
Running Real Time Distributed Simulations under Linux and CERTI

Bruno d’Ausbourg
Pierre Siron
Eric Noulard

ONERA/DTIM
2 avenue E. Belin

31055 Toulouse Cedex
France

bruno.d.ausbourg@onera.fr, eric.noulard@onera.fr, pierre.siron@onera.fr

Pierre Siron
Université de Toulouse, ISAE

10 avenue E. Belin
31055 Toulouse Cedex

France
pierre.siron@isae.fr

Keywords:
Distributed simulation, real time, RTI, satellite.

ABSTRACT : This paper presents some experiments and some results to enforce real time distributed simulations in
accordance with the High Level Architecture (HLA). Simulations were run by using CERTI, an open source
middleware, as the Run Time Infrastructure (RTI). Models were distributed over computers under various available
versions of the 2.6 Linux kernel. Studies and experiments relied on a real case study. The chosen case study was the
simulation of an "in formation" flight of observation satellites. This case study brings up some real applicative needs
in real time distributed simulations and real configurations of simulators and models. Two simulations of "in
formation" flight of satellites were studied. The study consisted in modeling the behaviour of the simulators and in
running these models by using various kernel or middleware operating mechanisms and services. Time measurements
were performed at each test giving some results on the ability of the simulation to meet its real time requirements.

1. Introduction

New systems become more and more complex. They
are made of numerous components. These
components often make use of new technologies and
interact between themselves. These systems can be
embedded inside aircrafts (manned or unmanned),
satellites or defense systems. Mastering and
managing the development and the evaluation of such
systems become a really difficult task. Simulation is
more and more required to bring some help in these
processes. Because many scientific and technical
problems are addressed and because numerous
models are needed to treat these problems,
simulations are actually generally distributed. Models
and simulations must interoperate in order to build
some relevant results. So simulations must rely on
some basic mechanisms and services to properly
interoperate. Moreover, some hardware equipments
or some real subsystems can be integrated inside the
loop of these simulations. In that case, hard real time
constraints must be taken into account when running
these distributed simulations.

There is clearly a difficulty in satisfying hard real
time constraints in interoperable distributed
simulations. Satisfying these constraints may depend
on some basic mechanisms and services that are
implemented inside operating systems, inside kernels
or inside dedicated middleware. Then, the question
may be the following: is it possible to enforce real
time distributed simulations by using common
operating systems and run time infrastructures ?

This paper presents some experiments and some
results to enforce real time distributed simulations in
accordance with the High Level Architecture (HLA)
(see [1], [2]). Simulations were run by using CERTI
(see [3], [4]) as the Run Time Infrastructure (RTI).
Models were distributed over computers that were
running under various available versions of the 2.6
Linux kernel.

2. Case studies

The simulations that were used as case studies have
their own history. And this history can explain some
choices that were done with respect to their

mailto:eric.noulard@oneraa.fr

architecture. At the beginning, old computers were
used. These computers could only run the simulator
of the satellite on-board computer because of
performance and memory space requirements.
Therefore a second computer was needed to run a
model of the dynamics of the satellite and to run a
model of its environment. So, in fact, a distributed
simulation architecture was yet extensively used to
design and to devise new satellites. To study the
flight in formation of satellites, it seemed quite
natural to duplicate these existing components in
order to ensure some cost reduction. And the original
simulation architecture was reused and incorporated
in the design of the new simulation architecture.

2.1 A simple simulation

The first case study is a simulation (see [5]) that is
made up by four components that are four simulators
as depicted by figure 1:
• A simulator of the board computer on satellite 1.
• A simulator of the board computer on satellite 2.
• A simulator of the dynamics of the satellite 1.
• A simulator of the dynamics of the satellite 2.

Figure 1: Structure of the first application case study

Each simulator is encoded by a federate in the final
HLA simulation. Each of them runs a simulation loop
at a frequency that is given on the figure. The data
exchanges are also depicted on the figure by their
size and their frequency.

A classical structure of exchanges is used between
the simulators (see figure 2): the sender emits data at
the end of a simulation cycle, at a logical time δ and
the receiver receives data at the beginning of a new
cycle, at a logical time δ'>δ. Exchanges between
federates 3 and 2 on the figure 1 (between the
dynamics simulators of satellite 2 and 1) have a
different structure: data are emitted by federate 3 at
the end of a simulation cycle, at a logical time δ, and
are received by federate 2 in the middle of a
simulation cycle at the same logical time δ. These
exchanges are very useful to compute the relative

positions of the two satellites in the real world.
Modeling this structure of exchanges, under HLA,
requires to invoke particular asynchronous delivery
services of the RTI. And the experiments show that
this particularity has a great influence on the
performance results and on the ability of the whole
simulation to meet its objectives in time.

Figure 2: Exchanges of data between federates

2.2 A more complex simulation

The second simulation application incorporates the
components of the first one and is a bit more complex
because two other federates are added to the first
simple simulation as depicted by figure 3:

• Federate 5 implements a simulation model of the
payload computer at 200 Hz.

• Federate 6 implements a simulation model of the
payload components at 200 Hz.

Figure 3: Structure of the second simulation case
study

3. Modeling

Two kinds of federate models were developed. Each
of them used a different mechanism to ensure time
progression and synchronization inside the
simulation. The first kind of modeling does not make
use of any time management mechanism and

produces so-called HLA Real Time federates. The
second kind of modeling makes use of the HLA Time
Management services (see [6] and [7] for example).
The programming of these two different models leads
to two kinds of logical structure of their internal
simulation loops. A federation includes only federates
of the same type.

3.1 First type of simulation loop

Figure 4 depicts the logical structure of the HLA Real
Time simulation loop. The structure of this loop is
mapped on the sequence of steps that are performed
by each simulator on each cycle. Every federate but
federate 2 runs, inside the loop, the five following
steps:
1. Synchronization phase.
2. Receipt of measured or command data from other

federates.
3. Computation (25 % of a cycle).
4. Update of measures, commands or state data to

other federates.
5. Free time.

Figure 4: Real time simulation loop

The computation step is a bit particular when
processed by federate 2. This step incorporates the
receipt of state data from federate 3. This is depicted
and detailed by the right side of figure 4.

The federate that beats at the highest frequency (with
the smallest cycle duration) is considered as the
master of the synchronization process : for example,
that is the case of federate 2 in figure 1. At each
beginning of a cycle, the federate emits an HLA
interaction that acts as a global synchronization
signal. This signal gives to other federates, that have
subscribed this interaction, the information that the
master federate is starting a new cycle. The other
federates wait for these signals to make their own
progress. There is no more synchronization
constraint. So, some jitters may be observed when a
federate remains idle for a while. This federate may
gather and accumulate interaction signals from the
master federate. And when becoming busy, the
federate may speed up by consuming all these signals
one after another. So it can be observed that some

federates slow down and then speed up when running
their simulation loops.

3.2 Second type of simulation loop

Figure 5 depicts the structure of the simulation loop
when time management services are used by the
federates. In this case, the synchronization does not
need explicit receipt of interaction messages.

Figure 5: Coordinated time simulation loop

Time stamped messages are automatically delivered
by the RTI while the federate is waiting to be time
granted (when it is running the while (not granted)
loop on figure 5). So, in order to receive an updated
value while the federate is in an other state, as this is
required by federate 2, these values must be carried
by messages that are not time stamped (HLA Receive
Order). These RO messages must have been
previously authorized to be delivered in an
asynchronous way.

3.3 Using a timer

A timer is used by the most time constrained federate
(the master federate). This timer is programmed to be
triggered at the end the theoretical cycle duration.
The master federate, at the end of each cycle,
simulates a free time by running padding instructions.
So, when the timer triggers, two cases are possible:

• The cycle is achieved and the federate is in a free
time state, waiting the cycle time has elapsed. In
that case all is right and a new cycle can start.

• The cycle is not terminated and is yet in
progress. In that case, the cycle duration is too
long and this fact is registered in statistics that
keep some information about the simulation
behaviour.

4. Basic experiments

4.1 Hardware and software configuration

Our experiments were performed on a hardware and
software reference configuration that was made up by
COTS components. The hardware configuration is
very simple and very common. It is based on two
dual-core processors in PowerEdge 860 machines.

Processors are Dual Core Xeon 340 processors at
1,86 GHz with 2 MB of cache memory. Each of them
can make use of 2 GB RAM memory. These two
machines are linked with a dedicated 1 Gb link.

All experiments were based on the use of a Linux
Fedora Core 6 system in a 32 bits version. Different
CERTI versions were also used.

4.2 First results on a basic single machine

Table 1 gives ten results by the simple simulation
case study and by the first type of simulation loop.
These results are with respect to federate 2. In this
simulation, the targeted rate of federate 2 is 100 Hz
and federate 2 is the master federate of the
federation. In other words, simulation cycles must
keep a duration of 10 ms. And simulation cycles may
not be less than 10 ms because the programmed timer
triggers after 10 ms.

Table 1: Simple case study, results of federate 2

The column on the left of the table shows that
minimum durations of cycles are close to 10 ms. This
fact demonstrates that the time objective can be
reached. The problem is with maxima. Maximum
cycle durations are too long : the worst case reaches
20 seconds (in red on the table). Moreover, these
maximum duration values are fully distributed around
mean values that are themselves always too long. So
standard deviations are very important and this fact
indicates a big jitter in cycles. This simulation does
never meet its objectives in performances and is very
irregular. A surprising fact is in medians. In every
experiments, median values are in the interval
[11.99..12]. This seems to indicate that performance
is not really the problem: the problem is rather in
allocating processors at the right time. The results for
the other federates are not better and very irregular.

The complex simulation described in section 2.2 can
not be run on the basic hardware and software
configuration. In fact more than 2 hours were
necessary to run 4000 cycles of 5 ms. In other words,
what would have been done in 20 seconds was not
achieved in two hours.

5. New real time mechanisms and results

The conclusion of the previous section is that a lot of
work was necessary to improve the real time
performances of these distributed simulations. The
following presents and describe some different
aspects of this incremental work. These aspects
concern all the parts of the distributed simulations
and even the applications, they are in fact very
interleaved.

5.1 A more real time operating system

Setting a Real Time scheduling. Section 4 showed
that a main difficulty, when attempting to master real
time constraints, is to allocate processors to processes
in a correct way. New experiments were performed
by using two allocating mechanisms : a static
mechanism and a dynamic one. These mechanisms
are founded on real time resources that were added to
Linux kernels.

The static mechanism uses affinity masks and the
taskset command. This command is used to launch a
new command with a given CPU affinity. CPU
affinity is a scheduler property that bonds a process
to a given set of CPUs on the system. The Linux
scheduler will honor the given CPU affinity and the
process will not run any other CPUs.

The dynamic mechanism is founded on the choice of
real time scheduling algorithms for POSIX/Linux.
Two real time algorithms, SCHED_FIFO and
SCHED_RR, are intended for time-critical
applications that need precise control over the way in
which runnable processes are selected for execution.
Only processes with superuser privileges can get a
static priority higher than 0 and can therefore be
scheduled under SCHED_FIFO or SCHED_RR. All
scheduling is preemptive: if a process with a higher
static priority gets ready to run, the current process
will be preempted and returned into its waiting list.
The scheduling policy determines only the ordering
within the list of runnable processes with equal static
priority. With SCHED_RR (Round Robin) each
process is only allowed to run for a maximum time
quantum. If a SCHED_RR process has been running
for a time period equal to or longer than the time
quantum, it will be put at the end of the list for its
priority. A SCHED_RR process that has been
preempted by a higher priority process and
subsequently resumes execution as a running process
will complete the unexpired portion of its round robin
time quantum.

Locking memory pages. The mlockall system call
disables paging for all pages mapped into the address
space of the calling process. This includes the pages
of the code, data and stack segment, as well as shared
libraries, user space and kernel data, shared memory

and memory mapped files. All mapped pages are
guaranteed to be resident in RAM when the mlockall
system call returns successfully and they are
guaranteed to stay in RAM until the pages are
unlocked again or until the process terminates or
starts another program. Real time applications require
deterministic timing, and, like scheduling, paging is
one major cause of unexpected program execution
delays.

Real time timers in a new preemptible kernel.
There is also a problem with timers. In standard
versions of Linux, timers have a resolution that is
given by the kernel basic frequency: 1000 Hz. In
other words, a timer in Linux has a resolution of 1
ms. So time measurements on cycles of 5ms are not
really accurate. In order to get more accurate timers,
high resolution timers were introduced in Linux
kernels (see [8]). These new timers permit a
resolution of 1 µs.

Moreover, kernel is made preemptible. In that case, a
process in kernel mode may be interrupted. In our
first experiments, the kernel was not preemptible. In
that case, when a federate executes a system call, the
execution of the kernel code can not be interrupted.
With a preemptible kernel (see [9]) the execution of
the kernel code may be interrupted if something more
important needs to run. So, the kernel is more
reactive.

The process scheduler has been rewritten in the 2.6
kernel to eliminate the slow algorithms of previous
versions. Formerly, in order to decide which task
should run next, the scheduler had to look at each
ready task and make a computation to determine that
task's relative importance. After that all computations
were made, the task with the highest score would be
chosen. Because the time required for this algorithm
varied with the number of tasks, complex
multitasking applications suffered from slow
scheduling. The scheduler in Linux 2.6 no longer
scans all tasks every time. Instead, when a task
becomes ready to run, it is sorted into position on a
queue, called the current queue. Then, when the
scheduler runs, it chooses the task at the most
favorable position in the queue. When the task is
running, it is given a time slice, or a period of time in
which it may use the processor, before it has to give
way to another thread. When its time slice has
expired, the task is moved to another queue, called
the expired queue. The task is sorted into this expired
queue according to its priority. As a result,
scheduling is done in a constant amount of time. This
new procedure is substantially faster than the old
one, and it works equally as well whether there are
many tasks or only a few in queue. This new

scheduler , due to I. Molnar, is called the O(1)
scheduler (see [10]).

5.2 New execution configuration

The new experiments that will run the complex
simulation use the configuration that is depicted in
figure 6. By using mechanisms described in the
previous section, federates that have the highest rate
(federates 5 and 6 at 200 Hz) have respectively cores
0 and 1 at their own disposal on the second machine.
The central kernel part of CERTI (RTIG) resides on
core 1 of the first machine while federates 1, 2, 3 and
4 share the core 1 of the first machine. Due to a lack
of available resources, we cannot study the impact of
a greater number of processors.

Figure 6: New execution configuration

5.3 New CERTI mechanisms

New tick function in the CERTI middleware.
When running, federates can dynamically give the
processor resource to the Run Time Infrastructure
(CERTI) by using the tick CERTI call. So the RTI
can launch, in response to received messages, the
callback functions that are defined inside the federate
program and that are associated to these messages.
The problem is that, in early versions of CERTI,
function tick was not blocking. It immediately
returned when the RTI could not launch any callback
in return, or it returned after having launched a
particular callback. Using this function was done, in
federate programs, by writing such blocks of
instructions :

granted = false;
//require time advance
timeAdvanceRequest (timerequested);
//busy waiting of grant by RTI
while (! granted) do tick();

The callback function, launched by the RTI when, in
this example, time advanced can be granted to the
federate, assigns a value true to granted. This is done
while the federate enters a busy waiting loop. This
loop generates, on each tick call, exchanges of

messages between the federate and the RTI. It
generates also useless context switches between these
two processes. So the processor resource may be only
used by these only two processes : this may seriously
disrupt other processes and other federates.

To avoid such a lock of the processor, the function
tick was reimplemented in a blocking mode. In other
words, this function now returns only after a callback
function has been launched by the RTI. Structure of
programming is syntactically the same, but
semantically, things are very different because only a
few messages are generated and only two context
switches are involved. This makes the processor free
to be used by many other processes as long as it is not
possible to return from tick.

Asynchronous message delivery. Moreover, a new
mechanism to treat asynchronous message delivery
was also introduced in CERTI. By this way, when a
federate makes use of time management services of
the RTI, messages that are not time stamped can be
delivered by the RTI even if the federate is not in a
time advancing state. By this way, asynchronous
delivery of messages between federates 2 and 3 (Dyn
Sat 1 and Dyn Sat 2) can be modeled and treated in a
simulation that makes use of time management
services. This work is a part of a more general
working plan, the goal of which is to make CERTI
more complete with regards to the 1.3 specifications
of HLA in a first phase and to the new IEEE
specifications in a second phase.

5.4 New programming of the federate user code

To improve the execution of simulations loops, I/O
system calls were systematically eliminated in the
user code of these loops inside the federate programs.
The only calls that were kept are calls to the RTI
services. These services may perform such system
calls (by using sockets API for instance), but the
federate programs do not.

Time measurements are also performed without doing
any system calls. A direct access to the Time Stamp
Counter of the processor is performed by making use
of a RDTSC instruction in programs. Time
computations on measurements were also optimized
inside loops.

By this way, the code of programs in simulation loops
is, essentially and only, devoted to the simulation
processing.

5.5 Final results

Under these assumptions, many experiments were
performed. In particular, HLA real time scheme and

HLA Time management scheme were experimented.
An other parameter seems to play a significant role in
the global mastering of jitters: the priority that is
assigned to federates. Experiments were performed
by using the two simulation case studies. In this
paper, only the most significant results are presented.
They are related to the most complex and to the most
constrained federate of this federation. So figures 7
and 8 present results of the master federate of the
simulation (federate 5, Payload Computer). They give
the maximum and median values for simulation
cycles when simulations are run in low or high
priority and by making use of time management
(HLA TM) services or not (HLA RT).

Figure 7: Federate 5 (200 Hz)

Figure 7 shows that maximum durations become
lower when increasing priority and when using time
management services. In particular when using time
management services with a high priority, maximum
values of cycles durations remain close to the
expected duration of 5ms.

Figure 8: Federate 5 (200 Hz)

Figure 8 shows that the time objectives were finally
met when the original results, at the beginning of
experiments, were so bad. Here the maximal
deviation is now less than 50 µs. With respect to
mean values, priority is not the main determining

factor but rather the use of time management services
that improves the global performance of the whole
simulation.

Experiments that were done by making use of HLA
Time Management services are very instructive.
Making use of time management services implies that
a distributed algorithm is enforced by each RTI part
of federates in order to decide when advance time
requests can be granted. A computational overhead is
so generated when using these services. But
experiments show that, globally, performances are in
fact always improved.

6. Conclusions and learned lessons

Several lessons were learned while running these
various experiments. First of all, it must be
considered that all results were gained after modeling
``worst cases''. Assumptions that were done and basic
mechanisms that were used to implement models
were particularly pessimistic:
• The computation load in simulation cycles is

heavy: 25% of the cycle duration is devoted to
simulate the computational activity of the real
simulator cycle.

• Computational and free times are hard encoded
inside models: so these steps necessitate to have
processors at one’s disposal in order to progress.

• Item distribution of the simulation is minimal due
to the very simple and very poor simulation
architecture: two COTS dual-core machines.

• The synchronization scheme, when federates do
not use time management services and are when
they run under the HLA Real Time scheme, is
very light. This lack of synchronization
strengthens jitter possibilities.

Reducing some of these constraints would permit to
gain better results and to meet more properly the real
time objectives in simulations. But because the
experiments were done on worst cases, learned
lessons are so very instructive.

Don't confuse real time and performances. All
experiments were done on the same hardware
platform and by using the same machines and
processors. This architecture is a very common one
and not especially known as a particularly high-
performance one. Spectacular results have been
obtained with regard to runs of federates that make
up the complex simulation. These federates did not
properly run in the first experiments. They ran by
being close to their real time objectives in the final
experiments. In both cases the same architecture with
the same level of performance, the same machines

and the same processors were used. So what did
change?
• Various and different kernel functions were used

in order to better allocate processors resources
to processes when needed, in the right time, and
in order to provide more accurate mechanisms in
time measurement.

• The communication protocol between federates
and the RTI is made more efficient by limiting
the busy waiting of processes.

• Some good programming practices were
introduced in model programming. They ensure
that computing resources are mainly devoted to
the simulation process and they permit a better
progress of the federates.

All seems to be in a good kernel scheduling . Two
mechanisms are particularly determining to take into
account real time objectives. Scheduling policies and
scheduling algorithms are the heart of the problem
and of the solutions. It seems very important to make
sure that preemptions can be done when needed and
that scheduling algorithms are efficient without
generating any heavy cost because context switches
may be numerous. The experiments that were
described in this paper show that enforcing a proper
scheduling of tasks permit to gain in global
performance and to reduce jitters in the simulation
runs.

All seems to be in a good real time programming.
The experiments performed in this study showed that
programming practices are also determining to take
real time policies into account. For example
programming changes in the protocol of exchanges
between federates and RTI permitted to eliminate
busy waiting loops in programs. By this way
processors can be allocated to other federates that
need them in order to progress. In other words,
programmed mechanisms inside middleware have
been devised to introduce some asynchronism in it.
This asynchronism can permit to release processors
and to allocate them to tasks that really need them.
Moreover, experiments showed that system calls are
costly. The cost comes from the overhead due to the
system call itself. But while running a system call, a
federate can reach a preemption point. At this point
the kernel scheduler is invoked and the federate may
lose its processor. So system calls must be used only
when there is no mean to do otherwise, and in
particular I/O system calls must be prohibited. The
lesson here is that the algorithmic structure of
programs has a great influence on the real time
behaviour of federates.

HLA Time Management is good for real time. A
primarily surprise of these experiments is that time
management by the RTI seems good for real time and

that the HLA Real Time scheme does not seem to be
a very good thing to take real time constraints into
account. The best results are obtained by requiring
time management services. These services generate
some overhead. But, in fact, this overhead is
compensated by the better synchronization that these
services enforce between federates. This better
synchronization between federates reduces latencies
in data exchanges, reduces the cycles durations and
makes the global behaviour more regular because
jitters are also very reduced. An other explicit
programming of a stronger synchronization could be
enforced in models in the real time scheme. In
particular the use of interactions could be
generalized, but this practice would generate more
data transfers between federates, and probably results
would be still less convincing. In fact the time
advancing algorithm of the RTI enforces a very good
synchronizing of federates that seems to be the best
efficient approach.

Some new objectives. Some new research and
development directions seem to be opened to follow
these experiments. Scheduling policies are a very
determining factor in permitting the simulations to
satisfy their real time requirements. A possible way
would be to experiment other scheduling policies
(for example Completely fair Scheduler) or to
implement some new scheduling algorithms that
would be devoted to satisfy properly real time needs
of federates. Some new works could be performed in
the CERTI middleware in order to introduce more
asynchronism: in particular the communication stack
in CERTI could be made a parallel treatment and
asynchronous mechanisms for notifications to the
federates could be also introduced. These new
developments will contribute to make hard real time
distributed simulations more feasible.

7. References

[1] DMSO: “High Level Architecture Specifications”
Version 1.3. 1998.

[2] IEEE: “Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA). Std
1516. 2001.

[3] B. Bréholée, P. Siron: “CERTI: Evolutions of the
ONERA RTI Prototype” Fall Simulation
Interoperability Workshop. September 2002.

[4] P. Siron, E. Noulard, J.-Y. Rousselot: “CERTI”
www.cert.fr/CERTI. 2008.

[5] P. Y. Guidotti: “Entrées CNES sur les besoins de
démonstration HLA” DVF-CR-BV-AI-NS-144-
CN. February 2005.

[6] R. M. Fujimoto: “Time Management in the High
Level Architecture” Simulation, 71, pp 388-400.
December 1998.

[7] R. M. Fujimoto, R. M. Weatherly: “Time
Management in the DoD High Level
Architecture” Workshop on Parallel and
Distributed Simulations. May 1996.

[8] T. Gleixner: “High Resolution Timers”
www.tglx.de/hrtimers.html 2007.

[9] R. Love: “Lowering Latency in Linux:
Introducing a Preemptive Kernel”
www.linuxjournal.com/article/5600 2002.

[10]J. Aas: “Understanding the Linux 2.6.8.1
Scheduler”
josh.trancesoftware.com/linux/linux_cpu_schedul
er.pdf 2006.

Author Biographies

BRUNO D’AUSBOURG received his PhD in
computer science at Toulouse University in 1983. He
is currently a Research Engineer at ONERA and he
works in real time and distributed systems.

PIERRE SIRON was graduated from a French High
School for Engineers in Computer Science
(ENSEEIHT) in 1980, and received his doctorate in
1984. He is currently a Research Engineer at ONERA
and he works in parallel and distributed systems. He
is leader of the CERTI Project. He is also Professor at
the University of Toulouse, ISAE, and the head of the
computer science program of the SUPAERO
formation (French High School for Engineers in
Aerospace Sciences).

ERIC NOULARD graduated from a French High
School for Engineers in Computer Science
(ENSEEIHT) in 1995 and received his PhD in
computer science from Versailles University in 2000.
After 7 years working in the Aerospace & Telecom
domain for BT C&SI mostly for building high
performance tests & validation systems he joined
ONERA research center in Toulouse as Research
Scientist. He works on distributed and real-time
systems and his actively involved in the development
of the CERTI and TSP Open Source projects.

http://www.linuxjournal.com/article/5600
http://www.tglx.de/hrtimers.html
http://www.cert.fr/CERTI

