory barrier.

type __sync_lock_test_and_set (type *ptr, type value, ...)
This builtin, as described by Intel, is not a traditional test-and-set operation,
but rather an atomic exchange operation. It writes value into *ptr , and returns
the previous contents of *ptr .
Many targets have only minimal support for such locks, and do not support a
full exchange operation. In this case, a target may support reduced functionality
here by which the only valid value to store is the immediate constant 1. The
exact value actually stored in *ptr is implementation defined.
This builtin is not a full barrier, but rather an acquire barrier. This means
that references after the builtin cannot move to (or be speculated to) before
the builtin, but previous memory stores may not be globally visible yet, and
previous memory loads may not yet be satisfied.

void __sync_lock_release (type *ptr, ...)
This builtin releases the lock acquired by __sync_lock_test_and_set. Nor-
mally this means writing the constant 0 to *ptr .
This builtin is not a full barrier, but rather a release barrier. This means that
all previous memory stores are globally visible, and all previous memory loads
have been satisfied, but following memory reads are not prevented from being
speculated to before the barrier.

5.45 Object Size Checking Builtins

GCC implements a limited buffer overflow protection mechanism that can prevent some
buffer overflow attacks.
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[Built-in Function]size_t __builtin_object_size (void * ptr, int type )
is a built-in construct that returns a constant number of bytes from ptr to the end of
the object ptr pointer points to (if known at compile time). __builtin_object_size
never evaluates its arguments for side-effects. If there are any side-effects in them,
it returns (size_t) -1 for type 0 or 1 and (size_t) 0 for type 2 or 3. If there are
multiple objects ptr can point to and all of them are known at compile time, the
returned number is the maximum of remaining byte counts in those objects if type
& 2 is 0 and minimum if nonzero. If it is not possible to determine which objects ptr
points to at compile time, __builtin_object_size should return (size_t) -1 for
type 0 or 1 and (size_t) 0 for type 2 or 3.
type is an integer constant from 0 to 3. If the least significant bit is clear, objects are
whole variables, if it is set, a closest surrounding subobject is considered the object a
pointer points to. The second bit determines if maximum or minimum of remaining
bytes is computed.

struct V { char buf1[10]; int b; char buf2[10]; } var;

char *p = &var.buf1[1], *q = &var.b;

/* Here the object p points to is var. */

assert (__builtin_object_size (p, 0) == sizeof (var) - 1);

/* The subobject p points to is var.buf1. */

assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);

/* The object q points to is var. */

assert (__builtin_object_size (q, 0)

== (char *) (&var + 1) - (char *) &var.b);

/* The subobject q points to is var.b. */

assert (__builtin_object_size (q, 1) == sizeof (var.b));

There are built-in functions added for many common string operation functions, e.g. for
memcpy __builtin___memcpy_chk built-in is provided. This built-in has an additional last
argument, which is the number of bytes remaining in object the dest argument points to or
(size_t) -1 if the size is not known.

The built-in functions are optimized into the normal string functions like memcpy if the
last argument is (size_t) -1 or if it is known at compile time that the destination object
will not be overflown. If the compiler can determine at compile time the object will be
always overflown, it issues a warning.

The intended use can be e.g.
#undef memcpy

#define bos0(dest) __builtin_object_size (dest, 0)

#define memcpy(dest, src, n) \

__builtin___memcpy_chk (dest, src, n, bos0 (dest))

char *volatile p;

char buf[10];

/* It is unknown what object p points to, so this is optimized

into plain memcpy - no checking is possible. */

memcpy (p, "abcde", n);

/* Destination is known and length too. It is known at compile

time there will be no overflow. */

memcpy (&buf[5], "abcde", 5);

/* Destination is known, but the length is not known at compile time.

This will result in __memcpy_chk call that can check for overflow

at runtime. */
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memcpy (&buf[5], "abcde", n);

/* Destination is known and it is known at compile time there will

be overflow. There will be a warning and __memcpy_chk call that

will abort the program at runtime. */

memcpy (&buf[6], "abcde", 5);

Such built-in functions are provided for memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat and strncat.

There are also checking built-in functions for formatted output functions.
int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);

int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,

const char *fmt, ...);

int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,

va_list ap);

int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,

const char *fmt, va_list ap);

The added flag argument is passed unchanged to __sprintf_chk etc. functions and can
contain implementation specific flags on what additional security measures the checking
function might take, such as handling %n differently.

The os argument is the object size s points to, like in the other built-in functions. There
is a small difference in the behavior though, if os is (size_t) -1, the built-in functions are
optimized into the non-checking functions only if flag is 0, otherwise the checking function
is called with os argument set to (size_t) -1.

In addition to this, there are checking built-in functions __builtin___printf_chk, _
_builtin___vprintf_chk, __builtin___fprintf_chk and __builtin___vfprintf_chk.
These have just one additional argument, flag, right before format string fmt. If the compiler
is able to optimize them to fputc etc. functions, it will, otherwise the checking function
should be called and the flag argument passed to it.

5.46 Other built-in functions provided by GCC

GCC provides a large number of built-in functions other than the ones mentioned above.
Some of these are for internal use in the processing of exceptions or variable-length argument
lists and will not be documented here because they may change from time to time; we do
not recommend general use of these functions.

The remaining functions are provided for optimization purposes.
GCC includes built-in versions of many of the functions in the standard C library. The

versions prefixed with __builtin_ will always be treated as having the same meaning as
the C library function even if you specify the ‘-fno-builtin’ option. (see Section 3.4 [C
Dialect Options], page 21) Many of these functions are only optimized in certain cases; if
they are not optimized in a particular case, a call to the library function will be emitted.

Outside strict ISO C mode (‘-ansi’, ‘-std=c89’ or ‘-std=c99’), the functions _exit,
alloca, bcmp, bzero, dcgettext, dgettext, dremf, dreml, drem, exp10f, exp10l,
exp10, ffsll, ffsl, ffs, fprintf_unlocked, fputs_unlocked, gammaf, gammal, gamma,
gettext, index, isascii, j0f, j0l, j0, j1f, j1l, j1, jnf, jnl, jn, mempcpy, pow10f,
pow10l, pow10, printf_unlocked, rindex, scalbf, scalbl, scalb, signbit, signbitf,
signbitl, significandf, significandl, significand, sincosf, sincosl, sincos,
stpcpy, stpncpy, strcasecmp, strdup, strfmon, strncasecmp, strndup, toascii, y0f,
y0l, y0, y1f, y1l, y1, ynf, ynl and yn may be handled as built-in functions. All these
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functions have corresponding versions prefixed with __builtin_, which may be used even
in strict C89 mode.

The ISO C99 functions _Exit, acoshf, acoshl, acosh, asinhf, asinhl, asinh,
atanhf, atanhl, atanh, cabsf, cabsl, cabs, cacosf, cacoshf, cacoshl, cacosh, cacosl,
cacos, cargf, cargl, carg, casinf, casinhf, casinhl, casinh, casinl, casin, catanf,
catanhf, catanhl, catanh, catanl, catan, cbrtf, cbrtl, cbrt, ccosf, ccoshf, ccoshl,
ccosh, ccosl, ccos, cexpf, cexpl, cexp, cimagf, cimagl, cimag, clogf, clogl, clog,
conjf, conjl, conj, copysignf, copysignl, copysign, cpowf, cpowl, cpow, cprojf,
cprojl, cproj, crealf, creall, creal, csinf, csinhf, csinhl, csinh, csinl, csin,
csqrtf, csqrtl, csqrt, ctanf, ctanhf, ctanhl, ctanh, ctanl, ctan, erfcf, erfcl,
erfc, erff, erfl, erf, exp2f, exp2l, exp2, expm1f, expm1l, expm1, fdimf, fdiml, fdim,
fmaf, fmal, fmaxf, fmaxl, fmax, fma, fminf, fminl, fmin, hypotf, hypotl, hypot,
ilogbf, ilogbl, ilogb, imaxabs, isblank, iswblank, lgammaf, lgammal, lgamma, llabs,
llrintf, llrintl, llrint, llroundf, llroundl, llround, log1pf, log1pl, log1p,
log2f, log2l, log2, logbf, logbl, logb, lrintf, lrintl, lrint, lroundf, lroundl,
lround, nearbyintf, nearbyintl, nearbyint, nextafterf, nextafterl, nextafter,
nexttowardf, nexttowardl, nexttoward, remainderf, remainderl, remainder, remquof,
remquol, remquo, rintf, rintl, rint, roundf, roundl, round, scalblnf, scalblnl,
scalbln, scalbnf, scalbnl, scalbn, snprintf, tgammaf, tgammal, tgamma, truncf,
truncl, trunc, vfscanf, vscanf, vsnprintf and vsscanf are handled as built-in
functions except in strict ISO C90 mode (‘-ansi’ or ‘-std=c89’).

There are also built-in versions of the ISO C99 functions acosf, acosl, asinf, asinl,
atan2f, atan2l, atanf, atanl, ceilf, ceill, cosf, coshf, coshl, cosl, expf, expl,
fabsf, fabsl, floorf, floorl, fmodf, fmodl, frexpf, frexpl, ldexpf, ldexpl, log10f,
log10l, logf, logl, modfl, modf, powf, powl, sinf, sinhf, sinhl, sinl, sqrtf, sqrtl,
tanf, tanhf, tanhl and tanl that are recognized in any mode since ISO C90 reserves these
names for the purpose to which ISO C99 puts them. All these functions have corresponding
versions prefixed with __builtin_.

The ISO C94 functions iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower,
iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower and towupper are han-
dled as built-in functions except in strict ISO C90 mode (‘-ansi’ or ‘-std=c89’).

The ISO C90 functions abort, abs, acos, asin, atan2, atan, calloc, ceil, cosh,
cos, exit, exp, fabs, floor, fmod, fprintf, fputs, frexp, fscanf, isalnum, isalpha,
iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit,
tolower, toupper, labs, ldexp, log10, log, malloc, memcmp, memcpy, memset, modf, pow,
printf, putchar, puts, scanf, sinh, sin, snprintf, sprintf, sqrt, sscanf, strcat,
strchr, strcmp, strcpy, strcspn, strlen, strncat, strncmp, strncpy, strpbrk,
strrchr, strspn, strstr, tanh, tan, vfprintf, vprintf and vsprintf are all recognized
as built-in functions unless ‘-fno-builtin’ is specified (or ‘-fno-builtin-function ’ is
specified for an individual function). All of these functions have corresponding versions
prefixed with __builtin_.

GCC provides built-in versions of the ISO C99 floating point comparison macros that
avoid raising exceptions for unordered operands. They have the same names as the stan-
dard macros ( isgreater, isgreaterequal, isless, islessequal, islessgreater, and
isunordered) , with __builtin_ prefixed. We intend for a library implementor to be able
to simply #define each standard macro to its built-in equivalent.
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[Built-in Function]int __builtin_types_compatible_p (type1, type2 )
You can use the built-in function __builtin_types_compatible_p to determine
whether two types are the same.

This built-in function returns 1 if the unqualified versions of the types type1 and
type2 (which are types, not expressions) are compatible, 0 otherwise. The result of
this built-in function can be used in integer constant expressions.

This built-in function ignores top level qualifiers (e.g., const, volatile). For exam-
ple, int is equivalent to const int.

The type int[] and int[5] are compatible. On the other hand, int and char * are
not compatible, even if the size of their types, on the particular architecture are the
same. Also, the amount of pointer indirection is taken into account when determining
similarity. Consequently, short * is not similar to short **. Furthermore, two types
that are typedefed are considered compatible if their underlying types are compatible.

An enum type is not considered to be compatible with another enum type even if both
are compatible with the same integer type; this is what the C standard specifies. For
example, enum {foo, bar} is not similar to enum {hot, dog}.

You would typically use this function in code whose execution varies depending on
the arguments’ types. For example:

#define foo(x) \

({ \

typeof (x) tmp; \

if (__builtin_types_compatible_p (typeof (x), long double)) \

tmp = foo_long_double (tmp); \

else if (__builtin_types_compatible_p (typeof (x), double)) \

tmp = foo_double (tmp); \

else if (__builtin_types_compatible_p (typeof (x), float)) \

tmp = foo_float (tmp); \

else \

abort (); \

tmp; \

})

Note: This construct is only available for C.

[Built-in Function]type __builtin_choose_expr (const_exp, exp1, exp2 )
You can use the built-in function __builtin_choose_expr to evaluate code depend-
ing on the value of a constant expression. This built-in function returns exp1 if
const exp, which is a constant expression that must be able to be determined at
compile time, is nonzero. Otherwise it returns 0.

This built-in function is analogous to the ‘? :’ operator in C, except that the expres-
sion returned has its type unaltered by promotion rules. Also, the built-in function
does not evaluate the expression that was not chosen. For example, if const exp
evaluates to true, exp2 is not evaluated even if it has side-effects.

This built-in function can return an lvalue if the chosen argument is an lvalue.

If exp1 is returned, the return type is the same as exp1’s type. Similarly, if exp2 is
returned, its return type is the same as exp2.

Example:
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#define foo(x) \

__builtin_choose_expr ( \

__builtin_types_compatible_p (typeof (x), double), \

foo_double (x), \

__builtin_choose_expr ( \

__builtin_types_compatible_p (typeof (x), float), \

foo_float (x), \

/* The void expression results in a compile-time error \

when assigning the result to something. */ \

(void)0))

Note: This construct is only available for C. Furthermore, the unused expression
(exp1 or exp2 depending on the value of const exp) may still generate syntax errors.
This may change in future revisions.

[Built-in Function]int __builtin_constant_p (exp )
You can use the built-in function __builtin_constant_p to determine if a value is
known to be constant at compile-time and hence that GCC can perform constant-
folding on expressions involving that value. The argument of the function is the value
to test. The function returns the integer 1 if the argument is known to be a compile-
time constant and 0 if it is not known to be a compile-time constant. A return of 0
does not indicate that the value is not a constant, but merely that GCC cannot prove
it is a constant with the specified value of the ‘-O’ option.
You would typically use this function in an embedded application where memory was
a critical resource. If you have some complex calculation, you may want it to be
folded if it involves constants, but need to call a function if it does not. For example:

#define Scale_Value(X) \

(__builtin_constant_p (X) \

? ((X) * SCALE + OFFSET) : Scale (X))

You may use this built-in function in either a macro or an inline function. However, if
you use it in an inlined function and pass an argument of the function as the argument
to the built-in, GCC will never return 1 when you call the inline function with a string
constant or compound literal (see Section 5.19 [Compound Literals], page 226) and
will not return 1 when you pass a constant numeric value to the inline function unless
you specify the ‘-O’ option.
You may also use __builtin_constant_p in initializers for static data. For instance,
you can write

static const int table[] = {

__builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,

/* . . . */

};

This is an acceptable initializer even if EXPRESSION is not a constant expression.
GCC must be more conservative about evaluating the built-in in this case, because it
has no opportunity to perform optimization.
Previous versions of GCC did not accept this built-in in data initializers. The earliest
version where it is completely safe is 3.0.1.

[Built-in Function]long __builtin_expect (long exp, long c )
You may use __builtin_expect to provide the compiler with branch prediction
information. In general, you should prefer to use actual profile feedback for this
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(‘-fprofile-arcs’), as programmers are notoriously bad at predicting how their
programs actually perform. However, there are applications in which this data is
hard to collect.
The return value is the value of exp, which should be an integral expression. The
value of c must be a compile-time constant. The semantics of the built-in are that it
is expected that exp == c. For example:

if (__builtin_expect (x, 0))

foo ();

would indicate that we do not expect to call foo, since we expect x to be zero. Since
you are limited to integral expressions for exp, you should use constructions such as

if (__builtin_expect (ptr != NULL, 1))

error ();

when testing pointer or floating-point values.

[Built-in Function]void __builtin_prefetch (const void *addr, ...)
This function is used to minimize cache-miss latency by moving data into a cache
before it is accessed. You can insert calls to __builtin_prefetch into code for
which you know addresses of data in memory that is likely to be accessed soon. If the
target supports them, data prefetch instructions will be generated. If the prefetch is
done early enough before the access then the data will be in the cache by the time it
is accessed.
The value of addr is the address of the memory to prefetch. There are two optional
arguments, rw and locality. The value of rw is a compile-time constant one or zero;
one means that the prefetch is preparing for a write to the memory address and zero,
the default, means that the prefetch is preparing for a read. The value locality must
be a compile-time constant integer between zero and three. A value of zero means
that the data has no temporal locality, so it need not be left in the cache after the
access. A value of three means that the data has a high degree of temporal locality and
should be left in all levels of cache possible. Values of one and two mean, respectively,
a low or moderate degree of temporal locality. The default is three.

for (i = 0; i < n; i++)

{

a[i] = a[i] + b[i];

__builtin_prefetch (&a[i+j], 1, 1);

__builtin_prefetch (&b[i+j], 0, 1);

/* . . . */

}

Data prefetch does not generate faults if addr is invalid, but the address expression
itself must be valid. For example, a prefetch of p->next will not fault if p->next is
not a valid address, but evaluation will fault if p is not a valid address.
If the target does not support data prefetch, the address expression is evaluated if it
includes side effects but no other code is generated and GCC does not issue a warning.

[Built-in Function]double __builtin_huge_val (void)
Returns a positive infinity, if supported by the floating-point format, else DBL_MAX.
This function is suitable for implementing the ISO C macro HUGE_VAL.

[Built-in Function]float __builtin_huge_valf (void)
Similar to __builtin_huge_val, except the return type is float.
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[Built-in Function]long double __builtin_huge_vall (void)
Similar to __builtin_huge_val, except the return type is long double.

[Built-in Function]double __builtin_inf (void)
Similar to __builtin_huge_val, except a warning is generated if the target floating-
point format does not support infinities.

[Built-in Function]float __builtin_inff (void)
Similar to __builtin_inf, except the return type is float. This function is suitable
for implementing the ISO C99 macro INFINITY.

[Built-in Function]long double __builtin_infl (void)
Similar to __builtin_inf, except the return type is long double.

[Built-in Function]double __builtin_nan (const char *str)
This is an implementation of the ISO C99 function nan.
Since ISO C99 defines this function in terms of strtod, which we do not implement,
a description of the parsing is in order. The string is parsed as by strtol; that is, the
base is recognized by leading ‘0’ or ‘0x’ prefixes. The number parsed is placed in the
significand such that the least significant bit of the number is at the least significant
bit of the significand. The number is truncated to fit the significand field provided.
The significand is forced to be a quiet NaN.
This function, if given a string literal, is evaluated early enough that it is considered
a compile-time constant.

[Built-in Function]float __builtin_nanf (const char *str)
Similar to __builtin_nan, except the return type is float.

[Built-in Function]long double __builtin_nanl (const char *str)
Similar to __builtin_nan, except the return type is long double.

[Built-in Function]double __builtin_nans (const char *str)
Similar to __builtin_nan, except the significand is forced to be a signaling NaN.
The nans function is proposed by WG14 N965.

[Built-in Function]float __builtin_nansf (const char *str)
Similar to __builtin_nans, except the return type is float.

[Built-in Function]long double __builtin_nansl (const char *str)
Similar to __builtin_nans, except the return type is long double.

[Built-in Function]int __builtin_ffs (unsigned int x)
Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns
zero.

[Built-in Function]int __builtin_clz (unsigned int x)
Returns the number of leading 0-bits in x, starting at the most significant bit position.
If x is 0, the result is undefined.

[Built-in Function]int __builtin_ctz (unsigned int x)
Returns the number of trailing 0-bits in x, starting at the least significant bit position.
If x is 0, the result is undefined.
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[Built-in Function]int __builtin_popcount (unsigned int x)
Returns the number of 1-bits in x.

[Built-in Function]int __builtin_parity (unsigned int x)
Returns the parity of x, i.e. the number of 1-bits in x modulo 2.

[Built-in Function]int __builtin_ffsl (unsigned long)
Similar to __builtin_ffs, except the argument type is unsigned long.

[Built-in Function]int __builtin_clzl (unsigned long)
Similar to __builtin_clz, except the argument type is unsigned long.

[Built-in Function]int __builtin_ctzl (unsigned long)
Similar to __builtin_ctz, except the argument type is unsigned long.

[Built-in Function]int __builtin_popcountl (unsigned long)
Similar to __builtin_popcount, except the argument type is unsigned long.

[Built-in Function]int __builtin_parityl (unsigned long)
Similar to __builtin_parity, except the argument type is unsigned long.

[Built-in Function]int __builtin_ffsll (unsigned long long)
Similar to __builtin_ffs, except the argument type is unsigned long long.

[Built-in Function]int __builtin_clzll (unsigned long long)
Similar to __builtin_clz, except the argument type is unsigned long long.

[Built-in Function]int __builtin_ctzll (unsigned long long)
Similar to __builtin_ctz, except the argument type is unsigned long long.

[Built-in Function]int __builtin_popcountll (unsigned long long)
Similar to __builtin_popcount, except the argument type is unsigned long long.

[Built-in Function]int __builtin_parityll (unsigned long long)
Similar to __builtin_parity, except the argument type is unsigned long long.

[Built-in Function]double __builtin_powi (double, int)
Returns the first argument raised to the power of the second. Unlike the pow function
no guarantees about precision and rounding are made.

[Built-in Function]float __builtin_powif (float, int)
Similar to __builtin_powi, except the argument and return types are float.

[Built-in Function]long double __builtin_powil (long double, int)
Similar to __builtin_powi, except the argument and return types are long double.
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5.47 Built-in Functions Specific to Particular Target
Machines

On some target machines, GCC supports many built-in functions specific to those machines.
Generally these generate calls to specific machine instructions, but allow the compiler to
schedule those calls.

5.47.1 Alpha Built-in Functions

These built-in functions are available for the Alpha family of processors, depending on the
command-line switches used.

The following built-in functions are always available. They all generate the machine
instruction that is part of the name.

long __builtin_alpha_implver (void)

long __builtin_alpha_rpcc (void)

long __builtin_alpha_amask (long)

long __builtin_alpha_cmpbge (long, long)

long __builtin_alpha_extbl (long, long)

long __builtin_alpha_extwl (long, long)

long __builtin_alpha_extll (long, long)

long __builtin_alpha_extql (long, long)

long __builtin_alpha_extwh (long, long)

long __builtin_alpha_extlh (long, long)

long __builtin_alpha_extqh (long, long)

long __builtin_alpha_insbl (long, long)

long __builtin_alpha_inswl (long, long)

long __builtin_alpha_insll (long, long)

long __builtin_alpha_insql (long, long)

long __builtin_alpha_inswh (long, long)

long __builtin_alpha_inslh (long, long)

long __builtin_alpha_insqh (long, long)

long __builtin_alpha_mskbl (long, long)

long __builtin_alpha_mskwl (long, long)

long __builtin_alpha_mskll (long, long)

long __builtin_alpha_mskql (long, long)

long __builtin_alpha_mskwh (long, long)

long __builtin_alpha_msklh (long, long)

long __builtin_alpha_mskqh (long, long)

long __builtin_alpha_umulh (long, long)

long __builtin_alpha_zap (long, long)

long __builtin_alpha_zapnot (long, long)

The following built-in functions are always with ‘-mmax’ or ‘-mcpu=cpu ’ where cpu is
pca56 or later. They all generate the machine instruction that is part of the name.

long __builtin_alpha_pklb (long)

long __builtin_alpha_pkwb (long)

long __builtin_alpha_unpkbl (long)

long __builtin_alpha_unpkbw (long)

long __builtin_alpha_minub8 (long, long)

long __builtin_alpha_minsb8 (long, long)

long __builtin_alpha_minuw4 (long, long)

long __builtin_alpha_minsw4 (long, long)

long __builtin_alpha_maxub8 (long, long)

long __builtin_alpha_maxsb8 (long, long)

long __builtin_alpha_maxuw4 (long, long)

long __builtin_alpha_maxsw4 (long, long)

long __builtin_alpha_perr (long, long)
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The following built-in functions are always with ‘-mcix’ or ‘-mcpu=cpu ’ where cpu is
ev67 or later. They all generate the machine instruction that is part of the name.

long __builtin_alpha_cttz (long)

long __builtin_alpha_ctlz (long)

long __builtin_alpha_ctpop (long)

The following builtins are available on systems that use the OSF/1 PALcode. Normally
they invoke the rduniq and wruniq PAL calls, but when invoked with ‘-mtls-kernel’,
they invoke rdval and wrval.

void *__builtin_thread_pointer (void)

void __builtin_set_thread_pointer (void *)

5.47.2 ARM Built-in Functions

These built-in functions are available for the ARM family of processors, when the
‘-mcpu=iwmmxt’ switch is used:

typedef int v2si __attribute__ ((vector_size (8)));

typedef short v4hi __attribute__ ((vector_size (8)));

typedef char v8qi __attribute__ ((vector_size (8)));

int __builtin_arm_getwcx (int)

void __builtin_arm_setwcx (int, int)

int __builtin_arm_textrmsb (v8qi, int)

int __builtin_arm_textrmsh (v4hi, int)

int __builtin_arm_textrmsw (v2si, int)

int __builtin_arm_textrmub (v8qi, int)

int __builtin_arm_textrmuh (v4hi, int)

int __builtin_arm_textrmuw (v2si, int)

v8qi __builtin_arm_tinsrb (v8qi, int)

v4hi __builtin_arm_tinsrh (v4hi, int)

v2si __builtin_arm_tinsrw (v2si, int)

long long __builtin_arm_tmia (long long, int, int)

long long __builtin_arm_tmiabb (long long, int, int)

long long __builtin_arm_tmiabt (long long, int, int)

long long __builtin_arm_tmiaph (long long, int, int)

long long __builtin_arm_tmiatb (long long, int, int)

long long __builtin_arm_tmiatt (long long, int, int)

int __builtin_arm_tmovmskb (v8qi)

int __builtin_arm_tmovmskh (v4hi)

int __builtin_arm_tmovmskw (v2si)

long long __builtin_arm_waccb (v8qi)

long long __builtin_arm_wacch (v4hi)

long long __builtin_arm_waccw (v2si)

v8qi __builtin_arm_waddb (v8qi, v8qi)

v8qi __builtin_arm_waddbss (v8qi, v8qi)

v8qi __builtin_arm_waddbus (v8qi, v8qi)

v4hi __builtin_arm_waddh (v4hi, v4hi)

v4hi __builtin_arm_waddhss (v4hi, v4hi)

v4hi __builtin_arm_waddhus (v4hi, v4hi)

v2si __builtin_arm_waddw (v2si, v2si)

v2si __builtin_arm_waddwss (v2si, v2si)

v2si __builtin_arm_waddwus (v2si, v2si)

v8qi __builtin_arm_walign (v8qi, v8qi, int)

long long __builtin_arm_wand(long long, long long)

long long __builtin_arm_wandn (long long, long long)

v8qi __builtin_arm_wavg2b (v8qi, v8qi)

v8qi __builtin_arm_wavg2br (v8qi, v8qi)
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v4hi __builtin_arm_wavg2h (v4hi, v4hi)

v4hi __builtin_arm_wavg2hr (v4hi, v4hi)

v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)

v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)

v2si __builtin_arm_wcmpeqw (v2si, v2si)

v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)

v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)

v2si __builtin_arm_wcmpgtsw (v2si, v2si)

v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)

v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)

v2si __builtin_arm_wcmpgtuw (v2si, v2si)

long long __builtin_arm_wmacs (long long, v4hi, v4hi)

long long __builtin_arm_wmacsz (v4hi, v4hi)

long long __builtin_arm_wmacu (long long, v4hi, v4hi)

long long __builtin_arm_wmacuz (v4hi, v4hi)

v4hi __builtin_arm_wmadds (v4hi, v4hi)

v4hi __builtin_arm_wmaddu (v4hi, v4hi)

v8qi __builtin_arm_wmaxsb (v8qi, v8qi)

v4hi __builtin_arm_wmaxsh (v4hi, v4hi)

v2si __builtin_arm_wmaxsw (v2si, v2si)

v8qi __builtin_arm_wmaxub (v8qi, v8qi)

v4hi __builtin_arm_wmaxuh (v4hi, v4hi)

v2si __builtin_arm_wmaxuw (v2si, v2si)

v8qi __builtin_arm_wminsb (v8qi, v8qi)

v4hi __builtin_arm_wminsh (v4hi, v4hi)

v2si __builtin_arm_wminsw (v2si, v2si)

v8qi __builtin_arm_wminub (v8qi, v8qi)

v4hi __builtin_arm_wminuh (v4hi, v4hi)

v2si __builtin_arm_wminuw (v2si, v2si)

v4hi __builtin_arm_wmulsm (v4hi, v4hi)

v4hi __builtin_arm_wmulul (v4hi, v4hi)

v4hi __builtin_arm_wmulum (v4hi, v4hi)

long long __builtin_arm_wor (long long, long long)

v2si __builtin_arm_wpackdss (long long, long long)

v2si __builtin_arm_wpackdus (long long, long long)

v8qi __builtin_arm_wpackhss (v4hi, v4hi)

v8qi __builtin_arm_wpackhus (v4hi, v4hi)

v4hi __builtin_arm_wpackwss (v2si, v2si)

v4hi __builtin_arm_wpackwus (v2si, v2si)

long long __builtin_arm_wrord (long long, long long)

long long __builtin_arm_wrordi (long long, int)

v4hi __builtin_arm_wrorh (v4hi, long long)

v4hi __builtin_arm_wrorhi (v4hi, int)

v2si __builtin_arm_wrorw (v2si, long long)

v2si __builtin_arm_wrorwi (v2si, int)

v2si __builtin_arm_wsadb (v8qi, v8qi)

v2si __builtin_arm_wsadbz (v8qi, v8qi)

v2si __builtin_arm_wsadh (v4hi, v4hi)

v2si __builtin_arm_wsadhz (v4hi, v4hi)

v4hi __builtin_arm_wshufh (v4hi, int)

long long __builtin_arm_wslld (long long, long long)

long long __builtin_arm_wslldi (long long, int)

v4hi __builtin_arm_wsllh (v4hi, long long)

v4hi __builtin_arm_wsllhi (v4hi, int)

v2si __builtin_arm_wsllw (v2si, long long)

v2si __builtin_arm_wsllwi (v2si, int)

long long __builtin_arm_wsrad (long long, long long)

long long __builtin_arm_wsradi (long long, int)
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v4hi __builtin_arm_wsrah (v4hi, long long)

v4hi __builtin_arm_wsrahi (v4hi, int)

v2si __builtin_arm_wsraw (v2si, long long)

v2si __builtin_arm_wsrawi (v2si, int)

long long __builtin_arm_wsrld (long long, long long)

long long __builtin_arm_wsrldi (long long, int)

v4hi __builtin_arm_wsrlh (v4hi, long long)

v4hi __builtin_arm_wsrlhi (v4hi, int)

v2si __builtin_arm_wsrlw (v2si, long long)

v2si __builtin_arm_wsrlwi (v2si, int)

v8qi __builtin_arm_wsubb (v8qi, v8qi)

v8qi __builtin_arm_wsubbss (v8qi, v8qi)

v8qi __builtin_arm_wsubbus (v8qi, v8qi)

v4hi __builtin_arm_wsubh (v4hi, v4hi)

v4hi __builtin_arm_wsubhss (v4hi, v4hi)

v4hi __builtin_arm_wsubhus (v4hi, v4hi)

v2si __builtin_arm_wsubw (v2si, v2si)

v2si __builtin_arm_wsubwss (v2si, v2si)

v2si __builtin_arm_wsubwus (v2si, v2si)

v4hi __builtin_arm_wunpckehsb (v8qi)

v2si __builtin_arm_wunpckehsh (v4hi)

long long __builtin_arm_wunpckehsw (v2si)

v4hi __builtin_arm_wunpckehub (v8qi)

v2si __builtin_arm_wunpckehuh (v4hi)

long long __builtin_arm_wunpckehuw (v2si)

v4hi __builtin_arm_wunpckelsb (v8qi)

v2si __builtin_arm_wunpckelsh (v4hi)

long long __builtin_arm_wunpckelsw (v2si)

v4hi __builtin_arm_wunpckelub (v8qi)

v2si __builtin_arm_wunpckeluh (v4hi)

long long __builtin_arm_wunpckeluw (v2si)

v8qi __builtin_arm_wunpckihb (v8qi, v8qi)

v4hi __builtin_arm_wunpckihh (v4hi, v4hi)

v2si __builtin_arm_wunpckihw (v2si, v2si)

v8qi __builtin_arm_wunpckilb (v8qi, v8qi)

v4hi __builtin_arm_wunpckilh (v4hi, v4hi)

v2si __builtin_arm_wunpckilw (v2si, v2si)

long long __builtin_arm_wxor (long long, long long)

long long __builtin_arm_wzero ()

5.47.3 Blackfin Built-in Functions

Currently, there are two Blackfin-specific built-in functions. These are used for generating
CSYNC and SSYNC machine insns without using inline assembly; by using these built-in
functions the compiler can automatically add workarounds for hardware errata involving
these instructions. These functions are named as follows:

void __builtin_bfin_csync (void)

void __builtin_bfin_ssync (void)

5.47.4 FR-V Built-in Functions

GCC provides many FR-V-specific built-in functions. In general, these functions are in-
tended to be compatible with those described by FR-V Family, Softune C/C++ Compiler
Manual (V6), Fujitsu Semiconductor. The two exceptions are __MDUNPACKH and __MBTOHE,
the gcc forms of which pass 128-bit values by pointer rather than by value.
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Most of the functions are named after specific FR-V instructions. Such functions are said
to be “directly mapped” and are summarized here in tabular form.

5.47.4.1 Argument Types

The arguments to the built-in functions can be divided into three groups: register numbers,
compile-time constants and run-time values. In order to make this classification clear at a
glance, the arguments and return values are given the following pseudo types:
Pseudo type Real C type Constant? Description
uh unsigned short No an unsigned halfword
uw1 unsigned int No an unsigned word
sw1 int No a signed word
uw2 unsigned long long No an unsigned doubleword
sw2 long long No a signed doubleword
const int Yes an integer constant
acc int Yes an ACC register number
iacc int Yes an IACC register number

These pseudo types are not defined by GCC, they are simply a notational convenience
used in this manual.

Arguments of type uh, uw1, sw1, uw2 and sw2 are evaluated at run time. They correspond
to register operands in the underlying FR-V instructions.
const arguments represent immediate operands in the underlying FR-V instructions.

They must be compile-time constants.
acc arguments are evaluated at compile time and specify the number of an accumulator

register. For example, an acc argument of 2 will select the ACC2 register.
iacc arguments are similar to acc arguments but specify the number of an IACC register.

See see Section 5.47.4.5 [Other Built-in Functions], page 305 for more details.

5.47.4.2 Directly-mapped Integer Functions

The functions listed below map directly to FR-V I-type instructions.
Function prototype Example usage Assembly output
sw1 __ADDSS (sw1, sw1) c = __ADDSS (a, b) ADDSS a,b,c
sw1 __SCAN (sw1, sw1) c = __SCAN (a, b) SCAN a,b,c
sw1 __SCUTSS (sw1) b = __SCUTSS (a) SCUTSS a,b
sw1 __SLASS (sw1, sw1) c = __SLASS (a, b) SLASS a,b,c
void __SMASS (sw1, sw1) __SMASS (a, b) SMASS a,b
void __SMSSS (sw1, sw1) __SMSSS (a, b) SMSSS a,b
void __SMU (sw1, sw1) __SMU (a, b) SMU a,b
sw2 __SMUL (sw1, sw1) c = __SMUL (a, b) SMUL a,b,c
sw1 __SUBSS (sw1, sw1) c = __SUBSS (a, b) SUBSS a,b,c
uw2 __UMUL (uw1, uw1) c = __UMUL (a, b) UMUL a,b,c

5.47.4.3 Directly-mapped Media Functions

The functions listed below map directly to FR-V M-type instructions.
Function prototype Example usage Assembly output
uw1 __MABSHS (sw1) b = __MABSHS (a) MABSHS a,b
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void __MADDACCS (acc, acc) __MADDACCS (b, a) MADDACCS a,b
sw1 __MADDHSS (sw1, sw1) c = __MADDHSS (a, b) MADDHSS a,b,c
uw1 __MADDHUS (uw1, uw1) c = __MADDHUS (a, b) MADDHUS a,b,c
uw1 __MAND (uw1, uw1) c = __MAND (a, b) MAND a,b,c
void __MASACCS (acc, acc) __MASACCS (b, a) MASACCS a,b
uw1 __MAVEH (uw1, uw1) c = __MAVEH (a, b) MAVEH a,b,c
uw2 __MBTOH (uw1) b = __MBTOH (a) MBTOH a,b
void __MBTOHE (uw1 *, uw1) __MBTOHE (&b, a) MBTOHE a,b
void __MCLRACC (acc) __MCLRACC (a) MCLRACC a

void __MCLRACCA (void) __MCLRACCA () MCLRACCA
uw1 __Mcop1 (uw1, uw1) c = __Mcop1 (a, b) Mcop1 a,b,c
uw1 __Mcop2 (uw1, uw1) c = __Mcop2 (a, b) Mcop2 a,b,c
uw1 __MCPLHI (uw2, const) c = __MCPLHI (a, b) MCPLHI a,#b,c
uw1 __MCPLI (uw2, const) c = __MCPLI (a, b) MCPLI a,#b,c
void __MCPXIS (acc, sw1, sw1) __MCPXIS (c, a, b) MCPXIS a,b,c
void __MCPXIU (acc, uw1, uw1) __MCPXIU (c, a, b) MCPXIU a,b,c
void __MCPXRS (acc, sw1, sw1) __MCPXRS (c, a, b) MCPXRS a,b,c
void __MCPXRU (acc, uw1, uw1) __MCPXRU (c, a, b) MCPXRU a,b,c
uw1 __MCUT (acc, uw1) c = __MCUT (a, b) MCUT a,b,c
uw1 __MCUTSS (acc, sw1) c = __MCUTSS (a, b) MCUTSS a,b,c
void __MDADDACCS (acc, acc) __MDADDACCS (b, a) MDADDACCS a,b
void __MDASACCS (acc, acc) __MDASACCS (b, a) MDASACCS a,b
uw2 __MDCUTSSI (acc, const) c = __MDCUTSSI (a, b) MDCUTSSI a,#b,c
uw2 __MDPACKH (uw2, uw2) c = __MDPACKH (a, b) MDPACKH a,b,c
uw2 __MDROTLI (uw2, const) c = __MDROTLI (a, b) MDROTLI a,#b,c
void __MDSUBACCS (acc, acc) __MDSUBACCS (b, a) MDSUBACCS a,b
void __MDUNPACKH (uw1 *, uw2) __MDUNPACKH (&b, a) MDUNPACKH a,b
uw2 __MEXPDHD (uw1, const) c = __MEXPDHD (a, b) MEXPDHD a,#b,c
uw1 __MEXPDHW (uw1, const) c = __MEXPDHW (a, b) MEXPDHW a,#b,c
uw1 __MHDSETH (uw1, const) c = __MHDSETH (a, b) MHDSETH a,#b,c
sw1 __MHDSETS (const) b = __MHDSETS (a) MHDSETS #a,b
uw1 __MHSETHIH (uw1, const) b = __MHSETHIH (b, a) MHSETHIH #a,b
sw1 __MHSETHIS (sw1, const) b = __MHSETHIS (b, a) MHSETHIS #a,b
uw1 __MHSETLOH (uw1, const) b = __MHSETLOH (b, a) MHSETLOH #a,b
sw1 __MHSETLOS (sw1, const) b = __MHSETLOS (b, a) MHSETLOS #a,b
uw1 __MHTOB (uw2) b = __MHTOB (a) MHTOB a,b
void __MMACHS (acc, sw1, sw1) __MMACHS (c, a, b) MMACHS a,b,c
void __MMACHU (acc, uw1, uw1) __MMACHU (c, a, b) MMACHU a,b,c
void __MMRDHS (acc, sw1, sw1) __MMRDHS (c, a, b) MMRDHS a,b,c
void __MMRDHU (acc, uw1, uw1) __MMRDHU (c, a, b) MMRDHU a,b,c
void __MMULHS (acc, sw1, sw1) __MMULHS (c, a, b) MMULHS a,b,c
void __MMULHU (acc, uw1, uw1) __MMULHU (c, a, b) MMULHU a,b,c
void __MMULXHS (acc, sw1, sw1) __MMULXHS (c, a, b) MMULXHS a,b,c
void __MMULXHU (acc, uw1, uw1) __MMULXHU (c, a, b) MMULXHU a,b,c
uw1 __MNOT (uw1) b = __MNOT (a) MNOT a,b
uw1 __MOR (uw1, uw1) c = __MOR (a, b) MOR a,b,c
uw1 __MPACKH (uh, uh) c = __MPACKH (a, b) MPACKH a,b,c
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sw2 __MQADDHSS (sw2, sw2) c = __MQADDHSS (a, b) MQADDHSS a,b,c
uw2 __MQADDHUS (uw2, uw2) c = __MQADDHUS (a, b) MQADDHUS a,b,c
void __MQCPXIS (acc, sw2, sw2) __MQCPXIS (c, a, b) MQCPXIS a,b,c
void __MQCPXIU (acc, uw2, uw2) __MQCPXIU (c, a, b) MQCPXIU a,b,c
void __MQCPXRS (acc, sw2, sw2) __MQCPXRS (c, a, b) MQCPXRS a,b,c
void __MQCPXRU (acc, uw2, uw2) __MQCPXRU (c, a, b) MQCPXRU a,b,c
sw2 __MQLCLRHS (sw2, sw2) c = __MQLCLRHS (a, b) MQLCLRHS a,b,c
sw2 __MQLMTHS (sw2, sw2) c = __MQLMTHS (a, b) MQLMTHS a,b,c
void __MQMACHS (acc, sw2, sw2) __MQMACHS (c, a, b) MQMACHS a,b,c
void __MQMACHU (acc, uw2, uw2) __MQMACHU (c, a, b) MQMACHU a,b,c
void __MQMACXHS (acc, sw2, sw2) __MQMACXHS (c, a, b) MQMACXHS a,b,c
void __MQMULHS (acc, sw2, sw2) __MQMULHS (c, a, b) MQMULHS a,b,c
void __MQMULHU (acc, uw2, uw2) __MQMULHU (c, a, b) MQMULHU a,b,c
void __MQMULXHS (acc, sw2, sw2) __MQMULXHS (c, a, b) MQMULXHS a,b,c
void __MQMULXHU (acc, uw2, uw2) __MQMULXHU (c, a, b) MQMULXHU a,b,c
sw2 __MQSATHS (sw2, sw2) c = __MQSATHS (a, b) MQSATHS a,b,c
uw2 __MQSLLHI (uw2, int) c = __MQSLLHI (a, b) MQSLLHI a,b,c
sw2 __MQSRAHI (sw2, int) c = __MQSRAHI (a, b) MQSRAHI a,b,c
sw2 __MQSUBHSS (sw2, sw2) c = __MQSUBHSS (a, b) MQSUBHSS a,b,c
uw2 __MQSUBHUS (uw2, uw2) c = __MQSUBHUS (a, b) MQSUBHUS a,b,c
void __MQXMACHS (acc, sw2, sw2) __MQXMACHS (c, a, b) MQXMACHS a,b,c
void __MQXMACXHS (acc, sw2, sw2) __MQXMACXHS (c, a, b) MQXMACXHS a,b,c
uw1 __MRDACC (acc) b = __MRDACC (a) MRDACC a,b
uw1 __MRDACCG (acc) b = __MRDACCG (a) MRDACCG a,b
uw1 __MROTLI (uw1, const) c = __MROTLI (a, b) MROTLI a,#b,c
uw1 __MROTRI (uw1, const) c = __MROTRI (a, b) MROTRI a,#b,c
sw1 __MSATHS (sw1, sw1) c = __MSATHS (a, b) MSATHS a,b,c
uw1 __MSATHU (uw1, uw1) c = __MSATHU (a, b) MSATHU a,b,c
uw1 __MSLLHI (uw1, const) c = __MSLLHI (a, b) MSLLHI a,#b,c
sw1 __MSRAHI (sw1, const) c = __MSRAHI (a, b) MSRAHI a,#b,c
uw1 __MSRLHI (uw1, const) c = __MSRLHI (a, b) MSRLHI a,#b,c
void __MSUBACCS (acc, acc) __MSUBACCS (b, a) MSUBACCS a,b
sw1 __MSUBHSS (sw1, sw1) c = __MSUBHSS (a, b) MSUBHSS a,b,c
uw1 __MSUBHUS (uw1, uw1) c = __MSUBHUS (a, b) MSUBHUS a,b,c
void __MTRAP (void) __MTRAP () MTRAP
uw2 __MUNPACKH (uw1) b = __MUNPACKH (a) MUNPACKH a,b
uw1 __MWCUT (uw2, uw1) c = __MWCUT (a, b) MWCUT a,b,c
void __MWTACC (acc, uw1) __MWTACC (b, a) MWTACC a,b
void __MWTACCG (acc, uw1) __MWTACCG (b, a) MWTACCG a,b
uw1 __MXOR (uw1, uw1) c = __MXOR (a, b) MXOR a,b,c

5.47.4.4 Raw read/write Functions

This sections describes built-in functions related to read and write instructions to access
memory. These functions generate membar instructions to flush the I/O load and stores
where appropriate, as described in Fujitsu’s manual described above.
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unsigned char __builtin_read8 (void *data)
unsigned short __builtin_read16 (void *data)
unsigned long __builtin_read32 (void *data)
unsigned long long __builtin_read64 (void *data)
void __builtin_write8 (void *data, unsigned char datum)
void __builtin_write16 (void *data, unsigned short datum)
void __builtin_write32 (void *data, unsigned long datum)
void __builtin_write64 (void *data, unsigned long long datum)

5.47.4.5 Other Built-in Functions

This section describes built-in functions that are not named after a specific FR-V instruc-
tion.

sw2 __IACCreadll (iacc reg)
Return the full 64-bit value of IACC0. The reg argument is reserved for future
expansion and must be 0.

sw1 __IACCreadl (iacc reg)
Return the value of IACC0H if reg is 0 and IACC0L if reg is 1. Other values
of reg are rejected as invalid.

void __IACCsetll (iacc reg, sw2 x)
Set the full 64-bit value of IACC0 to x. The reg argument is reserved for future
expansion and must be 0.

void __IACCsetl (iacc reg, sw1 x)
Set IACC0H to x if reg is 0 and IACC0L to x if reg is 1. Other values of reg
are rejected as invalid.

void __data_prefetch0 (const void *x)
Use the dcpl instruction to load the contents of address x into the data cache.

void __data_prefetch (const void *x)
Use the nldub instruction to load the contents of address x into the data cache.
The instruction will be issued in slot I1.

5.47.5 X86 Built-in Functions

These built-in functions are available for the i386 and x86-64 family of computers, depending
on the command-line switches used.

Note that, if you specify command-line switches such as ‘-msse’, the compiler could use
the extended instruction sets even if the built-ins are not used explicitly in the program.
For this reason, applications which perform runtime CPU detection must compile separate
files for each supported architecture, using the appropriate flags. In particular, the file
containing the CPU detection code should be compiled without these options.

The following machine modes are available for use with MMX built-in functions (see
Section 5.42 [Vector Extensions], page 286): V2SI for a vector of two 32-bit integers, V4HI
for a vector of four 16-bit integers, and V8QI for a vector of eight 8-bit integers. Some of
the built-in functions operate on MMX registers as a whole 64-bit entity, these use DI as
their mode.
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If 3Dnow extensions are enabled, V2SF is used as a mode for a vector of two 32-bit floating
point values.

If SSE extensions are enabled, V4SF is used for a vector of four 32-bit floating point
values. Some instructions use a vector of four 32-bit integers, these use V4SI. Finally, some
instructions operate on an entire vector register, interpreting it as a 128-bit integer, these
use mode TI.

The following built-in functions are made available by ‘-mmmx’. All of them generate the
machine instruction that is part of the name.

v8qi __builtin_ia32_paddb (v8qi, v8qi)

v4hi __builtin_ia32_paddw (v4hi, v4hi)

v2si __builtin_ia32_paddd (v2si, v2si)

v8qi __builtin_ia32_psubb (v8qi, v8qi)

v4hi __builtin_ia32_psubw (v4hi, v4hi)

v2si __builtin_ia32_psubd (v2si, v2si)

v8qi __builtin_ia32_paddsb (v8qi, v8qi)

v4hi __builtin_ia32_paddsw (v4hi, v4hi)

v8qi __builtin_ia32_psubsb (v8qi, v8qi)

v4hi __builtin_ia32_psubsw (v4hi, v4hi)

v8qi __builtin_ia32_paddusb (v8qi, v8qi)

v4hi __builtin_ia32_paddusw (v4hi, v4hi)

v8qi __builtin_ia32_psubusb (v8qi, v8qi)

v4hi __builtin_ia32_psubusw (v4hi, v4hi)

v4hi __builtin_ia32_pmullw (v4hi, v4hi)

v4hi __builtin_ia32_pmulhw (v4hi, v4hi)

di __builtin_ia32_pand (di, di)

di __builtin_ia32_pandn (di,di)

di __builtin_ia32_por (di, di)

di __builtin_ia32_pxor (di, di)

v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)

v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)

v2si __builtin_ia32_pcmpeqd (v2si, v2si)

v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)

v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)

v2si __builtin_ia32_pcmpgtd (v2si, v2si)

v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)

v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)

v2si __builtin_ia32_punpckhdq (v2si, v2si)

v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)

v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)

v2si __builtin_ia32_punpckldq (v2si, v2si)

v8qi __builtin_ia32_packsswb (v4hi, v4hi)

v4hi __builtin_ia32_packssdw (v2si, v2si)

v8qi __builtin_ia32_packuswb (v4hi, v4hi)

The following built-in functions are made available either with ‘-msse’, or with a com-
bination of ‘-m3dnow’ and ‘-march=athlon’. All of them generate the machine instruction
that is part of the name.

v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)

v8qi __builtin_ia32_pavgb (v8qi, v8qi)

v4hi __builtin_ia32_pavgw (v4hi, v4hi)

v4hi __builtin_ia32_psadbw (v8qi, v8qi)

v8qi __builtin_ia32_pmaxub (v8qi, v8qi)

v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)

v8qi __builtin_ia32_pminub (v8qi, v8qi)

v4hi __builtin_ia32_pminsw (v4hi, v4hi)

int __builtin_ia32_pextrw (v4hi, int)
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v4hi __builtin_ia32_pinsrw (v4hi, int, int)

int __builtin_ia32_pmovmskb (v8qi)

void __builtin_ia32_maskmovq (v8qi, v8qi, char *)

void __builtin_ia32_movntq (di *, di)

void __builtin_ia32_sfence (void)

The following built-in functions are available when ‘-msse’ is used. All of them generate
the machine instruction that is part of the name.

int __builtin_ia32_comieq (v4sf, v4sf)

int __builtin_ia32_comineq (v4sf, v4sf)

int __builtin_ia32_comilt (v4sf, v4sf)

int __builtin_ia32_comile (v4sf, v4sf)

int __builtin_ia32_comigt (v4sf, v4sf)

int __builtin_ia32_comige (v4sf, v4sf)

int __builtin_ia32_ucomieq (v4sf, v4sf)

int __builtin_ia32_ucomineq (v4sf, v4sf)

int __builtin_ia32_ucomilt (v4sf, v4sf)

int __builtin_ia32_ucomile (v4sf, v4sf)

int __builtin_ia32_ucomigt (v4sf, v4sf)

int __builtin_ia32_ucomige (v4sf, v4sf)

v4sf __builtin_ia32_addps (v4sf, v4sf)

v4sf __builtin_ia32_subps (v4sf, v4sf)

v4sf __builtin_ia32_mulps (v4sf, v4sf)

v4sf __builtin_ia32_divps (v4sf, v4sf)

v4sf __builtin_ia32_addss (v4sf, v4sf)

v4sf __builtin_ia32_subss (v4sf, v4sf)

v4sf __builtin_ia32_mulss (v4sf, v4sf)

v4sf __builtin_ia32_divss (v4sf, v4sf)

v4si __builtin_ia32_cmpeqps (v4sf, v4sf)

v4si __builtin_ia32_cmpltps (v4sf, v4sf)

v4si __builtin_ia32_cmpleps (v4sf, v4sf)

v4si __builtin_ia32_cmpgtps (v4sf, v4sf)

v4si __builtin_ia32_cmpgeps (v4sf, v4sf)

v4si __builtin_ia32_cmpunordps (v4sf, v4sf)

v4si __builtin_ia32_cmpneqps (v4sf, v4sf)

v4si __builtin_ia32_cmpnltps (v4sf, v4sf)

v4si __builtin_ia32_cmpnleps (v4sf, v4sf)

v4si __builtin_ia32_cmpngtps (v4sf, v4sf)

v4si __builtin_ia32_cmpngeps (v4sf, v4sf)

v4si __builtin_ia32_cmpordps (v4sf, v4sf)

v4si __builtin_ia32_cmpeqss (v4sf, v4sf)

v4si __builtin_ia32_cmpltss (v4sf, v4sf)

v4si __builtin_ia32_cmpless (v4sf, v4sf)

v4si __builtin_ia32_cmpunordss (v4sf, v4sf)

v4si __builtin_ia32_cmpneqss (v4sf, v4sf)

v4si __builtin_ia32_cmpnlts (v4sf, v4sf)

v4si __builtin_ia32_cmpnless (v4sf, v4sf)

v4si __builtin_ia32_cmpordss (v4sf, v4sf)

v4sf __builtin_ia32_maxps (v4sf, v4sf)

v4sf __builtin_ia32_maxss (v4sf, v4sf)

v4sf __builtin_ia32_minps (v4sf, v4sf)

v4sf __builtin_ia32_minss (v4sf, v4sf)

v4sf __builtin_ia32_andps (v4sf, v4sf)

v4sf __builtin_ia32_andnps (v4sf, v4sf)

v4sf __builtin_ia32_orps (v4sf, v4sf)

v4sf __builtin_ia32_xorps (v4sf, v4sf)

v4sf __builtin_ia32_movss (v4sf, v4sf)

v4sf __builtin_ia32_movhlps (v4sf, v4sf)
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v4sf __builtin_ia32_movlhps (v4sf, v4sf)

v4sf __builtin_ia32_unpckhps (v4sf, v4sf)

v4sf __builtin_ia32_unpcklps (v4sf, v4sf)

v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)

v4sf __builtin_ia32_cvtsi2ss (v4sf, int)

v2si __builtin_ia32_cvtps2pi (v4sf)

int __builtin_ia32_cvtss2si (v4sf)

v2si __builtin_ia32_cvttps2pi (v4sf)

int __builtin_ia32_cvttss2si (v4sf)

v4sf __builtin_ia32_rcpps (v4sf)

v4sf __builtin_ia32_rsqrtps (v4sf)

v4sf __builtin_ia32_sqrtps (v4sf)

v4sf __builtin_ia32_rcpss (v4sf)

v4sf __builtin_ia32_rsqrtss (v4sf)

v4sf __builtin_ia32_sqrtss (v4sf)

v4sf __builtin_ia32_shufps (v4sf, v4sf, int)

void __builtin_ia32_movntps (float *, v4sf)

int __builtin_ia32_movmskps (v4sf)

The following built-in functions are available when ‘-msse’ is used.

v4sf __builtin_ia32_loadaps (float *)
Generates the movaps machine instruction as a load from memory.

void __builtin_ia32_storeaps (float *, v4sf)
Generates the movaps machine instruction as a store to memory.

v4sf __builtin_ia32_loadups (float *)
Generates the movups machine instruction as a load from memory.

void __builtin_ia32_storeups (float *, v4sf)
Generates the movups machine instruction as a store to memory.

v4sf __builtin_ia32_loadsss (float *)
Generates the movss machine instruction as a load from memory.

void __builtin_ia32_storess (float *, v4sf)
Generates the movss machine instruction as a store to memory.

v4sf __builtin_ia32_loadhps (v4sf, v2si *)
Generates the movhps machine instruction as a load from memory.

v4sf __builtin_ia32_loadlps (v4sf, v2si *)
Generates the movlps machine instruction as a load from memory

void __builtin_ia32_storehps (v4sf, v2si *)
Generates the movhps machine instruction as a store to memory.

void __builtin_ia32_storelps (v4sf, v2si *)
Generates the movlps machine instruction as a store to memory.

The following built-in functions are available when ‘-msse2’ is used. All of them generate
the machine instruction that is part of the name.

int __builtin_ia32_comisdeq (v2df, v2df)

int __builtin_ia32_comisdlt (v2df, v2df)

int __builtin_ia32_comisdle (v2df, v2df)

int __builtin_ia32_comisdgt (v2df, v2df)

int __builtin_ia32_comisdge (v2df, v2df)
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int __builtin_ia32_comisdneq (v2df, v2df)

int __builtin_ia32_ucomisdeq (v2df, v2df)

int __builtin_ia32_ucomisdlt (v2df, v2df)

int __builtin_ia32_ucomisdle (v2df, v2df)

int __builtin_ia32_ucomisdgt (v2df, v2df)

int __builtin_ia32_ucomisdge (v2df, v2df)

int __builtin_ia32_ucomisdneq (v2df, v2df)

v2df __builtin_ia32_cmpeqpd (v2df, v2df)

v2df __builtin_ia32_cmpltpd (v2df, v2df)

v2df __builtin_ia32_cmplepd (v2df, v2df)

v2df __builtin_ia32_cmpgtpd (v2df, v2df)

v2df __builtin_ia32_cmpgepd (v2df, v2df)

v2df __builtin_ia32_cmpunordpd (v2df, v2df)

v2df __builtin_ia32_cmpneqpd (v2df, v2df)

v2df __builtin_ia32_cmpnltpd (v2df, v2df)

v2df __builtin_ia32_cmpnlepd (v2df, v2df)

v2df __builtin_ia32_cmpngtpd (v2df, v2df)

v2df __builtin_ia32_cmpngepd (v2df, v2df)

v2df __builtin_ia32_cmpordpd (v2df, v2df)

v2df __builtin_ia32_cmpeqsd (v2df, v2df)

v2df __builtin_ia32_cmpltsd (v2df, v2df)

v2df __builtin_ia32_cmplesd (v2df, v2df)

v2df __builtin_ia32_cmpunordsd (v2df, v2df)

v2df __builtin_ia32_cmpneqsd (v2df, v2df)

v2df __builtin_ia32_cmpnltsd (v2df, v2df)

v2df __builtin_ia32_cmpnlesd (v2df, v2df)

v2df __builtin_ia32_cmpordsd (v2df, v2df)

v2di __builtin_ia32_paddq (v2di, v2di)

v2di __builtin_ia32_psubq (v2di, v2di)

v2df __builtin_ia32_addpd (v2df, v2df)

v2df __builtin_ia32_subpd (v2df, v2df)

v2df __builtin_ia32_mulpd (v2df, v2df)

v2df __builtin_ia32_divpd (v2df, v2df)

v2df __builtin_ia32_addsd (v2df, v2df)

v2df __builtin_ia32_subsd (v2df, v2df)

v2df __builtin_ia32_mulsd (v2df, v2df)

v2df __builtin_ia32_divsd (v2df, v2df)

v2df __builtin_ia32_minpd (v2df, v2df)

v2df __builtin_ia32_maxpd (v2df, v2df)

v2df __builtin_ia32_minsd (v2df, v2df)

v2df __builtin_ia32_maxsd (v2df, v2df)

v2df __builtin_ia32_andpd (v2df, v2df)

v2df __builtin_ia32_andnpd (v2df, v2df)

v2df __builtin_ia32_orpd (v2df, v2df)

v2df __builtin_ia32_xorpd (v2df, v2df)

v2df __builtin_ia32_movsd (v2df, v2df)

v2df __builtin_ia32_unpckhpd (v2df, v2df)

v2df __builtin_ia32_unpcklpd (v2df, v2df)

v16qi __builtin_ia32_paddb128 (v16qi, v16qi)

v8hi __builtin_ia32_paddw128 (v8hi, v8hi)

v4si __builtin_ia32_paddd128 (v4si, v4si)

v2di __builtin_ia32_paddq128 (v2di, v2di)

v16qi __builtin_ia32_psubb128 (v16qi, v16qi)

v8hi __builtin_ia32_psubw128 (v8hi, v8hi)

v4si __builtin_ia32_psubd128 (v4si, v4si)

v2di __builtin_ia32_psubq128 (v2di, v2di)

v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)

v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
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v2di __builtin_ia32_pand128 (v2di, v2di)

v2di __builtin_ia32_pandn128 (v2di, v2di)

v2di __builtin_ia32_por128 (v2di, v2di)

v2di __builtin_ia32_pxor128 (v2di, v2di)

v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)

v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)

v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)

v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)

v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)

v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)

v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)

v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)

v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)

v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)

v16qi __builtin_ia32_pminub128 (v16qi, v16qi)

v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)

v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)

v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)

v4si __builtin_ia32_punpckhdq128 (v4si, v4si)

v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)

v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)

v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)

v4si __builtin_ia32_punpckldq128 (v4si, v4si)

v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)

v16qi __builtin_ia32_packsswb128 (v16qi, v16qi)

v8hi __builtin_ia32_packssdw128 (v8hi, v8hi)

v16qi __builtin_ia32_packuswb128 (v16qi, v16qi)

v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)

void __builtin_ia32_maskmovdqu (v16qi, v16qi)

v2df __builtin_ia32_loadupd (double *)

void __builtin_ia32_storeupd (double *, v2df)

v2df __builtin_ia32_loadhpd (v2df, double *)

v2df __builtin_ia32_loadlpd (v2df, double *)

int __builtin_ia32_movmskpd (v2df)

int __builtin_ia32_pmovmskb128 (v16qi)

void __builtin_ia32_movnti (int *, int)

void __builtin_ia32_movntpd (double *, v2df)

void __builtin_ia32_movntdq (v2df *, v2df)

v4si __builtin_ia32_pshufd (v4si, int)

v8hi __builtin_ia32_pshuflw (v8hi, int)

v8hi __builtin_ia32_pshufhw (v8hi, int)

v2di __builtin_ia32_psadbw128 (v16qi, v16qi)

v2df __builtin_ia32_sqrtpd (v2df)

v2df __builtin_ia32_sqrtsd (v2df)

v2df __builtin_ia32_shufpd (v2df, v2df, int)

v2df __builtin_ia32_cvtdq2pd (v4si)

v4sf __builtin_ia32_cvtdq2ps (v4si)

v4si __builtin_ia32_cvtpd2dq (v2df)

v2si __builtin_ia32_cvtpd2pi (v2df)

v4sf __builtin_ia32_cvtpd2ps (v2df)

v4si __builtin_ia32_cvttpd2dq (v2df)

v2si __builtin_ia32_cvttpd2pi (v2df)

v2df __builtin_ia32_cvtpi2pd (v2si)

int __builtin_ia32_cvtsd2si (v2df)

int __builtin_ia32_cvttsd2si (v2df)

long long __builtin_ia32_cvtsd2si64 (v2df)

long long __builtin_ia32_cvttsd2si64 (v2df)

v4si __builtin_ia32_cvtps2dq (v4sf)
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v2df __builtin_ia32_cvtps2pd (v4sf)

v4si __builtin_ia32_cvttps2dq (v4sf)

v2df __builtin_ia32_cvtsi2sd (v2df, int)

v2df __builtin_ia32_cvtsi642sd (v2df, long long)

v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)

v2df __builtin_ia32_cvtss2sd (v2df, v4sf)

void __builtin_ia32_clflush (const void *)

void __builtin_ia32_lfence (void)

void __builtin_ia32_mfence (void)

v16qi __builtin_ia32_loaddqu (const char *)

void __builtin_ia32_storedqu (char *, v16qi)

unsigned long long __builtin_ia32_pmuludq (v2si, v2si)

v2di __builtin_ia32_pmuludq128 (v4si, v4si)

v8hi __builtin_ia32_psllw128 (v8hi, v2di)

v4si __builtin_ia32_pslld128 (v4si, v2di)

v2di __builtin_ia32_psllq128 (v4si, v2di)

v8hi __builtin_ia32_psrlw128 (v8hi, v2di)

v4si __builtin_ia32_psrld128 (v4si, v2di)

v2di __builtin_ia32_psrlq128 (v2di, v2di)

v8hi __builtin_ia32_psraw128 (v8hi, v2di)

v4si __builtin_ia32_psrad128 (v4si, v2di)

v2di __builtin_ia32_pslldqi128 (v2di, int)

v8hi __builtin_ia32_psllwi128 (v8hi, int)

v4si __builtin_ia32_pslldi128 (v4si, int)

v2di __builtin_ia32_psllqi128 (v2di, int)

v2di __builtin_ia32_psrldqi128 (v2di, int)

v8hi __builtin_ia32_psrlwi128 (v8hi, int)

v4si __builtin_ia32_psrldi128 (v4si, int)

v2di __builtin_ia32_psrlqi128 (v2di, int)

v8hi __builtin_ia32_psrawi128 (v8hi, int)

v4si __builtin_ia32_psradi128 (v4si, int)

v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)

The following built-in functions are available when ‘-msse3’ is used. All of them generate
the machine instruction that is part of the name.

v2df __builtin_ia32_addsubpd (v2df, v2df)

v4sf __builtin_ia32_addsubps (v4sf, v4sf)

v2df __builtin_ia32_haddpd (v2df, v2df)

v4sf __builtin_ia32_haddps (v4sf, v4sf)

v2df __builtin_ia32_hsubpd (v2df, v2df)

v4sf __builtin_ia32_hsubps (v4sf, v4sf)

v16qi __builtin_ia32_lddqu (char const *)

void __builtin_ia32_monitor (void *, unsigned int, unsigned int)

v2df __builtin_ia32_movddup (v2df)

v4sf __builtin_ia32_movshdup (v4sf)

v4sf __builtin_ia32_movsldup (v4sf)

void __builtin_ia32_mwait (unsigned int, unsigned int)

The following built-in functions are available when ‘-msse3’ is used.

v2df __builtin_ia32_loadddup (double const *)
Generates the movddup machine instruction as a load from memory.

The following built-in functions are available when ‘-m3dnow’ is used. All of them generate
the machine instruction that is part of the name.

void __builtin_ia32_femms (void)

v8qi __builtin_ia32_pavgusb (v8qi, v8qi)

v2si __builtin_ia32_pf2id (v2sf)

v2sf __builtin_ia32_pfacc (v2sf, v2sf)
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v2sf __builtin_ia32_pfadd (v2sf, v2sf)

v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)

v2si __builtin_ia32_pfcmpge (v2sf, v2sf)

v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)

v2sf __builtin_ia32_pfmax (v2sf, v2sf)

v2sf __builtin_ia32_pfmin (v2sf, v2sf)

v2sf __builtin_ia32_pfmul (v2sf, v2sf)

v2sf __builtin_ia32_pfrcp (v2sf)

v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)

v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)

v2sf __builtin_ia32_pfrsqrt (v2sf)

v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)

v2sf __builtin_ia32_pfsub (v2sf, v2sf)

v2sf __builtin_ia32_pfsubr (v2sf, v2sf)

v2sf __builtin_ia32_pi2fd (v2si)

v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)

The following built-in functions are available when both ‘-m3dnow’ and ‘-march=athlon’
are used. All of them generate the machine instruction that is part of the name.

v2si __builtin_ia32_pf2iw (v2sf)

v2sf __builtin_ia32_pfnacc (v2sf, v2sf)

v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)

v2sf __builtin_ia32_pi2fw (v2si)

v2sf __builtin_ia32_pswapdsf (v2sf)

v2si __builtin_ia32_pswapdsi (v2si)

5.47.6 MIPS DSP Built-in Functions

The MIPS DSP Application-Specific Extension (ASE) includes new instructions that are
designed to improve the performance of DSP and media applications. It provides instruc-
tions that operate on packed 8-bit integer data, Q15 fractional data and Q31 fractional
data.

GCC supports MIPS DSP operations using both the generic vector extensions (see Sec-
tion 5.42 [Vector Extensions], page 286) and a collection of MIPS-specific built-in functions.
Both kinds of support are enabled by the ‘-mdsp’ command-line option.

At present, GCC only provides support for operations on 32-bit vectors. The vector type
associated with 8-bit integer data is usually called v4i8 and the vector type associated with
Q15 is usually called v2q15. They can be defined in C as follows:

typedef char v4i8 __attribute__ ((vector_size(4)));

typedef short v2q15 __attribute__ ((vector_size(4)));

v4i8 and v2q15 values are initialized in the same way as aggregates. For example:
v4i8 a = {1, 2, 3, 4};

v4i8 b;

b = (v4i8) {5, 6, 7, 8};

v2q15 c = {0x0fcb, 0x3a75};

v2q15 d;

d = (v2q15) {0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15};

Note: The CPU’s endianness determines the order in which values are packed. On little-
endian targets, the first value is the least significant and the last value is the most significant.
The opposite order applies to big-endian targets. For example, the code above will set the
lowest byte of a to 1 on little-endian targets and 4 on big-endian targets.
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Note: Q15 and Q31 values must be initialized with their integer representation. As shown
in this example, the integer representation of a Q15 value can be obtained by multiplying
the fractional value by 0x1.0p15. The equivalent for Q31 values is to multiply by 0x1.0p31.

The table below lists the v4i8 and v2q15 operations for which hardware support exists.
a and b are v4i8 values, and c and d are v2q15 values.
C code MIPS instruction
a + b addu.qb
c + d addq.ph
a - b subu.qb
c - d subq.ph

It is easier to describe the DSP built-in functions if we first define the following types:
typedef int q31;

typedef int i32;

typedef long long a64;

q31 and i32 are actually the same as int, but we use q31 to indicate a Q31 fractional
value and i32 to indicate a 32-bit integer value. Similarly, a64 is the same as long long,
but we use a64 to indicate values that will be placed in one of the four DSP accumulators
($ac0, $ac1, $ac2 or $ac3).

Also, some built-in functions prefer or require immediate numbers as parameters, because
the corresponding DSP instructions accept both immediate numbers and register operands,
or accept immediate numbers only. The immediate parameters are listed as follows.

imm0_7: 0 to 7.

imm0_15: 0 to 15.

imm0_31: 0 to 31.

imm0_63: 0 to 63.

imm0_255: 0 to 255.

imm_n32_31: -32 to 31.

imm_n512_511: -512 to 511.

The following built-in functions map directly to a particular MIPS DSP instruction.
Please refer to the architecture specification for details on what each instruction does.

v2q15 __builtin_mips_addq_ph (v2q15, v2q15)

v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)

q31 __builtin_mips_addq_s_w (q31, q31)

v4i8 __builtin_mips_addu_qb (v4i8, v4i8)

v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)

v2q15 __builtin_mips_subq_ph (v2q15, v2q15)

v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)

q31 __builtin_mips_subq_s_w (q31, q31)

v4i8 __builtin_mips_subu_qb (v4i8, v4i8)

v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)

i32 __builtin_mips_addsc (i32, i32)

i32 __builtin_mips_addwc (i32, i32)

i32 __builtin_mips_modsub (i32, i32)

i32 __builtin_mips_raddu_w_qb (v4i8)

v2q15 __builtin_mips_absq_s_ph (v2q15)

q31 __builtin_mips_absq_s_w (q31)

v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)

v2q15 __builtin_mips_precrq_ph_w (q31, q31)

v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)

v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)

q31 __builtin_mips_preceq_w_phl (v2q15)
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q31 __builtin_mips_preceq_w_phr (v2q15)

v2q15 __builtin_mips_precequ_ph_qbl (v4i8)

v2q15 __builtin_mips_precequ_ph_qbr (v4i8)

v2q15 __builtin_mips_precequ_ph_qbla (v4i8)

v2q15 __builtin_mips_precequ_ph_qbra (v4i8)

v2q15 __builtin_mips_preceu_ph_qbl (v4i8)

v2q15 __builtin_mips_preceu_ph_qbr (v4i8)

v2q15 __builtin_mips_preceu_ph_qbla (v4i8)

v2q15 __builtin_mips_preceu_ph_qbra (v4i8)

v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)

v4i8 __builtin_mips_shll_qb (v4i8, i32)

v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)

v2q15 __builtin_mips_shll_ph (v2q15, i32)

v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)

v2q15 __builtin_mips_shll_s_ph (v2q15, i32)

q31 __builtin_mips_shll_s_w (q31, imm0_31)

q31 __builtin_mips_shll_s_w (q31, i32)

v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)

v4i8 __builtin_mips_shrl_qb (v4i8, i32)

v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)

v2q15 __builtin_mips_shra_ph (v2q15, i32)

v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)

v2q15 __builtin_mips_shra_r_ph (v2q15, i32)

q31 __builtin_mips_shra_r_w (q31, imm0_31)

q31 __builtin_mips_shra_r_w (q31, i32)

v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)

v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)

v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)

q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)

q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)

a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)

a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)

a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)

a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)

a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)

a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)

a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)

a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)

a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)

a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)

a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)

a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)

a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)

i32 __builtin_mips_bitrev (i32)

i32 __builtin_mips_insv (i32, i32)

v4i8 __builtin_mips_repl_qb (imm0_255)

v4i8 __builtin_mips_repl_qb (i32)

v2q15 __builtin_mips_repl_ph (imm_n512_511)

v2q15 __builtin_mips_repl_ph (i32)

void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)

void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)

void __builtin_mips_cmpu_le_qb (v4i8, v4i8)

i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)

i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)

i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)

void __builtin_mips_cmp_eq_ph (v2q15, v2q15)

void __builtin_mips_cmp_lt_ph (v2q15, v2q15)

void __builtin_mips_cmp_le_ph (v2q15, v2q15)
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v4i8 __builtin_mips_pick_qb (v4i8, v4i8)

v2q15 __builtin_mips_pick_ph (v2q15, v2q15)

v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)

i32 __builtin_mips_extr_w (a64, imm0_31)

i32 __builtin_mips_extr_w (a64, i32)

i32 __builtin_mips_extr_r_w (a64, imm0_31)

i32 __builtin_mips_extr_s_h (a64, i32)

i32 __builtin_mips_extr_rs_w (a64, imm0_31)

i32 __builtin_mips_extr_rs_w (a64, i32)

i32 __builtin_mips_extr_s_h (a64, imm0_31)

i32 __builtin_mips_extr_r_w (a64, i32)

i32 __builtin_mips_extp (a64, imm0_31)

i32 __builtin_mips_extp (a64, i32)

i32 __builtin_mips_extpdp (a64, imm0_31)

i32 __builtin_mips_extpdp (a64, i32)

a64 __builtin_mips_shilo (a64, imm_n32_31)

a64 __builtin_mips_shilo (a64, i32)

a64 __builtin_mips_mthlip (a64, i32)

void __builtin_mips_wrdsp (i32, imm0_63)

i32 __builtin_mips_rddsp (imm0_63)

i32 __builtin_mips_lbux (void *, i32)

i32 __builtin_mips_lhx (void *, i32)

i32 __builtin_mips_lwx (void *, i32)

i32 __builtin_mips_bposge32 (void)

5.47.7 MIPS Paired-Single Support

The MIPS64 architecture includes a number of instructions that operate on pairs of single-
precision floating-point values. Each pair is packed into a 64-bit floating-point register, with
one element being designated the “upper half” and the other being designated the “lower
half”.

GCC supports paired-single operations using both the generic vector extensions (see Sec-
tion 5.42 [Vector Extensions], page 286) and a collection of MIPS-specific built-in functions.
Both kinds of support are enabled by the ‘-mpaired-single’ command-line option.

The vector type associated with paired-single values is usually called v2sf. It can be
defined in C as follows:

typedef float v2sf __attribute__ ((vector_size (8)));

v2sf values are initialized in the same way as aggregates. For example:
v2sf a = {1.5, 9.1};

v2sf b;

float e, f;

b = (v2sf) {e, f};

Note: The CPU’s endianness determines which value is stored in the upper half of a
register and which value is stored in the lower half. On little-endian targets, the first value
is the lower one and the second value is the upper one. The opposite order applies to
big-endian targets. For example, the code above will set the lower half of a to 1.5 on
little-endian targets and 9.1 on big-endian targets.

5.47.7.1 Paired-Single Arithmetic

The table below lists the v2sf operations for which hardware support exists. a, b and c are
v2sf values and x is an integral value.
C code MIPS instruction
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a + b add.ps
a - b sub.ps
-a neg.ps
a * b mul.ps
a * b + c madd.ps
a * b - c msub.ps
-(a * b + c) nmadd.ps
-(a * b - c) nmsub.ps
x ? a : b movn.ps/movz.ps

Note that the multiply-accumulate instructions can be disabled using the command-line
option -mno-fused-madd.

5.47.7.2 Paired-Single Built-in Functions

The following paired-single functions map directly to a particular MIPS instruction. Please
refer to the architecture specification for details on what each instruction does.

v2sf __builtin_mips_pll_ps (v2sf, v2sf)
Pair lower lower (pll.ps).

v2sf __builtin_mips_pul_ps (v2sf, v2sf)
Pair upper lower (pul.ps).

v2sf __builtin_mips_plu_ps (v2sf, v2sf)
Pair lower upper (plu.ps).

v2sf __builtin_mips_puu_ps (v2sf, v2sf)
Pair upper upper (puu.ps).

v2sf __builtin_mips_cvt_ps_s (float, float)
Convert pair to paired single (cvt.ps.s).

float __builtin_mips_cvt_s_pl (v2sf)
Convert pair lower to single (cvt.s.pl).

float __builtin_mips_cvt_s_pu (v2sf)
Convert pair upper to single (cvt.s.pu).

v2sf __builtin_mips_abs_ps (v2sf)
Absolute value (abs.ps).

v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
Align variable (alnv.ps).
Note: The value of the third parameter must be 0 or 4 modulo 8, otherwise the
result will be unpredictable. Please read the instruction description for details.

The following multi-instruction functions are also available. In each case, cond can be
any of the 16 floating-point conditions: f, un, eq, ueq, olt, ult, ole, ule, sf, ngle, seq,
ngl, lt, nge, le or ngt.

v2sf __builtin_mips_movt_c_cond_ps (v2sf a, v2sf b, v2sf c, v2sf d)
v2sf __builtin_mips_movf_c_cond_ps (v2sf a, v2sf b, v2sf c, v2sf d)

Conditional move based on floating point comparison (c.cond.ps,
movt.ps/movf.ps).
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The movt functions return the value x computed by:
c.cond.ps cc,a,b

mov.ps x,c

movt.ps x,d,cc

The movf functions are similar but use movf.ps instead of movt.ps.

int __builtin_mips_upper_c_cond_ps (v2sf a, v2sf b)
int __builtin_mips_lower_c_cond_ps (v2sf a, v2sf b)

Comparison of two paired-single values (c.cond.ps, bc1t/bc1f).

These functions compare a and b using c.cond.ps and return either the upper
or lower half of the result. For example:

v2sf a, b;

if (__builtin_mips_upper_c_eq_ps (a, b))

upper_halves_are_equal ();

else

upper_halves_are_unequal ();

if (__builtin_mips_lower_c_eq_ps (a, b))

lower_halves_are_equal ();

else

lower_halves_are_unequal ();

5.47.7.3 MIPS-3D Built-in Functions

The MIPS-3D Application-Specific Extension (ASE) includes additional paired-single in-
structions that are designed to improve the performance of 3D graphics operations. Support
for these instructions is controlled by the ‘-mips3d’ command-line option.

The functions listed below map directly to a particular MIPS-3D instruction. Please refer
to the architecture specification for more details on what each instruction does.

v2sf __builtin_mips_addr_ps (v2sf, v2sf)
Reduction add (addr.ps).

v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
Reduction multiply (mulr.ps).

v2sf __builtin_mips_cvt_pw_ps (v2sf)
Convert paired single to paired word (cvt.pw.ps).

v2sf __builtin_mips_cvt_ps_pw (v2sf)
Convert paired word to paired single (cvt.ps.pw).

float __builtin_mips_recip1_s (float)
double __builtin_mips_recip1_d (double)
v2sf __builtin_mips_recip1_ps (v2sf)

Reduced precision reciprocal (sequence step 1) (recip1.fmt).

float __builtin_mips_recip2_s (float, float)
double __builtin_mips_recip2_d (double, double)
v2sf __builtin_mips_recip2_ps (v2sf, v2sf)

Reduced precision reciprocal (sequence step 2) (recip2.fmt).
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float __builtin_mips_rsqrt1_s (float)
double __builtin_mips_rsqrt1_d (double)
v2sf __builtin_mips_rsqrt1_ps (v2sf)

Reduced precision reciprocal square root (sequence step 1) (rsqrt1.fmt).

float __builtin_mips_rsqrt2_s (float, float)
double __builtin_mips_rsqrt2_d (double, double)
v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)

Reduced precision reciprocal square root (sequence step 2) (rsqrt2.fmt).

The following multi-instruction functions are also available. In each case, cond can be
any of the 16 floating-point conditions: f, un, eq, ueq, olt, ult, ole, ule, sf, ngle, seq,
ngl, lt, nge, le or ngt.

int __builtin_mips_cabs_cond_s (float a, float b)
int __builtin_mips_cabs_cond_d (double a, double b)

Absolute comparison of two scalar values (cabs.cond.fmt , bc1t/bc1f).

These functions compare a and b using cabs.cond.s or cabs.cond.d and re-
turn the result as a boolean value. For example:

float a, b;

if (__builtin_mips_cabs_eq_s (a, b))

true ();

else

false ();

int __builtin_mips_upper_cabs_cond_ps (v2sf a, v2sf b)
int __builtin_mips_lower_cabs_cond_ps (v2sf a, v2sf b)

Absolute comparison of two paired-single values (cabs.cond.ps, bc1t/bc1f).

These functions compare a and b using cabs.cond.ps and return either the
upper or lower half of the result. For example:

v2sf a, b;

if (__builtin_mips_upper_cabs_eq_ps (a, b))

upper_halves_are_equal ();

else

upper_halves_are_unequal ();

if (__builtin_mips_lower_cabs_eq_ps (a, b))

lower_halves_are_equal ();

else

lower_halves_are_unequal ();

v2sf __builtin_mips_movt_cabs_cond_ps (v2sf a, v2sf b, v2sf c, v2sf d)
v2sf __builtin_mips_movf_cabs_cond_ps (v2sf a, v2sf b, v2sf c, v2sf d)

Conditional move based on absolute comparison (cabs.cond.ps,
movt.ps/movf.ps).

The movt functions return the value x computed by:
cabs.cond.ps cc,a,b

mov.ps x,c

movt.ps x,d,cc

The movf functions are similar but use movf.ps instead of movt.ps.
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int __builtin_mips_any_c_cond_ps (v2sf a, v2sf b)
int __builtin_mips_all_c_cond_ps (v2sf a, v2sf b)
int __builtin_mips_any_cabs_cond_ps (v2sf a, v2sf b)
int __builtin_mips_all_cabs_cond_ps (v2sf a, v2sf b)

Comparison of two paired-single values (c.cond.ps/cabs.cond.ps,
bc1any2t/bc1any2f).
These functions compare a and b using c.cond.ps or cabs.cond.ps. The any
forms return true if either result is true and the all forms return true if both
results are true. For example:

v2sf a, b;

if (__builtin_mips_any_c_eq_ps (a, b))

one_is_true ();

else

both_are_false ();

if (__builtin_mips_all_c_eq_ps (a, b))

both_are_true ();

else

one_is_false ();

int __builtin_mips_any_c_cond_4s (v2sf a, v2sf b, v2sf c, v2sf d)
int __builtin_mips_all_c_cond_4s (v2sf a, v2sf b, v2sf c, v2sf d)
int __builtin_mips_any_cabs_cond_4s (v2sf a, v2sf b, v2sf c, v2sf d)
int __builtin_mips_all_cabs_cond_4s (v2sf a, v2sf b, v2sf c, v2sf d)

Comparison of four paired-single values (c.cond.ps/cabs.cond.ps,
bc1any4t/bc1any4f).
These functions use c.cond.ps or cabs.cond.ps to compare a with b and to
compare c with d. The any forms return true if any of the four results are true
and the all forms return true if all four results are true. For example:

v2sf a, b, c, d;

if (__builtin_mips_any_c_eq_4s (a, b, c, d))

some_are_true ();

else

all_are_false ();

if (__builtin_mips_all_c_eq_4s (a, b, c, d))

all_are_true ();

else

some_are_false ();

5.47.8 PowerPC AltiVec Built-in Functions

GCC provides an interface for the PowerPC family of processors to access the AltiVec
operations described in Motorola’s AltiVec Programming Interface Manual. The interface
is made available by including <altivec.h> and using ‘-maltivec’ and ‘-mabi=altivec’.
The interface supports the following vector types.

vector unsigned char

vector signed char

vector bool char

vector unsigned short

vector signed short

vector bool short
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vector pixel

vector unsigned int

vector signed int

vector bool int

vector float

GCC’s implementation of the high-level language interface available from C and C++ code
differs from Motorola’s documentation in several ways.
• A vector constant is a list of constant expressions within curly braces.
• A vector initializer requires no cast if the vector constant is of the same type as the

variable it is initializing.
• If signed or unsigned is omitted, the signedness of the vector type is the default

signedness of the base type. The default varies depending on the operating system, so
a portable program should always specify the signedness.

• Compiling with ‘-maltivec’ adds keywords __vector, __pixel, and __bool. Macros
‘vector’, pixel, and bool are defined in <altivec.h> and can be undefined.

• GCC allows using a typedef name as the type specifier for a vector type.
• For C, overloaded functions are implemented with macros so the following does not

work:
vec_add ((vector signed int){1, 2, 3, 4}, foo);

Since vec_add is a macro, the vector constant in the example is treated as four separate
arguments. Wrap the entire argument in parentheses for this to work.

Note: Only the <altivec.h> interface is supported. Internally, GCC uses built-in func-
tions to achieve the functionality in the aforementioned header file, but they are not sup-
ported and are subject to change without notice.

The following interfaces are supported for the generic and specific AltiVec operations
and the AltiVec predicates. In cases where there is a direct mapping between generic and
specific operations, only the generic names are shown here, although the specific operations
can also be used.

Arguments that are documented as const int require literal integral values within the
range required for that operation.

vector signed char vec_abs (vector signed char);

vector signed short vec_abs (vector signed short);

vector signed int vec_abs (vector signed int);

vector float vec_abs (vector float);

vector signed char vec_abss (vector signed char);

vector signed short vec_abss (vector signed short);

vector signed int vec_abss (vector signed int);

vector signed char vec_add (vector bool char, vector signed char);

vector signed char vec_add (vector signed char, vector bool char);

vector signed char vec_add (vector signed char, vector signed char);

vector unsigned char vec_add (vector bool char, vector unsigned char);

vector unsigned char vec_add (vector unsigned char, vector bool char);

vector unsigned char vec_add (vector unsigned char,

vector unsigned char);

vector signed short vec_add (vector bool short, vector signed short);

vector signed short vec_add (vector signed short, vector bool short);
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vector signed short vec_add (vector signed short, vector signed short);

vector unsigned short vec_add (vector bool short,

vector unsigned short);

vector unsigned short vec_add (vector unsigned short,

vector bool short);

vector unsigned short vec_add (vector unsigned short,

vector unsigned short);

vector signed int vec_add (vector bool int, vector signed int);

vector signed int vec_add (vector signed int, vector bool int);

vector signed int vec_add (vector signed int, vector signed int);

vector unsigned int vec_add (vector bool int, vector unsigned int);

vector unsigned int vec_add (vector unsigned int, vector bool int);

vector unsigned int vec_add (vector unsigned int, vector unsigned int);

vector float vec_add (vector float, vector float);

vector float vec_vaddfp (vector float, vector float);

vector signed int vec_vadduwm (vector bool int, vector signed int);

vector signed int vec_vadduwm (vector signed int, vector bool int);

vector signed int vec_vadduwm (vector signed int, vector signed int);

vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);

vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);

vector unsigned int vec_vadduwm (vector unsigned int,

vector unsigned int);

vector signed short vec_vadduhm (vector bool short,

vector signed short);

vector signed short vec_vadduhm (vector signed short,

vector bool short);

vector signed short vec_vadduhm (vector signed short,

vector signed short);

vector unsigned short vec_vadduhm (vector bool short,

vector unsigned short);

vector unsigned short vec_vadduhm (vector unsigned short,

vector bool short);

vector unsigned short vec_vadduhm (vector unsigned short,

vector unsigned short);

vector signed char vec_vaddubm (vector bool char, vector signed char);

vector signed char vec_vaddubm (vector signed char, vector bool char);

vector signed char vec_vaddubm (vector signed char, vector signed char);

vector unsigned char vec_vaddubm (vector bool char,

vector unsigned char);

vector unsigned char vec_vaddubm (vector unsigned char,

vector bool char);

vector unsigned char vec_vaddubm (vector unsigned char,

vector unsigned char);

vector unsigned int vec_addc (vector unsigned int, vector unsigned int);

vector unsigned char vec_adds (vector bool char, vector unsigned char);

vector unsigned char vec_adds (vector unsigned char, vector bool char);

vector unsigned char vec_adds (vector unsigned char,

vector unsigned char);

vector signed char vec_adds (vector bool char, vector signed char);

vector signed char vec_adds (vector signed char, vector bool char);

vector signed char vec_adds (vector signed char, vector signed char);

vector unsigned short vec_adds (vector bool short,
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vector unsigned short);

vector unsigned short vec_adds (vector unsigned short,

vector bool short);

vector unsigned short vec_adds (vector unsigned short,

vector unsigned short);

vector signed short vec_adds (vector bool short, vector signed short);

vector signed short vec_adds (vector signed short, vector bool short);

vector signed short vec_adds (vector signed short, vector signed short);

vector unsigned int vec_adds (vector bool int, vector unsigned int);

vector unsigned int vec_adds (vector unsigned int, vector bool int);

vector unsigned int vec_adds (vector unsigned int, vector unsigned int);

vector signed int vec_adds (vector bool int, vector signed int);

vector signed int vec_adds (vector signed int, vector bool int);

vector signed int vec_adds (vector signed int, vector signed int);

vector signed int vec_vaddsws (vector bool int, vector signed int);

vector signed int vec_vaddsws (vector signed int, vector bool int);

vector signed int vec_vaddsws (vector signed int, vector signed int);

vector unsigned int vec_vadduws (vector bool int, vector unsigned int);

vector unsigned int vec_vadduws (vector unsigned int, vector bool int);

vector unsigned int vec_vadduws (vector unsigned int,

vector unsigned int);

vector signed short vec_vaddshs (vector bool short,

vector signed short);

vector signed short vec_vaddshs (vector signed short,

vector bool short);

vector signed short vec_vaddshs (vector signed short,

vector signed short);

vector unsigned short vec_vadduhs (vector bool short,

vector unsigned short);

vector unsigned short vec_vadduhs (vector unsigned short,

vector bool short);

vector unsigned short vec_vadduhs (vector unsigned short,

vector unsigned short);

vector signed char vec_vaddsbs (vector bool char, vector signed char);

vector signed char vec_vaddsbs (vector signed char, vector bool char);

vector signed char vec_vaddsbs (vector signed char, vector signed char);

vector unsigned char vec_vaddubs (vector bool char,

vector unsigned char);

vector unsigned char vec_vaddubs (vector unsigned char,

vector bool char);

vector unsigned char vec_vaddubs (vector unsigned char,

vector unsigned char);

vector float vec_and (vector float, vector float);

vector float vec_and (vector float, vector bool int);

vector float vec_and (vector bool int, vector float);

vector bool int vec_and (vector bool int, vector bool int);

vector signed int vec_and (vector bool int, vector signed int);

vector signed int vec_and (vector signed int, vector bool int);

vector signed int vec_and (vector signed int, vector signed int);

vector unsigned int vec_and (vector bool int, vector unsigned int);

vector unsigned int vec_and (vector unsigned int, vector bool int);
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vector unsigned int vec_and (vector unsigned int, vector unsigned int);

vector bool short vec_and (vector bool short, vector bool short);

vector signed short vec_and (vector bool short, vector signed short);

vector signed short vec_and (vector signed short, vector bool short);

vector signed short vec_and (vector signed short, vector signed short);

vector unsigned short vec_and (vector bool short,

vector unsigned short);

vector unsigned short vec_and (vector unsigned short,

vector bool short);

vector unsigned short vec_and (vector unsigned short,

vector unsigned short);

vector signed char vec_and (vector bool char, vector signed char);

vector bool char vec_and (vector bool char, vector bool char);

vector signed char vec_and (vector signed char, vector bool char);

vector signed char vec_and (vector signed char, vector signed char);

vector unsigned char vec_and (vector bool char, vector unsigned char);

vector unsigned char vec_and (vector unsigned char, vector bool char);

vector unsigned char vec_and (vector unsigned char,

vector unsigned char);

vector float vec_andc (vector float, vector float);

vector float vec_andc (vector float, vector bool int);

vector float vec_andc (vector bool int, vector float);

vector bool int vec_andc (vector bool int, vector bool int);

vector signed int vec_andc (vector bool int, vector signed int);

vector signed int vec_andc (vector signed int, vector bool int);

vector signed int vec_andc (vector signed int, vector signed int);

vector unsigned int vec_andc (vector bool int, vector unsigned int);

vector unsigned int vec_andc (vector unsigned int, vector bool int);

vector unsigned int vec_andc (vector unsigned int, vector unsigned int);

vector bool short vec_andc (vector bool short, vector bool short);

vector signed short vec_andc (vector bool short, vector signed short);

vector signed short vec_andc (vector signed short, vector bool short);

vector signed short vec_andc (vector signed short, vector signed short);

vector unsigned short vec_andc (vector bool short,

vector unsigned short);

vector unsigned short vec_andc (vector unsigned short,

vector bool short);

vector unsigned short vec_andc (vector unsigned short,

vector unsigned short);

vector signed char vec_andc (vector bool char, vector signed char);

vector bool char vec_andc (vector bool char, vector bool char);

vector signed char vec_andc (vector signed char, vector bool char);

vector signed char vec_andc (vector signed char, vector signed char);

vector unsigned char vec_andc (vector bool char, vector unsigned char);

vector unsigned char vec_andc (vector unsigned char, vector bool char);

vector unsigned char vec_andc (vector unsigned char,

vector unsigned char);

vector unsigned char vec_avg (vector unsigned char,

vector unsigned char);

vector signed char vec_avg (vector signed char, vector signed char);

vector unsigned short vec_avg (vector unsigned short,

vector unsigned short);

vector signed short vec_avg (vector signed short, vector signed short);

vector unsigned int vec_avg (vector unsigned int, vector unsigned int);

vector signed int vec_avg (vector signed int, vector signed int);
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vector signed int vec_vavgsw (vector signed int, vector signed int);

vector unsigned int vec_vavguw (vector unsigned int,

vector unsigned int);

vector signed short vec_vavgsh (vector signed short,

vector signed short);

vector unsigned short vec_vavguh (vector unsigned short,

vector unsigned short);

vector signed char vec_vavgsb (vector signed char, vector signed char);

vector unsigned char vec_vavgub (vector unsigned char,

vector unsigned char);

vector float vec_ceil (vector float);

vector signed int vec_cmpb (vector float, vector float);

vector bool char vec_cmpeq (vector signed char, vector signed char);

vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);

vector bool short vec_cmpeq (vector signed short, vector signed short);

vector bool short vec_cmpeq (vector unsigned short,

vector unsigned short);

vector bool int vec_cmpeq (vector signed int, vector signed int);

vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);

vector bool int vec_cmpeq (vector float, vector float);

vector bool int vec_vcmpeqfp (vector float, vector float);

vector bool int vec_vcmpequw (vector signed int, vector signed int);

vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);

vector bool short vec_vcmpequh (vector signed short,

vector signed short);

vector bool short vec_vcmpequh (vector unsigned short,

vector unsigned short);

vector bool char vec_vcmpequb (vector signed char, vector signed char);

vector bool char vec_vcmpequb (vector unsigned char,

vector unsigned char);

vector bool int vec_cmpge (vector float, vector float);

vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);

vector bool char vec_cmpgt (vector signed char, vector signed char);

vector bool short vec_cmpgt (vector unsigned short,

vector unsigned short);

vector bool short vec_cmpgt (vector signed short, vector signed short);

vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);

vector bool int vec_cmpgt (vector signed int, vector signed int);

vector bool int vec_cmpgt (vector float, vector float);

vector bool int vec_vcmpgtfp (vector float, vector float);

vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
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vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);

vector bool short vec_vcmpgtsh (vector signed short,

vector signed short);

vector bool short vec_vcmpgtuh (vector unsigned short,

vector unsigned short);

vector bool char vec_vcmpgtsb (vector signed char, vector signed char);

vector bool char vec_vcmpgtub (vector unsigned char,

vector unsigned char);

vector bool int vec_cmple (vector float, vector float);

vector bool char vec_cmplt (vector unsigned char, vector unsigned char);

vector bool char vec_cmplt (vector signed char, vector signed char);

vector bool short vec_cmplt (vector unsigned short,

vector unsigned short);

vector bool short vec_cmplt (vector signed short, vector signed short);

vector bool int vec_cmplt (vector unsigned int, vector unsigned int);

vector bool int vec_cmplt (vector signed int, vector signed int);

vector bool int vec_cmplt (vector float, vector float);

vector float vec_ctf (vector unsigned int, const int);

vector float vec_ctf (vector signed int, const int);

vector float vec_vcfsx (vector signed int, const int);

vector float vec_vcfux (vector unsigned int, const int);

vector signed int vec_cts (vector float, const int);

vector unsigned int vec_ctu (vector float, const int);

void vec_dss (const int);

void vec_dssall (void);

void vec_dst (const vector unsigned char *, int, const int);

void vec_dst (const vector signed char *, int, const int);

void vec_dst (const vector bool char *, int, const int);

void vec_dst (const vector unsigned short *, int, const int);

void vec_dst (const vector signed short *, int, const int);

void vec_dst (const vector bool short *, int, const int);

void vec_dst (const vector pixel *, int, const int);

void vec_dst (const vector unsigned int *, int, const int);

void vec_dst (const vector signed int *, int, const int);

void vec_dst (const vector bool int *, int, const int);

void vec_dst (const vector float *, int, const int);

void vec_dst (const unsigned char *, int, const int);

void vec_dst (const signed char *, int, const int);

void vec_dst (const unsigned short *, int, const int);

void vec_dst (const short *, int, const int);

void vec_dst (const unsigned int *, int, const int);

void vec_dst (const int *, int, const int);

void vec_dst (const unsigned long *, int, const int);

void vec_dst (const long *, int, const int);
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void vec_dst (const float *, int, const int);

void vec_dstst (const vector unsigned char *, int, const int);

void vec_dstst (const vector signed char *, int, const int);

void vec_dstst (const vector bool char *, int, const int);

void vec_dstst (const vector unsigned short *, int, const int);

void vec_dstst (const vector signed short *, int, const int);

void vec_dstst (const vector bool short *, int, const int);

void vec_dstst (const vector pixel *, int, const int);

void vec_dstst (const vector unsigned int *, int, const int);

void vec_dstst (const vector signed int *, int, const int);

void vec_dstst (const vector bool int *, int, const int);

void vec_dstst (const vector float *, int, const int);

void vec_dstst (const unsigned char *, int, const int);

void vec_dstst (const signed char *, int, const int);

void vec_dstst (const unsigned short *, int, const int);

void vec_dstst (const short *, int, const int);

void vec_dstst (const unsigned int *, int, const int);

void vec_dstst (const int *, int, const int);

void vec_dstst (const unsigned long *, int, const int);

void vec_dstst (const long *, int, const int);

void vec_dstst (const float *, int, const int);

void vec_dststt (const vector unsigned char *, int, const int);

void vec_dststt (const vector signed char *, int, const int);

void vec_dststt (const vector bool char *, int, const int);

void vec_dststt (const vector unsigned short *, int, const int);

void vec_dststt (const vector signed short *, int, const int);

void vec_dststt (const vector bool short *, int, const int);

void vec_dststt (const vector pixel *, int, const int);

void vec_dststt (const vector unsigned int *, int, const int);

void vec_dststt (const vector signed int *, int, const int);

void vec_dststt (const vector bool int *, int, const int);

void vec_dststt (const vector float *, int, const int);

void vec_dststt (const unsigned char *, int, const int);

void vec_dststt (const signed char *, int, const int);

void vec_dststt (const unsigned short *, int, const int);

void vec_dststt (const short *, int, const int);

void vec_dststt (const unsigned int *, int, const int);

void vec_dststt (const int *, int, const int);

void vec_dststt (const unsigned long *, int, const int);

void vec_dststt (const long *, int, const int);

void vec_dststt (const float *, int, const int);

void vec_dstt (const vector unsigned char *, int, const int);

void vec_dstt (const vector signed char *, int, const int);

void vec_dstt (const vector bool char *, int, const int);

void vec_dstt (const vector unsigned short *, int, const int);

void vec_dstt (const vector signed short *, int, const int);

void vec_dstt (const vector bool short *, int, const int);

void vec_dstt (const vector pixel *, int, const int);

void vec_dstt (const vector unsigned int *, int, const int);

void vec_dstt (const vector signed int *, int, const int);

void vec_dstt (const vector bool int *, int, const int);

void vec_dstt (const vector float *, int, const int);

void vec_dstt (const unsigned char *, int, const int);

void vec_dstt (const signed char *, int, const int);

void vec_dstt (const unsigned short *, int, const int);
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void vec_dstt (const short *, int, const int);

void vec_dstt (const unsigned int *, int, const int);

void vec_dstt (const int *, int, const int);

void vec_dstt (const unsigned long *, int, const int);

void vec_dstt (const long *, int, const int);

void vec_dstt (const float *, int, const int);

vector float vec_expte (vector float);

vector float vec_floor (vector float);

vector float vec_ld (int, const vector float *);

vector float vec_ld (int, const float *);

vector bool int vec_ld (int, const vector bool int *);

vector signed int vec_ld (int, const vector signed int *);

vector signed int vec_ld (int, const int *);

vector signed int vec_ld (int, const long *);

vector unsigned int vec_ld (int, const vector unsigned int *);

vector unsigned int vec_ld (int, const unsigned int *);

vector unsigned int vec_ld (int, const unsigned long *);

vector bool short vec_ld (int, const vector bool short *);

vector pixel vec_ld (int, const vector pixel *);

vector signed short vec_ld (int, const vector signed short *);

vector signed short vec_ld (int, const short *);

vector unsigned short vec_ld (int, const vector unsigned short *);

vector unsigned short vec_ld (int, const unsigned short *);

vector bool char vec_ld (int, const vector bool char *);

vector signed char vec_ld (int, const vector signed char *);

vector signed char vec_ld (int, const signed char *);

vector unsigned char vec_ld (int, const vector unsigned char *);

vector unsigned char vec_ld (int, const unsigned char *);

vector signed char vec_lde (int, const signed char *);

vector unsigned char vec_lde (int, const unsigned char *);

vector signed short vec_lde (int, const short *);

vector unsigned short vec_lde (int, const unsigned short *);

vector float vec_lde (int, const float *);

vector signed int vec_lde (int, const int *);

vector unsigned int vec_lde (int, const unsigned int *);

vector signed int vec_lde (int, const long *);

vector unsigned int vec_lde (int, const unsigned long *);

vector float vec_lvewx (int, float *);

vector signed int vec_lvewx (int, int *);

vector unsigned int vec_lvewx (int, unsigned int *);

vector signed int vec_lvewx (int, long *);

vector unsigned int vec_lvewx (int, unsigned long *);

vector signed short vec_lvehx (int, short *);

vector unsigned short vec_lvehx (int, unsigned short *);

vector signed char vec_lvebx (int, char *);

vector unsigned char vec_lvebx (int, unsigned char *);

vector float vec_ldl (int, const vector float *);

vector float vec_ldl (int, const float *);

vector bool int vec_ldl (int, const vector bool int *);

vector signed int vec_ldl (int, const vector signed int *);
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vector signed int vec_ldl (int, const int *);

vector signed int vec_ldl (int, const long *);

vector unsigned int vec_ldl (int, const vector unsigned int *);

vector unsigned int vec_ldl (int, const unsigned int *);

vector unsigned int vec_ldl (int, const unsigned long *);

vector bool short vec_ldl (int, const vector bool short *);

vector pixel vec_ldl (int, const vector pixel *);

vector signed short vec_ldl (int, const vector signed short *);

vector signed short vec_ldl (int, const short *);

vector unsigned short vec_ldl (int, const vector unsigned short *);

vector unsigned short vec_ldl (int, const unsigned short *);

vector bool char vec_ldl (int, const vector bool char *);

vector signed char vec_ldl (int, const vector signed char *);

vector signed char vec_ldl (int, const signed char *);

vector unsigned char vec_ldl (int, const vector unsigned char *);

vector unsigned char vec_ldl (int, const unsigned char *);

vector float vec_loge (vector float);

vector unsigned char vec_lvsl (int, const volatile unsigned char *);

vector unsigned char vec_lvsl (int, const volatile signed char *);

vector unsigned char vec_lvsl (int, const volatile unsigned short *);

vector unsigned char vec_lvsl (int, const volatile short *);

vector unsigned char vec_lvsl (int, const volatile unsigned int *);

vector unsigned char vec_lvsl (int, const volatile int *);

vector unsigned char vec_lvsl (int, const volatile unsigned long *);

vector unsigned char vec_lvsl (int, const volatile long *);

vector unsigned char vec_lvsl (int, const volatile float *);

vector unsigned char vec_lvsr (int, const volatile unsigned char *);

vector unsigned char vec_lvsr (int, const volatile signed char *);

vector unsigned char vec_lvsr (int, const volatile unsigned short *);

vector unsigned char vec_lvsr (int, const volatile short *);

vector unsigned char vec_lvsr (int, const volatile unsigned int *);

vector unsigned char vec_lvsr (int, const volatile int *);

vector unsigned char vec_lvsr (int, const volatile unsigned long *);

vector unsigned char vec_lvsr (int, const volatile long *);

vector unsigned char vec_lvsr (int, const volatile float *);

vector float vec_madd (vector float, vector float, vector float);

vector signed short vec_madds (vector signed short,

vector signed short,

vector signed short);

vector unsigned char vec_max (vector bool char, vector unsigned char);

vector unsigned char vec_max (vector unsigned char, vector bool char);

vector unsigned char vec_max (vector unsigned char,

vector unsigned char);

vector signed char vec_max (vector bool char, vector signed char);

vector signed char vec_max (vector signed char, vector bool char);

vector signed char vec_max (vector signed char, vector signed char);

vector unsigned short vec_max (vector bool short,

vector unsigned short);

vector unsigned short vec_max (vector unsigned short,

vector bool short);

vector unsigned short vec_max (vector unsigned short,

vector unsigned short);
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vector signed short vec_max (vector bool short, vector signed short);

vector signed short vec_max (vector signed short, vector bool short);

vector signed short vec_max (vector signed short, vector signed short);

vector unsigned int vec_max (vector bool int, vector unsigned int);

vector unsigned int vec_max (vector unsigned int, vector bool int);

vector unsigned int vec_max (vector unsigned int, vector unsigned int);

vector signed int vec_max (vector bool int, vector signed int);

vector signed int vec_max (vector signed int, vector bool int);

vector signed int vec_max (vector signed int, vector signed int);

vector float vec_max (vector float, vector float);

vector float vec_vmaxfp (vector float, vector float);

vector signed int vec_vmaxsw (vector bool int, vector signed int);

vector signed int vec_vmaxsw (vector signed int, vector bool int);

vector signed int vec_vmaxsw (vector signed int, vector signed int);

vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);

vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);

vector unsigned int vec_vmaxuw (vector unsigned int,

vector unsigned int);

vector signed short vec_vmaxsh (vector bool short, vector signed short);

vector signed short vec_vmaxsh (vector signed short, vector bool short);

vector signed short vec_vmaxsh (vector signed short,

vector signed short);

vector unsigned short vec_vmaxuh (vector bool short,

vector unsigned short);

vector unsigned short vec_vmaxuh (vector unsigned short,

vector bool short);

vector unsigned short vec_vmaxuh (vector unsigned short,

vector unsigned short);

vector signed char vec_vmaxsb (vector bool char, vector signed char);

vector signed char vec_vmaxsb (vector signed char, vector bool char);

vector signed char vec_vmaxsb (vector signed char, vector signed char);

vector unsigned char vec_vmaxub (vector bool char,

vector unsigned char);

vector unsigned char vec_vmaxub (vector unsigned char,

vector bool char);

vector unsigned char vec_vmaxub (vector unsigned char,

vector unsigned char);

vector bool char vec_mergeh (vector bool char, vector bool char);

vector signed char vec_mergeh (vector signed char, vector signed char);

vector unsigned char vec_mergeh (vector unsigned char,

vector unsigned char);

vector bool short vec_mergeh (vector bool short, vector bool short);

vector pixel vec_mergeh (vector pixel, vector pixel);

vector signed short vec_mergeh (vector signed short,

vector signed short);

vector unsigned short vec_mergeh (vector unsigned short,

vector unsigned short);

vector float vec_mergeh (vector float, vector float);

vector bool int vec_mergeh (vector bool int, vector bool int);

vector signed int vec_mergeh (vector signed int, vector signed int);
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vector unsigned int vec_mergeh (vector unsigned int,

vector unsigned int);

vector float vec_vmrghw (vector float, vector float);

vector bool int vec_vmrghw (vector bool int, vector bool int);

vector signed int vec_vmrghw (vector signed int, vector signed int);

vector unsigned int vec_vmrghw (vector unsigned int,

vector unsigned int);

vector bool short vec_vmrghh (vector bool short, vector bool short);

vector signed short vec_vmrghh (vector signed short,

vector signed short);

vector unsigned short vec_vmrghh (vector unsigned short,

vector unsigned short);

vector pixel vec_vmrghh (vector pixel, vector pixel);

vector bool char vec_vmrghb (vector bool char, vector bool char);

vector signed char vec_vmrghb (vector signed char, vector signed char);

vector unsigned char vec_vmrghb (vector unsigned char,

vector unsigned char);

vector bool char vec_mergel (vector bool char, vector bool char);

vector signed char vec_mergel (vector signed char, vector signed char);

vector unsigned char vec_mergel (vector unsigned char,

vector unsigned char);

vector bool short vec_mergel (vector bool short, vector bool short);

vector pixel vec_mergel (vector pixel, vector pixel);

vector signed short vec_mergel (vector signed short,

vector signed short);

vector unsigned short vec_mergel (vector unsigned short,

vector unsigned short);

vector float vec_mergel (vector float, vector float);

vector bool int vec_mergel (vector bool int, vector bool int);

vector signed int vec_mergel (vector signed int, vector signed int);

vector unsigned int vec_mergel (vector unsigned int,

vector unsigned int);

vector float vec_vmrglw (vector float, vector float);

vector signed int vec_vmrglw (vector signed int, vector signed int);

vector unsigned int vec_vmrglw (vector unsigned int,

vector unsigned int);

vector bool int vec_vmrglw (vector bool int, vector bool int);

vector bool short vec_vmrglh (vector bool short, vector bool short);

vector signed short vec_vmrglh (vector signed short,

vector signed short);

vector unsigned short vec_vmrglh (vector unsigned short,

vector unsigned short);

vector pixel vec_vmrglh (vector pixel, vector pixel);

vector bool char vec_vmrglb (vector bool char, vector bool char);

vector signed char vec_vmrglb (vector signed char, vector signed char);

vector unsigned char vec_vmrglb (vector unsigned char,

vector unsigned char);

vector unsigned short vec_mfvscr (void);

vector unsigned char vec_min (vector bool char, vector unsigned char);
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vector unsigned char vec_min (vector unsigned char, vector bool char);

vector unsigned char vec_min (vector unsigned char,

vector unsigned char);

vector signed char vec_min (vector bool char, vector signed char);

vector signed char vec_min (vector signed char, vector bool char);

vector signed char vec_min (vector signed char, vector signed char);

vector unsigned short vec_min (vector bool short,

vector unsigned short);

vector unsigned short vec_min (vector unsigned short,

vector bool short);

vector unsigned short vec_min (vector unsigned short,

vector unsigned short);

vector signed short vec_min (vector bool short, vector signed short);

vector signed short vec_min (vector signed short, vector bool short);

vector signed short vec_min (vector signed short, vector signed short);

vector unsigned int vec_min (vector bool int, vector unsigned int);

vector unsigned int vec_min (vector unsigned int, vector bool int);

vector unsigned int vec_min (vector unsigned int, vector unsigned int);

vector signed int vec_min (vector bool int, vector signed int);

vector signed int vec_min (vector signed int, vector bool int);

vector signed int vec_min (vector signed int, vector signed int);

vector float vec_min (vector float, vector float);

vector float vec_vminfp (vector float, vector float);

vector signed int vec_vminsw (vector bool int, vector signed int);

vector signed int vec_vminsw (vector signed int, vector bool int);

vector signed int vec_vminsw (vector signed int, vector signed int);

vector unsigned int vec_vminuw (vector bool int, vector unsigned int);

vector unsigned int vec_vminuw (vector unsigned int, vector bool int);

vector unsigned int vec_vminuw (vector unsigned int,

vector unsigned int);

vector signed short vec_vminsh (vector bool short, vector signed short);

vector signed short vec_vminsh (vector signed short, vector bool short);

vector signed short vec_vminsh (vector signed short,

vector signed short);

vector unsigned short vec_vminuh (vector bool short,

vector unsigned short);

vector unsigned short vec_vminuh (vector unsigned short,

vector bool short);

vector unsigned short vec_vminuh (vector unsigned short,

vector unsigned short);

vector signed char vec_vminsb (vector bool char, vector signed char);

vector signed char vec_vminsb (vector signed char, vector bool char);

vector signed char vec_vminsb (vector signed char, vector signed char);

vector unsigned char vec_vminub (vector bool char,

vector unsigned char);

vector unsigned char vec_vminub (vector unsigned char,

vector bool char);

vector unsigned char vec_vminub (vector unsigned char,

vector unsigned char);

vector signed short vec_mladd (vector signed short,
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vector signed short,

vector signed short);

vector signed short vec_mladd (vector signed short,

vector unsigned short,

vector unsigned short);

vector signed short vec_mladd (vector unsigned short,

vector signed short,

vector signed short);

vector unsigned short vec_mladd (vector unsigned short,

vector unsigned short,

vector unsigned short);

vector signed short vec_mradds (vector signed short,

vector signed short,

vector signed short);

vector unsigned int vec_msum (vector unsigned char,

vector unsigned char,

vector unsigned int);

vector signed int vec_msum (vector signed char,

vector unsigned char,

vector signed int);

vector unsigned int vec_msum (vector unsigned short,

vector unsigned short,

vector unsigned int);

vector signed int vec_msum (vector signed short,

vector signed short,

vector signed int);

vector signed int vec_vmsumshm (vector signed short,

vector signed short,

vector signed int);

vector unsigned int vec_vmsumuhm (vector unsigned short,

vector unsigned short,

vector unsigned int);

vector signed int vec_vmsummbm (vector signed char,

vector unsigned char,

vector signed int);

vector unsigned int vec_vmsumubm (vector unsigned char,

vector unsigned char,

vector unsigned int);

vector unsigned int vec_msums (vector unsigned short,

vector unsigned short,

vector unsigned int);

vector signed int vec_msums (vector signed short,

vector signed short,

vector signed int);

vector signed int vec_vmsumshs (vector signed short,

vector signed short,

vector signed int);

vector unsigned int vec_vmsumuhs (vector unsigned short,

vector unsigned short,
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vector unsigned int);

void vec_mtvscr (vector signed int);

void vec_mtvscr (vector unsigned int);

void vec_mtvscr (vector bool int);

void vec_mtvscr (vector signed short);

void vec_mtvscr (vector unsigned short);

void vec_mtvscr (vector bool short);

void vec_mtvscr (vector pixel);

void vec_mtvscr (vector signed char);

void vec_mtvscr (vector unsigned char);

void vec_mtvscr (vector bool char);

vector unsigned short vec_mule (vector unsigned char,

vector unsigned char);

vector signed short vec_mule (vector signed char,

vector signed char);

vector unsigned int vec_mule (vector unsigned short,

vector unsigned short);

vector signed int vec_mule (vector signed short, vector signed short);

vector signed int vec_vmulesh (vector signed short,

vector signed short);

vector unsigned int vec_vmuleuh (vector unsigned short,

vector unsigned short);

vector signed short vec_vmulesb (vector signed char,

vector signed char);

vector unsigned short vec_vmuleub (vector unsigned char,

vector unsigned char);

vector unsigned short vec_mulo (vector unsigned char,

vector unsigned char);

vector signed short vec_mulo (vector signed char, vector signed char);

vector unsigned int vec_mulo (vector unsigned short,

vector unsigned short);

vector signed int vec_mulo (vector signed short, vector signed short);

vector signed int vec_vmulosh (vector signed short,

vector signed short);

vector unsigned int vec_vmulouh (vector unsigned short,

vector unsigned short);

vector signed short vec_vmulosb (vector signed char,

vector signed char);

vector unsigned short vec_vmuloub (vector unsigned char,

vector unsigned char);

vector float vec_nmsub (vector float, vector float, vector float);

vector float vec_nor (vector float, vector float);

vector signed int vec_nor (vector signed int, vector signed int);

vector unsigned int vec_nor (vector unsigned int, vector unsigned int);

vector bool int vec_nor (vector bool int, vector bool int);
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vector signed short vec_nor (vector signed short, vector signed short);

vector unsigned short vec_nor (vector unsigned short,

vector unsigned short);

vector bool short vec_nor (vector bool short, vector bool short);

vector signed char vec_nor (vector signed char, vector signed char);

vector unsigned char vec_nor (vector unsigned char,

vector unsigned char);

vector bool char vec_nor (vector bool char, vector bool char);

vector float vec_or (vector float, vector float);

vector float vec_or (vector float, vector bool int);

vector float vec_or (vector bool int, vector float);

vector bool int vec_or (vector bool int, vector bool int);

vector signed int vec_or (vector bool int, vector signed int);

vector signed int vec_or (vector signed int, vector bool int);

vector signed int vec_or (vector signed int, vector signed int);

vector unsigned int vec_or (vector bool int, vector unsigned int);

vector unsigned int vec_or (vector unsigned int, vector bool int);

vector unsigned int vec_or (vector unsigned int, vector unsigned int);

vector bool short vec_or (vector bool short, vector bool short);

vector signed short vec_or (vector bool short, vector signed short);

vector signed short vec_or (vector signed short, vector bool short);

vector signed short vec_or (vector signed short, vector signed short);

vector unsigned short vec_or (vector bool short, vector unsigned short);

vector unsigned short vec_or (vector unsigned short, vector bool short);

vector unsigned short vec_or (vector unsigned short,

vector unsigned short);

vector signed char vec_or (vector bool char, vector signed char);

vector bool char vec_or (vector bool char, vector bool char);

vector signed char vec_or (vector signed char, vector bool char);

vector signed char vec_or (vector signed char, vector signed char);

vector unsigned char vec_or (vector bool char, vector unsigned char);

vector unsigned char vec_or (vector unsigned char, vector bool char);

vector unsigned char vec_or (vector unsigned char,

vector unsigned char);

vector signed char vec_pack (vector signed short, vector signed short);

vector unsigned char vec_pack (vector unsigned short,

vector unsigned short);

vector bool char vec_pack (vector bool short, vector bool short);

vector signed short vec_pack (vector signed int, vector signed int);

vector unsigned short vec_pack (vector unsigned int,

vector unsigned int);

vector bool short vec_pack (vector bool int, vector bool int);

vector bool short vec_vpkuwum (vector bool int, vector bool int);

vector signed short vec_vpkuwum (vector signed int, vector signed int);

vector unsigned short vec_vpkuwum (vector unsigned int,

vector unsigned int);

vector bool char vec_vpkuhum (vector bool short, vector bool short);

vector signed char vec_vpkuhum (vector signed short,

vector signed short);

vector unsigned char vec_vpkuhum (vector unsigned short,

vector unsigned short);

vector pixel vec_packpx (vector unsigned int, vector unsigned int);
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vector unsigned char vec_packs (vector unsigned short,

vector unsigned short);

vector signed char vec_packs (vector signed short, vector signed short);

vector unsigned short vec_packs (vector unsigned int,

vector unsigned int);

vector signed short vec_packs (vector signed int, vector signed int);

vector signed short vec_vpkswss (vector signed int, vector signed int);

vector unsigned short vec_vpkuwus (vector unsigned int,

vector unsigned int);

vector signed char vec_vpkshss (vector signed short,

vector signed short);

vector unsigned char vec_vpkuhus (vector unsigned short,

vector unsigned short);

vector unsigned char vec_packsu (vector unsigned short,

vector unsigned short);

vector unsigned char vec_packsu (vector signed short,

vector signed short);

vector unsigned short vec_packsu (vector unsigned int,

vector unsigned int);

vector unsigned short vec_packsu (vector signed int, vector signed int);

vector unsigned short vec_vpkswus (vector signed int,

vector signed int);

vector unsigned char vec_vpkshus (vector signed short,

vector signed short);

vector float vec_perm (vector float,

vector float,

vector unsigned char);

vector signed int vec_perm (vector signed int,

vector signed int,

vector unsigned char);

vector unsigned int vec_perm (vector unsigned int,

vector unsigned int,

vector unsigned char);

vector bool int vec_perm (vector bool int,

vector bool int,

vector unsigned char);

vector signed short vec_perm (vector signed short,

vector signed short,

vector unsigned char);

vector unsigned short vec_perm (vector unsigned short,

vector unsigned short,

vector unsigned char);

vector bool short vec_perm (vector bool short,

vector bool short,

vector unsigned char);

vector pixel vec_perm (vector pixel,

vector pixel,

vector unsigned char);

vector signed char vec_perm (vector signed char,

vector signed char,
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vector unsigned char);

vector unsigned char vec_perm (vector unsigned char,

vector unsigned char,

vector unsigned char);

vector bool char vec_perm (vector bool char,

vector bool char,

vector unsigned char);

vector float vec_re (vector float);

vector signed char vec_rl (vector signed char,

vector unsigned char);

vector unsigned char vec_rl (vector unsigned char,

vector unsigned char);

vector signed short vec_rl (vector signed short, vector unsigned short);

vector unsigned short vec_rl (vector unsigned short,

vector unsigned short);

vector signed int vec_rl (vector signed int, vector unsigned int);

vector unsigned int vec_rl (vector unsigned int, vector unsigned int);

vector signed int vec_vrlw (vector signed int, vector unsigned int);

vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);

vector signed short vec_vrlh (vector signed short,

vector unsigned short);

vector unsigned short vec_vrlh (vector unsigned short,

vector unsigned short);

vector signed char vec_vrlb (vector signed char, vector unsigned char);

vector unsigned char vec_vrlb (vector unsigned char,

vector unsigned char);

vector float vec_round (vector float);

vector float vec_rsqrte (vector float);

vector float vec_sel (vector float, vector float, vector bool int);

vector float vec_sel (vector float, vector float, vector unsigned int);

vector signed int vec_sel (vector signed int,

vector signed int,

vector bool int);

vector signed int vec_sel (vector signed int,

vector signed int,

vector unsigned int);

vector unsigned int vec_sel (vector unsigned int,

vector unsigned int,

vector bool int);

vector unsigned int vec_sel (vector unsigned int,

vector unsigned int,

vector unsigned int);

vector bool int vec_sel (vector bool int,

vector bool int,

vector bool int);

vector bool int vec_sel (vector bool int,

vector bool int,

vector unsigned int);

vector signed short vec_sel (vector signed short,

vector signed short,
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vector bool short);

vector signed short vec_sel (vector signed short,

vector signed short,

vector unsigned short);

vector unsigned short vec_sel (vector unsigned short,

vector unsigned short,

vector bool short);

vector unsigned short vec_sel (vector unsigned short,

vector unsigned short,

vector unsigned short);

vector bool short vec_sel (vector bool short,

vector bool short,

vector bool short);

vector bool short vec_sel (vector bool short,

vector bool short,

vector unsigned short);

vector signed char vec_sel (vector signed char,

vector signed char,

vector bool char);

vector signed char vec_sel (vector signed char,

vector signed char,

vector unsigned char);

vector unsigned char vec_sel (vector unsigned char,

vector unsigned char,

vector bool char);

vector unsigned char vec_sel (vector unsigned char,

vector unsigned char,

vector unsigned char);

vector bool char vec_sel (vector bool char,

vector bool char,

vector bool char);

vector bool char vec_sel (vector bool char,

vector bool char,

vector unsigned char);

vector signed char vec_sl (vector signed char,

vector unsigned char);

vector unsigned char vec_sl (vector unsigned char,

vector unsigned char);

vector signed short vec_sl (vector signed short, vector unsigned short);

vector unsigned short vec_sl (vector unsigned short,

vector unsigned short);

vector signed int vec_sl (vector signed int, vector unsigned int);

vector unsigned int vec_sl (vector unsigned int, vector unsigned int);

vector signed int vec_vslw (vector signed int, vector unsigned int);

vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);

vector signed short vec_vslh (vector signed short,

vector unsigned short);

vector unsigned short vec_vslh (vector unsigned short,

vector unsigned short);

vector signed char vec_vslb (vector signed char, vector unsigned char);

vector unsigned char vec_vslb (vector unsigned char,

vector unsigned char);

vector float vec_sld (vector float, vector float, const int);
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vector signed int vec_sld (vector signed int,

vector signed int,

const int);

vector unsigned int vec_sld (vector unsigned int,

vector unsigned int,

const int);

vector bool int vec_sld (vector bool int,

vector bool int,

const int);

vector signed short vec_sld (vector signed short,

vector signed short,

const int);

vector unsigned short vec_sld (vector unsigned short,

vector unsigned short,

const int);

vector bool short vec_sld (vector bool short,

vector bool short,

const int);

vector pixel vec_sld (vector pixel,

vector pixel,

const int);

vector signed char vec_sld (vector signed char,

vector signed char,

const int);

vector unsigned char vec_sld (vector unsigned char,

vector unsigned char,

const int);

vector bool char vec_sld (vector bool char,

vector bool char,

const int);

vector signed int vec_sll (vector signed int,

vector unsigned int);

vector signed int vec_sll (vector signed int,

vector unsigned short);

vector signed int vec_sll (vector signed int,

vector unsigned char);

vector unsigned int vec_sll (vector unsigned int,

vector unsigned int);

vector unsigned int vec_sll (vector unsigned int,

vector unsigned short);

vector unsigned int vec_sll (vector unsigned int,

vector unsigned char);

vector bool int vec_sll (vector bool int,

vector unsigned int);

vector bool int vec_sll (vector bool int,

vector unsigned short);

vector bool int vec_sll (vector bool int,

vector unsigned char);

vector signed short vec_sll (vector signed short,

vector unsigned int);

vector signed short vec_sll (vector signed short,

vector unsigned short);

vector signed short vec_sll (vector signed short,

vector unsigned char);

vector unsigned short vec_sll (vector unsigned short,

vector unsigned int);

vector unsigned short vec_sll (vector unsigned short,
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vector unsigned short);

vector unsigned short vec_sll (vector unsigned short,

vector unsigned char);

vector bool short vec_sll (vector bool short, vector unsigned int);

vector bool short vec_sll (vector bool short, vector unsigned short);

vector bool short vec_sll (vector bool short, vector unsigned char);

vector pixel vec_sll (vector pixel, vector unsigned int);

vector pixel vec_sll (vector pixel, vector unsigned short);

vector pixel vec_sll (vector pixel, vector unsigned char);

vector signed char vec_sll (vector signed char, vector unsigned int);

vector signed char vec_sll (vector signed char, vector unsigned short);

vector signed char vec_sll (vector signed char, vector unsigned char);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned int);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned short);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned char);

vector bool char vec_sll (vector bool char, vector unsigned int);

vector bool char vec_sll (vector bool char, vector unsigned short);

vector bool char vec_sll (vector bool char, vector unsigned char);

vector float vec_slo (vector float, vector signed char);

vector float vec_slo (vector float, vector unsigned char);

vector signed int vec_slo (vector signed int, vector signed char);

vector signed int vec_slo (vector signed int, vector unsigned char);

vector unsigned int vec_slo (vector unsigned int, vector signed char);

vector unsigned int vec_slo (vector unsigned int, vector unsigned char);

vector signed short vec_slo (vector signed short, vector signed char);

vector signed short vec_slo (vector signed short, vector unsigned char);

vector unsigned short vec_slo (vector unsigned short,

vector signed char);

vector unsigned short vec_slo (vector unsigned short,

vector unsigned char);

vector pixel vec_slo (vector pixel, vector signed char);

vector pixel vec_slo (vector pixel, vector unsigned char);

vector signed char vec_slo (vector signed char, vector signed char);

vector signed char vec_slo (vector signed char, vector unsigned char);

vector unsigned char vec_slo (vector unsigned char, vector signed char);

vector unsigned char vec_slo (vector unsigned char,

vector unsigned char);

vector signed char vec_splat (vector signed char, const int);

vector unsigned char vec_splat (vector unsigned char, const int);

vector bool char vec_splat (vector bool char, const int);

vector signed short vec_splat (vector signed short, const int);

vector unsigned short vec_splat (vector unsigned short, const int);

vector bool short vec_splat (vector bool short, const int);

vector pixel vec_splat (vector pixel, const int);

vector float vec_splat (vector float, const int);

vector signed int vec_splat (vector signed int, const int);

vector unsigned int vec_splat (vector unsigned int, const int);

vector bool int vec_splat (vector bool int, const int);

vector float vec_vspltw (vector float, const int);

vector signed int vec_vspltw (vector signed int, const int);

vector unsigned int vec_vspltw (vector unsigned int, const int);

vector bool int vec_vspltw (vector bool int, const int);
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vector bool short vec_vsplth (vector bool short, const int);

vector signed short vec_vsplth (vector signed short, const int);

vector unsigned short vec_vsplth (vector unsigned short, const int);

vector pixel vec_vsplth (vector pixel, const int);

vector signed char vec_vspltb (vector signed char, const int);

vector unsigned char vec_vspltb (vector unsigned char, const int);

vector bool char vec_vspltb (vector bool char, const int);

vector signed char vec_splat_s8 (const int);

vector signed short vec_splat_s16 (const int);

vector signed int vec_splat_s32 (const int);

vector unsigned char vec_splat_u8 (const int);

vector unsigned short vec_splat_u16 (const int);

vector unsigned int vec_splat_u32 (const int);

vector signed char vec_sr (vector signed char, vector unsigned char);

vector unsigned char vec_sr (vector unsigned char,

vector unsigned char);

vector signed short vec_sr (vector signed short,

vector unsigned short);

vector unsigned short vec_sr (vector unsigned short,

vector unsigned short);

vector signed int vec_sr (vector signed int, vector unsigned int);

vector unsigned int vec_sr (vector unsigned int, vector unsigned int);

vector signed int vec_vsrw (vector signed int, vector unsigned int);

vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);

vector signed short vec_vsrh (vector signed short,

vector unsigned short);

vector unsigned short vec_vsrh (vector unsigned short,

vector unsigned short);

vector signed char vec_vsrb (vector signed char, vector unsigned char);

vector unsigned char vec_vsrb (vector unsigned char,

vector unsigned char);

vector signed char vec_sra (vector signed char, vector unsigned char);

vector unsigned char vec_sra (vector unsigned char,

vector unsigned char);

vector signed short vec_sra (vector signed short,

vector unsigned short);

vector unsigned short vec_sra (vector unsigned short,

vector unsigned short);

vector signed int vec_sra (vector signed int, vector unsigned int);

vector unsigned int vec_sra (vector unsigned int, vector unsigned int);

vector signed int vec_vsraw (vector signed int, vector unsigned int);

vector unsigned int vec_vsraw (vector unsigned int,

vector unsigned int);
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vector signed short vec_vsrah (vector signed short,

vector unsigned short);

vector unsigned short vec_vsrah (vector unsigned short,

vector unsigned short);

vector signed char vec_vsrab (vector signed char, vector unsigned char);

vector unsigned char vec_vsrab (vector unsigned char,

vector unsigned char);

vector signed int vec_srl (vector signed int, vector unsigned int);

vector signed int vec_srl (vector signed int, vector unsigned short);

vector signed int vec_srl (vector signed int, vector unsigned char);

vector unsigned int vec_srl (vector unsigned int, vector unsigned int);

vector unsigned int vec_srl (vector unsigned int,

vector unsigned short);

vector unsigned int vec_srl (vector unsigned int, vector unsigned char);

vector bool int vec_srl (vector bool int, vector unsigned int);

vector bool int vec_srl (vector bool int, vector unsigned short);

vector bool int vec_srl (vector bool int, vector unsigned char);

vector signed short vec_srl (vector signed short, vector unsigned int);

vector signed short vec_srl (vector signed short,

vector unsigned short);

vector signed short vec_srl (vector signed short, vector unsigned char);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned int);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned short);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned char);

vector bool short vec_srl (vector bool short, vector unsigned int);

vector bool short vec_srl (vector bool short, vector unsigned short);

vector bool short vec_srl (vector bool short, vector unsigned char);

vector pixel vec_srl (vector pixel, vector unsigned int);

vector pixel vec_srl (vector pixel, vector unsigned short);

vector pixel vec_srl (vector pixel, vector unsigned char);

vector signed char vec_srl (vector signed char, vector unsigned int);

vector signed char vec_srl (vector signed char, vector unsigned short);

vector signed char vec_srl (vector signed char, vector unsigned char);

vector unsigned char vec_srl (vector unsigned char,

vector unsigned int);

vector unsigned char vec_srl (vector unsigned char,

vector unsigned short);

vector unsigned char vec_srl (vector unsigned char,

vector unsigned char);

vector bool char vec_srl (vector bool char, vector unsigned int);

vector bool char vec_srl (vector bool char, vector unsigned short);

vector bool char vec_srl (vector bool char, vector unsigned char);

vector float vec_sro (vector float, vector signed char);

vector float vec_sro (vector float, vector unsigned char);

vector signed int vec_sro (vector signed int, vector signed char);

vector signed int vec_sro (vector signed int, vector unsigned char);

vector unsigned int vec_sro (vector unsigned int, vector signed char);

vector unsigned int vec_sro (vector unsigned int, vector unsigned char);

vector signed short vec_sro (vector signed short, vector signed char);

vector signed short vec_sro (vector signed short, vector unsigned char);

vector unsigned short vec_sro (vector unsigned short,

vector signed char);
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vector unsigned short vec_sro (vector unsigned short,

vector unsigned char);

vector pixel vec_sro (vector pixel, vector signed char);

vector pixel vec_sro (vector pixel, vector unsigned char);

vector signed char vec_sro (vector signed char, vector signed char);

vector signed char vec_sro (vector signed char, vector unsigned char);

vector unsigned char vec_sro (vector unsigned char, vector signed char);

vector unsigned char vec_sro (vector unsigned char,

vector unsigned char);

void vec_st (vector float, int, vector float *);

void vec_st (vector float, int, float *);

void vec_st (vector signed int, int, vector signed int *);

void vec_st (vector signed int, int, int *);

void vec_st (vector unsigned int, int, vector unsigned int *);

void vec_st (vector unsigned int, int, unsigned int *);

void vec_st (vector bool int, int, vector bool int *);

void vec_st (vector bool int, int, unsigned int *);

void vec_st (vector bool int, int, int *);

void vec_st (vector signed short, int, vector signed short *);

void vec_st (vector signed short, int, short *);

void vec_st (vector unsigned short, int, vector unsigned short *);

void vec_st (vector unsigned short, int, unsigned short *);

void vec_st (vector bool short, int, vector bool short *);

void vec_st (vector bool short, int, unsigned short *);

void vec_st (vector pixel, int, vector pixel *);

void vec_st (vector pixel, int, unsigned short *);

void vec_st (vector pixel, int, short *);

void vec_st (vector bool short, int, short *);

void vec_st (vector signed char, int, vector signed char *);

void vec_st (vector signed char, int, signed char *);

void vec_st (vector unsigned char, int, vector unsigned char *);

void vec_st (vector unsigned char, int, unsigned char *);

void vec_st (vector bool char, int, vector bool char *);

void vec_st (vector bool char, int, unsigned char *);

void vec_st (vector bool char, int, signed char *);

void vec_ste (vector signed char, int, signed char *);

void vec_ste (vector unsigned char, int, unsigned char *);

void vec_ste (vector bool char, int, signed char *);

void vec_ste (vector bool char, int, unsigned char *);

void vec_ste (vector signed short, int, short *);

void vec_ste (vector unsigned short, int, unsigned short *);

void vec_ste (vector bool short, int, short *);

void vec_ste (vector bool short, int, unsigned short *);

void vec_ste (vector pixel, int, short *);

void vec_ste (vector pixel, int, unsigned short *);

void vec_ste (vector float, int, float *);

void vec_ste (vector signed int, int, int *);

void vec_ste (vector unsigned int, int, unsigned int *);

void vec_ste (vector bool int, int, int *);

void vec_ste (vector bool int, int, unsigned int *);

void vec_stvewx (vector float, int, float *);

void vec_stvewx (vector signed int, int, int *);

void vec_stvewx (vector unsigned int, int, unsigned int *);

void vec_stvewx (vector bool int, int, int *);

void vec_stvewx (vector bool int, int, unsigned int *);
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void vec_stvehx (vector signed short, int, short *);

void vec_stvehx (vector unsigned short, int, unsigned short *);

void vec_stvehx (vector bool short, int, short *);

void vec_stvehx (vector bool short, int, unsigned short *);

void vec_stvehx (vector pixel, int, short *);

void vec_stvehx (vector pixel, int, unsigned short *);

void vec_stvebx (vector signed char, int, signed char *);

void vec_stvebx (vector unsigned char, int, unsigned char *);

void vec_stvebx (vector bool char, int, signed char *);

void vec_stvebx (vector bool char, int, unsigned char *);

void vec_stl (vector float, int, vector float *);

void vec_stl (vector float, int, float *);

void vec_stl (vector signed int, int, vector signed int *);

void vec_stl (vector signed int, int, int *);

void vec_stl (vector unsigned int, int, vector unsigned int *);

void vec_stl (vector unsigned int, int, unsigned int *);

void vec_stl (vector bool int, int, vector bool int *);

void vec_stl (vector bool int, int, unsigned int *);

void vec_stl (vector bool int, int, int *);

void vec_stl (vector signed short, int, vector signed short *);

void vec_stl (vector signed short, int, short *);

void vec_stl (vector unsigned short, int, vector unsigned short *);

void vec_stl (vector unsigned short, int, unsigned short *);

void vec_stl (vector bool short, int, vector bool short *);

void vec_stl (vector bool short, int, unsigned short *);

void vec_stl (vector bool short, int, short *);

void vec_stl (vector pixel, int, vector pixel *);

void vec_stl (vector pixel, int, unsigned short *);

void vec_stl (vector pixel, int, short *);

void vec_stl (vector signed char, int, vector signed char *);

void vec_stl (vector signed char, int, signed char *);

void vec_stl (vector unsigned char, int, vector unsigned char *);

void vec_stl (vector unsigned char, int, unsigned char *);

void vec_stl (vector bool char, int, vector bool char *);

void vec_stl (vector bool char, int, unsigned char *);

void vec_stl (vector bool char, int, signed char *);

vector signed char vec_sub (vector bool char, vector signed char);

vector signed char vec_sub (vector signed char, vector bool char);

vector signed char vec_sub (vector signed char, vector signed char);

vector unsigned char vec_sub (vector bool char, vector unsigned char);

vector unsigned char vec_sub (vector unsigned char, vector bool char);

vector unsigned char vec_sub (vector unsigned char,

vector unsigned char);

vector signed short vec_sub (vector bool short, vector signed short);

vector signed short vec_sub (vector signed short, vector bool short);

vector signed short vec_sub (vector signed short, vector signed short);

vector unsigned short vec_sub (vector bool short,

vector unsigned short);

vector unsigned short vec_sub (vector unsigned short,

vector bool short);

vector unsigned short vec_sub (vector unsigned short,

vector unsigned short);

vector signed int vec_sub (vector bool int, vector signed int);

vector signed int vec_sub (vector signed int, vector bool int);
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vector signed int vec_sub (vector signed int, vector signed int);

vector unsigned int vec_sub (vector bool int, vector unsigned int);

vector unsigned int vec_sub (vector unsigned int, vector bool int);

vector unsigned int vec_sub (vector unsigned int, vector unsigned int);

vector float vec_sub (vector float, vector float);

vector float vec_vsubfp (vector float, vector float);

vector signed int vec_vsubuwm (vector bool int, vector signed int);

vector signed int vec_vsubuwm (vector signed int, vector bool int);

vector signed int vec_vsubuwm (vector signed int, vector signed int);

vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);

vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);

vector unsigned int vec_vsubuwm (vector unsigned int,

vector unsigned int);

vector signed short vec_vsubuhm (vector bool short,

vector signed short);

vector signed short vec_vsubuhm (vector signed short,

vector bool short);

vector signed short vec_vsubuhm (vector signed short,

vector signed short);

vector unsigned short vec_vsubuhm (vector bool short,

vector unsigned short);

vector unsigned short vec_vsubuhm (vector unsigned short,

vector bool short);

vector unsigned short vec_vsubuhm (vector unsigned short,

vector unsigned short);

vector signed char vec_vsububm (vector bool char, vector signed char);

vector signed char vec_vsububm (vector signed char, vector bool char);

vector signed char vec_vsububm (vector signed char, vector signed char);

vector unsigned char vec_vsububm (vector bool char,

vector unsigned char);

vector unsigned char vec_vsububm (vector unsigned char,

vector bool char);

vector unsigned char vec_vsububm (vector unsigned char,

vector unsigned char);

vector unsigned int vec_subc (vector unsigned int, vector unsigned int);

vector unsigned char vec_subs (vector bool char, vector unsigned char);

vector unsigned char vec_subs (vector unsigned char, vector bool char);

vector unsigned char vec_subs (vector unsigned char,

vector unsigned char);

vector signed char vec_subs (vector bool char, vector signed char);

vector signed char vec_subs (vector signed char, vector bool char);

vector signed char vec_subs (vector signed char, vector signed char);

vector unsigned short vec_subs (vector bool short,

vector unsigned short);

vector unsigned short vec_subs (vector unsigned short,

vector bool short);

vector unsigned short vec_subs (vector unsigned short,

vector unsigned short);

vector signed short vec_subs (vector bool short, vector signed short);

vector signed short vec_subs (vector signed short, vector bool short);

vector signed short vec_subs (vector signed short, vector signed short);

vector unsigned int vec_subs (vector bool int, vector unsigned int);
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vector unsigned int vec_subs (vector unsigned int, vector bool int);

vector unsigned int vec_subs (vector unsigned int, vector unsigned int);

vector signed int vec_subs (vector bool int, vector signed int);

vector signed int vec_subs (vector signed int, vector bool int);

vector signed int vec_subs (vector signed int, vector signed int);

vector signed int vec_vsubsws (vector bool int, vector signed int);

vector signed int vec_vsubsws (vector signed int, vector bool int);

vector signed int vec_vsubsws (vector signed int, vector signed int);

vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);

vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);

vector unsigned int vec_vsubuws (vector unsigned int,

vector unsigned int);

vector signed short vec_vsubshs (vector bool short,

vector signed short);

vector signed short vec_vsubshs (vector signed short,

vector bool short);

vector signed short vec_vsubshs (vector signed short,

vector signed short);

vector unsigned short vec_vsubuhs (vector bool short,

vector unsigned short);

vector unsigned short vec_vsubuhs (vector unsigned short,

vector bool short);

vector unsigned short vec_vsubuhs (vector unsigned short,

vector unsigned short);

vector signed char vec_vsubsbs (vector bool char, vector signed char);

vector signed char vec_vsubsbs (vector signed char, vector bool char);

vector signed char vec_vsubsbs (vector signed char, vector signed char);

vector unsigned char vec_vsububs (vector bool char,

vector unsigned char);

vector unsigned char vec_vsububs (vector unsigned char,

vector bool char);

vector unsigned char vec_vsububs (vector unsigned char,

vector unsigned char);

vector unsigned int vec_sum4s (vector unsigned char,

vector unsigned int);

vector signed int vec_sum4s (vector signed char, vector signed int);

vector signed int vec_sum4s (vector signed short, vector signed int);

vector signed int vec_vsum4shs (vector signed short, vector signed int);

vector signed int vec_vsum4sbs (vector signed char, vector signed int);

vector unsigned int vec_vsum4ubs (vector unsigned char,

vector unsigned int);

vector signed int vec_sum2s (vector signed int, vector signed int);

vector signed int vec_sums (vector signed int, vector signed int);

vector float vec_trunc (vector float);
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vector signed short vec_unpackh (vector signed char);

vector bool short vec_unpackh (vector bool char);

vector signed int vec_unpackh (vector signed short);

vector bool int vec_unpackh (vector bool short);

vector unsigned int vec_unpackh (vector pixel);

vector bool int vec_vupkhsh (vector bool short);

vector signed int vec_vupkhsh (vector signed short);

vector unsigned int vec_vupkhpx (vector pixel);

vector bool short vec_vupkhsb (vector bool char);

vector signed short vec_vupkhsb (vector signed char);

vector signed short vec_unpackl (vector signed char);

vector bool short vec_unpackl (vector bool char);

vector unsigned int vec_unpackl (vector pixel);

vector signed int vec_unpackl (vector signed short);

vector bool int vec_unpackl (vector bool short);

vector unsigned int vec_vupklpx (vector pixel);

vector bool int vec_vupklsh (vector bool short);

vector signed int vec_vupklsh (vector signed short);

vector bool short vec_vupklsb (vector bool char);

vector signed short vec_vupklsb (vector signed char);

vector float vec_xor (vector float, vector float);

vector float vec_xor (vector float, vector bool int);

vector float vec_xor (vector bool int, vector float);

vector bool int vec_xor (vector bool int, vector bool int);

vector signed int vec_xor (vector bool int, vector signed int);

vector signed int vec_xor (vector signed int, vector bool int);

vector signed int vec_xor (vector signed int, vector signed int);

vector unsigned int vec_xor (vector bool int, vector unsigned int);

vector unsigned int vec_xor (vector unsigned int, vector bool int);

vector unsigned int vec_xor (vector unsigned int, vector unsigned int);

vector bool short vec_xor (vector bool short, vector bool short);

vector signed short vec_xor (vector bool short, vector signed short);

vector signed short vec_xor (vector signed short, vector bool short);

vector signed short vec_xor (vector signed short, vector signed short);

vector unsigned short vec_xor (vector bool short,

vector unsigned short);

vector unsigned short vec_xor (vector unsigned short,

vector bool short);

vector unsigned short vec_xor (vector unsigned short,

vector unsigned short);

vector signed char vec_xor (vector bool char, vector signed char);

vector bool char vec_xor (vector bool char, vector bool char);

vector signed char vec_xor (vector signed char, vector bool char);

vector signed char vec_xor (vector signed char, vector signed char);

vector unsigned char vec_xor (vector bool char, vector unsigned char);

vector unsigned char vec_xor (vector unsigned char, vector bool char);

vector unsigned char vec_xor (vector unsigned char,

vector unsigned char);

int vec_all_eq (vector signed char, vector bool char);



Chapter 5: Extensions to the C Language Family 347

int vec_all_eq (vector signed char, vector signed char);

int vec_all_eq (vector unsigned char, vector bool char);

int vec_all_eq (vector unsigned char, vector unsigned char);

int vec_all_eq (vector bool char, vector bool char);

int vec_all_eq (vector bool char, vector unsigned char);

int vec_all_eq (vector bool char, vector signed char);

int vec_all_eq (vector signed short, vector bool short);

int vec_all_eq (vector signed short, vector signed short);

int vec_all_eq (vector unsigned short, vector bool short);

int vec_all_eq (vector unsigned short, vector unsigned short);

int vec_all_eq (vector bool short, vector bool short);

int vec_all_eq (vector bool short, vector unsigned short);

int vec_all_eq (vector bool short, vector signed short);

int vec_all_eq (vector pixel, vector pixel);

int vec_all_eq (vector signed int, vector bool int);

int vec_all_eq (vector signed int, vector signed int);

int vec_all_eq (vector unsigned int, vector bool int);

int vec_all_eq (vector unsigned int, vector unsigned int);

int vec_all_eq (vector bool int, vector bool int);

int vec_all_eq (vector bool int, vector unsigned int);

int vec_all_eq (vector bool int, vector signed int);

int vec_all_eq (vector float, vector float);

int vec_all_ge (vector bool char, vector unsigned char);

int vec_all_ge (vector unsigned char, vector bool char);

int vec_all_ge (vector unsigned char, vector unsigned char);

int vec_all_ge (vector bool char, vector signed char);

int vec_all_ge (vector signed char, vector bool char);

int vec_all_ge (vector signed char, vector signed char);

int vec_all_ge (vector bool short, vector unsigned short);

int vec_all_ge (vector unsigned short, vector bool short);

int vec_all_ge (vector unsigned short, vector unsigned short);

int vec_all_ge (vector signed short, vector signed short);

int vec_all_ge (vector bool short, vector signed short);

int vec_all_ge (vector signed short, vector bool short);

int vec_all_ge (vector bool int, vector unsigned int);

int vec_all_ge (vector unsigned int, vector bool int);

int vec_all_ge (vector unsigned int, vector unsigned int);

int vec_all_ge (vector bool int, vector signed int);

int vec_all_ge (vector signed int, vector bool int);

int vec_all_ge (vector signed int, vector signed int);

int vec_all_ge (vector float, vector float);

int vec_all_gt (vector bool char, vector unsigned char);

int vec_all_gt (vector unsigned char, vector bool char);

int vec_all_gt (vector unsigned char, vector unsigned char);

int vec_all_gt (vector bool char, vector signed char);

int vec_all_gt (vector signed char, vector bool char);

int vec_all_gt (vector signed char, vector signed char);

int vec_all_gt (vector bool short, vector unsigned short);

int vec_all_gt (vector unsigned short, vector bool short);

int vec_all_gt (vector unsigned short, vector unsigned short);

int vec_all_gt (vector bool short, vector signed short);

int vec_all_gt (vector signed short, vector bool short);

int vec_all_gt (vector signed short, vector signed short);

int vec_all_gt (vector bool int, vector unsigned int);

int vec_all_gt (vector unsigned int, vector bool int);

int vec_all_gt (vector unsigned int, vector unsigned int);
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int vec_all_gt (vector bool int, vector signed int);

int vec_all_gt (vector signed int, vector bool int);

int vec_all_gt (vector signed int, vector signed int);

int vec_all_gt (vector float, vector float);

int vec_all_in (vector float, vector float);

int vec_all_le (vector bool char, vector unsigned char);

int vec_all_le (vector unsigned char, vector bool char);

int vec_all_le (vector unsigned char, vector unsigned char);

int vec_all_le (vector bool char, vector signed char);

int vec_all_le (vector signed char, vector bool char);

int vec_all_le (vector signed char, vector signed char);

int vec_all_le (vector bool short, vector unsigned short);

int vec_all_le (vector unsigned short, vector bool short);

int vec_all_le (vector unsigned short, vector unsigned short);

int vec_all_le (vector bool short, vector signed short);

int vec_all_le (vector signed short, vector bool short);

int vec_all_le (vector signed short, vector signed short);

int vec_all_le (vector bool int, vector unsigned int);

int vec_all_le (vector unsigned int, vector bool int);

int vec_all_le (vector unsigned int, vector unsigned int);

int vec_all_le (vector bool int, vector signed int);

int vec_all_le (vector signed int, vector bool int);

int vec_all_le (vector signed int, vector signed int);

int vec_all_le (vector float, vector float);

int vec_all_lt (vector bool char, vector unsigned char);

int vec_all_lt (vector unsigned char, vector bool char);

int vec_all_lt (vector unsigned char, vector unsigned char);

int vec_all_lt (vector bool char, vector signed char);

int vec_all_lt (vector signed char, vector bool char);

int vec_all_lt (vector signed char, vector signed char);

int vec_all_lt (vector bool short, vector unsigned short);

int vec_all_lt (vector unsigned short, vector bool short);

int vec_all_lt (vector unsigned short, vector unsigned short);

int vec_all_lt (vector bool short, vector signed short);

int vec_all_lt (vector signed short, vector bool short);

int vec_all_lt (vector signed short, vector signed short);

int vec_all_lt (vector bool int, vector unsigned int);

int vec_all_lt (vector unsigned int, vector bool int);

int vec_all_lt (vector unsigned int, vector unsigned int);

int vec_all_lt (vector bool int, vector signed int);

int vec_all_lt (vector signed int, vector bool int);

int vec_all_lt (vector signed int, vector signed int);

int vec_all_lt (vector float, vector float);

int vec_all_nan (vector float);

int vec_all_ne (vector signed char, vector bool char);

int vec_all_ne (vector signed char, vector signed char);

int vec_all_ne (vector unsigned char, vector bool char);

int vec_all_ne (vector unsigned char, vector unsigned char);

int vec_all_ne (vector bool char, vector bool char);

int vec_all_ne (vector bool char, vector unsigned char);

int vec_all_ne (vector bool char, vector signed char);

int vec_all_ne (vector signed short, vector bool short);

int vec_all_ne (vector signed short, vector signed short);
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int vec_all_ne (vector unsigned short, vector bool short);

int vec_all_ne (vector unsigned short, vector unsigned short);

int vec_all_ne (vector bool short, vector bool short);

int vec_all_ne (vector bool short, vector unsigned short);

int vec_all_ne (vector bool short, vector signed short);

int vec_all_ne (vector pixel, vector pixel);

int vec_all_ne (vector signed int, vector bool int);

int vec_all_ne (vector signed int, vector signed int);

int vec_all_ne (vector unsigned int, vector bool int);

int vec_all_ne (vector unsigned int, vector unsigned int);

int vec_all_ne (vector bool int, vector bool int);

int vec_all_ne (vector bool int, vector unsigned int);

int vec_all_ne (vector bool int, vector signed int);

int vec_all_ne (vector float, vector float);

int vec_all_nge (vector float, vector float);

int vec_all_ngt (vector float, vector float);

int vec_all_nle (vector float, vector float);

int vec_all_nlt (vector float, vector float);

int vec_all_numeric (vector float);

int vec_any_eq (vector signed char, vector bool char);

int vec_any_eq (vector signed char, vector signed char);

int vec_any_eq (vector unsigned char, vector bool char);

int vec_any_eq (vector unsigned char, vector unsigned char);

int vec_any_eq (vector bool char, vector bool char);

int vec_any_eq (vector bool char, vector unsigned char);

int vec_any_eq (vector bool char, vector signed char);

int vec_any_eq (vector signed short, vector bool short);

int vec_any_eq (vector signed short, vector signed short);

int vec_any_eq (vector unsigned short, vector bool short);

int vec_any_eq (vector unsigned short, vector unsigned short);

int vec_any_eq (vector bool short, vector bool short);

int vec_any_eq (vector bool short, vector unsigned short);

int vec_any_eq (vector bool short, vector signed short);

int vec_any_eq (vector pixel, vector pixel);

int vec_any_eq (vector signed int, vector bool int);

int vec_any_eq (vector signed int, vector signed int);

int vec_any_eq (vector unsigned int, vector bool int);

int vec_any_eq (vector unsigned int, vector unsigned int);

int vec_any_eq (vector bool int, vector bool int);

int vec_any_eq (vector bool int, vector unsigned int);

int vec_any_eq (vector bool int, vector signed int);

int vec_any_eq (vector float, vector float);

int vec_any_ge (vector signed char, vector bool char);

int vec_any_ge (vector unsigned char, vector bool char);

int vec_any_ge (vector unsigned char, vector unsigned char);

int vec_any_ge (vector signed char, vector signed char);

int vec_any_ge (vector bool char, vector unsigned char);

int vec_any_ge (vector bool char, vector signed char);

int vec_any_ge (vector unsigned short, vector bool short);

int vec_any_ge (vector unsigned short, vector unsigned short);

int vec_any_ge (vector signed short, vector signed short);
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int vec_any_ge (vector signed short, vector bool short);

int vec_any_ge (vector bool short, vector unsigned short);

int vec_any_ge (vector bool short, vector signed short);

int vec_any_ge (vector signed int, vector bool int);

int vec_any_ge (vector unsigned int, vector bool int);

int vec_any_ge (vector unsigned int, vector unsigned int);

int vec_any_ge (vector signed int, vector signed int);

int vec_any_ge (vector bool int, vector unsigned int);

int vec_any_ge (vector bool int, vector signed int);

int vec_any_ge (vector float, vector float);

int vec_any_gt (vector bool char, vector unsigned char);

int vec_any_gt (vector unsigned char, vector bool char);

int vec_any_gt (vector unsigned char, vector unsigned char);

int vec_any_gt (vector bool char, vector signed char);

int vec_any_gt (vector signed char, vector bool char);

int vec_any_gt (vector signed char, vector signed char);

int vec_any_gt (vector bool short, vector unsigned short);

int vec_any_gt (vector unsigned short, vector bool short);

int vec_any_gt (vector unsigned short, vector unsigned short);

int vec_any_gt (vector bool short, vector signed short);

int vec_any_gt (vector signed short, vector bool short);

int vec_any_gt (vector signed short, vector signed short);

int vec_any_gt (vector bool int, vector unsigned int);

int vec_any_gt (vector unsigned int, vector bool int);

int vec_any_gt (vector unsigned int, vector unsigned int);

int vec_any_gt (vector bool int, vector signed int);

int vec_any_gt (vector signed int, vector bool int);

int vec_any_gt (vector signed int, vector signed int);

int vec_any_gt (vector float, vector float);

int vec_any_le (vector bool char, vector unsigned char);

int vec_any_le (vector unsigned char, vector bool char);

int vec_any_le (vector unsigned char, vector unsigned char);

int vec_any_le (vector bool char, vector signed char);

int vec_any_le (vector signed char, vector bool char);

int vec_any_le (vector signed char, vector signed char);

int vec_any_le (vector bool short, vector unsigned short);

int vec_any_le (vector unsigned short, vector bool short);

int vec_any_le (vector unsigned short, vector unsigned short);

int vec_any_le (vector bool short, vector signed short);

int vec_any_le (vector signed short, vector bool short);

int vec_any_le (vector signed short, vector signed short);

int vec_any_le (vector bool int, vector unsigned int);

int vec_any_le (vector unsigned int, vector bool int);

int vec_any_le (vector unsigned int, vector unsigned int);

int vec_any_le (vector bool int, vector signed int);

int vec_any_le (vector signed int, vector bool int);

int vec_any_le (vector signed int, vector signed int);

int vec_any_le (vector float, vector float);

int vec_any_lt (vector bool char, vector unsigned char);

int vec_any_lt (vector unsigned char, vector bool char);

int vec_any_lt (vector unsigned char, vector unsigned char);

int vec_any_lt (vector bool char, vector signed char);

int vec_any_lt (vector signed char, vector bool char);

int vec_any_lt (vector signed char, vector signed char);

int vec_any_lt (vector bool short, vector unsigned short);
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int vec_any_lt (vector unsigned short, vector bool short);

int vec_any_lt (vector unsigned short, vector unsigned short);

int vec_any_lt (vector bool short, vector signed short);

int vec_any_lt (vector signed short, vector bool short);

int vec_any_lt (vector signed short, vector signed short);

int vec_any_lt (vector bool int, vector unsigned int);

int vec_any_lt (vector unsigned int, vector bool int);

int vec_any_lt (vector unsigned int, vector unsigned int);

int vec_any_lt (vector bool int, vector signed int);

int vec_any_lt (vector signed int, vector bool int);

int vec_any_lt (vector signed int, vector signed int);

int vec_any_lt (vector float, vector float);

int vec_any_nan (vector float);

int vec_any_ne (vector signed char, vector bool char);

int vec_any_ne (vector signed char, vector signed char);

int vec_any_ne (vector unsigned char, vector bool char);

int vec_any_ne (vector unsigned char, vector unsigned char);

int vec_any_ne (vector bool char, vector bool char);

int vec_any_ne (vector bool char, vector unsigned char);

int vec_any_ne (vector bool char, vector signed char);

int vec_any_ne (vector signed short, vector bool short);

int vec_any_ne (vector signed short, vector signed short);

int vec_any_ne (vector unsigned short, vector bool short);

int vec_any_ne (vector unsigned short, vector unsigned short);

int vec_any_ne (vector bool short, vector bool short);

int vec_any_ne (vector bool short, vector unsigned short);

int vec_any_ne (vector bool short, vector signed short);

int vec_any_ne (vector pixel, vector pixel);

int vec_any_ne (vector signed int, vector bool int);

int vec_any_ne (vector signed int, vector signed int);

int vec_any_ne (vector unsigned int, vector bool int);

int vec_any_ne (vector unsigned int, vector unsigned int);

int vec_any_ne (vector bool int, vector bool int);

int vec_any_ne (vector bool int, vector unsigned int);

int vec_any_ne (vector bool int, vector signed int);

int vec_any_ne (vector float, vector float);

int vec_any_nge (vector float, vector float);

int vec_any_ngt (vector float, vector float);

int vec_any_nle (vector float, vector float);

int vec_any_nlt (vector float, vector float);

int vec_any_numeric (vector float);

int vec_any_out (vector float, vector float);

5.47.9 SPARC VIS Built-in Functions

GCC supports SIMD operations on the SPARC using both the generic vector extensions
(see Section 5.42 [Vector Extensions], page 286) as well as built-in functions for the SPARC
Visual Instruction Set (VIS). When you use the ‘-mvis’ switch, the VIS extension is exposed
as the following built-in functions:

typedef int v2si __attribute__ ((vector_size (8)));
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typedef short v4hi __attribute__ ((vector_size (8)));

typedef short v2hi __attribute__ ((vector_size (4)));

typedef char v8qi __attribute__ ((vector_size (8)));

typedef char v4qi __attribute__ ((vector_size (4)));

void * __builtin_vis_alignaddr (void *, long);

int64_t __builtin_vis_faligndatadi (int64_t, int64_t);

v2si __builtin_vis_faligndatav2si (v2si, v2si);

v4hi __builtin_vis_faligndatav4hi (v4si, v4si);

v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);

v4hi __builtin_vis_fexpand (v4qi);

v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);

v4hi __builtin_vis_fmul8x16au (v4qi, v4hi);

v4hi __builtin_vis_fmul8x16al (v4qi, v4hi);

v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);

v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);

v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);

v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);

v4qi __builtin_vis_fpack16 (v4hi);

v8qi __builtin_vis_fpack32 (v2si, v2si);

v2hi __builtin_vis_fpackfix (v2si);

v8qi __builtin_vis_fpmerge (v4qi, v4qi);

int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);

5.48 Format Checks Specific to Particular Target Machines

For some target machines, GCC supports additional options to the format attribute (see
Section 5.24 [Declaring Attributes of Functions], page 229).

5.48.1 Solaris Format Checks

Solaris targets support the cmn_err (or __cmn_err__) format check. cmn_err accepts a sub-
set of the standard printf conversions, and the two-argument %b conversion for displaying
bit-fields. See the Solaris man page for cmn_err for more information.

5.49 Pragmas Accepted by GCC

GCC supports several types of pragmas, primarily in order to compile code originally written
for other compilers. Note that in general we do not recommend the use of pragmas; See
Section 5.24 [Function Attributes], page 229, for further explanation.

5.49.1 ARM Pragmas

The ARM target defines pragmas for controlling the default addition of long_call and
short_call attributes to functions. See Section 5.24 [Function Attributes], page 229, for
information about the effects of these attributes.

long_calls
Set all subsequent functions to have the long_call attribute.

no_long_calls
Set all subsequent functions to have the short_call attribute.
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long_calls_off
Do not affect the long_call or short_call attributes of subsequent functions.

5.49.2 M32C Pragmas

memregs number

Overrides the command line option -memregs= for the current file. Use with
care! This pragma must be before any function in the file, and mixing different
memregs values in different objects may make them incompatible. This pragma
is useful when a performance-critical function uses a memreg for temporary
values, as it may allow you to reduce the number of memregs used.

5.49.3 RS/6000 and PowerPC Pragmas

The RS/6000 and PowerPC targets define one pragma for controlling whether or not the
longcall attribute is added to function declarations by default. This pragma overrides the
‘-mlongcall’ option, but not the longcall and shortcall attributes. See Section 3.17.26
[RS/6000 and PowerPC Options], page 164, for more information about when long calls are
and are not necessary.

longcall (1)
Apply the longcall attribute to all subsequent function declarations.

longcall (0)
Do not apply the longcall attribute to subsequent function declarations.

5.49.4 Darwin Pragmas

The following pragmas are available for all architectures running the Darwin operating
system. These are useful for compatibility with other Mac OS compilers.

mark tokens...
This pragma is accepted, but has no effect.

options align=alignment
This pragma sets the alignment of fields in structures. The values of alignment
may be mac68k, to emulate m68k alignment, or power, to emulate PowerPC
alignment. Uses of this pragma nest properly; to restore the previous setting,
use reset for the alignment.

segment tokens...
This pragma is accepted, but has no effect.

unused (var [, var]...)
This pragma declares variables to be possibly unused. GCC will not produce
warnings for the listed variables. The effect is similar to that of the unused
attribute, except that this pragma may appear anywhere within the variables’
scopes.

5.49.5 Solaris Pragmas

The Solaris target supports #pragma redefine_extname (see Section 5.49.6 [Symbol-
Renaming Pragmas], page 354). It also supports additional #pragma directives for
compatibility with the system compiler.
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align alignment (variable [, variable]...)
Increase the minimum alignment of each variable to alignment. This is the same
as GCC’s aligned attribute see Section 5.31 [Variable Attributes], page 247).
Macro expansion occurs on the arguments to this pragma when compiling C
and Objective-C. It does not currently occur when compiling C++, but this is
a bug which may be fixed in a future release.

fini (function [, function]...)
This pragma causes each listed function to be called after main, or during shared
module unloading, by adding a call to the .fini section.

init (function [, function]...)
This pragma causes each listed function to be called during initialization (before
main) or during shared module loading, by adding a call to the .init section.

5.49.6 Symbol-Renaming Pragmas

For compatibility with the Solaris and Tru64 UNIX system headers, GCC supports two
#pragma directives which change the name used in assembly for a given declaration. These
pragmas are only available on platforms whose system headers need them. To get this effect
on all platforms supported by GCC, use the asm labels extension (see Section 5.36 [Asm
Labels], page 281).

redefine_extname oldname newname

This pragma gives the C function oldname the assembly symbol newname. The
preprocessor macro __PRAGMA_REDEFINE_EXTNAME will be defined if this pragma
is available (currently only on Solaris).

extern_prefix string

This pragma causes all subsequent external function and variable declarations to
have string prepended to their assembly symbols. This effect may be terminated
with another extern_prefix pragma whose argument is an empty string. The
preprocessor macro __PRAGMA_EXTERN_PREFIX will be defined if this pragma is
available (currently only on Tru64 UNIX).

These pragmas and the asm labels extension interact in a complicated manner. Here are
some corner cases you may want to be aware of.

1. Both pragmas silently apply only to declarations with external linkage. Asm labels do
not have this restriction.

2. In C++, both pragmas silently apply only to declarations with “C” linkage. Again, asm
labels do not have this restriction.

3. If any of the three ways of changing the assembly name of a declaration is applied to
a declaration whose assembly name has already been determined (either by a previous
use of one of these features, or because the compiler needed the assembly name in order
to generate code), and the new name is different, a warning issues and the name does
not change.

4. The oldname used by #pragma redefine_extname is always the C-language name.
5. If #pragma extern_prefix is in effect, and a declaration occurs with an asm label

attached, the prefix is silently ignored for that declaration.
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6. If #pragma extern_prefix and #pragma redefine_extname apply to the same decla-
ration, whichever triggered first wins, and a warning issues if they contradict each other.
(We would like to have #pragma redefine_extname always win, for consistency with
asm labels, but if #pragma extern_prefix triggers first we have no way of knowing
that that happened.)

5.49.7 Structure-Packing Pragmas

For compatibility with Win32, GCC supports a set of #pragma directives which change the
maximum alignment of members of structures (other than zero-width bitfields), unions, and
classes subsequently defined. The n value below always is required to be a small power of
two and specifies the new alignment in bytes.

1. #pragma pack(n) simply sets the new alignment.
2. #pragma pack() sets the alignment to the one that was in effect when compilation

started (see also command line option ‘-fpack-struct[=<n>]’ see Section 3.18 [Code
Gen Options], page 190).

3. #pragma pack(push[,n]) pushes the current alignment setting on an internal stack
and then optionally sets the new alignment.

4. #pragma pack(pop) restores the alignment setting to the one saved at the top of the
internal stack (and removes that stack entry). Note that #pragma pack([n]) does not
influence this internal stack; thus it is possible to have #pragma pack(push) followed
by multiple #pragma pack(n) instances and finalized by a single #pragma pack(pop).

5.49.8 Weak Pragmas

For compatibility with SVR4, GCC supports a set of #pragma directives for declaring sym-
bols to be weak, and defining weak aliases.

#pragma weak symbol

This pragma declares symbol to be weak, as if the declaration had the attribute
of the same name. The pragma may appear before or after the declaration of
symbol, but must appear before either its first use or its definition. It is not an
error for symbol to never be defined at all.

#pragma weak symbol1 = symbol2

This pragma declares symbol1 to be a weak alias of symbol2. It is an error if
symbol2 is not defined in the current translation unit.

5.50 Unnamed struct/union fields within structs/unions

For compatibility with other compilers, GCC allows you to define a structure or union that
contains, as fields, structures and unions without names. For example:

struct {

int a;

union {

int b;

float c;

};

int d;

} foo;
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In this example, the user would be able to access members of the unnamed union with
code like ‘foo.b’. Note that only unnamed structs and unions are allowed, you may not
have, for example, an unnamed int.

You must never create such structures that cause ambiguous field definitions. For exam-
ple, this structure:

struct {

int a;

struct {

int a;

};

} foo;

It is ambiguous which a is being referred to with ‘foo.a’. Such constructs are not sup-
ported and must be avoided. In the future, such constructs may be detected and treated
as compilation errors.

Unless ‘-fms-extensions’ is used, the unnamed field must be a structure or union defini-
tion without a tag (for example, ‘struct { int a; };’). If ‘-fms-extensions’ is used, the
field may also be a definition with a tag such as ‘struct foo { int a; };’, a reference to
a previously defined structure or union such as ‘struct foo;’, or a reference to a typedef
name for a previously defined structure or union type.

5.51 Thread-Local Storage

Thread-local storage (TLS) is a mechanism by which variables are allocated such that there
is one instance of the variable per extant thread. The run-time model GCC uses to im-
plement this originates in the IA-64 processor-specific ABI, but has since been migrated
to other processors as well. It requires significant support from the linker (ld), dynamic
linker (ld.so), and system libraries (‘libc.so’ and ‘libpthread.so’), so it is not available
everywhere.

At the user level, the extension is visible with a new storage class keyword: __thread.
For example:

__thread int i;

extern __thread struct state s;

static __thread char *p;

The __thread specifier may be used alone, with the extern or static specifiers, but
with no other storage class specifier. When used with extern or static, __thread must
appear immediately after the other storage class specifier.

The __thread specifier may be applied to any global, file-scoped static, function-scoped
static, or static data member of a class. It may not be applied to block-scoped automatic
or non-static data member.

When the address-of operator is applied to a thread-local variable, it is evaluated at
run-time and returns the address of the current thread’s instance of that variable. An
address so obtained may be used by any thread. When a thread terminates, any pointers
to thread-local variables in that thread become invalid.

No static initialization may refer to the address of a thread-local variable.

In C++, if an initializer is present for a thread-local variable, it must be a constant-
expression, as defined in 5.19.2 of the ANSI/ISO C++ standard.
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See ELF Handling For Thread-Local Storage (http://people.redhat.com/drepper/tls.pdf)
for a detailed explanation of the four thread-local storage addressing models, and how the
run-time is expected to function.

5.51.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that document the
exact semantics of the language extension.

• 5.1.2 Execution environments

Add new text after paragraph 1
Within either execution environment, a thread is a flow of control within
a program. It is implementation defined whether or not there may be
more than one thread associated with a program. It is implementation
defined how threads beyond the first are created, the name and type of
the function called at thread startup, and how threads may be terminated.
However, objects with thread storage duration shall be initialized before
thread startup.

• 6.2.4 Storage durations of objects

Add new text before paragraph 3
An object whose identifier is declared with the storage-class specifier
__thread has thread storage duration. Its lifetime is the entire execution
of the thread, and its stored value is initialized only once, prior to thread
startup.

• 6.4.1 Keywords

Add __thread.
• 6.7.1 Storage-class specifiers

Add __thread to the list of storage class specifiers in paragraph 1.
Change paragraph 2 to

With the exception of __thread, at most one storage-class specifier may
be given [. . . ]. The __thread specifier may be used alone, or immediately
following extern or static.

Add new text after paragraph 6
The declaration of an identifier for a variable that has block scope that
specifies __thread shall also specify either extern or static.
The __thread specifier shall be used only with variables.

5.51.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 14882:1998 (aka C++98) that document the
exact semantics of the language extension.

• [intro.execution]

New text after paragraph 4
A thread is a flow of control within the abstract machine. It is implemen-
tation defined whether or not there may be more than one thread.
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New text after paragraph 7
It is unspecified whether additional action must be taken to ensure when
and whether side effects are visible to other threads.

• [lex.key]

Add __thread.
• [basic.start.main]

Add after paragraph 5
The thread that begins execution at the main function is called the main
thread. It is implementation defined how functions beginning threads other
than the main thread are designated or typed. A function so designated,
as well as the main function, is called a thread startup function. It is im-
plementation defined what happens if a thread startup function returns. It
is implementation defined what happens to other threads when any thread
calls exit.

• [basic.start.init]

Add after paragraph 4
The storage for an object of thread storage duration shall be statically
initialized before the first statement of the thread startup function. An
object of thread storage duration shall not require dynamic initialization.

• [basic.start.term]

Add after paragraph 3
The type of an object with thread storage duration shall not have a non-
trivial destructor, nor shall it be an array type whose elements (directly or
indirectly) have non-trivial destructors.

• [basic.stc]

Add “thread storage duration” to the list in paragraph 1.
Change paragraph 2

Thread, static, and automatic storage durations are associated with objects
introduced by declarations [. . . ].

Add __thread to the list of specifiers in paragraph 3.
• [basic.stc.thread]

New section before [basic.stc.static]

The keyword __thread applied to a non-local object gives the object thread
storage duration.
A local variable or class data member declared both static and __thread
gives the variable or member thread storage duration.

• [basic.stc.static]

Change paragraph 1
All objects which have neither thread storage duration, dynamic storage
duration nor are local [. . . ].

• [dcl.stc]

Add __thread to the list in paragraph 1.
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Change paragraph 1
With the exception of __thread, at most one storage-class-specifier shall
appear in a given decl-specifier-seq. The __thread specifier may be used
alone, or immediately following the extern or static specifiers. [. . . ]

Add after paragraph 5
The __thread specifier can be applied only to the names of objects and to
anonymous unions.

• [class.mem]

Add after paragraph 6
Non-static members shall not be __thread.
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6 Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also use
most of the C language extensions in your C++ programs). If you want to write code
that checks whether these features are available, you can test for the GNU compiler the
same way as for C programs: check for a predefined macro __GNUC__. You can also use
__GNUG__ to test specifically for GNU C++ (see section “Predefined Macros” in The GNU
C Preprocessor).

6.1 When is a Volatile Object Accessed?

Both the C and C++ standard have the concept of volatile objects. These are normally
accessed by pointers and used for accessing hardware. The standards encourage compilers
to refrain from optimizations concerning accesses to volatile objects. The C standard leaves
it implementation defined as to what constitutes a volatile access. The C++ standard omits
to specify this, except to say that C++ should behave in a similar manner to C with respect
to volatiles, where possible. The minimum either standard specifies is that at a sequence
point all previous accesses to volatile objects have stabilized and no subsequent accesses have
occurred. Thus an implementation is free to reorder and combine volatile accesses which
occur between sequence points, but cannot do so for accesses across a sequence point. The
use of volatiles does not allow you to violate the restriction on updating objects multiple
times within a sequence point.

See Section 4.10 [Volatile qualifier and the C compiler], page 210.
The behavior differs slightly between C and C++ in the non-obvious cases:

volatile int *src = somevalue;

*src;

With C, such expressions are rvalues, and GCC interprets this either as a read of the
volatile object being pointed to or only as request to evaluate the side-effects. The C++
standard specifies that such expressions do not undergo lvalue to rvalue conversion, and that
the type of the dereferenced object may be incomplete. The C++ standard does not specify
explicitly that it is this lvalue to rvalue conversion which may be responsible for causing
an access. However, there is reason to believe that it is, because otherwise certain simple
expressions become undefined. However, because it would surprise most programmers, G++
treats dereferencing a pointer to volatile object of complete type when the value is unused
as GCC would do for an equivalent type in C. When the object has incomplete type, G++
issues a warning; if you wish to force an error, you must force a conversion to rvalue with,
for instance, a static cast.

When using a reference to volatile, G++ does not treat equivalent expressions as accesses
to volatiles, but instead issues a warning that no volatile is accessed. The rationale for
this is that otherwise it becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile references. Again, if
you wish to force a read, cast the reference to an rvalue.

6.2 Restricting Pointer Aliasing

As with the C front end, G++ understands the C99 feature of restricted pointers, specified
with the __restrict__, or __restrict type qualifier. Because you cannot compile C++ by
specifying the ‘-std=c99’ language flag, restrict is not a keyword in C++.
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In addition to allowing restricted pointers, you can specify restricted references, which
indicate that the reference is not aliased in the local context.

void fn (int *__restrict__ rptr, int &__restrict__ rref)

{

/* . . . */

}

In the body of fn, rptr points to an unaliased integer and rref refers to a (different) unaliased
integer.

You may also specify whether a member function’s this pointer is unaliased by using
__restrict__ as a member function qualifier.

void T::fn () __restrict__

{

/* . . . */

}

Within the body of T::fn, this will have the effective definition T *__restrict__ const
this. Notice that the interpretation of a __restrict__ member function qualifier is differ-
ent to that of const or volatile qualifier, in that it is applied to the pointer rather than
the object. This is consistent with other compilers which implement restricted pointers.

As with all outermost parameter qualifiers, __restrict__ is ignored in function definition
matching. This means you only need to specify __restrict__ in a function definition,
rather than in a function prototype as well.

6.3 Vague Linkage

There are several constructs in C++ which require space in the object file but are not
clearly tied to a single translation unit. We say that these constructs have “vague linkage”.
Typically such constructs are emitted wherever they are needed, though sometimes we can
be more clever.

Inline Functions
Inline functions are typically defined in a header file which can be included
in many different compilations. Hopefully they can usually be inlined, but
sometimes an out-of-line copy is necessary, if the address of the function is taken
or if inlining fails. In general, we emit an out-of-line copy in all translation units
where one is needed. As an exception, we only emit inline virtual functions with
the vtable, since it will always require a copy.

Local static variables and string constants used in an inline function are also
considered to have vague linkage, since they must be shared between all inlined
and out-of-line instances of the function.

VTables C++ virtual functions are implemented in most compilers using a lookup table,
known as a vtable. The vtable contains pointers to the virtual functions pro-
vided by a class, and each object of the class contains a pointer to its vtable (or
vtables, in some multiple-inheritance situations). If the class declares any non-
inline, non-pure virtual functions, the first one is chosen as the “key method”
for the class, and the vtable is only emitted in the translation unit where the
key method is defined.



Chapter 6: Extensions to the C++ Language 363

Note: If the chosen key method is later defined as inline, the vtable will still
be emitted in every translation unit which defines it. Make sure that any inline
virtuals are declared inline in the class body, even if they are not defined there.

type info objects
C++ requires information about types to be written out in order to implement
‘dynamic_cast’, ‘typeid’ and exception handling. For polymorphic classes
(classes with virtual functions), the type info object is written out along with
the vtable so that ‘dynamic_cast’ can determine the dynamic type of a class
object at runtime. For all other types, we write out the type info object when
it is used: when applying ‘typeid’ to an expression, throwing an object, or
referring to a type in a catch clause or exception specification.

Template Instantiations
Most everything in this section also applies to template instantiations, but there
are other options as well. See Section 6.5 [Where’s the Template?], page 365.

When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or
Solaris 2, or on Microsoft Windows, duplicate copies of these constructs will be discarded
at link time. This is known as COMDAT support.

On targets that don’t support COMDAT, but do support weak symbols, GCC will use
them. This way one copy will override all the others, but the unused copies will still take
up space in the executable.

For targets which do not support either COMDAT or weak symbols, most entities with
vague linkage will be emitted as local symbols to avoid duplicate definition errors from the
linker. This will not happen for local statics in inlines, however, as having multiple copies
will almost certainly break things.

See Section 6.4 [Declarations and Definitions in One Header], page 363, for another way
to control placement of these constructs.

6.4 #pragma interface and implementation

#pragma interface and #pragma implementation provide the user with a way of explicitly
directing the compiler to emit entities with vague linkage (and debugging information) in a
particular translation unit.

Note: As of GCC 2.7.2, these #pragmas are not useful in most cases, because of COMDAT
support and the “key method” heuristic mentioned in Section 6.3 [Vague Linkage], page 362.
Using them can actually cause your program to grow due to unnecessary out-of-line copies
of inline functions. Currently (3.4) the only benefit of these #pragmas is reduced duplication
of debugging information, and that should be addressed soon on DWARF 2 targets with
the use of COMDAT groups.

#pragma interface
#pragma interface "subdir/objects.h"

Use this directive in header files that define object classes, to save space in
most of the object files that use those classes. Normally, local copies of certain
information (backup copies of inline member functions, debugging information,
and the internal tables that implement virtual functions) must be kept in each
object file that includes class definitions. You can use this pragma to avoid such



364 Using the GNU Compiler Collection (GCC)

duplication. When a header file containing ‘#pragma interface’ is included in
a compilation, this auxiliary information will not be generated (unless the main
input source file itself uses ‘#pragma implementation’). Instead, the object
files will contain references to be resolved at link time.

The second form of this directive is useful for the case where you have multiple
headers with the same name in different directories. If you use this form, you
must specify the same string to ‘#pragma implementation’.

#pragma implementation
#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full output from included
header files to be generated (and made globally visible). The included header
file, in turn, should use ‘#pragma interface’. Backup copies of inline member
functions, debugging information, and the internal tables used to implement
virtual functions are all generated in implementation files.

If you use ‘#pragma implementation’ with no argument, it applies to an
include file with the same basename1 as your source file. For example, in
‘allclass.cc’, giving just ‘#pragma implementation’ by itself is equivalent
to ‘#pragma implementation "allclass.h"’.

In versions of GNU C++ prior to 2.6.0 ‘allclass.h’ was treated as an im-
plementation file whenever you would include it from ‘allclass.cc’ even if
you never specified ‘#pragma implementation’. This was deemed to be more
trouble than it was worth, however, and disabled.

Use the string argument if you want a single implementation file to include code
from multiple header files. (You must also use ‘#include’ to include the header
file; ‘#pragma implementation’ only specifies how to use the file—it doesn’t
actually include it.)

There is no way to split up the contents of a single header file into multiple
implementation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an effect on function in-
lining.

If you define a class in a header file marked with ‘#pragma interface’, the effect on
an inline function defined in that class is similar to an explicit extern declaration—the
compiler emits no code at all to define an independent version of the function. Its definition
is used only for inlining with its callers.

Conversely, when you include the same header file in a main source file that declares it
as ‘#pragma implementation’, the compiler emits code for the function itself; this defines
a version of the function that can be found via pointers (or by callers compiled without
inlining). If all calls to the function can be inlined, you can avoid emitting the function
by compiling with ‘-fno-implement-inlines’. If any calls were not inlined, you will get
linker errors.

1 A file’s basename was the name stripped of all leading path information and of trailing suffixes, such as
‘.h’ or ‘.C’ or ‘.cc’.
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6.5 Where’s the Template?

C++ templates are the first language feature to require more intelligence from the environ-
ment than one usually finds on a UNIX system. Somehow the compiler and linker have to
make sure that each template instance occurs exactly once in the executable if it is needed,
and not at all otherwise. There are two basic approaches to this problem, which are referred
to as the Borland model and the Cfront model.

Borland model
Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template in-
stances in each translation unit that uses them, and the linker collapses them
together. The advantage of this model is that the linker only has to consider the
object files themselves; there is no external complexity to worry about. This
disadvantage is that compilation time is increased because the template code
is being compiled repeatedly. Code written for this model tends to include
definitions of all templates in the header file, since they must be seen to be
instantiated.

Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation problem
by creating the notion of a template repository, an automatically maintained
place where template instances are stored. A more modern version of the repos-
itory works as follows: As individual object files are built, the compiler places
any template definitions and instantiations encountered in the repository. At
link time, the link wrapper adds in the objects in the repository and compiles
any needed instances that were not previously emitted. The advantages of this
model are more optimal compilation speed and the ability to use the system
linker; to implement the Borland model a compiler vendor also needs to replace
the linker. The disadvantages are vastly increased complexity, and thus poten-
tial for error; for some code this can be just as transparent, but in practice
it can been very difficult to build multiple programs in one directory and one
program in multiple directories. Code written for this model tends to separate
definitions of non-inline member templates into a separate file, which should be
compiled separately.

When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or
Solaris 2, or on Microsoft Windows, G++ supports the Borland model. On other systems,
G++ implements neither automatic model.

A future version of G++ will support a hybrid model whereby the compiler will emit
any instantiations for which the template definition is included in the compile, and store
template definitions and instantiation context information into the object file for the rest.
The link wrapper will extract that information as necessary and invoke the compiler to
produce the remaining instantiations. The linker will then combine duplicate instantiations.

In the mean time, you have the following options for dealing with template instantiations:

1. Compile your template-using code with ‘-frepo’. The compiler will generate files with
the extension ‘.rpo’ listing all of the template instantiations used in the corresponding
object files which could be instantiated there; the link wrapper, ‘collect2’, will then
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update the ‘.rpo’ files to tell the compiler where to place those instantiations and
rebuild any affected object files. The link-time overhead is negligible after the first
pass, as the compiler will continue to place the instantiations in the same files.

This is your best option for application code written for the Borland model, as it will
just work. Code written for the Cfront model will need to be modified so that the
template definitions are available at one or more points of instantiation; usually this is
as simple as adding #include <tmethods.cc> to the end of each template header.

For library code, if you want the library to provide all of the template instantiations
it needs, just try to link all of its object files together; the link will fail, but cause
the instantiations to be generated as a side effect. Be warned, however, that this may
cause conflicts if multiple libraries try to provide the same instantiations. For greater
control, use explicit instantiation as described in the next option.

2. Compile your code with ‘-fno-implicit-templates’ to disable the implicit generation
of template instances, and explicitly instantiate all the ones you use. This approach
requires more knowledge of exactly which instances you need than do the others, but it’s
less mysterious and allows greater control. You can scatter the explicit instantiations
throughout your program, perhaps putting them in the translation units where the
instances are used or the translation units that define the templates themselves; you
can put all of the explicit instantiations you need into one big file; or you can create
small files like

#include "Foo.h"

#include "Foo.cc"

template class Foo<int>;

template ostream& operator <<

(ostream&, const Foo<int>&);

for each of the instances you need, and create a template instantiation library from
those.

If you are using Cfront-model code, you can probably get away with not using
‘-fno-implicit-templates’ when compiling files that don’t ‘#include’ the member
template definitions.

If you use one big file to do the instantiations, you may want to compile it without
‘-fno-implicit-templates’ so you get all of the instances required by your explicit
instantiations (but not by any other files) without having to specify them as well.

G++ has extended the template instantiation syntax given in the ISO standard to
allow forward declaration of explicit instantiations (with extern), instantiation of the
compiler support data for a template class (i.e. the vtable) without instantiating any
of its members (with inline), and instantiation of only the static data members of a
template class, without the support data or member functions (with (static):

extern template int max (int, int);

inline template class Foo<int>;

static template class Foo<int>;

3. Do nothing. Pretend G++ does implement automatic instantiation management. Code
written for the Borland model will work fine, but each translation unit will contain
instances of each of the templates it uses. In a large program, this can lead to an
unacceptable amount of code duplication.
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6.6 Extracting the function pointer from a bound pointer to
member function

In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts
to handle all the possible call mechanisms; the PMF needs to store information about how
to adjust the ‘this’ pointer, and if the function pointed to is virtual, where to find the
vtable, and where in the vtable to look for the member function. If you are using PMFs in
an inner loop, you should really reconsider that decision. If that is not an option, you can
extract the pointer to the function that would be called for a given object/PMF pair and
call it directly inside the inner loop, to save a bit of time.

Note that you will still be paying the penalty for the call through a function pointer; on
most modern architectures, such a call defeats the branch prediction features of the CPU.
This is also true of normal virtual function calls.

The syntax for this extension is
extern A a;

extern int (A::*fp)();

typedef int (*fptr)(A *);

fptr p = (fptr)(a.*fp);

For PMF constants (i.e. expressions of the form ‘&Klasse::Member’), no object is needed
to obtain the address of the function. They can be converted to function pointers directly:

fptr p1 = (fptr)(&A::foo);

You must specify ‘-Wno-pmf-conversions’ to use this extension.

6.7 C++-Specific Variable, Function, and Type Attributes

Some attributes only make sense for C++ programs.

init_priority (priority)
In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions in a given
translation unit. No guarantee is made for initializations across translation
units. However, GNU C++ allows users to control the order of initialization
of objects defined at namespace scope with the init_priority attribute by
specifying a relative priority, a constant integral expression currently bounded
between 101 and 65535 inclusive. Lower numbers indicate a higher priority.
In the following example, A would normally be created before B, but the init_
priority attribute has reversed that order:

Some_Class A __attribute__ ((init_priority (2000)));

Some_Class B __attribute__ ((init_priority (543)));

Note that the particular values of priority do not matter; only their relative
ordering.

java_interface
This type attribute informs C++ that the class is a Java interface. It may
only be applied to classes declared within an extern "Java" block. Calls to
methods declared in this interface will be dispatched using GCJ’s interface table
mechanism, instead of regular virtual table dispatch.

See also See Section 6.8 [Strong Using], page 368.
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6.8 Strong Using

Caution: The semantics of this extension are not fully defined. Users should refrain from
using this extension as its semantics may change subtly over time. It is possible that this
extension wil be removed in future versions of G++.

A using-directive with __attribute ((strong)) is stronger than a normal using-directive
in two ways:

• Templates from the used namespace can be specialized as though they were members
of the using namespace.

• The using namespace is considered an associated namespace of all templates in the
used namespace for purposes of argument-dependent name lookup.

This is useful for composing a namespace transparently from implementation namespaces.
For example:

namespace std {

namespace debug {

template <class T> struct A { };

}

using namespace debug __attribute ((__strong__));

template <> struct A<int> { }; // ok to specialize

template <class T> void f (A<T>);

}

int main()

{

f (std::A<float>()); // lookup finds std::f

f (std::A<int>());

}

6.9 Java Exceptions

The Java language uses a slightly different exception handling model from C++. Nor-
mally, GNU C++ will automatically detect when you are writing C++ code that uses Java
exceptions, and handle them appropriately. However, if C++ code only needs to execute de-
structors when Java exceptions are thrown through it, GCC will guess incorrectly. Sample
problematic code is:

struct S { ~S(); };

extern void bar(); // is written in Java, and may throw exceptions
void foo()

{

S s;

bar();

}

The usual effect of an incorrect guess is a link failure, complaining of a missing routine
called ‘__gxx_personality_v0’.

You can inform the compiler that Java exceptions are to be used in a translation unit,
irrespective of what it might think, by writing ‘#pragma GCC java_exceptions’ at the head
of the file. This ‘#pragma’ must appear before any functions that throw or catch exceptions,
or run destructors when exceptions are thrown through them.
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You cannot mix Java and C++ exceptions in the same translation unit. It is believed to
be safe to throw a C++ exception from one file through another file compiled for the Java
exception model, or vice versa, but there may be bugs in this area.

6.10 Deprecated Features

In the past, the GNU C++ compiler was extended to experiment with new features, at a
time when the C++ language was still evolving. Now that the C++ standard is complete,
some of those features are superseded by superior alternatives. Using the old features might
cause a warning in some cases that the feature will be dropped in the future. In other cases,
the feature might be gone already.

While the list below is not exhaustive, it documents some of the options that are now
deprecated:

-fexternal-templates
-falt-external-templates

These are two of the many ways for G++ to implement template instantiation.
See Section 6.5 [Template Instantiation], page 365. The C++ standard clearly
defines how template definitions have to be organized across implementation
units. G++ has an implicit instantiation mechanism that should work just fine
for standard-conforming code.

-fstrict-prototype
-fno-strict-prototype

Previously it was possible to use an empty prototype parameter list to indicate
an unspecified number of parameters (like C), rather than no parameters, as
C++ demands. This feature has been removed, except where it is required for
backwards compatibility See Section 6.11 [Backwards Compatibility], page 370.

G++ allows a virtual function returning ‘void *’ to be overridden by one returning a
different pointer type. This extension to the covariant return type rules is now deprecated
and will be removed from a future version.

The G++ minimum and maximum operators (‘<?’ and ‘>?’) and their compound forms
(‘<?=’) and ‘>?=’) have been deprecated and will be removed in a future version. Code using
these operators should be modified to use std::min and std::max instead.

The named return value extension has been deprecated, and is now removed from G++.
The use of initializer lists with new expressions has been deprecated, and is now removed

from G++.
Floating and complex non-type template parameters have been deprecated, and are now

removed from G++.
The implicit typename extension has been deprecated and is now removed from G++.
The use of default arguments in function pointers, function typedefs and other places

where they are not permitted by the standard is deprecated and will be removed from a
future version of G++.

G++ allows floating-point literals to appear in integral constant expressions, e.g. ‘ enum
E { e = int(2.2 * 3.7) } ’ This extension is deprecated and will be removed from a future
version.
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G++ allows static data members of const floating-point type to be declared with an
initializer in a class definition. The standard only allows initializers for static members of
const integral types and const enumeration types so this extension has been deprecated and
will be removed from a future version.

6.11 Backwards Compatibility

Now that there is a definitive ISO standard C++, G++ has a specification to adhere to.
The C++ language evolved over time, and features that used to be acceptable in previous
drafts of the standard, such as the ARM [Annotated C++ Reference Manual], are no longer
accepted. In order to allow compilation of C++ written to such drafts, G++ contains some
backwards compatibilities. All such backwards compatibility features are liable to disap-
pear in future versions of G++. They should be considered deprecated See Section 6.10
[Deprecated Features], page 369.

For scope If a variable is declared at for scope, it used to remain in scope until the end
of the scope which contained the for statement (rather than just within the for
scope). G++ retains this, but issues a warning, if such a variable is accessed
outside the for scope.

Implicit C language
Old C system header files did not contain an extern "C" {...} scope to set
the language. On such systems, all header files are implicitly scoped inside a C
language scope. Also, an empty prototype () will be treated as an unspecified
number of arguments, rather than no arguments, as C++ demands.
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7 GNU Objective-C runtime features

This document is meant to describe some of the GNU Objective-C runtime features. It
is not intended to teach you Objective-C, there are several resources on the Internet that
present the language. Questions and comments about this document to Ovidiu Predescu
ovidiu@cup.hp.com.

7.1 +load: Executing code before main

The GNU Objective-C runtime provides a way that allows you to execute code before the
execution of the program enters the main function. The code is executed on a per-class and
a per-category basis, through a special class method +load.

This facility is very useful if you want to initialize global variables which can be accessed
by the program directly, without sending a message to the class first. The usual way
to initialize global variables, in the +initialize method, might not be useful because
+initialize is only called when the first message is sent to a class object, which in some
cases could be too late.

Suppose for example you have a FileStream class that declares Stdin, Stdout and
Stderr as global variables, like below:

FileStream *Stdin = nil;

FileStream *Stdout = nil;

FileStream *Stderr = nil;

@implementation FileStream

+ (void)initialize

{

Stdin = [[FileStream new] initWithFd:0];

Stdout = [[FileStream new] initWithFd:1];

Stderr = [[FileStream new] initWithFd:2];

}

/* Other methods here */

@end

In this example, the initialization of Stdin, Stdout and Stderr in +initialize occurs
too late. The programmer can send a message to one of these objects before the variables
are actually initialized, thus sending messages to the nil object. The +initialize method
which actually initializes the global variables is not invoked until the first message is sent
to the class object. The solution would require these variables to be initialized just before
entering main.

The correct solution of the above problem is to use the +load method instead of
+initialize:

@implementation FileStream

+ (void)load

{

Stdin = [[FileStream new] initWithFd:0];

Stdout = [[FileStream new] initWithFd:1];
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Stderr = [[FileStream new] initWithFd:2];

}

/* Other methods here */

@end

The +load is a method that is not overridden by categories. If a class and a category of
it both implement +load, both methods are invoked. This allows some additional initial-
izations to be performed in a category.

This mechanism is not intended to be a replacement for +initialize. You should be
aware of its limitations when you decide to use it instead of +initialize.

7.1.1 What you can and what you cannot do in +load

The +load implementation in the GNU runtime guarantees you the following things:

• you can write whatever C code you like;

• you can send messages to Objective-C constant strings (@"this is a constant
string");

• you can allocate and send messages to objects whose class is implemented in the same
file;

• the +load implementation of all super classes of a class are executed before the +load
of that class is executed;

• the +load implementation of a class is executed before the +load implementation of
any category.

In particular, the following things, even if they can work in a particular case, are not
guaranteed:

• allocation of or sending messages to arbitrary objects;

• allocation of or sending messages to objects whose classes have a category implemented
in the same file;

You should make no assumptions about receiving +load in sibling classes when you write
+load of a class. The order in which sibling classes receive +load is not guaranteed.

The order in which +load and +initialize are called could be problematic if this mat-
ters. If you don’t allocate objects inside +load, it is guaranteed that +load is called before
+initialize. If you create an object inside +load the +initialize method of object’s
class is invoked even if +load was not invoked. Note if you explicitly call +load on a class,
+initialize will be called first. To avoid possible problems try to implement only one of
these methods.

The +load method is also invoked when a bundle is dynamically loaded into your running
program. This happens automatically without any intervening operation from you. When
you write bundles and you need to write +load you can safely create and send messages to
objects whose classes already exist in the running program. The same restrictions as above
apply to classes defined in bundle.
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7.2 Type encoding

The Objective-C compiler generates type encodings for all the types. These type encodings
are used at runtime to find out information about selectors and methods and about objects
and classes.

The types are encoded in the following way:
char c
unsigned char C
short s
unsigned short S
int i
unsigned int I
long l
unsigned long L
long long q
unsigned long long Q
float f
double d
void v
id @
Class #
SEL :
char* *
unknown type ?
bit-fields b followed by the starting position of the bit-field, the type of the

bit-field and the size of the bit-field (the bit-fields encoding was
changed from the NeXT’s compiler encoding, see below)

The encoding of bit-fields has changed to allow bit-fields to be properly handled by the
runtime functions that compute sizes and alignments of types that contain bit-fields. The
previous encoding contained only the size of the bit-field. Using only this information it is
not possible to reliably compute the size occupied by the bit-field. This is very important
in the presence of the Boehm’s garbage collector because the objects are allocated using
the typed memory facility available in this collector. The typed memory allocation requires
information about where the pointers are located inside the object.

The position in the bit-field is the position, counting in bits, of the bit closest to the
beginning of the structure.

The non-atomic types are encoded as follows:
pointers ‘^’ followed by the pointed type.
arrays ‘[’ followed by the number of elements in the array followed by the

type of the elements followed by ‘]’
structures ‘{’ followed by the name of the structure (or ‘?’ if the structure is

unnamed), the ‘=’ sign, the type of the members and by ‘}’
unions ‘(’ followed by the name of the structure (or ‘?’ if the union is un-

named), the ‘=’ sign, the type of the members followed by ‘)’
Here are some types and their encodings, as they are generated by the compiler on an

i386 machine:
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Objective-C type Compiler encoding
int a[10]; [10i]

struct {

int i;

float f[3];

int a:3;

int b:2;

char c;

}

{?=i[3f]b128i3b131i2c}

In addition to the types the compiler also encodes the type specifiers. The table below
describes the encoding of the current Objective-C type specifiers:

Specifier Encoding
const r
in n
inout N
out o
bycopy O
oneway V

The type specifiers are encoded just before the type. Unlike types however, the type
specifiers are only encoded when they appear in method argument types.

7.3 Garbage Collection

Support for a new memory management policy has been added by using a powerful conserva-
tive garbage collector, known as the Boehm-Demers-Weiser conservative garbage collector.
It is available from http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

To enable the support for it you have to configure the compiler using an additional ar-
gument, ‘--enable-objc-gc’. You need to have garbage collector installed before building
the compiler. This will build an additional runtime library which has several enhancements
to support the garbage collector. The new library has a new name, ‘libobjc_gc.a’ to not
conflict with the non-garbage-collected library.

When the garbage collector is used, the objects are allocated using the so-called typed
memory allocation mechanism available in the Boehm-Demers-Weiser collector. This mode
requires precise information on where pointers are located inside objects. This information
is computed once per class, immediately after the class has been initialized.

There is a new runtime function class_ivar_set_gcinvisible() which can be used to
declare a so-called weak pointer reference. Such a pointer is basically hidden for the garbage
collector; this can be useful in certain situations, especially when you want to keep track
of the allocated objects, yet allow them to be collected. This kind of pointers can only be
members of objects, you cannot declare a global pointer as a weak reference. Every type
which is a pointer type can be declared a weak pointer, including id, Class and SEL.
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Here is an example of how to use this feature. Suppose you want to implement a class
whose instances hold a weak pointer reference; the following class does this:

@interface WeakPointer : Object

{

const void* weakPointer;

}

- initWithPointer:(const void*)p;

- (const void*)weakPointer;

@end

@implementation WeakPointer

+ (void)initialize

{

class_ivar_set_gcinvisible (self, "weakPointer", YES);

}

- initWithPointer:(const void*)p

{

weakPointer = p;

return self;

}

- (const void*)weakPointer

{

return weakPointer;

}

@end

Weak pointers are supported through a new type character specifier represented by the
‘!’ character. The class_ivar_set_gcinvisible() function adds or removes this specifier
to the string type description of the instance variable named as argument.

7.4 Constant string objects

GNU Objective-C provides constant string objects that are generated directly by the com-
piler. You declare a constant string object by prefixing a C constant string with the character
‘@’:

id myString = @"this is a constant string object";

The constant string objects are by default instances of the NXConstantString class which
is provided by the GNU Objective-C runtime. To get the definition of this class you must
include the ‘objc/NXConstStr.h’ header file.

User defined libraries may want to implement their own constant string class. To be able
to support them, the GNU Objective-C compiler provides a new command line options
‘-fconstant-string-class=class-name ’. The provided class should adhere to a strict
structure, the same as NXConstantString’s structure:

@interface MyConstantStringClass

{



376 Using the GNU Compiler Collection (GCC)

Class isa;

char *c_string;

unsigned int len;

}

@end

NXConstantString inherits from Object; user class libraries may choose to inherit the
customized constant string class from a different class than Object. There is no requirement
in the methods the constant string class has to implement, but the final ivar layout of the
class must be the compatible with the given structure.

When the compiler creates the statically allocated constant string object, the c_string
field will be filled by the compiler with the string; the length field will be filled by the
compiler with the string length; the isa pointer will be filled with NULL by the compiler,
and it will later be fixed up automatically at runtime by the GNU Objective-C runtime
library to point to the class which was set by the ‘-fconstant-string-class’ option when
the object file is loaded (if you wonder how it works behind the scenes, the name of the
class to use, and the list of static objects to fixup, are stored by the compiler in the object
file in a place where the GNU runtime library will find them at runtime).

As a result, when a file is compiled with the ‘-fconstant-string-class’ option, all the
constant string objects will be instances of the class specified as argument to this option. It
is possible to have multiple compilation units referring to different constant string classes,
neither the compiler nor the linker impose any restrictions in doing this.

7.5 compatibility alias

This is a feature of the Objective-C compiler rather than of the runtime, anyway since it is
documented nowhere and its existence was forgotten, we are documenting it here.

The keyword @compatibility_alias allows you to define a class name as equivalent to
another class name. For example:

@compatibility_alias WOApplication GSWApplication;

tells the compiler that each time it encounters WOApplication as a class name, it
should replace it with GSWApplication (that is, WOApplication is just an alias for
GSWApplication).

There are some constraints on how this can be used—
• WOApplication (the alias) must not be an existing class;
• GSWApplication (the real class) must be an existing class.
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8 Binary Compatibility

Binary compatibility encompasses several related concepts:

application binary interface (ABI)
The set of runtime conventions followed by all of the tools that deal with bi-
nary representations of a program, including compilers, assemblers, linkers, and
language runtime support. Some ABIs are formal with a written specification,
possibly designed by multiple interested parties. Others are simply the way
things are actually done by a particular set of tools.

ABI conformance
A compiler conforms to an ABI if it generates code that follows all of the
specifications enumerated by that ABI. A library conforms to an ABI if it is
implemented according to that ABI. An application conforms to an ABI if it
is built using tools that conform to that ABI and does not contain source code
that specifically changes behavior specified by the ABI.

calling conventions
Calling conventions are a subset of an ABI that specify of how arguments are
passed and function results are returned.

interoperability
Different sets of tools are interoperable if they generate files that can be used
in the same program. The set of tools includes compilers, assemblers, linkers,
libraries, header files, startup files, and debuggers. Binaries produced by dif-
ferent sets of tools are not interoperable unless they implement the same ABI.
This applies to different versions of the same tools as well as tools from different
vendors.

intercallability
Whether a function in a binary built by one set of tools can call a function in
a binary built by a different set of tools is a subset of interoperability.

implementation-defined features
Language standards include lists of implementation-defined features whose be-
havior can vary from one implementation to another. Some of these features
are normally covered by a platform’s ABI and others are not. The features
that are not covered by an ABI generally affect how a program behaves, but
not intercallability.

compatibility
Conformance to the same ABI and the same behavior of implementation-defined
features are both relevant for compatibility.

The application binary interface implemented by a C or C++ compiler affects code gen-
eration and runtime support for:

• size and alignment of data types
• layout of structured types
• calling conventions
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• register usage conventions
• interfaces for runtime arithmetic support
• object file formats

In addition, the application binary interface implemented by a C++ compiler affects code
generation and runtime support for:
• name mangling
• exception handling
• invoking constructors and destructors
• layout, alignment, and padding of classes
• layout and alignment of virtual tables

Some GCC compilation options cause the compiler to generate code that does not con-
form to the platform’s default ABI. Other options cause different program behavior for
implementation-defined features that are not covered by an ABI. These options are pro-
vided for consistency with other compilers that do not follow the platform’s default ABI
or the usual behavior of implementation-defined features for the platform. Be very careful
about using such options.

Most platforms have a well-defined ABI that covers C code, but ABIs that cover C++
functionality are not yet common.

Starting with GCC 3.2, GCC binary conventions for C++ are based on a written, vendor-
neutral C++ ABI that was designed to be specific to 64-bit Itanium but also includes generic
specifications that apply to any platform. This C++ ABI is also implemented by other
compiler vendors on some platforms, notably GNU/Linux and BSD systems. We have tried
hard to provide a stable ABI that will be compatible with future GCC releases, but it is
possible that we will encounter problems that make this difficult. Such problems could
include different interpretations of the C++ ABI by different vendors, bugs in the ABI, or
bugs in the implementation of the ABI in different compilers. GCC’s ‘-Wabi’ switch warns
when G++ generates code that is probably not compatible with the C++ ABI.

The C++ library used with a C++ compiler includes the Standard C++ Library, with
functionality defined in the C++ Standard, plus language runtime support. The runtime
support is included in a C++ ABI, but there is no formal ABI for the Standard C++ Library.
Two implementations of that library are interoperable if one follows the de-facto ABI of the
other and if they are both built with the same compiler, or with compilers that conform to
the same ABI for C++ compiler and runtime support.

When G++ and another C++ compiler conform to the same C++ ABI, but the implemen-
tations of the Standard C++ Library that they normally use do not follow the same ABI for
the Standard C++ Library, object files built with those compilers can be used in the same
program only if they use the same C++ library. This requires specifying the location of the
C++ library header files when invoking the compiler whose usual library is not being used.
The location of GCC’s C++ header files depends on how the GCC build was configured, but
can be seen by using the G++ ‘-v’ option. With default configuration options for G++ 3.3
the compile line for a different C++ compiler needs to include

-Igcc_install_directory/include/c++/3.3

Similarly, compiling code with G++ that must use a C++ library other than the GNU C++
library requires specifying the location of the header files for that other library.
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The most straightforward way to link a program to use a particular C++ library is to
use a C++ driver that specifies that C++ library by default. The g++ driver, for example,
tells the linker where to find GCC’s C++ library (‘libstdc++’) plus the other libraries and
startup files it needs, in the proper order.

If a program must use a different C++ library and it’s not possible to do the final link
using a C++ driver that uses that library by default, it is necessary to tell g++ the location
and name of that library. It might also be necessary to specify different startup files and
other runtime support libraries, and to suppress the use of GCC’s support libraries with
one or more of the options ‘-nostdlib’, ‘-nostartfiles’, and ‘-nodefaultlibs’.
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9 gcov—a Test Coverage Program

gcov is a tool you can use in conjunction with GCC to test code coverage in your programs.

9.1 Introduction to gcov

gcov is a test coverage program. Use it in concert with GCC to analyze your programs
to help create more efficient, faster running code and to discover untested parts of your
program. You can use gcov as a profiling tool to help discover where your optimization
efforts will best affect your code. You can also use gcov along with the other profiling tool,
gprof, to assess which parts of your code use the greatest amount of computing time.

Profiling tools help you analyze your code’s performance. Using a profiler such as gcov
or gprof, you can find out some basic performance statistics, such as:

• how often each line of code executes

• what lines of code are actually executed

• how much computing time each section of code uses

Once you know these things about how your code works when compiled, you can look at
each module to see which modules should be optimized. gcov helps you determine where
to work on optimization.

Software developers also use coverage testing in concert with testsuites, to make sure
software is actually good enough for a release. Testsuites can verify that a program works
as expected; a coverage program tests to see how much of the program is exercised by the
testsuite. Developers can then determine what kinds of test cases need to be added to the
testsuites to create both better testing and a better final product.

You should compile your code without optimization if you plan to use gcov because
the optimization, by combining some lines of code into one function, may not give you
as much information as you need to look for ‘hot spots’ where the code is using a great
deal of computer time. Likewise, because gcov accumulates statistics by line (at the lowest
resolution), it works best with a programming style that places only one statement on each
line. If you use complicated macros that expand to loops or to other control structures,
the statistics are less helpful—they only report on the line where the macro call appears.
If your complex macros behave like functions, you can replace them with inline functions
to solve this problem.

gcov creates a logfile called ‘sourcefile.gcov’ which indicates how many times each line
of a source file ‘sourcefile.c’ has executed. You can use these logfiles along with gprof
to aid in fine-tuning the performance of your programs. gprof gives timing information
you can use along with the information you get from gcov.

gcov works only on code compiled with GCC. It is not compatible with any other profiling
or test coverage mechanism.

9.2 Invoking gcov
gcov [options ] sourcefile

gcov accepts the following options:
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-h
--help Display help about using gcov (on the standard output), and exit without doing

any further processing.

-v
--version

Display the gcov version number (on the standard output), and exit without
doing any further processing.

-a
--all-blocks

Write individual execution counts for every basic block. Normally gcov outputs
execution counts only for the main blocks of a line. With this option you can
determine if blocks within a single line are not being executed.

-b
--branch-probabilities

Write branch frequencies to the output file, and write branch summary info to
the standard output. This option allows you to see how often each branch in
your program was taken. Unconditional branches will not be shown, unless the
‘-u’ option is given.

-c
--branch-counts

Write branch frequencies as the number of branches taken, rather than the
percentage of branches taken.

-n
--no-output

Do not create the gcov output file.

-l
--long-file-names

Create long file names for included source files. For example, if the header
file ‘x.h’ contains code, and was included in the file ‘a.c’, then running gcov
on the file ‘a.c’ will produce an output file called ‘a.c##x.h.gcov’ instead of
‘x.h.gcov’. This can be useful if ‘x.h’ is included in multiple source files. If you
use the ‘-p’ option, both the including and included file names will be complete
path names.

-p
--preserve-paths

Preserve complete path information in the names of generated ‘.gcov’ files.
Without this option, just the filename component is used. With this option, all
directories are used, with ‘/’ characters translated to ‘#’ characters, ‘.’ directory
components removed and ‘..’ components renamed to ‘^’. This is useful if
sourcefiles are in several different directories. It also affects the ‘-l’ option.

-f
--function-summaries

Output summaries for each function in addition to the file level summary.
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-o directory|file
--object-directory directory

--object-file file

Specify either the directory containing the gcov data files, or the object path
name. The ‘.gcno’, and ‘.gcda’ data files are searched for using this option. If
a directory is specified, the data files are in that directory and named after the
source file name, without its extension. If a file is specified here, the data files
are named after that file, without its extension. If this option is not supplied,
it defaults to the current directory.

-u
--unconditional-branches

When branch probabilities are given, include those of unconditional branches.
Unconditional branches are normally not interesting.

gcov should be run with the current directory the same as that when you invoked the
compiler. Otherwise it will not be able to locate the source files. gcov produces files called
‘mangledname.gcov’ in the current directory. These contain the coverage information of the
source file they correspond to. One ‘.gcov’ file is produced for each source file containing
code, which was compiled to produce the data files. The mangledname part of the output
file name is usually simply the source file name, but can be something more complicated if
the ‘-l’ or ‘-p’ options are given. Refer to those options for details.

The ‘.gcov’ files contain the ‘:’ separated fields along with program source code. The
format is

execution_count:line_number:source line text

Additional block information may succeed each line, when requested by command line
option. The execution count is ‘-’ for lines containing no code and ‘#####’ for lines which
were never executed. Some lines of information at the start have line number of zero.

The preamble lines are of the form
-:0:tag:value

The ordering and number of these preamble lines will be augmented as gcov development
progresses — do not rely on them remaining unchanged. Use tag to locate a particular
preamble line.

The additional block information is of the form
tag information

The information is human readable, but designed to be simple enough for machine parsing
too.

When printing percentages, 0% and 100% are only printed when the values are exactly
0% and 100% respectively. Other values which would conventionally be rounded to 0% or
100% are instead printed as the nearest non-boundary value.

When using gcov, you must first compile your program with two special GCC options:
‘-fprofile-arcs -ftest-coverage’. This tells the compiler to generate additional infor-
mation needed by gcov (basically a flow graph of the program) and also includes additional
code in the object files for generating the extra profiling information needed by gcov. These
additional files are placed in the directory where the object file is located.
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Running the program will cause profile output to be generated. For each source file
compiled with ‘-fprofile-arcs’, an accompanying ‘.gcda’ file will be placed in the object
file directory.

Running gcov with your program’s source file names as arguments will now produce a
listing of the code along with frequency of execution for each line. For example, if your
program is called ‘tmp.c’, this is what you see when you use the basic gcov facility:

$ gcc -fprofile-arcs -ftest-coverage tmp.c

$ a.out

$ gcov tmp.c

90.00% of 10 source lines executed in file tmp.c

Creating tmp.c.gcov.

The file ‘tmp.c.gcov’ contains output from gcov. Here is a sample:
-: 0:Source:tmp.c

-: 0:Graph:tmp.gcno

-: 0:Data:tmp.gcda

-: 0:Runs:1

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

#####: 13: printf ("Failure\n");

-: 14: else

1: 15: printf ("Success\n");

1: 16: return 0;

-: 17:}

When you use the ‘-a’ option, you will get individual block counts, and the output looks
like this:

-: 0:Source:tmp.c

-: 0:Graph:tmp.gcno

-: 0:Data:tmp.gcda

-: 0:Runs:1

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 4-block 0

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

11: 9-block 0

10: 10: total += i;

10: 10-block 0

-: 11:
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1: 12: if (total != 45)

1: 12-block 0

#####: 13: printf ("Failure\n");

$$$$$: 13-block 0

-: 14: else

1: 15: printf ("Success\n");

1: 15-block 0

1: 16: return 0;

1: 16-block 0

-: 17:}

In this mode, each basic block is only shown on one line – the last line of the block.
A multi-line block will only contribute to the execution count of that last line, and other
lines will not be shown to contain code, unless previous blocks end on those lines. The
total execution count of a line is shown and subsequent lines show the execution counts for
individual blocks that end on that line. After each block, the branch and call counts of the
block will be shown, if the ‘-b’ option is given.

Because of the way GCC instruments calls, a call count can be shown after a line with
no individual blocks. As you can see, line 13 contains a basic block that was not executed.

When you use the ‘-b’ option, your output looks like this:
$ gcov -b tmp.c

90.00% of 10 source lines executed in file tmp.c

80.00% of 5 branches executed in file tmp.c

80.00% of 5 branches taken at least once in file tmp.c

50.00% of 2 calls executed in file tmp.c

Creating tmp.c.gcov.

Here is a sample of a resulting ‘tmp.c.gcov’ file:
-: 0:Source:tmp.c

-: 0:Graph:tmp.gcno

-: 0:Data:tmp.gcda

-: 0:Runs:1

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

function main called 1 returned 1 blocks executed 75%

1: 4:{

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

branch 0 taken 91% (fallthrough)

branch 1 taken 9%

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

branch 0 taken 0% (fallthrough)

branch 1 taken 100%

#####: 13: printf ("Failure\n");

call 0 never executed

-: 14: else

1: 15: printf ("Success\n");

call 0 called 1 returned 100%

1: 16: return 0;
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-: 17:}

For each function, a line is printed showing how many times the function is called, how
many times it returns and what percentage of the function’s blocks were executed.

For each basic block, a line is printed after the last line of the basic block describing the
branch or call that ends the basic block. There can be multiple branches and calls listed for
a single source line if there are multiple basic blocks that end on that line. In this case, the
branches and calls are each given a number. There is no simple way to map these branches
and calls back to source constructs. In general, though, the lowest numbered branch or call
will correspond to the leftmost construct on the source line.

For a branch, if it was executed at least once, then a percentage indicating the number
of times the branch was taken divided by the number of times the branch was executed will
be printed. Otherwise, the message “never executed” is printed.

For a call, if it was executed at least once, then a percentage indicating the number of
times the call returned divided by the number of times the call was executed will be printed.
This will usually be 100%, but may be less for functions that call exit or longjmp, and
thus may not return every time they are called.

The execution counts are cumulative. If the example program were executed again with-
out removing the ‘.gcda’ file, the count for the number of times each line in the source was
executed would be added to the results of the previous run(s). This is potentially useful in
several ways. For example, it could be used to accumulate data over a number of program
runs as part of a test verification suite, or to provide more accurate long-term information
over a large number of program runs.

The data in the ‘.gcda’ files is saved immediately before the program exits. For each
source file compiled with ‘-fprofile-arcs’, the profiling code first attempts to read in an
existing ‘.gcda’ file; if the file doesn’t match the executable (differing number of basic block
counts) it will ignore the contents of the file. It then adds in the new execution counts and
finally writes the data to the file.

9.3 Using gcov with GCC Optimization

If you plan to use gcov to help optimize your code, you must first compile your program
with two special GCC options: ‘-fprofile-arcs -ftest-coverage’. Aside from that, you
can use any other GCC options; but if you want to prove that every single line in your
program was executed, you should not compile with optimization at the same time. On
some machines the optimizer can eliminate some simple code lines by combining them with
other lines. For example, code like this:

if (a != b)

c = 1;

else

c = 0;

can be compiled into one instruction on some machines. In this case, there is no way for
gcov to calculate separate execution counts for each line because there isn’t separate code
for each line. Hence the gcov output looks like this if you compiled the program with
optimization:

100: 12:if (a != b)

100: 13: c = 1;

100: 14:else
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100: 15: c = 0;

The output shows that this block of code, combined by optimization, executed 100 times.
In one sense this result is correct, because there was only one instruction representing all
four of these lines. However, the output does not indicate how many times the result was
0 and how many times the result was 1.

Inlineable functions can create unexpected line counts. Line counts are shown for the
source code of the inlineable function, but what is shown depends on where the function is
inlined, or if it is not inlined at all.

If the function is not inlined, the compiler must emit an out of line copy of the function, in
any object file that needs it. If ‘fileA.o’ and ‘fileB.o’ both contain out of line bodies of a
particular inlineable function, they will also both contain coverage counts for that function.
When ‘fileA.o’ and ‘fileB.o’ are linked together, the linker will, on many systems, select
one of those out of line bodies for all calls to that function, and remove or ignore the other.
Unfortunately, it will not remove the coverage counters for the unused function body. Hence
when instrumented, all but one use of that function will show zero counts.

If the function is inlined in several places, the block structure in each location might not
be the same. For instance, a condition might now be calculable at compile time in some
instances. Because the coverage of all the uses of the inline function will be shown for the
same source lines, the line counts themselves might seem inconsistent.

9.4 Brief description of gcov data files

gcov uses two files for profiling. The names of these files are derived from the original object
file by substituting the file suffix with either ‘.gcno’, or ‘.gcda’. All of these files are placed
in the same directory as the object file, and contain data stored in a platform-independent
format.

The ‘.gcno’ file is generated when the source file is compiled with the GCC
‘-ftest-coverage’ option. It contains information to reconstruct the basic block graphs
and assign source line numbers to blocks.

The ‘.gcda’ file is generated when a program containing object files built with the GCC
‘-fprofile-arcs’ option is executed. A separate ‘.gcda’ file is created for each object file
compiled with this option. It contains arc transition counts, and some summary information.

The full details of the file format is specified in ‘gcov-io.h’, and functions provided in
that header file should be used to access the coverage files.

9.5 Data file relocation to support cross-profiling

Running the program will cause profile output to be generated. For each source file com-
piled with ‘-fprofile-arcs’, an accompanying ‘.gcda’ file will be placed in the object file
directory. That implicitly requires running the program on the same system as it was built
or having the same absolute directory structure on the target system. The program will try
to create the needed directory structure, if it is not already present.

To support cross-profiling, a program compiled with ‘-fprofile-arcs’ can relocate the
data files based on two environment variables:
• GCOV PREFIX contains the prefix to add to the absolute paths in the object file.

Prefix must be absolute as well, otherwise its value is ignored. The default is no prefix.
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• GCOV PREFIX STRIP indicates the how many initial directory names to strip off
the hardwired absolute paths. Default value is 0.
Note: GCOV PREFIX STRIP has no effect if GCOV PREFIX is undefined, empty
or non-absolute.

For example, if the object file ‘/user/build/foo.o’ was built with ‘-fprofile-arcs’,
the final executable will try to create the data file ‘/user/build/foo.gcda’ when running
on the target system. This will fail if the corresponding directory does not exist and it
is unable to create it. This can be overcome by, for example, setting the environment as
‘GCOV_PREFIX=/target/run’ and ‘GCOV_PREFIX_STRIP=1’. Such a setting will name the
data file ‘/target/run/build/foo.gcda’.

You must move the data files to the expected directory tree in order to use them for
profile directed optimizations (‘--use-profile’), or to use the gcov tool.
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10 Known Causes of Trouble with GCC

This section describes known problems that affect users of GCC. Most of these are not
GCC bugs per se—if they were, we would fix them. But the result for a user may be like
the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that
are too much work to add, and some are places where people’s opinions differ as to what is
best.

10.1 Actual Bugs We Haven’t Fixed Yet

• The fixincludes script interacts badly with automounters; if the directory of system
header files is automounted, it tends to be unmounted while fixincludes is running.
This would seem to be a bug in the automounter. We don’t know any good way to
work around it.

• The fixproto script will sometimes add prototypes for the sigsetjmp and siglongjmp
functions that reference the jmp_buf type before that type is defined. To work around
this, edit the offending file and place the typedef in front of the prototypes.

10.2 Cross-Compiler Problems

You may run into problems with cross compilation on certain machines, for several reasons.

• At present, the program ‘mips-tfile’ which adds debug support to object files on
MIPS systems does not work in a cross compile environment.

10.3 Interoperation

This section lists various difficulties encountered in using GCC together with other compilers
or with the assemblers, linkers, libraries and debuggers on certain systems.

• On many platforms, GCC supports a different ABI for C++ than do other compilers, so
the object files compiled by GCC cannot be used with object files generated by another
C++ compiler.

An area where the difference is most apparent is name mangling. The use of different
name mangling is intentional, to protect you from more subtle problems. Compilers
differ as to many internal details of C++ implementation, including: how class instances
are laid out, how multiple inheritance is implemented, and how virtual function calls
are handled. If the name encoding were made the same, your programs would link
against libraries provided from other compilers—but the programs would then crash
when run. Incompatible libraries are then detected at link time, rather than at run
time.

• On some BSD systems, including some versions of Ultrix, use of profiling causes static
variable destructors (currently used only in C++) not to be run.

• On some SGI systems, when you use ‘-lgl_s’ as an option, it gets translated magically
to ‘-lgl_s -lX11_s -lc_s’. Naturally, this does not happen when you use GCC. You
must specify all three options explicitly.
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• On a SPARC, GCC aligns all values of type double on an 8-byte boundary, and it
expects every double to be so aligned. The Sun compiler usually gives double values
8-byte alignment, with one exception: function arguments of type double may not be
aligned.

As a result, if a function compiled with Sun CC takes the address of an argument
of type double and passes this pointer of type double * to a function compiled with
GCC, dereferencing the pointer may cause a fatal signal.

One way to solve this problem is to compile your entire program with GCC. Another
solution is to modify the function that is compiled with Sun CC to copy the argument
into a local variable; local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the following function
access_double instead of directly with ‘*’:

inline double

access_double (double *unaligned_ptr)

{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;

union d2i u;

u.i[0] = p->i[0];

u.i[1] = p->i[1];

return u.d;

}

Storing into the pointer can be done likewise with the same union.

• On Solaris, the malloc function in the ‘libmalloc.a’ library may allocate memory
that is only 4 byte aligned. Since GCC on the SPARC assumes that doubles are 8 byte
aligned, this may result in a fatal signal if doubles are stored in memory allocated by
the ‘libmalloc.a’ library.

The solution is to not use the ‘libmalloc.a’ library. Use instead malloc and related
functions from ‘libc.a’; they do not have this problem.

• On the HP PA machine, ADB sometimes fails to work on functions compiled with
GCC. Specifically, it fails to work on functions that use alloca or variable-size arrays.
This is because GCC doesn’t generate HP-UX unwind descriptors for such functions.
It may even be impossible to generate them.

• Debugging (‘-g’) is not supported on the HP PA machine, unless you use the prelimi-
nary GNU tools.

• Taking the address of a label may generate errors from the HP-UX PA assembler. GAS
for the PA does not have this problem.

• Using floating point parameters for indirect calls to static functions will not work when
using the HP assembler. There simply is no way for GCC to specify what registers hold
arguments for static functions when using the HP assembler. GAS for the PA does not
have this problem.

• In extremely rare cases involving some very large functions you may receive errors from
the HP linker complaining about an out of bounds unconditional branch offset. This
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used to occur more often in previous versions of GCC, but is now exceptionally rare.
If you should run into it, you can work around by making your function smaller.

• GCC compiled code sometimes emits warnings from the HP-UX assembler of the form:
(warning) Use of GR3 when

frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.
• In extremely rare cases involving some very large functions you may receive errors from

the AIX Assembler complaining about a displacement that is too large. If you should
run into it, you can work around by making your function smaller.

• The ‘libstdc++.a’ library in GCC relies on the SVR4 dynamic linker semantics which
merges global symbols between libraries and applications, especially necessary for C++
streams functionality. This is not the default behavior of AIX shared libraries and
dynamic linking. ‘libstdc++.a’ is built on AIX with “runtime-linking” enabled so
that symbol merging can occur. To utilize this feature, the application linked with
‘libstdc++.a’ must include the ‘-Wl,-brtl’ flag on the link line. G++ cannot impose
this because this option may interfere with the semantics of the user program and users
may not always use ‘g++’ to link his or her application. Applications are not required to
use the ‘-Wl,-brtl’ flag on the link line—the rest of the ‘libstdc++.a’ library which
is not dependent on the symbol merging semantics will continue to function correctly.

• An application can interpose its own definition of functions for functions invoked by
‘libstdc++.a’ with “runtime-linking” enabled on AIX. To accomplish this the appli-
cation must be linked with “runtime-linking” option and the functions explicitly must
be exported by the application (‘-Wl,-brtl,-bE:exportfile’).

• AIX on the RS/6000 provides support (NLS) for environments outside of the United
States. Compilers and assemblers use NLS to support locale-specific representations
of various objects including floating-point numbers (‘.’ vs ‘,’ for separating decimal
fractions). There have been problems reported where the library linked with GCC does
not produce the same floating-point formats that the assembler accepts. If you have
this problem, set the LANG environment variable to ‘C’ or ‘En_US’.

• Even if you specify ‘-fdollars-in-identifiers’, you cannot successfully use ‘$’ in
identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports
these identifiers.

• On Ultrix, the Fortran compiler expects registers 2 through 5 to be saved by function
calls. However, the C compiler uses conventions compatible with BSD Unix: registers
2 through 5 may be clobbered by function calls.
GCC uses the same convention as the Ultrix C compiler. You can use these options to
produce code compatible with the Fortran compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

10.4 Incompatibilities of GCC

There are several noteworthy incompatibilities between GNU C and K&R (non-ISO) ver-
sions of C.

• GCC normally makes string constants read-only. If several identical-looking string
constants are used, GCC stores only one copy of the string.
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One consequence is that you cannot call mktemp with a string constant argument. The
function mktemp always alters the string its argument points to.
Another consequence is that sscanf does not work on some very old systems when
passed a string constant as its format control string or input. This is because sscanf
incorrectly tries to write into the string constant. Likewise fscanf and scanf.
The solution to these problems is to change the program to use char-array variables
with initialization strings for these purposes instead of string constants.

• -2147483648 is positive.
This is because 2147483648 cannot fit in the type int, so (following the ISO C rules)
its data type is unsigned long int. Negating this value yields 2147483648 again.

• GCC does not substitute macro arguments when they appear inside of string constants.
For example, the following macro in GCC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.
• When you use setjmp and longjmp, the only automatic variables guaranteed to re-

main valid are those declared volatile. This is a consequence of automatic register
allocation. Consider this function:

jmp_buf j;

foo ()

{

int a, b;

a = fun1 ();

if (setjmp (j))

return a;

a = fun2 ();

/* longjmp (j) may occur in fun3. */

return a + fun3 ();

}

Here a may or may not be restored to its first value when the longjmp occurs. If a is
allocated in a register, then its first value is restored; otherwise, it keeps the last value
stored in it.
If you use the ‘-W’ option with the ‘-O’ option, you will get a warning when GCC thinks
such a problem might be possible.

• Programs that use preprocessing directives in the middle of macro arguments do not
work with GCC. For example, a program like this will not work:

foobar (

#define luser

hack)

ISO C does not permit such a construct.
• K&R compilers allow comments to cross over an inclusion boundary (i.e. started in an

include file and ended in the including file).
• Declarations of external variables and functions within a block apply only to the block

containing the declaration. In other words, they have the same scope as any other
declaration in the same place.
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In some other C compilers, a extern declaration affects all the rest of the file even if
it happens within a block.

• In traditional C, you can combine long, etc., with a typedef name, as shown here:
typedef int foo;

typedef long foo bar;

In ISO C, this is not allowed: long and other type modifiers require an explicit int.
• PCC allows typedef names to be used as function parameters.
• Traditional C allows the following erroneous pair of declarations to appear together in

a given scope:
typedef int foo;

typedef foo foo;

• GCC treats all characters of identifiers as significant. According to K&R-1 (2.2), “No
more than the first eight characters are significant, although more may be used.”. Also
according to K&R-1 (2.2), “An identifier is a sequence of letters and digits; the first
character must be a letter. The underscore counts as a letter.”, but GCC also allows
dollar signs in identifiers.

• PCC allows whitespace in the middle of compound assignment operators such as ‘+=’.
GCC, following the ISO standard, does not allow this.

• GCC complains about unterminated character constants inside of preprocessing con-
ditionals that fail. Some programs have English comments enclosed in conditionals
that are guaranteed to fail; if these comments contain apostrophes, GCC will probably
report an error. For example, this code would produce an error:

#if 0

You can’t expect this to work.

#endif

The best solution to such a problem is to put the text into an actual C comment
delimited by ‘/*...*/’.

• Many user programs contain the declaration ‘long time ();’. In the past, the system
header files on many systems did not actually declare time, so it did not matter what
type your program declared it to return. But in systems with ISO C headers, time is
declared to return time_t, and if that is not the same as long, then ‘long time ();’
is erroneous.
The solution is to change your program to use appropriate system headers (<time.h>
on systems with ISO C headers) and not to declare time if the system header files
declare it, or failing that to use time_t as the return type of time.

• When compiling functions that return float, PCC converts it to a double. GCC
actually returns a float. If you are concerned with PCC compatibility, you should
declare your functions to return double; you might as well say what you mean.

• When compiling functions that return structures or unions, GCC output code normally
uses a method different from that used on most versions of Unix. As a result, code
compiled with GCC cannot call a structure-returning function compiled with PCC,
and vice versa.
The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8
bytes long is returned like a scalar. A structure or union with any other size is stored
into an address supplied by the caller (usually in a special, fixed register, but on some
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machines it is passed on the stack). The target hook TARGET_STRUCT_VALUE_RTX tells
GCC where to pass this address.
By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of
that storage as if it were a pointer value. The caller must copy the data from that
memory area to the place where the value is wanted. GCC does not use this method
because it is slower and nonreentrant.
On some newer machines, PCC uses a reentrant convention for all structure and union
returning. GCC on most of these machines uses a compatible convention when return-
ing structures and unions in memory, but still returns small structures and unions in
registers.
You can tell GCC to use a compatible convention for all structure and union returning
with the option ‘-fpcc-struct-return’.

• GCC complains about program fragments such as ‘0x74ae-0x4000’ which appear to be
two hexadecimal constants separated by the minus operator. Actually, this string is a
single preprocessing token. Each such token must correspond to one token in C. Since
this does not, GCC prints an error message. Although it may appear obvious that
what is meant is an operator and two values, the ISO C standard specifically requires
that this be treated as erroneous.
A preprocessing token is a preprocessing number if it begins with a digit and is followed
by letters, underscores, digits, periods and ‘e+’, ‘e-’, ‘E+’, ‘E-’, ‘p+’, ‘p-’, ‘P+’, or ‘P-’
character sequences. (In strict C89 mode, the sequences ‘p+’, ‘p-’, ‘P+’ and ‘P-’ cannot
appear in preprocessing numbers.)
To make the above program fragment valid, place whitespace in front of the minus
sign. This whitespace will end the preprocessing number.

10.5 Fixed Header Files

GCC needs to install corrected versions of some system header files. This is because most
target systems have some header files that won’t work with GCC unless they are changed.
Some have bugs, some are incompatible with ISO C, and some depend on special features
of other compilers.

Installing GCC automatically creates and installs the fixed header files, by running a
program called fixincludes. Normally, you don’t need to pay attention to this. But there
are cases where it doesn’t do the right thing automatically.
• If you update the system’s header files, such as by installing a new sys-

tem version, the fixed header files of GCC are not automatically updated.
They can be updated using the mkheaders script installed in ‘libex-
ecdir/gcc/target/version/install-tools/’.

• On some systems, header file directories contain machine-specific symbolic links in
certain places. This makes it possible to share most of the header files among hosts
running the same version of the system on different machine models.
The programs that fix the header files do not understand this special way of using
symbolic links; therefore, the directory of fixed header files is good only for the machine
model used to build it.
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It is possible to make separate sets of fixed header files for the different machine models,
and arrange a structure of symbolic links so as to use the proper set, but you’ll have
to do this by hand.

10.6 Standard Libraries

GCC by itself attempts to be a conforming freestanding implementation. See Chapter 2
[Language Standards Supported by GCC], page 5, for details of what this means. Beyond
the library facilities required of such an implementation, the rest of the C library is supplied
by the vendor of the operating system. If that C library doesn’t conform to the C standards,
then your programs might get warnings (especially when using ‘-Wall’) that you don’t
expect.

For example, the sprintf function on SunOS 4.1.3 returns char * while the C standard
says that sprintf returns an int. The fixincludes program could make the prototype
for this function match the Standard, but that would be wrong, since the function will still
return char *.

If you need a Standard compliant library, then you need to find one, as GCC does not
provide one. The GNU C library (called glibc) provides ISO C, POSIX, BSD, SystemV and
X/Open compatibility for GNU/Linux and HURD-based GNU systems; no recent version
of it supports other systems, though some very old versions did. Version 2.2 of the GNU
C library includes nearly complete C99 support. You could also ask your operating system
vendor if newer libraries are available.

10.7 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around them.
• Certain local variables aren’t recognized by debuggers when you compile with opti-

mization.
This occurs because sometimes GCC optimizes the variable out of existence. There
is no way to tell the debugger how to compute the value such a variable “would have
had”, and it is not clear that would be desirable anyway. So GCC simply does not
mention the eliminated variable when it writes debugging information.
You have to expect a certain amount of disagreement between the executable and your
source code, when you use optimization.

• Users often think it is a bug when GCC reports an error for code like this:
int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)

{ ... }

This code really is erroneous, because the scope of struct mumble in the prototype
is limited to the argument list containing it. It does not refer to the struct mumble
defined with file scope immediately below—they are two unrelated types with similar
names in different scopes.
But in the definition of foo, the file-scope type is used because that is available to be
inherited. Thus, the definition and the prototype do not match, and you get an error.
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This behavior may seem silly, but it’s what the ISO standard specifies. It is easy enough
for you to make your code work by moving the definition of struct mumble above the
prototype. It’s not worth being incompatible with ISO C just to avoid an error for the
example shown above.

• Accesses to bit-fields even in volatile objects works by accessing larger objects, such as
a byte or a word. You cannot rely on what size of object is accessed in order to read or
write the bit-field; it may even vary for a given bit-field according to the precise usage.
If you care about controlling the amount of memory that is accessed, use volatile but
do not use bit-fields.

• GCC comes with shell scripts to fix certain known problems in system header files.
They install corrected copies of various header files in a special directory where only
GCC will normally look for them. The scripts adapt to various systems by searching
all the system header files for the problem cases that we know about.
If new system header files are installed, nothing automatically arranges to update the
corrected header files. They can be updated using the mkheaders script installed in
‘libexecdir/gcc/target/version/install-tools/’.

• On 68000 and x86 systems, for instance, you can get paradoxical results if you test
the precise values of floating point numbers. For example, you can find that a floating
point value which is not a NaN is not equal to itself. This results from the fact that
the floating point registers hold a few more bits of precision than fit in a double in
memory. Compiled code moves values between memory and floating point registers at
its convenience, and moving them into memory truncates them.
You can partially avoid this problem by using the ‘-ffloat-store’ option (see Sec-
tion 3.10 [Optimize Options], page 65).

• On AIX and other platforms without weak symbol support, templates need to be in-
stantiated explicitly and symbols for static members of templates will not be generated.

• On AIX, GCC scans object files and library archives for static constructors and de-
structors when linking an application before the linker prunes unreferenced symbols.
This is necessary to prevent the AIX linker from mistakenly assuming that static con-
structor or destructor are unused and removing them before the scanning can occur.
All static constructors and destructors found will be referenced even though the mod-
ules in which they occur may not be used by the program. This may lead to both
increased executable size and unexpected symbol references.

10.8 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard definition (the ISO C++
standard) was only recently completed. As a result, your C++ compiler may occasionally
surprise you, even when its behavior is correct. This section discusses some areas that
frequently give rise to questions of this sort.

10.8.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the static member; you
must also define it. For example:

class Foo

{
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...

void method();

static int bar;

};

This declaration only establishes that the class Foo has an int named Foo::bar, and a
member function named Foo::method. But you still need to define both method and bar
elsewhere. According to the ISO standard, you must supply an initializer in one (and only
one) source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result,
when you switch to g++ from one of these compilers, you may discover that a program
that appeared to work correctly in fact does not conform to the standard: g++ reports as
undefined symbols any static data members that lack definitions.

10.8.2 Name lookup, templates, and accessing members of base
classes

The C++ standard prescribes that all names that are not dependent on template parameters
are bound to their present definitions when parsing a template function or class.1 Only
names that are dependent are looked up at the point of instantiation. For example, consider

void foo(double);

struct A {

template <typename T>

void f () {

foo (1); // 1
int i = N; // 2
T t;

t.bar(); // 3
foo (t); // 4

}

static const int N;

};

Here, the names foo and N appear in a context that does not depend on the type of T.
The compiler will thus require that they are defined in the context of use in the template,
not only before the point of instantiation, and will here use ::foo(double) and A::N,
respectively. In particular, it will convert the integer value to a double when passing it to
::foo(double).

Conversely, bar and the call to foo in the fourth marked line are used in contexts that do
depend on the type of T, so they are only looked up at the point of instantiation, and you
can provide declarations for them after declaring the template, but before instantiating it.
In particular, if you instantiate A::f<int>, the last line will call an overloaded ::foo(int)
if one was provided, even if after the declaration of struct A.

This distinction between lookup of dependent and non-dependent names is called two-
stage (or dependent) name lookup. G++ implements it since version 3.4.

Two-stage name lookup sometimes leads to situations with behavior different from non-
template codes. The most common is probably this:
1 The C++ standard just uses the term “dependent” for names that depend on the type or value of template

parameters. This shorter term will also be used in the rest of this section.
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template <typename T> struct Base {

int i;

};

template <typename T> struct Derived : public Base<T> {

int get_i() { return i; }

};

In get_i(), i is not used in a dependent context, so the compiler will look for a name
declared at the enclosing namespace scope (which is the global scope here). It will not look
into the base class, since that is dependent and you may declare specializations of Base
even after declaring Derived, so the compiler can’t really know what i would refer to. If
there is no global variable i, then you will get an error message.

In order to make it clear that you want the member of the base class, you need to defer
lookup until instantiation time, at which the base class is known. For this, you need to
access i in a dependent context, by either using this->i (remember that this is of type
Derived<T>*, so is obviously dependent), or using Base<T>::i. Alternatively, Base<T>::i
might be brought into scope by a using-declaration.

Another, similar example involves calling member functions of a base class:
template <typename T> struct Base {

int f();

};

template <typename T> struct Derived : Base<T> {

int g() { return f(); };

};

Again, the call to f() is not dependent on template arguments (there are no arguments
that depend on the type T, and it is also not otherwise specified that the call should be
in a dependent context). Thus a global declaration of such a function must be available,
since the one in the base class is not visible until instantiation time. The compiler will
consequently produce the following error message:

x.cc: In member function ‘int Derived<T>::g()’:

x.cc:6: error: there are no arguments to ‘f’ that depend on a template

parameter, so a declaration of ‘f’ must be available

x.cc:6: error: (if you use ‘-fpermissive’, G++ will accept your code, but

allowing the use of an undeclared name is deprecated)

To make the code valid either use this->f(), or Base<T>::f(). Using the
‘-fpermissive’ flag will also let the compiler accept the code, by marking all function
calls for which no declaration is visible at the time of definition of the template for later
lookup at instantiation time, as if it were a dependent call. We do not recommend using
‘-fpermissive’ to work around invalid code, and it will also only catch cases where
functions in base classes are called, not where variables in base classes are used (as in the
example above).

Note that some compilers (including G++ versions prior to 3.4) get these examples wrong
and accept above code without an error. Those compilers do not implement two-stage name
lookup correctly.

10.8.3 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The compiler
may very well delete the object before you expect it to, leaving a pointer to garbage. The
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most common place where this problem crops up is in classes like string classes, especially
ones that define a conversion function to type char * or const char *—which is one reason
why the standard string class requires you to call the c_str member function. However,
any class that returns a pointer to some internal structure is potentially subject to this
problem.

For example, a program may use a function strfunc that returns string objects, and
another function charfunc that operates on pointers to char:

string strfunc ();

void charfunc (const char *);

void

f ()

{

const char *p = strfunc().c_str();

...

charfunc (p);

...

charfunc (p);

}

In this situation, it may seem reasonable to save a pointer to the C string returned by
the c_str member function and use that rather than call c_str repeatedly. However, the
temporary string created by the call to strfunc is destroyed after p is initialized, at which
point p is left pointing to freed memory.

Code like this may run successfully under some other compilers, particularly obsolete
cfront-based compilers that delete temporaries along with normal local variables. How-
ever, the GNU C++ behavior is standard-conforming, so if your program depends on late
destruction of temporaries it is not portable.

The safe way to write such code is to give the temporary a name, which forces it to
remain until the end of the scope of the name. For example:

const string& tmp = strfunc ();

charfunc (tmp.c_str ());

10.8.4 Implicit Copy-Assignment for Virtual Bases

When a base class is virtual, only one subobject of the base class belongs to each full
object. Also, the constructors and destructors are invoked only once, and called from the
most-derived class. However, such objects behave unspecified when being assigned. For
example:

struct Base{

char *name;

Base(char *n) : name(strdup(n)){}

Base& operator= (const Base& other){

free (name);

name = strdup (other.name);

}

};

struct A:virtual Base{

int val;

A():Base("A"){}

};
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struct B:virtual Base{

int bval;

B():Base("B"){}

};

struct Derived:public A, public B{

Derived():Base("Derived"){}

};

void func(Derived &d1, Derived &d2)

{

d1 = d2;

}

The C++ standard specifies that ‘Base::Base’ is only called once when constructing or
copy-constructing a Derived object. It is unspecified whether ‘Base::operator=’ is called
more than once when the implicit copy-assignment for Derived objects is invoked (as it is
inside ‘func’ in the example).

G++ implements the “intuitive” algorithm for copy-assignment: assign all direct bases,
then assign all members. In that algorithm, the virtual base subobject can be encountered
more than once. In the example, copying proceeds in the following order: ‘val’, ‘name’ (via
strdup), ‘bval’, and ‘name’ again.

If application code relies on copy-assignment, a user-defined copy-assignment operator
removes any uncertainties. With such an operator, the application can define whether and
how the virtual base subobject is assigned.

10.9 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source file in
a way that won’t work unless you rearrange it.
• protoize can insert references to a type name or type tag before the definition, or in

a file where they are not defined.
If this happens, compiler error messages should show you where the new references are,
so fixing the file by hand is straightforward.

• There are some C constructs which protoize cannot figure out. For example, it can’t
determine argument types for declaring a pointer-to-function variable; this you must
do by hand. protoize inserts a comment containing ‘???’ each time it finds such a
variable; so you can find all such variables by searching for this string. ISO C does not
require declaring the argument types of pointer-to-function types.

• Using unprotoize can easily introduce bugs. If the program relied on prototypes
to bring about conversion of arguments, these conversions will not take place in the
program without prototypes. One case in which you can be sure unprotoize is safe
is when you are removing prototypes that were made with protoize; if the program
worked before without any prototypes, it will work again without them.
You can find all the places where this problem might occur by compiling the pro-
gram with the ‘-Wconversion’ option. It prints a warning whenever an argument is
converted.

• Both conversion programs can be confused if there are macro calls in and around the
text to be converted. In other words, the standard syntax for a declaration or definition
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must not result from expanding a macro. This problem is inherent in the design of C
and cannot be fixed. If only a few functions have confusing macro calls, you can easily
convert them manually.

• protoize cannot get the argument types for a function whose definition was not actu-
ally compiled due to preprocessing conditionals. When this happens, protoize changes
nothing in regard to such a function. protoize tries to detect such instances and warn
about them.

You can generally work around this problem by using protoize step by step, each
time specifying a different set of ‘-D’ options for compilation, until all of the functions
have been converted. There is no automatic way to verify that you have got them all,
however.

• Confusion may result if there is an occasion to convert a function declaration or def-
inition in a region of source code where there is more than one formal parameter list
present. Thus, attempts to convert code containing multiple (conditionally compiled)
versions of a single function header (in the same vicinity) may not produce the desired
(or expected) results.

If you plan on converting source files which contain such code, it is recommended
that you first make sure that each conditionally compiled region of source code which
contains an alternative function header also contains at least one additional follower
token (past the final right parenthesis of the function header). This should circumvent
the problem.

• unprotoize can become confused when trying to convert a function definition or dec-
laration which contains a declaration for a pointer-to-function formal argument which
has the same name as the function being defined or declared. We recommend you avoid
such choices of formal parameter names.

• You might also want to correct some of the indentation by hand and break long lines.
(The conversion programs don’t write lines longer than eighty characters in any case.)

10.10 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which we do not make because
we think GCC is better without them.

• Checking the number and type of arguments to a function which has an old-fashioned
definition and no prototype.

Such a feature would work only occasionally—only for calls that appear in the same
file as the called function, following the definition. The only way to check all calls
reliably is to add a prototype for the function. But adding a prototype eliminates the
motivation for this feature. So the feature is not worthwhile.

• Warning about using an expression whose type is signed as a shift count.

Shift count operands are probably signed more often than unsigned. Warning about
this would cause far more annoyance than good.

• Warning about assigning a signed value to an unsigned variable.

Such assignments must be very common; warning about them would cause more an-
noyance than good.
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• Warning when a non-void function value is ignored.
C contains many standard functions that return a value that most programs choose to
ignore. One obvious example is printf. Warning about this practice only leads the
defensive programmer to clutter programs with dozens of casts to void. Such casts
are required so frequently that they become visual noise. Writing those casts becomes
so automatic that they no longer convey useful information about the intentions of
the programmer. For functions where the return value should never be ignored, use
the warn_unused_result function attribute (see Section 5.24 [Function Attributes],
page 229).

• Making ‘-fshort-enums’ the default.
This would cause storage layout to be incompatible with most other C compilers. And
it doesn’t seem very important, given that you can get the same result in other ways.
The case where it matters most is when the enumeration-valued object is inside a
structure, and in that case you can specify a field width explicitly.

• Making bit-fields unsigned by default on particular machines where “the ABI standard”
says to do so.
The ISO C standard leaves it up to the implementation whether a bit-field declared
plain int is signed or not. This in effect creates two alternative dialects of C.
The GNU C compiler supports both dialects; you can specify the signed dialect with
‘-fsigned-bitfields’ and the unsigned dialect with ‘-funsigned-bitfields’. How-
ever, this leaves open the question of which dialect to use by default.
Currently, the preferred dialect makes plain bit-fields signed, because this is simplest.
Since int is the same as signed int in every other context, it is cleanest for them to
be the same in bit-fields as well.
Some computer manufacturers have published Application Binary Interface standards
which specify that plain bit-fields should be unsigned. It is a mistake, however, to say
anything about this issue in an ABI. This is because the handling of plain bit-fields
distinguishes two dialects of C. Both dialects are meaningful on every type of machine.
Whether a particular object file was compiled using signed bit-fields or unsigned is of
no concern to other object files, even if they access the same bit-fields in the same data
structures.
A given program is written in one or the other of these two dialects. The program
stands a chance to work on most any machine if it is compiled with the proper dialect.
It is unlikely to work at all if compiled with the wrong dialect.
Many users appreciate the GNU C compiler because it provides an environment that is
uniform across machines. These users would be inconvenienced if the compiler treated
plain bit-fields differently on certain machines.
Occasionally users write programs intended only for a particular machine type. On
these occasions, the users would benefit if the GNU C compiler were to support by
default the same dialect as the other compilers on that machine. But such applications
are rare. And users writing a program to run on more than one type of machine cannot
possibly benefit from this kind of compatibility.
This is why GCC does and will treat plain bit-fields in the same fashion on all types
of machines (by default).
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There are some arguments for making bit-fields unsigned by default on all machines.
If, for example, this becomes a universal de facto standard, it would make sense for
GCC to go along with it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should indicate explicitly in each
bit-field whether it is signed or not. In this way, they write programs which have the
same meaning in both C dialects.)

• Undefining __STDC__ when ‘-ansi’ is not used.

Currently, GCC defines __STDC__ unconditionally. This provides good results in prac-
tice.

Programmers normally use conditionals on __STDC__ to ask whether it is safe to use
certain features of ISO C, such as function prototypes or ISO token concatenation.
Since plain gcc supports all the features of ISO C, the correct answer to these questions
is “yes”.

Some users try to use __STDC__ to check for the availability of certain library facilities.
This is actually incorrect usage in an ISO C program, because the ISO C standard says
that a conforming freestanding implementation should define __STDC__ even though it
does not have the library facilities. ‘gcc -ansi -pedantic’ is a conforming freestanding
implementation, and it is therefore required to define __STDC__, even though it does
not come with an ISO C library.

Sometimes people say that defining __STDC__ in a compiler that does not completely
conform to the ISO C standard somehow violates the standard. This is illogical. The
standard is a standard for compilers that claim to support ISO C, such as ‘gcc -ansi’—
not for other compilers such as plain gcc. Whatever the ISO C standard says is
relevant to the design of plain gcc without ‘-ansi’ only for pragmatic reasons, not as
a requirement.

GCC normally defines __STDC__ to be 1, and in addition defines __STRICT_ANSI__ if
you specify the ‘-ansi’ option, or a ‘-std’ option for strict conformance to some version
of ISO C. On some hosts, system include files use a different convention, where __STDC_
_ is normally 0, but is 1 if the user specifies strict conformance to the C Standard. GCC
follows the host convention when processing system include files, but when processing
user files it follows the usual GNU C convention.

• Undefining __STDC__ in C++.

Programs written to compile with C++-to-C translators get the value of __STDC__ that
goes with the C compiler that is subsequently used. These programs must test __STDC_
_ to determine what kind of C preprocessor that compiler uses: whether they should
concatenate tokens in the ISO C fashion or in the traditional fashion.

These programs work properly with GNU C++ if __STDC__ is defined. They would not
work otherwise.

In addition, many header files are written to provide prototypes in ISO C but not in
traditional C. Many of these header files can work without change in C++ provided
__STDC__ is defined. If __STDC__ is not defined, they will all fail, and will all need to
be changed to test explicitly for C++ as well.

• Deleting “empty” loops.
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Historically, GCC has not deleted “empty” loops under the assumption that the most
likely reason you would put one in a program is to have a delay, so deleting them will
not make real programs run any faster.

However, the rationale here is that optimization of a nonempty loop cannot produce an
empty one. This held for carefully written C compiled with less powerful optimizers but
is not always the case for carefully written C++ or with more powerful optimizers. Thus
GCC will remove operations from loops whenever it can determine those operations
are not externally visible (apart from the time taken to execute them, of course). In
case the loop can be proved to be finite, GCC will also remove the loop itself.

Be aware of this when performing timing tests, for instance the following loop can be
completely removed, provided some_expression can provably not change any global
state.

{

int sum = 0;

int ix;

for (ix = 0; ix != 10000; ix++)

sum += some_expression;

}

Even though sum is accumulated in the loop, no use is made of that summation, so the
accumulation can be removed.

• Making side effects happen in the same order as in some other compiler.

It is never safe to depend on the order of evaluation of side effects. For example, a
function call like this may very well behave differently from one compiler to another:

void func (int, int);

int i = 2;

func (i++, i++);

There is no guarantee (in either the C or the C++ standard language definitions) that the
increments will be evaluated in any particular order. Either increment might happen
first. func might get the arguments ‘2, 3’, or it might get ‘3, 2’, or even ‘2, 2’.

• Making certain warnings into errors by default.

Some ISO C testsuites report failure when the compiler does not produce an error
message for a certain program.

ISO C requires a “diagnostic” message for certain kinds of invalid programs, but a
warning is defined by GCC to count as a diagnostic. If GCC produces a warning but
not an error, that is correct ISO C support. If testsuites call this “failure”, they should
be run with the GCC option ‘-pedantic-errors’, which will turn these warnings into
errors.

10.11 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each kind
has a different purpose:

Errors report problems that make it impossible to compile your program. GCC reports
errors with the source file name and line number where the problem is apparent.



Chapter 10: Known Causes of Trouble with GCC 405

Warnings report other unusual conditions in your code that may indicate a problem,
although compilation can (and does) proceed. Warning messages also report the source
file name and line number, but include the text ‘warning:’ to distinguish them from
error messages.

Warnings may indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of nonstan-
dard features of GNU C or C++. Many warnings are issued only if you ask for them, with
one of the ‘-W’ options (for instance, ‘-Wall’ requests a variety of useful warnings).

GCC always tries to compile your program if possible; it never gratuitously rejects a
program whose meaning is clear merely because (for instance) it fails to conform to a
standard. In some cases, however, the C and C++ standards specify that certain extensions
are forbidden, and a diagnostic must be issued by a conforming compiler. The ‘-pedantic’
option tells GCC to issue warnings in such cases; ‘-pedantic-errors’ says to make them
errors instead. This does not mean that all non-ISO constructs get warnings or errors.

See Section 3.8 [Options to Request or Suppress Warnings], page 36, for more detail on
these and related command-line options.
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11 Reporting Bugs

Your bug reports play an essential role in making GCC reliable.
When you encounter a problem, the first thing to do is to see if it is already known. See

Chapter 10 [Trouble], page 389. If it isn’t known, then you should report the problem.

11.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:
• If the compiler gets a fatal signal, for any input whatever, that is a compiler bug.

Reliable compilers never crash.
• If the compiler produces invalid assembly code, for any input whatever (except an

asm statement), that is a compiler bug, unless the compiler reports errors (not just
warnings) which would ordinarily prevent the assembler from being run.

• If the compiler produces valid assembly code that does not correctly execute the input
source code, that is a compiler bug.
However, you must double-check to make sure, because you may have a program whose
behavior is undefined, which happened by chance to give the desired results with an-
other C or C++ compiler.
For example, in many nonoptimizing compilers, you can write ‘x;’ at the end of a
function instead of ‘return x;’, with the same results. But the value of the function
is undefined if return is omitted; it is not a bug when GCC produces different results.
Problems often result from expressions with two increment operators, as in f (*p++,
*p++). Your previous compiler might have interpreted that expression the way you
intended; GCC might interpret it another way. Neither compiler is wrong. The bug is
in your code.
After you have localized the error to a single source line, it should be easy to check for
these things. If your program is correct and well defined, you have found a compiler
bug.

• If the compiler produces an error message for valid input, that is a compiler bug.
• If the compiler does not produce an error message for invalid input, that is a compiler

bug. However, you should note that your idea of “invalid input” might be someone
else’s idea of “an extension” or “support for traditional practice”.

• If you are an experienced user of one of the languages GCC supports, your suggestions
for improvement of GCC are welcome in any case.

11.2 How and where to Report Bugs

Bugs should be reported to the GCC bug database. Please refer to http://gcc.gnu.org/bugs.html
for up-to-date instructions how to submit bug reports. Copies of this file in HTML
(‘bugs.html’) and plain text (‘BUGS’) are also part of GCC releases.
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12 How To Get Help with GCC

If you need help installing, using or changing GCC, there are two ways to find it:
• Send a message to a suitable network mailing list. First try gcc-help@gcc.gnu.org (for

help installing or using GCC), and if that brings no response, try gcc@gcc.gnu.org.
For help changing GCC, ask gcc@gcc.gnu.org. If you think you have found a bug in
GCC, please report it following the instructions at see Section 11.2 [Bug Reporting],
page 407.

• Look in the service directory for someone who might help you for a fee. The service
directory is found at http://www.gnu.org/prep/service.html.

For further information, see http://gcc.gnu.org/faq.html#support.
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13 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available by CVS (see http://gcc.gnu.org/cvs.html). Source and binary
snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:
http://gcc.gnu.org/contribute.html

http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.
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Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than
a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.
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The GNU Project and GNU/Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system
which is free software: the GNU system. (GNU is a recursive acronym for “GNU’s Not
Unix”; it is pronounced “guh-NEW”.) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often referred to as “Linux”,
they are more accurately called GNU/Linux systems.

For more information, see:
http://www.gnu.org/

http://www.gnu.org/gnu/linux-and-gnu.html
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GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
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TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
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Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.
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6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
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which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
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under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
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that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.
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B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
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You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
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an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact law@redhat.com or gerald@pfeifer.com if you have been
left out or some of your contributions are not listed. Please keep this list in alphabetical
order.
• Analog Devices helped implement the support for complex data types and iterators.
• John David Anglin for threading-related fixes and improvements to libstdc++-v3, and

the HP-UX port.
• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register

stack.
• Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series port.
• Alasdair Baird for various bug fixes.
• Giovanni Bajo for analyzing lots of complicated C++ problem reports.
• Peter Barada for his work to improve code generation for new ColdFire cores.
• Gerald Baumgartner added the signature extension to the C++ front end.
• Godmar Back for his Java improvements and encouragement.
• Scott Bambrough for help porting the Java compiler.
• Wolfgang Bangerth for processing tons of bug reports.
• Jon Beniston for his Microsoft Windows port of Java.
• Daniel Berlin for better DWARF2 support, faster/better optimizations, improved alias

analysis, plus migrating GCC to Bugzilla.
• Geoff Berry for his Java object serialization work and various patches.
• Eric Blake for helping to make GCJ and libgcj conform to the specifications.
• Janne Blomqvist for contributions to gfortran.
• Segher Boessenkool for various fixes.
• Hans-J. Boehm for his garbage collector, IA-64 libffi port, and other Java work.
• Neil Booth for work on cpplib, lang hooks, debug hooks and other miscellaneous clean-

ups.
• Steven Bosscher for integrating the gfortran front end into GCC and for contributing

to the tree-ssa branch.
• Eric Botcazou for fixing middle- and backend bugs left and right.
• Per Bothner for his direction via the steering committee and various improvements

to the infrastructure for supporting new languages. Chill front end implementation.
Initial implementations of cpplib, fix-header, config.guess, libio, and past C++ library
(libg++) maintainer. Dreaming up, designing and implementing much of GCJ.

• Devon Bowen helped port GCC to the Tahoe.
• Don Bowman for mips-vxworks contributions.
• Dave Brolley for work on cpplib and Chill.
• Paul Brook for work on the ARM architecture and maintaining gfortran.
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• Robert Brown implemented the support for Encore 32000 systems.

• Christian Bruel for improvements to local store elimination.

• Herman A.J. ten Brugge for various fixes.

• Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.

• Joe Buck for his direction via the steering committee.

• Craig Burley for leadership of the G77 Fortran effort.

• Stephan Buys for contributing Doxygen notes for libstdc++.

• Paolo Carlini for libstdc++ work: lots of efficiency improvements to the C++ strings,
streambufs and formatted I/O, hard detective work on the frustrating localization
issues, and keeping up with the problem reports.

• John Carr for his alias work, SPARC hacking, infrastructure improvements, previous
contributions to the steering committee, loop optimizations, etc.

• Stephane Carrez for 68HC11 and 68HC12 ports.

• Steve Chamberlain for support for the Renesas SH and H8 processors and the PicoJava
processor, and for GCJ config fixes.

• Glenn Chambers for help with the GCJ FAQ.

• John-Marc Chandonia for various libgcj patches.

• Scott Christley for his Objective-C contributions.

• Eric Christopher for his Java porting help and clean-ups.

• Branko Cibej for more warning contributions.

• The GNU Classpath project for all of their merged runtime code.

• Nick Clifton for arm, mcore, fr30, v850, m32r work, ‘--help’, and other random hack-
ing.

• Michael Cook for libstdc++ cleanup patches to reduce warnings.

• R. Kelley Cook for making GCC buildable from a read-only directory as well as other
miscellaneous build process and documentation clean-ups.

• Ralf Corsepius for SH testing and minor bugfixing.

• Stan Cox for care and feeding of the x86 port and lots of behind the scenes hacking.

• Alex Crain provided changes for the 3b1.

• Ian Dall for major improvements to the NS32k port.

• Paul Dale for his work to add uClinux platform support to the m68k backend.

• Dario Dariol contributed the four varieties of sample programs that print a copy of
their source.

• Russell Davidson for fstream and stringstream fixes in libstdc++.

• Bud Davis for work on the G77 and gfortran compilers.

• Mo DeJong for GCJ and libgcj bug fixes.

• DJ Delorie for the DJGPP port, build and libiberty maintenance, various bug fixes,
and the M32C port.

• Arnaud Desitter for helping to debug gfortran.
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• Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC
diagnostics infrastructure, libstdc++-v3, including valarray<>, complex<>, maintain-
ing the numerics library (including that pesky <limits> :-) and keeping up-to-date
anything to do with numbers.

• Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99 support,
CFG dumping support, etc., plus support of the C++ runtime libraries including for all
kinds of C interface issues, contributing and maintaining complex<>, sanity checking
and disbursement, configuration architecture, libio maintenance, and early math work.

• Zdenek Dvorak for a new loop unroller and various fixes.
• Richard Earnshaw for his ongoing work with the ARM.
• David Edelsohn for his direction via the steering committee, ongoing work with the

RS6000/PowerPC port, help cleaning up Haifa loop changes, doing the entire AIX
port of libstdc++ with his bare hands, and for ensuring GCC properly keeps working
on AIX.

• Kevin Ediger for the floating point formatting of num put::do put in libstdc++.
• Phil Edwards for libstdc++ work including configuration hackery, documentation main-

tainer, chief breaker of the web pages, the occasional iostream bug fix, and work on
shared library symbol versioning.

• Paul Eggert for random hacking all over GCC.
• Mark Elbrecht for various DJGPP improvements, and for libstdc++ configuration sup-

port for locales and fstream-related fixes.
• Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.
• Christian Ehrhardt for dealing with bug reports.
• Ben Elliston for his work to move the Objective-C runtime into its own subdirectory

and for his work on autoconf.
• Marc Espie for OpenBSD support.
• Doug Evans for much of the global optimization framework, arc, m32r, and SPARC

work.
• Christopher Faylor for his work on the Cygwin port and for caring and feeding the

gcc.gnu.org box and saving its users tons of spam.
• Fred Fish for BeOS support and Ada fixes.
• Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
• Peter Gerwinski for various bug fixes and the Pascal front end.
• Kaveh R. Ghazi for his direction via the steering committee, amazing work to make ‘-W

-Wall -W* -Werror’ useful, and continuously testing GCC on a plethora of platforms.
Kaveh extends his gratitude to the CAIP Center at Rutgers University for providing
him with computing resources to work on Free Software since the late 1980s.

• John Gilmore for a donation to the FSF earmarked improving GNU Java.
• Judy Goldberg for c++ contributions.
• Torbjorn Granlund for various fixes and the c-torture testsuite, multiply- and divide-

by-constant optimization, improved long long support, improved leaf function register
allocation, and his direction via the steering committee.
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• Anthony Green for his ‘-Os’ contributions and Java front end work.
• Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.
• Michael K. Gschwind contributed the port to the PDP-11.
• Ron Guilmette implemented the protoize and unprotoize tools, the support for

Dwarf symbolic debugging information, and much of the support for System V Re-
lease 4. He has also worked heavily on the Intel 386 and 860 support.

• Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.
• Bruno Haible for improvements in the runtime overhead for EH, new warnings and

assorted bug fixes.
• Andrew Haley for his amazing Java compiler and library efforts.
• Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.
• Michael Hayes for various thankless work he’s done trying to get the c30/c40 ports

functional. Lots of loop and unroll improvements and fixes.
• Dara Hazeghi for wading through myriads of target-specific bug reports.
• Kate Hedstrom for staking the G77 folks with an initial testsuite.
• Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop opts, and

generally fixing lots of old problems we’ve ignored for years, flow rewrite and lots of
further stuff, including reviewing tons of patches.

• Aldy Hernandez for working on the PowerPC port, SIMD support, and various fixes.
• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for

the Sony NEWS machine.
• Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.
• Katherine Holcomb for work on gfortran.
• Manfred Hollstein for his ongoing work to keep the m88k alive, lots of testing and bug

fixing, particularly of GCC configury code.
• Steve Holmgren for MachTen patches.
• Jan Hubicka for his x86 port improvements.
• Falk Hueffner for working on C and optimization bug reports.
• Bernardo Innocenti for his m68k work, including merging of ColdFire improvements

and uClinux support.
• Christian Iseli for various bug fixes.
• Kamil Iskra for general m68k hacking.
• Lee Iverson for random fixes and MIPS testing.
• Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.
• Jakub Jelinek for his SPARC work and sibling call optimizations as well as lots of bug

fixes and test cases, and for improving the Java build system.
• Janis Johnson for ia64 testing and fixes, her quality improvement sidetracks, and web

page maintenance.
• Kean Johnston for SCO OpenServer support and various fixes.
• Tim Josling for the sample language treelang based originally on Richard Kenner’s

“toy” language.
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• Nicolai Josuttis for additional libstdc++ documentation.
• Klaus Kaempf for his ongoing work to make alpha-vms a viable target.
• Steven G. Kargl for work on gfortran.
• David Kashtan of SRI adapted GCC to VMS.
• Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of strings,

especially member functions, and for auto ptr fixes.
• Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux and his

automatic regression tester.
• Brendan Kehoe for his ongoing work with G++ and for a lot of early work in just about

every part of libstdc++.
• Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.
• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote

the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and
the IBM RS/6000 as well as the support for instruction attributes. He also made
changes to better support RISC processors including changes to common subexpression
elimination, strength reduction, function calling sequence handling, and condition code
support, in addition to generalizing the code for frame pointer elimination and delay
slot scheduling. Richard Kenner was also the head maintainer of GCC for several years.

• Mumit Khan for various contributions to the Cygwin and Mingw32 ports and main-
taining binary releases for Microsoft Windows hosts, and for massive libstdc++ porting
work to Cygwin/Mingw32.

• Robin Kirkham for cpu32 support.
• Mark Klein for PA improvements.
• Thomas Koenig for various bug fixes.
• Bruce Korb for the new and improved fixincludes code.
• Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 effort.
• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.
• Asher Langton and Mike Kumbera for contributing Cray pointer support to gfortran,

and for other gfortran improvements.
• Jeff Law for his direction via the steering committee, coordinating the entire egcs

project and GCC 2.95, rolling out snapshots and releases, handling merges from GCC2,
reviewing tons of patches that might have fallen through the cracks else, and random
but extensive hacking.

• Marc Lehmann for his direction via the steering committee and helping with analysis
and improvements of x86 performance.

• Victor Leikehman for work on gfortran.
• Ted Lemon wrote parts of the RTL reader and printer.
• Kriang Lerdsuwanakij for C++ improvements including template as template parameter

support, and many C++ fixes.
• Warren Levy for tremendous work on libgcj (Java Runtime Library) and random work

on the Java front end.
• Alain Lichnewsky ported GCC to the MIPS CPU.
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• Oskar Liljeblad for hacking on AWT and his many Java bug reports and patches.
• Robert Lipe for OpenServer support, new testsuites, testing, etc.
• Weiwen Liu for testing and various bug fixes.
• Dave Love for his ongoing work with the Fortran front end and runtime libraries.
• Martin von Löwis for internal consistency checking infrastructure, various C++ improve-

ments including namespace support, and tons of assistance with libstdc++/compiler
merges.

• H.J. Lu for his previous contributions to the steering committee, many x86 bug reports,
prototype patches, and keeping the GNU/Linux ports working.

• Greg McGary for random fixes and (someday) bounded pointers.
• Andrew MacLeod for his ongoing work in building a real EH system, various code

generation improvements, work on the global optimizer, etc.
• Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking improve-

ments to compile-time performance, overall knowledge and direction in the area of
instruction scheduling, and design and implementation of the automaton based in-
struction scheduler.

• Bob Manson for his behind the scenes work on dejagnu.
• Philip Martin for lots of libstdc++ string and vector iterator fixes and improvements,

and string clean up and testsuites.
• All of the Mauve project contributors, for Java test code.
• Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
• Adam Megacz for his work on the Microsoft Windows port of GCJ.
• Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS, powerpc, haifa,

ECOFF debug support, and other assorted hacking.
• Jason Merrill for his direction via the steering committee and leading the G++ effort.
• David Miller for his direction via the steering committee, lots of SPARC work, im-

provements in jump.c and interfacing with the Linux kernel developers.
• Gary Miller ported GCC to Charles River Data Systems machines.
• Alfred Minarik for libstdc++ string and ios bug fixes, and turning the entire libstdc++

testsuite namespace-compatible.
• Mark Mitchell for his direction via the steering committee, mountains of C++ work,

load/store hoisting out of loops, alias analysis improvements, ISO C restrict support,
and serving as release manager for GCC 3.x.

• Alan Modra for various GNU/Linux bits and testing.
• Toon Moene for his direction via the steering committee, Fortran maintenance, and his

ongoing work to make us make Fortran run fast.
• Jason Molenda for major help in the care and feeding of all the services on the

gcc.gnu.org (formerly egcs.cygnus.com) machine—mail, web services, ftp services, etc
etc. Doing all this work on scrap paper and the backs of envelopes would have been. . .
difficult.

• Catherine Moore for fixing various ugly problems we have sent her way, including the
haifa bug which was killing the Alpha & PowerPC Linux kernels.
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• Mike Moreton for his various Java patches.
• David Mosberger-Tang for various Alpha improvements, and for the initial IA-64 port.
• Stephen Moshier contributed the floating point emulator that assists in cross-

compilation and permits support for floating point numbers wider than 64 bits and
for ISO C99 support.

• Bill Moyer for his behind the scenes work on various issues.
• Philippe De Muyter for his work on the m68k port.
• Joseph S. Myers for his work on the PDP-11 port, format checking and ISO C99

support, and continuous emphasis on (and contributions to) documentation.
• Nathan Myers for his work on libstdc++-v3: architecture and authorship through the

first three snapshots, including implementation of locale infrastructure, string, shadow
C headers, and the initial project documentation (DESIGN, CHECKLIST, and so
forth). Later, more work on MT-safe string and shadow headers.

• Felix Natter for documentation on porting libstdc++.
• Nathanael Nerode for cleaning up the configuration/build process.
• NeXT, Inc. donated the front end that supports the Objective-C language.
• Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search engine

setup, various documentation fixes and other small fixes.
• Geoff Noer for his work on getting cygwin native builds working.
• Diego Novillo for his SPEC performance tracking web pages and assorted fixes in the

middle end and various back ends.
• David O’Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,

FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.

• Alexandre Oliva for various build infrastructure improvements, scripts and amazing
testing work, including keeping libtool issues sane and happy.

• Stefan Olsson for work on mt alloc.
• Melissa O’Neill for various NeXT fixes.
• Rainer Orth for random MIPS work, including improvements to GCC’s o32 ABI sup-

port, improvements to dejagnu’s MIPS support, Java configuration clean-ups and port-
ing work, etc.

• Hartmut Penner for work on the s390 port.
• Paul Petersen wrote the machine description for the Alliant FX/8.
• Alexandre Petit-Bianco for implementing much of the Java compiler and continued

Java maintainership.
• Matthias Pfaller for major improvements to the NS32k port.
• Gerald Pfeifer for his direction via the steering committee, pointing out lots of problems

we need to solve, maintenance of the web pages, and taking care of documentation
maintenance in general.

• Andrew Pinski for processing bug reports by the dozen.
• Ovidiu Predescu for his work on the Objective-C front end and runtime libraries.



438 Using the GNU Compiler Collection (GCC)

• Jerry Quinn for major performance improvements in C++ formatted I/O.
• Ken Raeburn for various improvements to checker, MIPS ports and various cleanups

in the compiler.
• Rolf W. Rasmussen for hacking on AWT.
• David Reese of Sun Microsystems contributed to the Solaris on PowerPC port.
• Volker Reichelt for keeping up with the problem reports.
• Joern Rennecke for maintaining the sh port, loop, regmove & reload hacking.
• Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD port, threading

fixes, thread-related configury changes, critical threading documentation, and solutions
to really tricky I/O problems, as well as keeping GCC properly working on FreeBSD
and continuous testing.

• Craig Rodrigues for processing tons of bug reports.
• Ola Rönnerup for work on mt alloc.
• Gavin Romig-Koch for lots of behind the scenes MIPS work.
• David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo

format by contributing a first pass at a translation of the old ‘g77-0.5.16/f/DOC’ file.
• Ken Rose for fixes to GCC’s delay slot filling code.
• Paul Rubin wrote most of the preprocessor.
• Pétur Runólfsson for major performance improvements in C++ formatted I/O and large

file support in C++ filebuf.
• Chip Salzenberg for libstdc++ patches and improvements to locales, traits, Makefiles,

libio, libtool hackery, and “long long” support.
• Juha Sarlin for improvements to the H8 code generator.
• Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.
• Roger Sayle for improvements to constant folding and GCC’s RTL optimizers as well

as for fixing numerous bugs.
• Bradley Schatz for his work on the GCJ FAQ.
• Peter Schauer wrote the code to allow debugging to work on the Alpha.
• William Schelter did most of the work on the Intel 80386 support.
• Tobias Schlüter for work on gfortran.
• Bernd Schmidt for various code generation improvements and major work in the reload

pass as well a serving as release manager for GCC 2.95.3.
• Peter Schmid for constant testing of libstdc++—especially application testing, going

above and beyond what was requested for the release criteria—and libstdc++ header
file tweaks.

• Jason Schroeder for jcf-dump patches.
• Andreas Schwab for his work on the m68k port.
• Lars Segerlund for work on gfortran.
• Joel Sherrill for his direction via the steering committee, RTEMS contributions and

RTEMS testing.
• Nathan Sidwell for many C++ fixes/improvements.
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• Jeffrey Siegal for helping RMS with the original design of GCC, some code which
handles the parse tree and RTL data structures, constant folding and help with the
original VAX & m68k ports.

• Kenny Simpson for prompting libstdc++ fixes due to defect reports from the LWG
(thereby keeping GCC in line with updates from the ISO).

• Franz Sirl for his ongoing work with making the PPC port stable for GNU/Linux.
• Andrey Slepuhin for assorted AIX hacking.
• Christopher Smith did the port for Convex machines.
• Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
• Randy Smith finished the Sun FPA support.
• Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite en-

tries. Also for providing the patch to G77 to add rudimentary support for INTEGER*1,
INTEGER*2, and LOGICAL*1.

• Brad Spencer for contributions to the GLIBCPP FORCE NEW technique.
• Richard Stallman, for writing the original GCC and launching the GNU project.
• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as

part of the 32000 machine description.
• Nigel Stephens for various mips16 related fixes/improvements.
• Jonathan Stone wrote the machine description for the Pyramid computer.
• Graham Stott for various infrastructure improvements.
• John Stracke for his Java HTTP protocol fixes.
• Mike Stump for his Elxsi port, G++ contributions over the years and more recently his

vxworks contributions
• Jeff Sturm for Java porting help, bug fixes, and encouragement.
• Shigeya Suzuki for this fixes for the bsdi platforms.
• Ian Lance Taylor for his mips16 work, general configury hacking, fixincludes, etc.
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Option Index

GCC’s command line options are indexed here without any initial ‘-’ or ‘--’. Where an
option has both positive and negative forms (such as ‘-foption ’ and ‘-fno-option ’), rele-
vant entries in the manual are indexed under the most appropriate form; it may sometimes
be useful to look up both forms.

#
### . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

-
-dynamiclib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
-force_cpusubtype_ALL . . . . . . . . . . . . . . . . . . . . 126
-fsplit-ivs-in-unroller . . . . . . . . . . . . . . . . . . . 77
-fvariable-expansion-in-unroller . . . . . . . . . . 77
-gfull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
-gused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
-mone-byte-bool . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
all_load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
allowable_client . . . . . . . . . . . . . . . . . . . . . . . . . . 127
ansi . . . . . . . . . . . . . . . . . . . . . . . . . 5, 21, 99, 291, 403
arch_errors_fatal . . . . . . . . . . . . . . . . . . . . . . . . . 126
aux-info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B
b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
bcopy-builtin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
bind_at_load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
bundle_loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 104
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
client_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
combine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
compatibility_version . . . . . . . . . . . . . . . . . . . . 127
coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
crossjumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
current_version . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D
d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
da . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

db . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
dc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 102
dE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dead_strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
dependency-file . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
di . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
dj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58, 59
dM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58, 102
dn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58, 102
do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dumpmachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
dumpspecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
dumpversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
dv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
dylib_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
dylinker_install_name . . . . . . . . . . . . . . . . . . . . 127
dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
dz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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E
E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 104
EB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116, 155
EL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116, 155
exported_symbols_list . . . . . . . . . . . . . . . . . . . . 127

F
F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
fabi-version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
falign-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
falign-jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
falign-labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
falign-loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
fargument-alias . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
fargument-noalias . . . . . . . . . . . . . . . . . . . . . . . . . 195
fargument-noalias-global . . . . . . . . . . . . . . . . . 195
fasynchronous-unwind-tables . . . . . . . . . . . . . . 191
fbounds-check . . . . . . . . . . . . . . . . . . . . . . . . . . 70, 190
fbranch-probabilities . . . . . . . . . . . . . . . . . . . . . 84
fbranch-target-load-optimize . . . . . . . . . . . . . . 85
fbranch-target-load-optimize2 . . . . . . . . . . . . . 86
fbtr-bb-exclusive . . . . . . . . . . . . . . . . . . . . . . . . . . 86
fcall-saved . . . . . . . . . . . . . . . . . . . . . . . . . . . 193, 391
fcall-used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
fcaller-saves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
fcheck-new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
fcommon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
fcond-mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
fconserve-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
fconstant-string-class . . . . . . . . . . . . . . . . . . . . 32
fcse-follow-jumps . . . . . . . . . . . . . . . . . . . . . . . . . . 71
fcse-skip-blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
fcx-limited-range . . . . . . . . . . . . . . . . . . . . . . . . . . 83
fdata-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
fdelayed-branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
fdelete-null-pointer-checks . . . . . . . . . . . . . . . 72
fdiagnostics-show-location . . . . . . . . . . . . . . . . 36
fdiagnostics-show-options . . . . . . . . . . . . . . . . . 36
fdollars-in-identifiers . . . . . . . . . . . . . . 101, 391
fdump-class-hierarchy . . . . . . . . . . . . . . . . . . . . . 60
fdump-ipa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
fdump-rtl-all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
fdump-rtl-bbro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
fdump-rtl-bp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
fdump-rtl-btl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
fdump-rtl-bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
fdump-rtl-ce1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
fdump-rtl-ce2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
fdump-rtl-ce3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
fdump-rtl-cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
fdump-rtl-combine . . . . . . . . . . . . . . . . . . . . . . . . . . 57
fdump-rtl-cse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
fdump-rtl-cse2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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