
Distributed Simulation of Heterogeneous and
Real-time Systems

Gilles Lasnier, Janette Cardoso, Pierre Siron
ISAE - Toulouse University, France

Email: {firstname.name}@isae.fr

Claire Pagetti
ONERA - Toulouse, France

Email: claire.pagetti@onera.fr

Patricia Derler
UCB - United States

Email: pd@eecs.berkeley.edu

Abstract—This work describes a framework for distributed
simulation of cyber-physical systems (CPS). Modern CPS com-
prise large numbers of heterogeneous components, typically
designed in very different tools and languages that are not or
not easily composeable. Evaluating such large systems requires
tools that integrate all components in a systematic, well-defined
manner. This work leverages existing frameworks to facilitate
the integration offers validation by simulation. A framework
for distributed simulation is the IEEE High-Level Architecture
(HLA) compliant tool CERTI, which provides the infrastructure
for co-simulation of models in various simulation environments
as well as hardware components. We use CERTI in combination
with Ptolemy II, an environment for modeling and simulating
heterogeneous systems. In particular, we focus on models of a
CPS, including the physical dynamics of a plant, the software
that controls the plant, and the network that enables the commu-
nication between controllers. We describe the Ptolemy extensions
for the interaction with HLA and demonstrate the approach on
a flight control system simulation.

I. INTRODUCTION

A. Context

Designing real-time cyber physical systems (CPS) is a
complex task which typically entails the use of many different
methodologies and tools in different areas and at different
stages of development process. Typically, different parts of
the CPS are developed by different engineering teams or even
external contractors. Integrating these heterogeneous parts and
evaluating the composite behavior is challenging and, with
today’s tools, a systematic composition is nearly impossible.
Over the last years, model-based tools have gained momentum
in the design of CPS as they allow for modeling at higher levels
of abstraction and they facilitate the communication between
different teams of engineers. Additionally, many tools come
with add-ons such as formal verification and code-generation.
However, different parts of a CPS require different abstractions
and tool support. The lack of interoperability between the tools
poses a major challenge.

For control-command systems, Matlab/Simulink [1] is of-
ten used to specify the plant dynamics and the control. Thus
from the specification it is possible to simulate the behaviour
and verify the robustness and stability of the functions by
observing the functional traces. This step occurs early in the
development process. The control functions are then translated
into low level code (automatically or manually) that is then
executed on the target architecture (e.g. a distributed platform
composed of several computing nodes connected with a real-
time operating system). Analysis of the execution on the target

occurs very late in the development process. It is then of
great importance to provide methods and tools to give ways to
analyze, at least partially and as early as possible, the behaviors
of the future implementation taking into account, for instance,
the mapping on the target or the interaction with some physical
devices (e.g. sensors and actuators).

The process of integrating components and evaluating
their interaction with the target architecture requires knowl-
edge of several domains (e.g. hardware, software) that are
typically described in heterogeneous models (e.g. continuous
models, discrete models, timed properties). Analyzing worst
case execution times is insufficient in order to validate the
system. Formal analysis cannot usually handle systems of
that complexity. As a result, simulations are performed to
analyze the functional behaviour of high level specifications
mixed with more low level elements. Imagine, for instance,
a flight control composed of two sub-functions distributed on
two calculators communicating via an Ethernet network. To
observe the real behavior on the platform, it is necessary to
describe the functional behavior of each component as well as
the timing of the network that communicates the data between
the two sub-functions.

B. Contribution

The purpose of our work is to provide a framework for
simulating heterogeneous models designed at different levels in
the development process. To do so, we propose a co-simulation
framework that leverages two open source tools: Ptolemy II
and HLA/CERTI.

Ptolemy II [2] is an open source modeling and simulation
tool for heterogeneous systems, developed at the University
of California Berkeley. This tool is well suited for modeling
CPS [3] by providing different models of computation (MoC)
such as continuous time for describing physical properties or
discrete events for describing software and control.

The IEEE High-Level Architecture (HLA) standard [4],
[5] targets distributed simulation. A CPS is seen as a fed-
eration grouping several federates which communicate via
publish/subscribe patterns. This decomposition into federates
allows to combine different types of components such as
simulation models, concrete functional codes (in C++, Java,
etc.) and hardware equipments. The key benefits of HLA are
interoperability and reuse. Our experiments and framework
have been developed upon the HLA-compliant Open-Source
RTI named CERTI [6], [7].

pd
Typewritten Text
17th IEEE/ACM International Symposium on Distributed Simulation
and Real Time Applications, Delft, Oct 30-Nov 1, 2013

pd
Typewritten Text

pd
Typewritten Text

In the co-simulation environment described here we use
various Ptolemy simulations that are executed as federates
in an HLA federation. The Ptolemy federates exchange data
with federates that can be other Ptolemy simulations or even
C++ or Java federates. In order to facilitate the interaction
between HLA and Ptolemy, we extend Ptolemy with dedicated
components that enable the connection to HLA and the data
exchange. The HlaManager centrally manages the advance-
ment of time in HLA and Ptolemy. Two Ptolemy actors,
an HlaPublisher and an HlaSubscriber are in charge of the
data communication. Combining these two frameworks allows
experimenting with: heterogeneity provided by Ptolemy (i.e.
the possibility to mix continuous, discrete or other MoCs) and
interoperability provided by HLA (i.e. the possibility to mix
simulation models, pieces of code and physical equipments).

C. Related work

Interoperability is a very important issue in distributed
discrete-event simulation as can be observed by several works
targeting co-simulation. Closely related to our work are two
particular cooperation tools that provide similar capabilities by
providing HLA plugins.

In [8], the authors encode a connection between HLA
and Modelica [9] for the virtual prototyping of mechatronic
systems. In [10], the authors develop an HLA Blockset and
an HLA Toolbox which provides a connection between HLA
and MATLAB/Simulink. However, these solutions are not open
source and the synchronization time between the federates is
not described in literature. Our framework is open source,
using existing open source frameworks and is intended for
research, teaching, and industrial usage and several solutions
for mixing the timing are explained in the current paper.

Related to this work in a broader context ins the work on
Functional Mock-up Interfaces (FMI) [11], which is lead by a
consortium of industrials and academics. The standard defines
an interface standard for coupling different simulation tools in
a co-simulation environment (e.g. by giving standardized ac-
cess to simulation model equations). In this case, co-simulation
is a simulation technique for coupled time-continuous and
time-discrete systems. This work is rather recent and still
undergoing various changes: a new version is currently being
standardized [11]. Even if part of our research is similar,
FMI does not answer all our objectives presented above. The
current standard presents limitations to manage discrete-event
simulation properly [12] and no information is provided to
address distributed simulation challenges.

This paper is organized as follows. An overview of HLA
and Ptolemy II are presented in Section II and Section III.
Section IV describes the co-simulation framework and shows
how interoperability is obtained. Section V illustrates the
results of our approach applied to a concrete case-study: a
flight control system of an aircraft. Finally, Section VI presents
concluding remarks and our future work.

II. DISTRIBUTED SIMULATION WITH HLA

In this section, we first give a brief description of how
an HLA simulation is implemented. We then describe the
subset of HLA services necessary to allow a Ptolemy model
to participate in an HLA federation, focusing on the time
management in an HLA simulation.

A. Overview of HLA

The High-Level Architecture (HLA) [5], [4] is a standard
for distributed discrete-event simulations, generally used to
support analysis, engineering and training. The approach pro-
motes reusability and interoperability. In HLA terminology, the
entire system to be simulated is represented by a federation
which is a collection of federates, i.e. simulation entities
performing a sequence of computations. Federates are con-
nected via the Run-Time Infrastructure (RTI), the underlying
middleware functioning as the simulation kernel. Figure 1
describes the global architecture of a HLA simulation.

!"#$%&'&()*+,$

%&'&()-&$.$

!"#$%&'()*+,($

/0,$123&$4,5()6-(07-0(&$8/149$

%&'&()-&$:$

!"#$%&'()*+,($

%&'&()-&$;$

!"#$%&'()*+,($

#<4$ #<4$ #<4$

Fig. 1. HLA Federation

The HLA specification defines:

1) An interface specification for a set of services re-
quired to manage the federates and their interactions.
For instance, it describes how a federate can join or
create a federation.

2) An object model template (based on the OMT stan-
dard [?]) which provides a common framework for
the communication between HLA simulations. For
each federation, a Federation Object Model (FOM)
describes the shared objects, interaction classes and
their attribute.

3) A set of rules describing the responsibilities of feder-
ations and the federates. An example is the rule that
all data exchange among federates shall occur via
the RTI.

HLA services are grouped into six management areas re-
lated to the federate life cycle. Figure 2 describes the subset of
HLA services used for our approach. An informal description
of each service role and a user documentation is available.
The reader is referred to [4], [5] for a complete description
of all HLA services. The services in Figure 2 deal with the
following areas: (1) Federation management: also includes a
Federation Execution Data (FED) file used by the RTI to
manage the whole federation; (2) Declaration management, i.e.
which objects or object attributes each federate will publish
or subscribe to; (3) Object management, i.e. the way federates
produce attribute updates or receive updated attributes from the
federation; (4) Time management, i.e. the mechanisms required
to implement time management policies and to negotiate time
advances.

B. Time Management

HLA time management services enable deterministic and
reproducible distributed simulations. Each federate manages
its own logical time and communicates this time to the
RTI. The RTI ensures correct coordination of federates by

Areas Services Description (non-formal)

Federation

createFederationExecution() create a federation
joinFederationExecution() join a federation
resignFederationExecution() quit a federation
destroyFederationExecution() destroy a federation
registerFed...Sync...Point() register a synchronization point
sync...PointReg...Succeeded()? register synchro point succeeded
announceSynchro...Point() ? wait a synchronization point
synchronizationPointAchieved() release from a synchro. point
federationSynchronized() ? announce synchronization
tick() allow to get callbacks from RTI

Declaration

publishObjectClass() declare publication of a class
subscribeObj..ClassAttributes() subscribe to a class
unsubscribeObjectClass() unsubcribe to a class
unpublishObjectClass() unpublish a class

Object

registerObjectInstance() register an object instance
discoverObjectInstance() ? for object instances discovering
updateAttributeValues(), UAV send & update value
reflectAttributeValues() RAV ? receive updated value

Time

enableTimeRegulation() declare federate is regulator
timeRegulationEnabled() ? federate as regulator succeeded
enableTimeConstrained() declare federate constrained
timeConstrainedEnabled() ? federate as contrained succeeded
timeAdvanceRequest(), TAR ask to advance federate’s time
timeAdvanceGrant() TAG ? notify time advancement granted
nextEventRequest(), NER ask to advance federate’s time

Fig. 2. HLA services with a ? are sent from RTI to Federates (callbacks);
all other services are from Federates to RTI.

advancing time coherently. Logical time is roughly equivalent
to ”simulation time” in the classical discrete event simulation
literature, and is used to ensure that federates observe events
in the same order [13]. Logical time is not necessarily mapped
to real time.

1) Federate’s time policies: HLA time policies describe
the involvement of each federate in the progress of time.
It may be necessary to map the progress of one federate
to the progress of another. A regulating federate participates
actively in the decisions for the progress of time. A constrained
federate follows the time progress imposed by other federates.
A combination of both policies is possible. As our approach
deals with the synchronization of logical time from different
simulation tools, only regulating and constrained federates are
allowed.

To properly handle time progress and ensure causality,
HLA defines Time-Stamp Ordered (TSO) events which are
supposed to occur at specific points in time. Regulating fed-
erates generate TSO events (possibly out of time-stamp order)
that must occur no earlier than the current local time plus
the lookahead. The lookahead acts as a contract value which
guarantees that the federate will not produce a TSO event
earlier than its current local time plus lookahead.

The RTI handles the ordering of the TSO events generated
by the federation. Each federate implements a priority time-
stamp queue for TSO events. Events stored in the ordered
queue are only delivered to the federate in a time advancement
phase if their timestamps are between the current and the next
federate local time (the granted time, see later).

2) Time progress: Time advancement requests by federates
are made through two particular services (see Figure 2):
the timeAdvanceRequest service (TAR) is used to implement
time-stepped federates; the nextEventRequest service (NER), is
used to implement event-based federates. The granted time is
provided by timeAdvanceGrant (TAG).

The time advancement phase of a Federate F in HLA is a

three-step process: 1) F sends a request using NER or TAR ser-
vices; 2) F can receive reflectAttributeValue (RAV) callbacks
(i.e. updated HLA attributes); 3) F waits for the granted time
tG (TAG). At the TAG(tG) reception, the federate’s local time
will be advanced to tG according to the made request (NER
or TAR).

A part of the time advancement phase semantics is shown
in Figure 3. FederateTAR (see figure 3.a) produces an event at
time t1, with updateAttributeValue (UAV). The current (logical)
time is t1; let us consider that the next event is e2 with
timestamp t2, t2 = t1 + ∆, ∆ > 0. The federate asks the
RTI for a time progress with the invocation of TAR(t2). Until
the reception of the TAG(t2) callback, the logical time of
the federate is stalled at t1, and it can receive a RAV(v,t1’)
callback. Timestamp t1’ is in the interval]t1, t2]. FederateTAR
can realise a computation with the values received with RAV.
The federate then receives TAG(t2) and can increase its local
time to t2.

!"#$#%&'()&*(!"#

!$#

+",$()-*(

+".$)-*(

!"#$#%&'()-*(

+",$)/*(

012$*(

012$*(

,"#$#%-')&3*(

!"#$#%&'()&*(!"#

!"%#

45,$()-*(

+".$)&3*(

!"#$#%&'()&3*(

45,$)-*(

012$*(

012$*(

,"#$#%-')&3*(

!"#$%&'&()*&"+!$!"#$%&'&()*&,-!$

Fig. 3. Time advancement services a. TAR b. NER

Let us now consider Figure 3.b. FederateNER also pro-
duces the event UAV at time t1 and asks for a time advance to
t2, in that case with a NER(t2). The reception of RAV(v,t1’) is
followed by a TAG(t′1). FederateNER moves its logical time to
t′1 and then can realize a computation with the received value.
Let us point out that a federate using the NER service is a
more reactive federate since it can produce new events from
time t′1.

In a nutshell, if a TAR(t2) has been sent, the time granted
by the TAG service is tG = t2. If a NER(t2) has been sent,
the granted time is tG = t′1, with t1 < t′1 ≤ t2. In the case
of NER, if t′1 < t2, the current federate have received one or
more events from the federation with timestamp t′1.

III. THE PTOLEMY II FRAMEWORK

A. Overview of Ptolemy II

Ptolemy II [2] is an open source modeling and simulation
framework for heterogeneous systems. Ptolemy models are
actor-oriented. Actors are executable and concurrent compo-
nents that communicate via ports. Actors can be atomic or
composite, where a composite actor contains an entire model
inside but behaves like an atomic actor to the outside. A special
model component, the director, describes the semantics of a
model. Ptolemy supports a wide variety of models of compu-
tations, including discrete event (DE), continuous time (CT),
synchronous reactive (SR) or synchronous data flow (SDF).

The operational rules for executing a model are given by the
MoC, defining the meaning of execution, concurrency and
communication. These rules determine when actors perform
internal computation, update their internal state, and perform
external communication. Models in different MoCs can be
composed hierarchically with a clearly defined semantics.

Fig. 4. A hierarchical Ptolemy model of a CPS.

The ability to model heterogeneous systems in Ptolemy
is interesting for CPS design as those typically comprise
heterogeneous components expressed naturally in different
MoCs. An example of a hierarchical Ptolemy model of a CPS
– based on the F-14 Longitudinal Flight Control demo model
from Matlab – is shown in Figure 4. Aircraft and Stick
are composite actors modeled in the continuous MoC and the
AutoPilot composite actor (controller) contains is a DE
system. The top-level director is also a DE director. Hetero-
geneous composition of different MoCs sometimes requires
special actors. For instance, signals in the continuous domain
need to be sampled in order to be used in the DE domain.
In Ptolemy, a Sampler actor needs to be placed. In order for
continuous actors to read signals generated in the DE MoC, a
ZeroOrderHold actor is used [14].

The next sub-section presents the semantics of the Ptolemy
entities involved in our approach.

B. Ptolemy’s entities semantics

1) Actor: An actor executes in three phases: a setup phase,
a sequence of iterations, and a wrapup phase, as represented
in Figure 5.

Fig. 5. Actor’s lifecyle in Ptolemy II

The setup phase of an actor is divided in two sub-phases:
preinitialize and initialize. The preinitialize sub-phase is per-
formed once, at the beginning of a simulation. It specifies
actions that may modify or influence the actor architecture
and consequently impact static analysis as well as resource
deployment (composite actors may require the instantiation
of internal actors), type resolution, schedulability, etc. The
initialization sub-phase initializes parameters, resets local state,
and sends initial messages on output ports.

An iteration is a sequence of operations that read input
data, produce output data, and update the state. It is divided
in three sub-phases (prefire, fire and postfire). The prefire
(optionally) allows the verification of preconditions to ensure

that the actor will complete the iteration. The fire sub-phase
typically performs the computation of the actor. In this sub-
phase, input data from ports is read, data is processed and
output data is produced on output ports. An actor may have
persistent state that evolves during execution. Finally, the
wrapup phase performs the correct termination of the actor.

An actor comes with a set of primitive communication
operations which allow to retrieve information from the com-
munication channels (get method) or send information to the
channels (put method). As the meaning of the communication
is determined by the director, the connection between the
external port of a composite actor and some other port on
the outside will obey the semantics of the director on the
outside. For example, in figure 4, the three composite actors
must send/receive data obeying DE semantics imposed by the
DE top level director.

2) Attribute: Attributes are used to store parameters and
access them anywhere in the model.

The attribute’s lifecycle is similar to the actor’s one but
contains only the setup and wrapup phases. Thus, an attribute
can be used to statically or dynamically parameterize a model.

3) Decorator: Some actors and some attributes are imple-
mented as so-called decorators. These entities can decorate
other Ptolemy entities (e.g. model, actors, etc) with specific
information in an ’aspect-oriented’ way. Any number of at-
tributes can be attached to a Ptolemy entity.

The remainder of this paper explains how a specific at-
tribute may be designed to enable the time synchronization
between both Ptolemy and HLA/CERTI at the director level
and by preserving the MoC semantics.

4) Model and director: The director is responsible for the
progress of the simulation by firing the actors in a specific
order. In timed actors the model time (i.e. logical time) is
advanced as part of this process. In a hierarchical model,
only the top-level director advances time. The rules of time
advancement depend of the (timed) MoC implemented by the
director. Ptolemy II uses the same model of time for all MoC,
known as superdense time. Superdense time is represented by
a pair (t, n), called a timestamp, where t is a model time and
n is a micro-step. The model time represents the time at which
some event occurs, and the microstep represents the sequence
of events that occur at the same model time. The superdense
time semantics is defined in [15] and only an overview is given
here.

In the case of a CT director, at time tk, all actors are fired
following a precise order and the next timestamp tk + 1 is
computed by the solver.

In the case of a DE director, an actor is only fired at the
timestamp t if either it has an event in one of its input ports
or it has explicitly asked to be fired at t (using the fireAt
method). To ensure determinism, the order in which actors are
fired is important. The DE director maintains a calendar queue
of DE events and a global ordering between these events. A
DE event is a tuple (value, timestamp), where the timestamp
is a superdense time (t, n). Let us consider e1 = (t1, n1) and
e2 = (t2, n2). The calendar queue is sorted:

1) by timestamp, if t1 < t2 or if t1 = t2 and n1 < n2

then e1 is executed before e2;
2) by actor’s ranking, if t1 = t2 and n1 = n2, the

director selects the actor that has the lowest rank.

The actor ranking is defined by a topological sort of the actors
in the model in data-precedence order [15].

The time advancement phase in a DE model is observed
when the DE director selects the earliest event in the calendar
queue, making its timestamp the current model time (and firing
the destination actor of the event). This algorithm is performed
at the director level and during this phase no actor is fired.

IV. COOPERATION FOR CPS DEVELOPMENT

The goal of this work is to integrate a (hierarchical)
Ptolemy model as one or more federates in a HLA feder-
ation. This is done by introducing a new attribute to the
Ptolemy model, called HlaManager, and two new actors
HlaPublisher and HlaSubscriber. These components per-
form the interface between Ptolemy and HLA/CERTI environ-
ments.

This section is organized as follows. Subsection IV-A
discusses the extension of the Ptolemy’s framework to han-
dle the time management between Ptolemy models and
a HLA/CERTI federation. Subsection IV-B describes the
HlaManager attributes which implements the time syn-
chronization and the communication interface between both
environments. Subsection IV-C presents the HlaPublisher
and HlaSubscriber actors which respectively allows to
publish and to subscribe to a HLA attribute from a Ptolemy
model. Finally, Subsection IV-D describes the relation and
the interaction between these three components to enable the
interface Ptolemy - HLA/CERTI.

A. Time management

The time management between Ptolemy and HLA/CERTI
is a fundamental issue in our co-simulation approach. As we
pointed out in our motivation, dealing with co-simulation for
distributed real-time and embedded systems requires synchro-
nization between the different clocks involved in a simulation
model, a simulation implementation or the physical world. The
next sub-section defines the semantics of the time synchroniza-
tion between both environments.

1) Time synchronization semantics: Our strategy requires
the use of adequate time management mechanisms to handle
clock time synchronization between both simulation frame-
works. Section II-B has detailed the two semantics of time
advancement provided by the HLA standard. Section III-B has
described how the time is managed by Ptolemy in particular
in the discrete-event (DE) domain.

In order to use a DE model as a federate, the time
advancement algorithm of a DE director needs to be adapted.
Let us consider that the current time of both environments is
t1 and the next DE event in the calendar queue is e2 with
timestamp t2 and t1 < t2. After selecting e2, the director
must check, using a TAR or NER request, if it can advance its
current time to t2 considering the federation time. A granted
time tG with t1 ≤ tG ≤ t2 , allowed by the federation, has to
be returned to the director to advance time.

No DE actor is fired during the DE time advancement phase
and no DE event (from Ptolemy) is added to the calendar
queue. The HLA time management semantics ensures that
all HLA events with a timestamp smaller than tG have been
delivered and no HLA event with a timestamp smaller than
tG will be produced by the federation after the reception of
TAG(tG). This guarantees that the director can advance its time
to tG safely.

A more complex case is when NER(t2) is used and
TAG(tG) is received with tG < t2. As HLA events (from the
federation) are introduced in the Ptolemy model as DE events
in the calendar queue and as tG is the time that the director
advances to then the DE semantics is preserved. These events
will be handled on time.

The proposed time synchronization semantics guarantees
that no event will be missed and a correct time synchronization
between both environments is performed.

2) TimeRegulator interface: A specific interface called
TimeRegulator has been designed to implement the time
synchronization between Ptolemy and HLA/CERTI 1. This
interface is implemented by a Ptolemy attribute and allows
to parameterize the time advancement algorithm of a direc-
tor. The TimeRegulator provides a unique method called
proposeTime() which implements the required time advance-
ment adaptation by preserving the director semantics. When-
ever a director has to advance its current time, if one or more
TimeRegulator attributes which implement different time
synchronization semantics (e.g. one for real-time synchroniza-
tion with the execution platform or one to synchronize with
the HLA federation time) are deployed in the model, then
the proposeTime() method of those attributes will be called
before the time is advanced. The smallest time returned by
those attributes is returned to the director. If there is no such
attribute, the initial time advancement algorithm is performed.

The proposeTime() method has a parameter proposed-
Time which indicates the time the director wants to advance
to. In the case of the DE director, the proposedTime is the
timestamp of the next event to be consumed from its calendar
queue (i.e. timestamp t2 of event e2 in our example presented
above). In our approach, the proposeTime() method has to
assume the call to the required HLA time management services
(NAR or TER) and to treat the HLA events received through
the RAV callbacks during this phase. The method also ensures
that the returned time is at least equal to the current time of the
director or at more equal to the proposedTime. This method
is sill executed at the director level.

The next section presents the new Ptolemy attribute
defined in our approach: the HlaManager. This attribute
implements the TimeRegulator interface and the time
synchronization semantics presented above (implemented in
its proposeTime() method). The HlaManager also imple-
ments the communication interface between Ptolemy and
HLA/CERTI, using two new actors HlaPublisher and
HlaSubscriber (presented in Subsection IV-C).

1This contribution is a joint work between ISAE/DMIA, UCB/EECS and
ONERA/DTIM) The SyncronizeToRealTime attribute is another attribute using
the TimeRegulator interface.

B. HlaManager attribute

The HlaManager attribute enables the interoperability
between a Ptolemy model and a HLA/CERTI Federation.
In addition to manage the time synchronization between the
Ptolemy model time and the HLA logical time (by implement-
ing the TimeRegulator interface), it handles all the logic,
data structures and operations required to manage a Ptolemy
Federate. To do so, the HlaManager attribute is built on the
top of the JCERTI API, a Java binding of CERTI based
on HLA 1.3 version. The API provides service relative to
Federation, Declaration, Object and Time management areas
in HLA, as summarized on Table 2.

1) Mapping between HLA services and Ptolemy attribute’s
method: As presented in Section III an attribute deployed
in the model can be executed by both director and actor.
In our approach, the HlaManager attribute provides methods
that are executed by the DE director or the HLA actors.
Figure 6 presents the mapping between HLA services ex-
ecution (indicating the related management areas presented
in Table 2) and the attribute’s methods. This correspondence
HLA/CERTI - Ptolemy acts as backbone in the architecture of
the HlaManager implementation.

Ptolemy(a*ribute(HLA(JCERTI(bindings(

•  instan&ate(r&’sproxy(and(federate’s(proxy(

•  createFedera(onExecu(on.
•  joinFedera(on.

•  subscribeObjectClassA7ributes.
•  publishObjectClass.

•  registerObjectInstance.

•  enableTimeRegula(on.
•  (meRegula(onEnabled.(callback).
•  enableTimeConstrained.
•  (meConstraintedEnabled.(callback).

•  registerFederateSynchroniza(onPoint.
•  Synch…PointReg…Succeeded.(callback).
•  announceSynchroniza(onPoint.(callback).
•  synchroniza(onPointAchieved.
•  federa(onSynchronized.(callback).

•  preIini(alize().

invoked(by(Director(

•  ini(alize().

invoked(by(Director(
.

Federa&on(

Declara&on(

Time(

Federa&on(

•  unpublishObjectClass.
•  unSubscribeObjectClass.

•  resignFedera(onExecu(on.
•  destroyFedera(onExecu(on.

•  wrapup().

invoked(by(Director(
. Federa&on(

Declara&on(

Object(

•  updateA7ributeValues.
.(invoked.by.a.HlaPublisher.actor)(

•  updateHlaA7ribute().

Invoked(by(HlaPublisher(
Object(

Time(
•  (meAdvanceRequest.ou.nextEventRequest.
•  (meAdvanceGrant.(callback).

•  reflectA7ributeValues.(callback,.if.received).

•  proposeTime().

invoked(by(Director(
. Object(

Fig. 6. Architecture of the HlaManager attribute

The pre-initialize() method of the HlaManager executes
some services of the Federation management (e.g. create and
join tasks for a federation) and some services of the Dec-
laration management relative to publication and subscription
of object’s instances in a federation. The initialize() method
executes services of the Federation management relative to
HLA synchronization points and services of the Time man-
agement about the declaration of the federate time policy (e.g.
constrained and regulating).

The wrapup() method is related to some services of Decla-

ration management and Federation management corresponding
to unpublish/unsubscribe actions, correct termination (e.g. res-
ignation) of federates and the destruction of a federation.

These methods are executed by the director during the
lifecyle of the Ptolemy model. Subsection IV-A have showed
that the proposeTime() method is executed by the director
during the time advancement phase. The role of the update-
HlaAttribute() method is detailed in Subsection IV-C.

a)

b) c)

Fig. 7. a) and b) Ptolemy Federates, c) Parameters of
HlaManager attribute

2) Configuration of a Ptolemy Federate: A Ptolemy feder-
ate must deploy only one HlaManager attribute and one or
more HlaPublisher or HlaSusbcriber as represented in
Figure 7. The HlaManager’s configuration interface, depicted
in Figure 7.c, allows the user to configure and to enable or
disable HLA services used by the Ptolemy federate.

According to the HLA standard, a Ptolemy federate needs
to specify its name, the name of the federation in which
it participates and its corresponding FOM (.fed file). The
interface allows to configure the required time management
services. The user must choose between NER or TAR services.
Time policy (e.g constrained or/and regulator) and timing
properties (e.g start time of the HLA logical time, lookahead
value, etc.) are also specified through this interface.

In our approach, the HLA synchronization point services
synchronize federates during their initialization and ensure the
correct starting of Ptolemy federates (if required). This avoids
that a Ptolemy federate that only receives values from HLA,
finishes its simulation before the launch of the other federates.

C. HlaPublisher and HlaSubscriber actors

In Sections II and III we have identified the main commu-
nication artifacts for both simulation environments. In Ptolemy,
actors communicate with each other by sending events through
input and output ports, when HLA is based on updated values
of attribute following the publish/subscribe pattern. A HLA
attribute owns specific declaration according to the FOM and
comes with information as its name, its type, the object’s
class which it belongs to and its time policy (e.g declared
as TIMESTAMP).

In our approach, an HLA actor is mapped to an HLA
object attribute. Two distinct actors HlaPublisher and
HlaSubscriber have been created according to Ptolemy’s

actor semantics to publish and to subscribe to an HLA attribute.
Each actor specifies a unique port (an input port for the
HlaPublisher and an output port for the HlaSubscriber).
The configuration of these actors involves their name, the
type of their unique port and the parameter ObjectHandle
which indicates the object class that the attribute belongs to
according to the FOM. The data type of the port has to be the
same as in the HLA attribute. Figure 7 a) and b) describe a
HlaPublisher actor before and after its configuration.

D. Interaction between HlaManager and HLA actors

1) HlaPublisher: Let us consider now the meth-
ods updateHlaAttribute() and proposeTime() of the
HlaManager attribute presented in Figure 6. Figure 8 de-
scribes the interaction (through its execution flow), to publish
an update of a HLA attribute, between the director, the
HlaPublisher actor, the HlaManager attribute and the RTI.
The methods proposed by the RTI are provided by the JCERTI
API.

Director(HlaPublisher(HlaManager(RTI(
fire()att1$

inputPortList().get(0)$

updateHlaABribute()$
UAV(t1)$

Fig. 8. Execution flow to handle an update of a HLA Attribute

The updateHlaAttribute() method is provided by the
HlaManager to HlaPublisher actors. This method encap-
sulates the operations to build an updated value of a HLA
attribute from a Ptolemy event, and calls the Object manage-
ment services relative to the publication of the updated value
(only the call to the updateAttributeValues() service is
showed in the Figure 8).

The initialize() method (not showed in Figure 8) of
the HlaPublisher allows to retrieve the reference to the
HlaManager deployed in the model. Thus the actor can
invoke the updateHlaAttributeValue() method provided
by the manager during the execution of its fire() method
(triggered by the director). A publication action is enabled by
the connection of an output port of a Ptolemy source actor of
the core library to the input port of the HlaPublisher. To
summarize, each reception of an event e = (v, t) on this input
port (at time t) leads to the call of the updateAttributeValues()
(UAV) service, by the HlaManager, with value v and time t.
The JCERTI API is used to build a correct representation of
the timestamp t.

2) HlaSubscriber: Figure 9 describes the execution flow
to introduce a new update of a HLA attribute, received
from the HLA/CERTI Federation. This interaction involves
the director, the HlaSubscriber actor, the HlaManager
attribute and the RTI.

The HlaSubscriber contains a queue and provides the
putReflectedAttribute() method to the HlaManager to store
every updated value in it. When a Federate uses the HLA Time
management, the reception of these values (e.g. reception of

!"#$%&'#()*+,-./%#".$#()*+0+1+2$#(345((
!"#!#$%&'(%)*+,-

1'#6+*("17'%+8'1(

&./*)*+,-

&.0)*+,-

123),-

#$&-#1(7+*-$(
%+**.+%9/(

0.4)*56,-

"%*7"8-*+-

!7*0%9%2*%:;<=.>"'?7*%),-

@"%.*)*+,-

@"%)*+,-

Fig. 9. Execution flow to handle reflected HLA Attribute

the reflectedAttributeValues() (RAV) callbacks from the RTI)
is only possible during a time advancement phase, through
the call to the HLA tick() (see Figure 9). At the end of this
phase each RAV received by the HlaManager is stored as a
(Ptolemy) event in a HlaSubscriber. The manager is able
to retrieve the corresponding HlaSubscriber and to invoke
its putReflectedHlaAttribute(). The value of the event is the
updated value and its timestamp is the HLA logical time
specified by the RAV. The treatment of the RAV is handled in
the proposeTime() method.

During the execution of the putReflectedHlaAttribute(),
a call to the fireAt() method is performed to program the
next firing time of the HlaSubscriber (i.e. the time when
the director have to call its fire() method). This ensures the
delivery of the timed-event at the correct time in the Ptolemy
simulation. A subscription operation is enabled by connecting
the HlaSubscriber’s output port to an input port of a
Ptolemy sink actor of the core library.

V. CASE STUDY

Let us consider the hierarchical Ptolemy model of Figure 4,
This model is split in three Ptolemy Federates (ptII-Fed for
short) represented in Figure 10.a, 7.b and 10.c. Each ptII-Fed
has a DE director and is directly obtained from a composite ac-
tor C by just adding: 1) an HlaManager attribute in the model,
2) an HlaSubscriber actor to each input port of C, and 3)
an actor HlaPublisher to each output port of C. The FOM
for this federation is represented in the f14.fed file depicted
in Figure11.a. As explained in section IV-B, an HlaManager
needs to be configured. The interface depicted in Figure 7.c is
the configuration of the Aircraft HlaManager. Due to lack
of space, other configurations are omitted here. Besides the
Federate name, AutoPilot ptII-Fed has the same properties
as the Aircraft: it uses NER, it is time constrained and time
regulator, it has a lookahead of 0 and the synchronization point
is the same. Stick ptII-Fed has two differences: it uses TAR
and is the creator of the synchronization point.

a) Aircraft model b) AutoPilot model

Fig. 10. Ptolemy Federates

Figure 11.b shows the plot of elevCom, the elevator
command sent by the AutoPilot controller to the Aircraft
and Figure 11.c shows the angle of attack of the aircraft.
Additionally, in both graphs, the Stick output is plotted. The
values obtained are the same for the centralized case of
Figure 4 and the distributed simulation with the three ptII-Fed.

;; f14
(Fed
(Federation f14)
(FedVersion v1.3)
(Federate "aircraft" "Public")
(Federate "stick" "Public")
(Federate "autopilot" "Public")
(Spaces)
(Objects
(Class ObjectRoot

(Attribute privilegeToDelete reliable timestamp)
(Class RTIprivate)

(Class myObjectClass
(Attribute stick RELIABLE TIMESTAMP)
(Attribute alpha RELIABLE TIMESTAMP)

(Attribute q RELIABLE TIMESTAMP)
(Attribute elevCom RELIABLE TIMESTAMP))))
(Interactions
(Class InteractionRoot BEST_EFFORT RECEIVE
(Class RTIprivate BEST_EFFORT RECEIVE))))

a) f14.fed file

b) Stick and elevCom c) Stick and AoA

Fig. 11. a) FOM ; b) Elevator command; c) Angle of attack of the aircraft

VI. CONCLUSION AND FUTURE WORK

In this paper we propose a co-simulation framework for
complex, heterogeneous systems such as encountered in CPS.
Topics addressed in this work are different notions of time
across distributed components, time synchronization, com-
munication latencies, co-simulation of heterogeneous com-
ponents, and interoperability of different simulation environ-
ments. This approach discusses the distributed simulation
capabilities of HLA/CERTI, and describes how the simulation
tool Ptolemy was extended in order to interact with HLA. The
extensions in Ptolemy, although specific to the tool, can be
generalized for arbitrary simulation tools.

The framework presented here allows the design of com-
plex simulations containing several different simulation models
as well as simulation tools, functional source code executed on
specific embedded platforms and hardware.

The case study, an aircraft longitudinal flight control sys-
tem, shows the distribution of a Ptolemy model over three
federates in an HLA federation. The simulation results ob-
tained by the distributed simulation are equivalent to the ones
recorded during the centralized simulation.

Future work directions are numerous. As an immediate
next step, we will replace the pilot stick model in Figure 7.b
(ptII-Fed Stick) with a real joystick controlling the elevator
(modeled by ptII-Fed Aircraft). Another direction is the
integration of a network model as a Ptolemy federate. In fact,
Ptolemy II has introduced special entities called quantity man-
agers [3] that model the network behavior allowing to take into
account latencies, without changing the functional model. We
are working on a bigger case study, a complex flight simulation
platform containing many, heterogeneous components, called
DSES (Distributed Simulation of Embedded Systems) [16],
using Ptolemy federates.

In the prototype presented here we do not account for
phenomena such as clock drift or non-deterministic communi-
cation. Future work will investigate these topics. With regards

to deterministic computation and communication, a model of
computation, PTIDES, and the potential integration with HLA,
is investigated.

ACKNOWLEDGMENT

This work is a joint work between ISAE/DMIA, ON-
ERA/DTIM and UC Berkeley/EECS. G. Lasnier has been
funded by the RTRA-FCS STAE Foundation.

REFERENCES

[1] MathWorks, “MATLAB/Simulink,” 2013. [Online]. Available:
http://www.mathworks.com

[2] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, and S. Neuendorffer, “Taming heterogeneity - the Ptolemy
approach,” Proceedings of the IEEE, vol. 91 - 1, pp. 127–144, 2003.

[3] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling cyber-
physical systems,” Proceedings of the IEEE (special issue on CPS), vol.
100, pp. 13 – 28, Jan 2012.

[4] IEEE, “IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) – Framework and Rules,” IEEE Std 1516TM-2010,
pp. 1–38, 2010.

[5] ——, “IEEE Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) – Federate Interface Specification,” IEEE Std
1516.1TM-2010, pp. 1–378, 2010.

[6] E. Noulard, J.-Y. Rousselot, and P. Siron, “CERTI, an open source RTI,
why and how ?” Spring Simulation Interoperability Workshop, 2009.

[7] ONERA, “The Open Source middleware CERTI,” 2013. [Online]. Avail-
able: http://www.onera.fr/dtim-en/hla-distributed-simulation/index.php

[8] H. Hadj-Amor and T. Soriano, “A contribution for virtual prototyping
of mechatronic systems based on real-time distributed high level archi-
tecture,” Journal of computing and information science in engineering,
vol. 12, no. 1, 2012.

[9] Modelica Association, “Modelica: A unified object-oriented language
for physical systems modeling, language specification version 3.3,”
Modelica Association, 2012.

[10] ForwardSim Inc. Simulation and Technologies, “HLA Toolbox for
MATLAB - HLA Blockset for Simulink,” 2013. [Online]. Available:
http://www.forwardsim.com

[11] Modelisar, “Functional mock-up interface for model exchange
and co-simulation, Version 2.0 beta 4,” Information Tech for
European Advancement, Tech. Rep., Aug 2012. [Online]. Available:
https://www.fmi-standard.org

[12] M. Awais, P. Palensky, A. Elsheikh, E. Widl, and S. Matthias, “The
HLA RTI as a master to the functional mock-up interface components,”
in Computing, Networking and Communications (ICNC), 2013 Interna-
tional Conference on, 2013, pp. 315–320.

[13] R. M. Fujimoto, “HLA time management: Design document,” Georgia
Tech College of Computing, Tech. Rep., Aug 1996.

[14] E. A. Lee, “Heterogeneous actor modeling,” in Proceedings of the
11th International Conference on Embedded Software (EMSOFT 2011),
2011, pp. 3–12.

[15] ——, “Modeling concurrent real-time processes using discrete events,”
Ann. Software Eng., vol. 7, pp. 25–45, 1999.

[16] C. Gervais, J. Chaudron, P. Siron, R. Leconte, and D. Saussie, “Real-
time distributed aircraft simulation through hla,” in Distributed Sim-
ulation and Real Time Applications (DS-RT), 2012 IEEE/ACM 16th
International Symposium on, 2012, pp. 251–254.

